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Abstract
In the Metric Capacitated Covering (MCC) problem, given a set of balls B in a metric
space P with metric d and a capacity parameterU , the goal is to find a minimum sized
subset B′ ⊆ B and an assignment of the points in P to the balls in B′ such that each
point is assigned to a ball that contains it and each ball is assignedwith atmostU points.
MCC achieves an O(log |P|)-approximation using a greedy algorithm. On the other
hand, it is hard to approximate within a factor of o(log |P|) even with β < 3 factor
expansion of the balls. Bandyapadhyay et al. [Discrete and Computational Geometry
2019] showed that one can obtain an O(1)-approximation for the problem with 6.47
factor expansion of the balls. An open question left by their work is to reduce the gap
between the lower bound 3 and the upper bound 6.47. In this current work, we show
that it is possible to obtain an O(1)-approximation with only 4.24 factor expansion
of the balls. Moreover, we show a similar upper bound of 5 for a more generalized
version of MCC for which the best previously known bound was 9. We also study
a closely related problem where instead of the upper bound, one needs to satisfy a
lower bound on the number of points assigned to each ball in the solution. For this
problem, we give an exact algorithm with only 5.83 factor expansion of the balls. All
of our algorithms are based on LP rounding schemes that heavily exploit structure of
fractional optimal solution.
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1 Introduction

In any metric space P with metric d, a ball B(c, r) with center c ∈ P and radius r is
defined as the set of points at a distance at most r from c, i.e., B(c, r) = {p ∈ P |
d(c, p) ≤ r}.
Definition 1 (Metric Capacitated Covering (MCC)) We are given a set of balls B in
the metric space P with metric d. We are also given a capacity parameter U ∈ N

for the balls. The goal is to find a minimum sized subset B′ ⊆ B and an assignment
φ : P → B′ such that for any point p ∈ P , the ball φ(p) contains p and the number
of points assigned to a ball B ∈ B′ via φ is at mostU , i.e., |φ−1(B)| ≤ U . For Bi ∈ B,
we denote its center and radius by ci and ri , respectively.

MCC is a special version of Capacitated Set Cover (CSC), which is similar to the
classic set cover problem. In set cover, we are given a ground set S of elements and
a collection (or family) F of subsets of S whose union equals the ground set, and the
goal is to find a minimum-sized subfamily ofF whose union equals the ground set. In
CSC, additionally each set Si has a capacity Ui . The goal is to find a minimum-sized
subfamily F ′ ⊆ F and an assignment of the elements to the sets in F ′ such that each
element is assigned to a set it is in and at most Ui elements are assigned to each set
Si . From the above discussion, it is evident that MCC is a restricted version of CSC
with uniform capacities, where the points correspond to the elements and the balls
correspond to the sets. CSC is a well-studied problem. Wolsey [32] designed a greedy
algorithm for CSC that achieves an O(log n)-approximation, where n is the number
of elements.

The greedy algorithmofWolsey [32] yields an O(log |P|)-approximation forMCC,
as it is a restricted version of CSC. Indeed, this approximation factor is tight, which can
be proved using the following simple reduction from set cover. For each element, add
a point. For each set, add a ball of radius 1. If an element is in a set, then the distance
between the center of the corresponding ball and the corresponding point is set to 1.
Consider the metric space induced by the centers and the points. The capacity of each
ball is set to the total number of elements, say n. Now, if there is a set cover of size
k, then all the points can be covered by k balls without violating the capacities. The
converse is also true. As set cover is hard to approximate within a factor of o(log n)

under standard complexity theoretic assumptions [18], it is not possible to find an
approximation for MCC which is asymptotically better than O(log n). We note that
the way we set the capacity in this reduction it does not play any role as such – each
ball can contain at most n points, and thus no assignment can violate the capacity.
Hence, the reduction also holds for the “uncapacitated” version of MCC, i.e., MCC
without the capacity constraint.

As it is not possible to obtain a o(log n)-approximation for MCC, researchers have
focused on obtaining bicriteria approximation. An (α, β) bicriteria approximation for
MCC is a solution where the balls can be expanded by a factor of β (i.e., for a ball
Bi ∈ B and a point p j assigned to Bi , d(ci , p j ) ≤ β ·ri ) and the size of the solution is
at most α times the optimum solution size (that does not expand the balls). From the
above reduction, it follows that no (o(log n), β) bicriteria approximation is possible
for MCC under standard complexity theoretic assumptions for any β < 3. This is
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true, as in the construction for a ball Bi that does not contain a point p j , the distance
between ci and p j is at least 3. Thus, with less than 3 factor expansion, Bi cannot
contain any more points than before.

On the positive side, Bandyapadhyay et al. [6] obtained an (O(1), 6.47) bicriteria
approximation for the problem, i.e., with only a 6.47 factor expansion of the balls it is
possible to obtain a constant approximation. Their algorithm is based on rounding of
the natural LP relaxation of MCC. One problem that was left open by the work of [6]
is to reduce the gap between the lower bound 3 and the upper bound 6.47. Thus, for
what possible value of 3 ≤ β < 6.47 can one obtain an (O(1), β) bicriteria approx-
imation for MCC? They also consider a generalization of MCC – Metric Monotonic
Capacitated Covering (MMCC). This problem is similar to MCC except each ball Bi
has its individual capacityUi ∈ Nwhich must be satisfied if it is chosen in the solution
and the capacities are monotonic – for any two balls Bi and Bj if the radius of Bi is
at least the radius of Bj , then Ui ≥ Uj .

Definition 2 (Metric Monotonic Capacitated Covering (MMCC)) We are given a set
of balls B in the metric space P with metric d. We are also given monotonic capacities
Ui ∈ N for the balls Bi ∈ B. The goal is to find a minimum sized subset B′ ⊆ B and
an assignment φ : P → B′ such that for any point p ∈ P , the ball φ(p) contains
p and the number of points assigned to any ball Bi ∈ B′ via φ is at most Ui , i.e.,
|φ−1(Bi )| ≤ Ui .

At first glance, the monotonicity assumption might seem artificial. However, the
MMCC model has applications in wireless network. In a wireless network, coverage
areas of antennas can be modelled using balls. Moreover, it might be economical to
invest in capacity of an antenna to serve more clients, if its coverage area is larger.
Bandyapadhyay et al. [6] gave an (O(1), 9) bicriteria approximation forMMCC using
the same approach. We note that if the capacities are arbitrary, then no such bicriteria
approximation is known in general. Hence, O(log n) is the best-known approximation
factor in this case.

In this paper, we also introduce another covering problem, which we refer to as
Metric Lower-bounded Covering (MLC). MLC is similar to MCC except here instead
of the upper bound U , we have a lower bound L .

Definition 3 (Metric Lower-bounded Covering (MLC)) We are given a set P of n
points and a collection B of balls, in a metric space. We are also given a lower bound
parameter L . The goal is to find a minimum-sized subset B′ ⊆ B and an assignment
of the points in P to B′, such that each point p ∈ P is assigned to a ball that contains
p and for each ball Bi ∈ B′, at least L points are assigned to Bi .

Similar toMCC, one can think of natural applications ofMLC in wireless networks
and facility location. Note that in the above reduction from set cover,U is set to n, and
thus the reduction works even when we do not have any upper bound constraint. Thus,
by setting L = 1, we obtain a reduction from set cover to MLC, and hence MLC is as
hard as set cover. However, to the best of our knowledge, no O(log n)-approximation
is known for MLC.
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1.1 Our Results and Techniques

In this paper, we obtain improved results both for MCC and MMCC.

– ForMCC, we obtain an (O(1), 4.24) bicriteria approximation, i.e., it is possible to
obtain an O(1)-approximation with only 4.24 factor expansion of the balls when
the capacities are uniform.

– For MMCC, we obtain an (O(1), 5) bicriteria approximation, i.e., it is possible to
obtain an O(1)-approximation with only 5 factor expansion of the balls when the
capacities are monotonic.

Similar to [6] our results for MCC and MMCC are also based on LP rounding.
Indeed, our starting point is their rounding algorithm. For the purpose of giving an
overview of our technique, let us focus on MMCC. The algorithm in [6] achieves
an (O(1), 9) bicriteria approximation for MMCC. It consists of three main steps –
Preprocessing, Cluster Formation and Selection of Balls. Each of Preprocessing and
Selection of Balls incurs an overhead of a factor 3 expansion of the balls, resulting
in the 9 factor expansion. In our algorithm we judiciously avoid the preprocessing
step to save the factor 3 expansion. At first glance, it is not entirely clear how to do
the rounding without preprocessing, as the preprocessed solution has several “nice”
properties. Nevertheless, we partition the set of points into two subsets and construct
two auxilliary LPs. Using the initial fractional LP solution, we construct two feasible
fractional solutions to these two LPs. We round these two solutions independently to
obtain two integral solutions corresponding to the two subsets of points. For rounding
the first LP, we use an algorithm similar to the one in [6], but without preprocessing.
We show that the constructed fractional LP solution has equally nice properties so that
the algorithm in [6] can be extended in this case. For rounding the second LP, we use
a rather simple algorithm.

The sets of balls involved in two LPs are not necessarily disjoint, and thus a ball
can be selected in both of the solutions. But, taking multiple copies of a ball is not
allowed. To resolve this issue, we first identify a subset of balls and allow only these
balls to be involved in both solutions. Moreover, we scale down the capacities of these
balls by a suitable factor. This ensures that even if a ball is selected in both solutions,
the total capacity used by the copies does not exceed the original capacity. Note that
the scaling of capacities leads to a new issue that the capacities no longer satisfy the
monotonicity property in general. However, we show that it is possible to overcome
this issue by considering two classes of balls separately – one whose capacities remain
unchanged and the other whose capacities are scaled down.

We also obtain a polynomial-time algorithm for MLC that returns a solution with
the following properties.

– The cost of the solution is at most the optimal cost.
– Each ball in the solution is assigned at least L points.
– Each ball is expanded by at most a factor of 5.83.

This result should be compared with the results for MCC. Indeed, it shows that one
can obtain an exact solution if the balls can be expanded by 5.83 factor. Note that even
a constant-approximation is not possible with any β < 3 expansion factor, due to the
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reduction from set cover. Our algorithm is much simpler than the algorithms used to
obtain the results for MCC in the previous and current works. These algorithms for
MCC violate the lower bound constraint, and hence cannot be used to obtain such a
result for MLC.

1.2 RelatedWork

Considering the hardness of MCC, researchers have studied the Euclidean version of
the problem with the goal of obtaining better approximation. The dimension d of the
space is assumed to be a constant. One interesting case is when the set B contains
all possible unit balls, which appeared in the Sloan Digital Sky Survey project [28].
Ghasemi andRazzazi [21] have obtained a PTAS for this case. In the general Euclidean
case the best known approximation factor is still O(log n). Bandyapadhyay et al. [6]
showed that in this special case of MCC only 1+ ε expansion of the balls is sufficient
to obtain a constant approximation.

Besides MCC, capacitated vertex cover is another special case of CSC, where each
element is contained in exactly two sets. A 3-approximation for this problemwas given
by Chuzhoy and Naor [14]. The approximation factor was subsequently improved to
2 by Gandhi et al. [20]. The generalization where each element belongs to at most a
bounded number of sets is also well-studied [23, 33].

The uncapacitated version of MCC (Metric Uncapacitated Covering (MUC)),
where each set can be assigned with any number of points is another extensively
studied problem. Note that the same bicriteria hardness of MCC mentioned above
holds even for MUC. But, using a simple LP rounding scheme one can obtain a (1, 3)
bicriteria approximation for this problem. TheMUC problem in the fixed-dimensional
Euclidean space also has received huge attention from the researchers. Brönnimann
and Goodrich [9] have designed an O(1)-approximation for this problem in the plane.
In a celebrated work, Mustafa and Ray [29] improved this result by obtaining a PTAS
for the problem. In dimension more than 2, the problem is notoriously hard and the
best known approximation is O(log n). Considering this situation Har-Peled and Lee
[22] gave a (1 + ε, 1 + ε) bicriteria approximation.

Capacitated clustering and facility location problems are another set of interest-
ing and well-studied problems. One such interesting problem is capacitated k-center.
O(1)-approximations are known both for the uniform [8, 24] and non-uniform [3, 16]
version of this problem. Another popular clustering problem is capacitated k-median
for which no O(1)-approximation is known so far. Seemingly the existing techniques
are not capable of handling the combination of the global constraint on the number
of centers and the capacity constraint. Indeed, if either of these constraints is allowed
to be violated by an O(1) factor, O(1)-approximations are known in those cases [10–
12, 15, 17, 26, 27]. For capacitated facility location O(1)-approximations are known
based on local search paradigm [1, 7, 13, 25, 30] and rounding of LP [4].

Lower-bounded facility location is another well-studied problem for which
constant-approximations are known [2, 31]. Facility location has also been studied
with both upper and lower bounds, which is known as the lower- and upper-bounded
facility location (LUFL) problem. In LUFL, each opened facility must be assigned
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with at least L and at most U clients. Friggstad et al. [19] showed that it is possible
to obtain a solution for LUFL whose cost is at most a constant times the optimal cost,
such that each opened facility in the solution is assigned at least L/β and at most γ ·U
clients for some constants β, γ > 1. In fact, their result holds even for a more general
version where each facility has an individual lower bound instead of the uniform lower
bound.

1.3 Paper Outline

In Section 2 we describe the natural LP for MMCC and have some definitions, which
will be useful throughout the paper. In Section 3 we give an overview of the algorithm
of [6]. Our LP rounding algorithm for MMCC and the analysis appear in Section 4.
In Section 5 we show how to modify our algorithm for MMCC in the uniform case to
obtain the improved bound. In Section 6, we describe the algorithm for MLC. Finally,
in Section 7 we conclude with some open problems.

2 Preliminaries

Recall that in MMCC we are given a set of points P and a set of balls B. The capacity
of each ball Bi ∈ B isUi . Also, these capacities satisfy monotonicity, i.e., for any two
balls Bi and Bj , if ri ≥ r j , Ui ≥ Uj .

The relaxation of the natural LP for MMCC is shown in the following. In the LP
for MMCC, we have a variable yi for each ball Bi ∈ B that indicates whether Bi is
in the solution (yi = 1) or not (yi = 0). For each ball Bi and each point p j ∈ P ,
there is a variable xi j that indicates whether p j is assigned to Bi (xi j = 1) or not
(xi j = 0). Constraint 1 ensures that if a point is assigned to a ball, the ball must be
selected in the solution. Constraint 2 ensures that the total number of points assigned
to Bi is at mostUi . Constraint 3 ensures that each point is assigned to exactly one ball.
Constraint 4 ensures that if a point p j is assigned to a ball Bi , p j must be contained in
Bi . The remaining constraints are relaxed in MMCC-LP, which define the domains of
the variables. We note that the LP relaxation for MCC is same as MMCC-LP except
there all the Ui are equal.

minimize
∑

Bi∈B
yi (MMCC-LP)

s.t. xi j ≤ yi ∀p j ∈ P, ∀Bi ∈ B (1)
∑

p j∈P

xi j ≤ yi ·Ui ∀Bi ∈ B (2)

∑

Bi∈B
xi j = 1 ∀p j ∈ P (3)

xi j = 0 ∀p j ∈ P, ∀Bi ∈ B such that p j /∈ Bi (4)
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xi j ≥ 0 ∀p j ∈ P, ∀Bi ∈ B (5)

0 ≤ yi ≤ 1 ∀Bi ∈ B (6)

We denote any solution toMMCC-LP by (x, y). To distinguish between two differ-
ent solutions, we use different annotations with x and y. The cost of (x, y) is defined
as, cost(x, y) = ∑

Bi∈B yi . For an integral solution, the cost is exactly the number of
balls in the solution. Consider any solution (x, y) to MMCC-LP. For a ball Bi and a
point p j , if xi j > 0, we say Bi serves p j and p j receives xi j amount of flow from Bi .
The flow out of Bi is the total amount of flow

∑
p j∈P xi j that Bi gives to all the points.

Next, we define an operation that we call “reroute”. For a point p j and two balls Bi
and B�, rerouting of f amount of flow for p j from Bi to B� means we increase x� j

by f and decrease xi j by f . For two balls Bi and B�, rerouting of flow from Bi to B�

means for each point p j served by Bi , we reroute xi j amount of flow for p j from Bi
to B�. Thus, the flow out of Bi becomes 0 after this operation. For a point p j , a set
of balls S and a ball B� /∈ S, rerouting of f amount of flow from the balls in S to B�

means we increase x� j by f and decrease xi j by fi ≥ 0 for each Bi ∈ S such that∑
Bi∈S fi = f .

3 Overview of the Algorithm of [6]

Our algorithm is based on the algorithm of [6]. In this section we give an overview of
the algorithm of [6]. Let (x, y) be a feasible solution to MMCC-LP. The LP rounding
algorithm of [6] rounds the solution so that y values of all the balls become integral.
We note that it is sufficient to obtain such a semi-integral solution. Indeed, as all the
capacities are integral, it is possible to find another solution with the same y values
where all the x values are also integral [14]. The algorithm has three major steps. The
first step is the preprocessing step. Fix a 0 < α ≤ 3/8. A ball Bi is called heavy if
yi = 1 and light if 0 ≤ yi ≤ α. Let H and L be the respective set of heavy and light
balls. We note that the sets of heavy and light balls are always defined w.r.t. an LP
solution. But, for simplicity we do not explicitly mention that in the notations H and
L. The implicit solution w.r.t. which H and L are defined can be easily derived from
the context. Now, it might not be true that for all p j ∈ P , the sum of the y values of
the balls in L that serve p j is at most α. In the preprocessing step, the algorithm of [6]
modifies the computed LP solution to obtain another LP solution such that the above
mentioned property is satisfied. In particular, they prove the following lemma.

Lemma 1 (Lemma 3.1 of [6]) Given a feasible LP solution σ = (x, y), and a parame-
ter 0 < α ≤ 3

8 , there exists a polynomial time algorithm to obtain another LP solution
σ = (x, y) that satisfies all the constraints of MMCC-LP (Constraints 1-6), except
Constraint 4. Additionally, σ satisfies the following properties.

1. Any ball Bi ∈ B with non-zero yi is either heavy (yi = 1) or light (0 < yi ≤ α).
2. For each point p j ∈ P, we have that

∑

Bi∈L:xi j>0

yi ≤ α, (7)
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where L is the set of light balls with respect to σ .
3. For any heavy ball Bi , and any point p j ∈ P served by Bi , d(ci , p j ) ≤ 3ri .
4. For any light ball Bi , and any point p j ∈ P served by Bi , d(ci , p j ) ≤ ri .
5. cost(σ ) ≤ 1

α
cost(σ ).

Note that a point p j can be fractionally assigned by the algorithm in Lemma 1 to a
heavy ball Bi even if pi /∈ Bi , but, in this case d(ci , p j ) must be at most 3ri . Hence,
a factor 3 expansion of the ball is sufficient for it to serve the point. In summary, the
preprocessing step implicitly incurs an expansion factor of 3 for the heavy balls with
respect to the new LP solution σ . We also note that the preprocessing algorithm uses
the fact that the capacities are monotonic.

The second step of the algorithm is the key step and is called Cluster Formation. In
the following,we give an overview of this step. The algorithmmaintains an LP solution
σ = (x, y) which is initially the output of the preprocessing step. This solution is
essentially altered throughout the step and when the step finishes yi ∈ {0, 1} for all
Bi ∈ B. Each heavy ball Bi forms a cluster which initially consists of itself ({Bi }).
For any light ball Bt , either Bt is opened fully in the solution or it joins a cluster of
a heavy ball by rerouting its flow to the heavy ball. The algorithm runs for several
iterations until the fate of all these light balls are decided.

In each iteration, every heavy ball uses its available capacity to reroute the flow
of as many intersecting light balls as possible to itself. Each such light ball joins the
cluster of the heavy ball. From the remaining light balls whose fate are not yet decided,
a ball is selected greedily to be included in the solution. Also, for points inside the
selected ball, an appropriate amount of flow is rerouted from other balls to this ball
to utilize its capacity. We skip the details of this flow rerouting in this overview. This
completes the overview of the step.

Note that the flow rerouting from heavy balls to a light ball when the light ball is
opened fully, is an essential component of the analysis for obtaining the constant factor
guarantee on the size of the solution. Consider a light ball Bt which is selected for
opening fully and assume that it serves kt ≤ Ut points. Then, we can set the xt j value
for each of these kt points to 1, i.e., we fully assign p j to Bt . Note that preprocessing
ensures that

∑
Bi∈L:xi j>0 yi ≤ α or

∑
Bi∈H:xi j>0 yi ≥ 1−α. Thus, when these points

are fully assigned to Bt , at least (1 − α)kt amount of flow is rerouted from the heavy
balls to Bt which they can now use to reroute flow from other light balls. This argument
is essential in the analysis. Now, we have an observation which follows due to the way
light balls are added to a cluster.

Observation 1 Consider a cluster of a heavy ball Bh that contains the light balls
B1, . . . , B�. Then, when the Cluster Formation finishes,

1. For each 1 ≤ i ≤ �, there is a point p j such that p j ∈ Bh ∩ Bi .
2.

∑�
i=1

∑
j∈P xi j ≤ Uh − ∑

j∈P xhj , i.e., the total amount of flow out of the balls
in the cluster of Bh is at most Uh.

The third step is called Selection of Balls. In this step, from each cluster a ball is
carefully selected and expanded so that it can serve all the points served by the balls
in the cluster. For a cluster of a heavy ball Bh , if it is the largest ball in the cluster then
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Bh is selected and with three factor expansion it can serve all the points served by the
cluster. As during preprocessing the heavy ball might have been expanded by a factor
of 3, its total expansion factor is 9. If Bh is not the largest ball, the largest ball B� is a
light ball of the cluster. Then, we select this light ball and expand by a factor of 5 so
that it can serve all the points served by the cluster. The light ball can serve the total
flow assigned to the cluster, as U� ≥ Uh due to monotonicity. This is another place
where the monotonicity assumption on the capacities is necessary.

The following lemma that states the guarantee achieved by the above algorithm
follows due to the analysis of [6].

Lemma 2 There is a (6+ 5α)/α-approximation for MMCC that expands the balls by
at most a factor of 9.

4 TheModified Algorithm for MMCC

In this section, we describe our algorithm. Note that among the 9 factor expansion
needed in the algorithm of [6] 3 factor is contributed by the preprocessing step. Our
algorithm avoids this preprocessing step to save this factor 3 expansion.

Fix 0 < α ≤ 1/60. We first compute a fractional LP solution σ ∗ = (x∗, y∗) to
MMCC-LP. Set yi = 1 if y∗

i > α, otherwise yi = y∗
i . Also, set x = x∗. Note that

σ = (x, y) is a feasible solution to MMCC-LP such that cost(σ ) ≤ cost(σ ∗)/α.
We define the sets H and L of heavy and light balls w.r.t. σ in the same way, i.e.,
H = {Bi | yi = 1} and L = {Bi | 0 < yi ≤ α}. Note that in σ , any ball that gives
some flow to a point is either a heavy or a light ball. We take one copy of the set of
heavy balls and two copies of the set of light balls. Let these sets be H1, L1 and L2,
respectively.

Next, we partition the point set into two subsets. Let P1 be the subset of points such
that p j ∈ P1 if

∑
Bi∈L xi j ≤ 4α, i.e., p j gets a flow of at most 4α from the balls in

L. These points can be viewed as heavy points fed by heavy balls. Let P2 = P \ P1.
Based on these sets P1, P2, we are going to construct twoLP solutions to two auxilliary
LPs and round them independently. Finally, we combine these two solutions to find a
solution to MMCC-LP where for each Bi ∈ B, yi ∈ {0, 1}. Intuitively, we satisfy the
demands of these two sets of points independently. The light balls are involved in both
of the solutions and they might get opened fully in both of the solutions. However,
we are not allowed to open multiple copies of a ball, as that might lead to capacity
violation of the ball. To avoid this situation we reduce the capacity of the light balls
by appropriate factor in the auxilliary LP.

Let the new capacity U ′
i = Ui/10 for each light ball Bi . The new capacity of

each heavy ball Bi remains same as before, i.e., U ′
i = Ui . At this point the reader

might wonder about the value of the scaling factor. We note that it is carefully chosen
through back calculation to ensure that the analysis goes through. Also, we note that
U ′
i ≥ 1/10, as each capacity Ui ≥ 1. The first auxilliary LP that we consider is as

follows.

minimize
∑

Bi∈L1∪H1

yi (AUX-LP1)
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s.t. xi j ≤ yi ∀p j ∈ P1, ∀Bi ∈ L1 ∪ H1 (8)
∑

p j∈P1

xi j ≤ yi ·U ′
i ∀Bi ∈ L1 ∪ H1 (9)

∑

Bi∈L1∪H1

xi j = 1 ∀p j ∈ P1 (10)

xi j = 0 ∀p j ∈ P1, ∀Bi ∈ L1 ∪ H1 such that p j /∈ Bi (11)

xi j ≥ 0 ∀p j ∈ P1, ∀Bi ∈ L1 ∪ H1 (12)

0 ≤ yi ≤ 1 ∀Bi ∈ L1 ∪ H1 (13)

Note that the above LP has a variable yi for each ball Bi in L1 ∪H1, and a variable
xi j for each ball Bi in L1 ∪H1 and each point p j ∈ P1. We are not going to solve this
LP. Instead, we construct a solution to this LP using σ and round it using an algorithm
similar to the one in [6]. This LP is used to compare the cost of the rounded solution
and the cost of σ ∗ in the end.

We construct an LP solution σ = (x, y) from σ in the following manner. For
Bi ∈ H1, yi = yi . For Bi ∈ L1, yi = 10 · yi ≤ 10α < 1 (α ≤ 1/60). For p j ∈ P1,
Bi ∈ L1 ∪ H1, xi j = xi j .

Lemma 3 σ = (x, y) is a feasible solution to AUX-LP1 with cost at most cost(σ ∗)/α.

Proof First note that,

cost(σ ) =
∑

Bi∈H1

yi + 10
∑

Bi∈L1

yi ≤ (1/α)
∑

Bi∈H1

y∗
i + 10

∑

Bi∈L1

y∗
i ≤ cost(σ ∗)/α.

For p j ∈ P1, Bi ∈ L1 ∪ H1, xi j = xi j ≤ yi ≤ yi . Thus, Constraint 8 is satisfied.
For Bi ∈ H1,

∑
p j∈P1 xi j = ∑

p j∈P1 xi j ≤ yi · Ui = yi · U ′
i . For Bi ∈ L1,∑

p j∈P1 xi j = ∑
p j∈P1 xi j ≤ yi ·Ui = (10 · yi ) · (Ui/10) = yi ·U ′

i . Thus, Constraint
9 is satisfied.

For p j ∈ P1,
∑

Bi∈L1∪H1
xi j = ∑

Bi∈L1∪H1
xi j = 1. Thus, Constraint 10 is

satisfied. Also, it is trivial to verify that Constraints 11-13 are also satisfied. Hence,
the lemma follows. �


Next, we describe our second auxilliary LP. Let us again consider the solution
σ = (x, y) to MMCC-LP and the set of light balls L w.r.t. σ . Also, consider the
second copy L2 of the set of light balls. For each point p j in P2, define the demand
d j = ∑

Bi∈L2
xi j .

minimize
∑

Bi∈L2

yi (AUX-LP2)

s.t. xi j ≤ yi ∀p j ∈ P2, ∀Bi ∈ L2 (14)
∑

p j∈P2

xi j ≤ yi ·U ′
i ∀Bi ∈ L2 (15)
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∑

Bi∈L2

xi j ≥ d j ∀p j ∈ P2 (16)

xi j = 0 ∀p j ∈ P2, ∀Bi ∈ L2 such that p j /∈ Bi (17)

xi j ≥ 0 ∀p j ∈ P2, ∀Bi ∈ L2 (18)

0 ≤ yi ≤ 1 ∀Bi ∈ L2 (19)

Note that the above LP has a variable yi for each ball Bi in L2 and a variable xi j
for each ball Bi in L2 and each point p j ∈ P2. Again we are not going to solve this
LP. Instead, we construct a solution to this LP using σ and round it. This LP is used
to compare the cost of the rounded solution and the cost of σ ∗ in the end.

We construct an LP solution σ̂ = (x̂, ŷ) from σ in the following manner. For
Bi ∈ L2, ŷi = 10 · yi ≤ 10α < 1. For p j ∈ P2, Bi ∈ L2, x̂i j = xi j .

Lemma 4 σ̂ = (x̂, ŷ) is a feasible solution to AUX-LP2 with cost at most 10 ·cost(σ ∗).

Proof First note that cost(σ̂ ) ≤ 10
∑

Bi∈L2
yi = 10

∑
Bi∈L2

y∗
i ≤ 10 · cost(σ ∗). For

p j ∈ P2, Bi ∈ L2, x̂i j = xi j ≤ yi < ŷi . Thus, Constraint 14 is satisfied.
For Bi ∈ L2,

∑
p j∈P2 x̂i j = ∑

p j∈P2 xi j ≤ yi ·Ui = (10 · yi ) · (Ui/10) = ŷi ·U ′
i .

Thus, Constraint 15 is satisfied.
For p j ∈ P2,

∑
Bi∈L2

x̂i j = ∑
Bi∈L2

xi j = d j . Thus, Constraint 16 is satisfied.
Also, it is trivial to verify that Constraints 17-19 are also satisfied. Hence, the lemma
follows. �


In the following, we give two algorithms for rounding the two auxilliary LPs.
The rounded solution of the first LP satisfies all the constraints except the coverage
constraint. The rounded solution of the second LP satisfies all the constraints except
the coverage and capacity constraints. Then, we merge these two solutions to obtain
a solution for MMCC-LP that does not violate any capacity constraints.

4.1 Rounding the First Auxilliary LP

Note that we are given a feasible LP solution σ = (x, y) to AUX-LP1 that has the
following properties.

1. For any Bi ∈ H1, yi = 1.
2. For any Bi ∈ L1, yi ≤ 10α.
3. For any p j ∈ P1,

∑
Bi∈H1

xi j ≥ 1 − 4α.
4. cost(σ ) ≤ cost(σ ∗)/α.

Note that Property (3) above states that for any point p j ∈ P1, the flow received
by p j from the balls inH1 is at least 1 − 4α. We will heavily use this property while
performing the rounding. Indeed, we are going to use an algorithm similar to the one in
[6] without the preprocessing step. In the algorithm of [6], preprocessing ensures that
for any point p j , the sum of the y values of the light balls that give non-zero flow to p j

is at most α. Note that this might not be true in our case for balls in L1. At first glance
it is not clear how to do the rounding without this assumption. However, as we show,
a similar rounding scheme can be designed using the weaker assumption on the flow
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mentioned above. Another hurdle to adapt the algorithm of [6] is the monotonicity
assumption, which might not be true in our case because of scaling of the capacities.
However, we note that only light balls’ capacities are scaled by a uniform constant
scaling factor. Due to this fact, we show that their algorithm can be modified to handle
our case. Next, we describe our rounding algorithm.

The first step in our algorithm is Cluster Formation. In this step, for each ball
Bi ∈ L1, either Bi is opened fully (added to a set O) and flow from other balls
including the balls inH1 are rerouted to Bi only for points in Bi . Otherwise, Bi joins a
cluster of a ball inH1 to which its entire flow is rerouted.O is initialized to the empty
set. For each ball Bi ∈ H1, initialize the cluster of Bi , cluster(Bi ) to {Bi }. During the
course of the algorithm, let 	 ⊆ L1 be the set of balls which are not yet added to O
or to a cluster of a ball in H1. Throughout the algorithm, we maintain the invariant
that for any point p j which is served by a ball in 	, p j receives a flow of at least
1− 4α from the balls inH1. Note that in the beginning of the algorithm this is true, as
	 = L1. At any point, the available capacity of a ball Bi , AC(Bi ) = U ′

i −∑
j∈P1 xi j .

While the set 	 is non-empty, apply the following steps.

While there is a ball Bi ∈ H1 and Bi ′ ∈ 	 such that Bi intersects Bi ′ and AC(Bi )
is at least the flow out

∑
j∈P1 xi ′ j of Bi ′ , reroute the flow from Bi ′ to Bi . Add Bi ′

to cluster(Bi ). If	 becomes empty at this point, go to the Selection of Balls stage.
For any ball Bj ∈ 	, letA j be the set of points currently being served by Bj . Also,
let k j = min{U ′

j , |A j |}. We add a ball Bt ∈ 	 to O such that kt is the maximum
over all k j for Bj ∈ 	.
Next we assign points up to larger extents to Bt to utilize its capacity. There are
three cases.

1. kt > 2. Note that the flow out of Bt ,
∑

j∈P1 xt j ≤ 10αU ′
t . Also, as xt j = xt j ≤

yt ≤ α,
∑

j∈P1 xt j ≤ α|At | ≤ 10α|At |. Thus, AC(Bt ) ≥ (1 − 10α)kt . In
this case, we arbitrarily select �(1− 10α)kt� points served by Bt and for each
of those points p�, we reroute the maximum (whole) amount of flow possible
from all other balls to Bt . Note that p� is no longer served by a ball in 	, and
thus the invariant is satisfied.

2. 1 ≤ kt ≤ 2. IfU ′
t ≥ |At |, then |At | = kt . In this case, for each of the kt points

served by Bt , we reroute the maximum amount of flow possible from all other
balls to Bt . In the other case, U ′

t < |At |. Now, AC(Bt ) ≥ (1 − 10α)U ′
t ≥

1 − 10α. The last inequality follows, as U ′
t ≥ 1. We arbitrarily select a point

p� that is being served by Bt and reroute its flow from 	 to Bt . Let f be the
amount of flow that now p� receives from Bt . Note that f ≤ 4α. Also, p� is
no longer served by a ball in 	. Now, AC(Bt ) ≥ 1 − 10α − 4α = 1 − 14α.
We reroute min{AC(Bt ), 1− f } amount of flow fromH1 to Bt for p�. In any
case, the points whose flow are routed to Bt in this step are no longer served
by a ball in 	, and thus the invariant is satisfied.

3. 0 < kt < 1. Note that, as |At | ≥ 1, kt = U ′
t < 1. Now, AC(Bt ) ≥ (1 −

10α)U ′
t . Consider any arbitrary point p� that is being served by Bt . First,

reroute its flow from 	 to Bt . AC(Bt ) ≥ (1 − 10α)U ′
t − 4α. Note that after

this rerouting, p� is no longer served by balls in 	, and thus the invariant is
satisfied. Let p� gets a flow of f1 from the balls in H1. By the invariant we
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maintain, f1 is at least 1 − 4α. Reroute min{AC(Bt ), f1} amount of flow of
p� from the balls inH1 to Bt .

When the while loop terminates, each ball in L1 is either inO or added to a cluster.
For each Bi ∈ O, we set yi = 1 and cluster(Bi ) = {Bi }.

We note that the third case (0 < kt < 1) mentioned above does not occur in the
context of [6], as in their case for each ball Bj , both Uj and |A j | are at least 1. This
case appears to be the bottleneck for our algorithm and leads to a larger constant of
approximation as we will describe in the analysis.

The Selection of Balls step is more interesting in our case as the monotonicity
property no longer holds in general. For a cluster of a ball in O, we trivially select
this ball. Consider the cluster of any ball Bh ∈ H1. If Bh is one of the top 10 largest
balls in the cluster, then select all the balls larger than Bh and also Bh . Only Bh is
expanded by a factor of 3. The flow rerouted from any selected ball of L1 to Bh in the
Cluster Formation step is assigned to it. Note that for the remaining balls of L1 which
are in the same cluster and not chosen, are smaller than Bh , and thus can be covered
by a factor 3 expansion of Bh . The remaining flow is assigned to Bh . Otherwise, the
top 10 largest balls are selected all of which are in L1. The flow rerouted from any
selected ball to Bh in the Cluster Formation step is assigned to the ball. Now consider
the remaining flow assigned to the cluster. Also consider a point p j which receives a
part of this flow and not in any of the selected balls. Then, by 5 factor expansion, any
selected ball can cover p j . We expand each selected ball by 5 factor and the remaining
flow is assigned arbitrarily to selected balls respecting their capacity.

4.1.1 Analysis

Let I be the number of iterations of the outermost while loop. Also, let Lt be the ball
of L1 added to O at iteration 1 ≤ t ≤ I . For a ball Bi ∈ H1, let F(Lt , Bi ) be the
amount of flow rerouted from Bi to Lt . Let Ft = ∑

Bi∈H1
F(Lt , Bi ). The next lemma

states that when Lt is added to O sufficient amount of flow is rerouted from the balls
inH1 to Lt irrespective of the value of kt .

Lemma 5 For 1 ≤ i ≤ I , Ft ≥ kt/60 for α ≤ 1/60.

Proof To compute the flow rerouted from balls inH1 to Bt we refer to the three cases
mentioned in Cluster Formation. In the first case, for �(1 − 10α)kt� points, the flow
is rerouted from H1 to Bt . Note that by the invariant we maintain, for each such
point p�, p� receives at least 1 − 4α amount of flow from the balls in H1. It follows
that, at least 1 − 4α amount of flow is rerouted for p� and Ft ≥ (1 − 4α)�(1 −
10α)kt� ≥ (14/15)�(5/6)kt� ≥ (14/15)(1/14)kt = kt/15 ≥ kt/60. The second
inequality follows as α ≤ 1/60 and the third inequality follows as kt > 2.

In the second case, using the same argument as above, the amount of flow rerouted
fromH1 to Bt is at least 1−14α. As kt ≤ 2, Ft is at least (1−14α)kt/2 ≥ (23/60)kt ≥
kt/60. The first inequality is true for α ≤ 1/60.

In the third case, again using the same argument as above, the amount of flow
rerouted from H1 to Bt is at least min{(1 − 10α)kt − 4α, 1 − 4α}. As kt < 1,
1 − 4α ≥ (1 − 4α)kt . Thus, Ft ≥ (1 − 10α)kt − 4α. As Ut ≥ 1, kt = U ′

t ≥ 1/10,
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and hence Ft ≥ (1−10α)/10−4α = 1/10−5α ≥ 1/60. The last inequality follows
from the fact that α ≤ 1/60. �


Define the y-credit of a ball Bi ∈ H1 as Y (Lt , Bi ) = F(Lt , Bi )/kt . At anymoment
during the Cluster Formation stage, define the y-accumulation of Bi as ỹ(Bi ) =∑

Lt∈O Y (Lt , Bi ) −∑
Bi∈L1∩cluster(Bi ) yi . The y-credit Y (Lt , Bi ) of Bi can be seen

as a normalized load it transfers to Lt . The y-accumulation ỹ(Bi ) is basically the
difference between the total y-credit received by Bi and the sum of normalized flows
of the balls absorbed by Bi . The next lemma gives a lower bound on the available
capacities of the balls inH1, which is similar to Lemma 3.3 of [6].

Lemma 6 Consider a ball Bi ∈ H1 and any integer 1 ≤ t ≤ I . Suppose the balls
L1, . . . , Lt have been added to O so far. Then, AC(Bi ) ≥ ỹ(Bi )kt .

Proof For any ball Bi ∈ H1, we prove the claim using induction on iteration number.
In the base case, just after addition of L1, AC(Bi ) ≥ F(L1, Bi ) = Y (L1, Bi )k1 =
ỹ(Bi )k1. Now, suppose the claim is true for any t − 1. We show that the claim is true
for t as well.

Consider the iteration t . Note that AC(Bi ) ≥ ỹ(Bi )kt−1. Suppose a subset of balls
have joined cluster of Bi . Let Bp be the first ball joined, which serves k points. To
distinguish between the old and new value of ỹ(Bi ), we refer to the new value by
ỹ(Bi )′. After Bp’s joining to cluster of Bi , ỹ(Bi )′ = ỹ(Bi ) − y p. Now, the total flow
out of Bp is at most min{y pk, y pU ′

p} = y p min{k,U ′
p} ≤ y pkt−1. Thus, AC(Bi ) ≥

ỹ(Bi )kt−1 − y pkt−1 = ỹ(Bi )′kt−1. Using the same argument it can be shown that
after each subsequent addition of a ball to cluster of Bi the claim is true.

In the next step, Lt is added toO. Let ỹ(Bi ) be the y-accumulation before this. After
this addition, the new y-accumulation ỹ(Bi )′ = ỹ(Bi ) + Y (Lt , Bi ). If ỹ(Bi ) ≤ 0, the
new available capacity A′

i ≥ Y (Lt , Bi )kt ≥ ỹ(Bi )′kt . Otherwise, ỹ(Bi ) > 0, the new
available capacity by the induction hypothesis is, A′

i = AC(Bi ) + Y (Lt , Bi )kt ≥
ỹ(Bi )kt−1 + Y (Lt , Bi )kt ≥ (ỹ(Bi ) + Y (Lt , Bi ))kt = ỹ(Bi )′kt . �


The next lemma shows that for any ball Bi ∈ H1, y-accumulation is bounded,
which is similar to Lemma 3.4 of [6].

Lemma 7 At any point, for any ball Bi ∈ H1, ỹ(Bi ) < 1 + 10α.

Intuitively, if the y-accumulation of Bi exceeds the bound, itmust be due to selection
of a ball Lt in L1. However, one can show that Bi had enough available capacity to
absorb the flow from Lt . Hence, the bound follows.

Proof Let Bi ∈ H1 be the first ball for which ỹ(Bi ) ≥ 1+10α. As ỹ(Bi ) increases due
to addition of balls in 	 to O, let Lt be the ball whose addition increases ỹ(Bi ) from
less than 1+10α to at least 1+10α. Let ỹ(Bi ) and ỹ(Bi )′ be the y-accumulation before
and after addition of Lt . Thus, ỹ(Bi ) < 1+10α. Now, ỹ(Bi )′ = ỹ(Bi )+Y (Lt , Bi ) ≥
1 + 10α. As ỹ(Bi )′ > ỹ(Bi ), Y (Lt , Bi ) > 0. However, by definition Y (Lt , Bi ) ≤ 1.
Thus, ỹ(Bi ) ≥ 10α.

Now by Lemma 6, just before addition of Lt , AC(Bi ) ≥ ỹ(Bi )kt−1 ≥ 10αkt .
However, total flow out of Lt is at most 10αkt , as Lt ∈ L1. Thus, Lt should have
joined the cluster of Bi , which is a contradiction. Hence, ỹ(Bi ) < 1 + 10α. �
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The following lemma gives an upper bound on the number of balls of L1 that are
fully opened.

Lemma 8 At the end of the Cluster Formation stage, |O| ≤ 60((1 + 10α)|H1| +∑
Bi∈L1

yi ).

Proof
∑

Bi∈H1

ỹ(Bi ) =
∑

Bi∈H1

∑

Lt∈O
Y (Lt , Bi ) −

∑

Bi∈H1

∑

Bi∈L1∩cluster(Bi )
yi

≥
∑

Bi∈H1

∑

Lt∈O
F(Lt , Bi )/kt −

∑

Bi∈L1

yi

=
I∑

t=1

Ft/kt −
∑

Bi∈L1

yi

≥ |O|/60 −
∑

Bi∈L1

yi (Ft ≥ kt/60 by Lemma 5)

Also, by Lemma 7,
∑

Bi∈H1
ỹ(Bi ) ≤ (1+10α)|H1|. It follows that, |O| ≤ 60((1+

10α)|H1| + ∑
Bi∈L1

yi ). �

We obtain the following bound on the cost of the rounded solution.

Lemma 9 When the algorithm terminates the total cost of the solution is at most
10|H1| + |O| ≤ (70 + 600α)cost(σ ∗)/α.

Proof We note that from a heavy balls’ cluster at most 10 balls are selected and all the
balls in O are selected. Now, by Lemma 8,

10|H1| + |O| ≤ 10|H1| + 60((1 + 10α)|H1| +
∑

Bi∈L1

yi )

≤ (70 + 600α)(|H1| +
∑

Bi∈L1

yi )

≤ (70 + 600α)cost(σ ∗)/α

�

The following lemma shows that 5 factor expansion is sufficient to serve the points

assigned to each cluster.

Lemma 10 Using factor 5 expansion of the balls the flowof any cluster can be assigned
to the chosen balls without violating the capacities.

Proof We argue that the coverage and capacity constraints are satisfied by the algo-
rithm. In particular, we show that this claim holds by expanding the balls by at most
a factor of 5 in the Selection of Balls step. For a cluster of a ball in O, clearly we do
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not need any expansion to cover the points it has been assigned with and its flow is
bounded by its capacity. For a cluster of heavy ball Bh , we have two cases. In the first
case, Bh is one of the top 10 largest balls. In this case, the capacities and coverage of
the selected light balls are trivially satisfied. Also, the remaining flow assigned to Bh

must have an amount at most Uh due to the way balls are added to a cluster. Thus,
its capacity constraint is satisfied. As we expand Bh by a factor of 3 in this case, the
expanded ball contains all the light balls in the cluster having radius at most the radius
of Bh , whose flow were rerouted to Bh . In the other case, let the total amount of flow
rerouted from the selected 10 light balls to Bh in Cluster Formation step be f . Also,
let B� be the smallest radius ball among these 10 balls. Thus, the available capacity of
all these balls is at least 10U ′

� − f . Note that Uh ≤ U�, as B� is larger than Bh . Now,
as each light balls’ capacity is reduced to a factor 10 of the original capacity and the
capacity of Bh remains unchanged, Uh ≤ 10U ′

�. Hence, the available capacity of all
these 10 balls together is at leastUh − f . Moreover, we expand these balls by a factor
of 5, all of which intersect Bh , and thus any ball having radius at most the radius of B�

that intersects Bh is contained in any of these 10 expanded balls. Hence, the coverage
requirements are satisfied by these expanded balls. As the remaining flow is at most
Uh − f , it follows that the capacity constraints of these balls are also satisfied by our
flow assignment. �


We summarize our findings in the following lemma.

Lemma 11 The solution (x, y) satisfies all the Constraints of AUX-LP1 except Con-
straint 11. Moreover,

1. yi = 1 for all Bi ∈ H1 ∪ O and yi = 0 for all other balls.
2. For any p j ∈ P1,

∑
Bi∈H1∪O xi j = 1.

3. For any Bi ∈ H1 ∪ O,
∑

p j∈P1 xi j ≤ U ′
i .

4. For any point p j ∈ P1, if xi j > 0, d(ci , p j ) ≤ 5 · ri .
5. cost((x, y)) ≤ (70 + 600α)cost(σ ∗)/α.

4.2 Rounding the Second Auxilliary LP

Note that we are given a feasible LP solution σ̂ = (x̂, ŷ) to AUX-LP2 that has the
following properties.

1. For any Bi ∈ L2, ŷi ≤ 10α.
2. For any p j ∈ P2,

∑
Bi∈L2

x̂i j ≥ 4α.
3. For any p j ∈ P2 and Bi ∈ L2, x̂i j ≤ α.
4. cost(σ̂ ) ≤ 10 · cost(σ ∗).

First, we create a new solution to AUX-LP2 from σ̂ which has cost at most two
times that of σ̂ . We denote the new solution as well by σ̂ . Thus, for distinction, we
denote the old values by ŷ′

i and x̂ ′
i j . For each y variable, its new value is twice the old

value. Thus, ŷi = 2 ŷ′
i ≤ 20α < 1. The last inequality follows for α ≤ 1/60. And,

for each x variable, its new value is twice the old value. Thus, x̂i j = 2x̂ ′
i j ≤ 2α. Note

that, now, some points might receive flow of more than 1. We adjust the x̂ values of
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these points so that each such point receives 1 amount of flow.We obtain the following
lemma.

Lemma 12 There is a feasible LP solution σ̂ = (x̂, ŷ) to AUX-LP2 that has the
following properties.

1. For any Bi ∈ L2, ŷi ≤ 20α.
2. For any p j ∈ P2,

∑
Bi∈L2

x̂i j ≥ 8α.
3. For any p j ∈ P2 and Bi ∈ L2, x̂i j ≤ 2α.
4. cost(σ̂ ) ≤ 20 · cost(σ ∗).

Proof First note that cost(σ̂ ) ≤ 20 · cost(σ ∗), as the values of the y variables are
doubled. Next, we show that σ̂ is feasible.

As the y variables are doubled and x̂i j ≤ 2x̂ ′
i j , x̂i j ≤ ŷi . Thus, Constraint 14 is

satisfied.
For Bi ∈ L2,

∑
p j∈P2 x̂i j ≤ ∑

p j∈P2 2x̂
′
i j = 2

∑
p j∈P2 x̂

′
i j ≤ 2 ŷ′

i · U ′
i = ŷi · U ′

i .
Thus, Constraint 15 is satisfied.

As we do not decrease the x variables, unless a point gets more than 1 amount of
flow, Constraint 16 is also satisfied. Also, it is trivial to verify that Constraints 17-19
are also satisfied.

Properties 1, 3, and 4 follows immediately. Also, Property 2 follows from the fact
that previously each point received a flow of at least 4α from the balls in L2. Hence,
the lemma follows. �


We start with the fractional solution σ̂ = (x̂, ŷ) and round it so that ŷ becomes
integral. Throughout our algorithm we modify σ̂ over several steps to finally obtain
the desired solution. Thus whenever we refer to σ̂ we refer to its current value. For any
p j ∈ P2, let δ j = ∑

Bi∈L2
x̂i j . Note that δ j ≥ 8α. Let S and O′ be two disjoint sets

of balls which are initialized to L2 and ∅, respectively. Throughout we also maintain
that

∑
Bi∈S∪O′ x̂i j = δ j . Note that this is true in the beginning. Our algorithm is as

follows.
While there is a point p j ∈ P2 such that

∑
Bi∈S x̂i j > α, we do the following.

Let S j be the set of balls in S that give flow to p j , i.e., S j={Bi ∈ S : x̂i j > 0}. Note
that as

∑
Bi∈S j x̂i j = ∑

Bi∈S x̂i j > α,
∑

Bi∈S j ŷi ≥ ∑
Bi∈S j x̂i j > α. Find T ⊆ S j

such that α ≤ ∑
Bi∈T ŷi ≤ 21α. Such a subset can always be found using a linear

scan of S j , as
∑

Bi∈S j ŷi > α and ŷi ≤ 20α for all Bi ∈ S j . Let Bt be the largest ball

in T . Set ŷt = 1 and ŷi = 0 for each Bi ∈ T . Add Bt to O′. Remove all balls in T
from S. Reroute the flow from all balls in T \ {Bt } to Bt .

Lemma 13 During the course of the above algorithm, the solution σ̂ has cost at most
20 · cost(σ ∗)/α and satisfies all the constraints of AUX-LP2 except Constraint 17.
Moreover, for a point p j ∈ P2, if x̂i j > 0, d(ci , p j ) ≤ 3 · ri .
Proof First, we prove the feasibility of σ̂ using induction on the iteration number. In
the beginning, the claim holds. Now, consider a particular iteration. Note that the balls
for which the ŷ values are changed are in T and the points for which the x̂ values
are changed are the set of points P ′ that receive flow from a ball in T . It is sufficient
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to show that the constraints concerning these balls and points hold. Constraint 14 is
satisfied as for each such point p j , and the ball Bt , x̂t j ≤ δ j ≤ 1 = ŷt and for a ball
Bi ∈ T \ {Bt }, x̂i j = 0. Now, we argue that the capacity constraint of the ball Bt is
satisfied. Note that in the beginning of the iteration, the total flow out of balls in T to
all points is at most

∑

Bi∈T
ŷi ·U ′

i ≤ U ′
t

∑

Bi∈T
ŷi ≤ U ′

t · 21α < U ′
t .

The first inequality follows from the fact that Bt is the largest ball in T and all the
capacities of the balls in L1 are scaled by the same factor. The last inequality follows,
as α ≤ 1/60. Now, as this total flow is served by Bt the claim holds. Constraint 16
is also satisfied for all the points in P ′, as the flow is only rerouted from a ball to Bt .
The other constraints except 17 are trivial to verify.

Note that whenever we set ŷt = 1, we also set ŷi = 0 for each Bi ∈ T \ {Bt }. Thus
for each ball Bt we can charge all the balls in T . As

∑
Bi∈T ŷi ≥ α, the cost blow up

is at most a factor of 1/α. Thus, the cost is at most 20 · cost(σ ∗)/α.
Whenever we reassign flow from balls in T \ {Bt } to Bt , for a point p j ∈ P2, it

holds that if x̂t j > 0, d(ct , p j ) ≤ 3 · rt . This is true, as Bt is the largest ball in T . As
we remove Bt from S, no flow is ever rerouted again from or to Bt . Hence, the claim
continues to hold for all points. �


Now, note that when the while loop of the above algorithm terminates, it holds
that for any p j ∈ P2,

∑
Bi∈S x̂i j ≤ α. Thus,

∑
Bi∈O′ x̂i j ≥ δ j − α ≥ 7α. Using

this fact, we compute a solution (x ′, y′) to AUX-LP2 (that violates Constraint 17 and
Constraint 15). For any ball Bi in O′, set y′

i = 1. For any p j ∈ P2 and Bi in O′, set
x ′
i j = min{(1/(7α)) · x̂i j , 1}. All the other x ′ and y′ values are set to zero. Note that,
now, each point receives a flow of at least 1. We adjust the x ′ values so that each point
receives exactly 1 amount of flow. We obtain the following lemma.

Lemma 14 The solution (x ′, y′) satisfies all the constraints of AUX-LP2 except Con-
straint 17 and Constraint 15. Moreover,

1. y′
i = 1 for all Bi ∈ O′ and y′

i = 0 for all Bi /∈ O′.
2. For any p j ∈ P2,

∑
Bi∈O′ x ′

i j = 1.
3. For any Bi ∈ O′,

∑
p j∈P2 x

′
i j ≤ (1/(7α)) ·U ′

i .

4. For any point p j ∈ P2, if x ′
i j > 0, d(ci , p j ) ≤ 3 · ri .

5. cost((x ′, y′)) ≤ 20 · cost(σ ∗)/α.

4.3 Combining the Two LP solutions

Next,we compose the two rounded solutions obtained inLemma11 and 14 to construct
a solution for the original instance. In the new solution (x̃, ỹ)we fully open the balls in
H1∪O∪O′. Also we keep all the x values unchanged. Note that a ball Bi ofL1(= L2)

can be opened in both solutions. However, as we had changed its capacity before, the
total capacity that it can use is at mostU ′

i + (1/(7α)) ·U ′
i ≤ (1+1/(7α))Ui/10 < Ui .
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The last inequality follows by setting α = 1/60. The total cost of the new solution is
at most (90 + 600α)cost(σ ∗)/α ≤ 6000 · cost(σ ∗). Hence, we obtain the following
lemma.

Lemma 15 The solution (x̃, ỹ) satisfies all the Constraints of MMCC-LP except Con-
straint 11. Moreover,

1. For any point p j ∈ P1, if xi j > 0, d(ci , p j ) ≤ 5 · ri .
2. cost((x̃, ỹ)) ≤ 6000 · cost(σ ∗).

Wenote that by selecting different values of the parameters throughout the algorithm
one can improve the constant in the approximation factor. However, as our main goal
is to show any O(1)-approximation we did not pursue this.

Theorem 2 There is an O(1)-approximation for MMCC by expanding the balls by a
factor of at most 5.

5 Uniform Capacitated Case

The algorithm in the uniform case is same except the Selection of Balls step. The
next lemma shows that the Selection of Balls can be performed with only 4.24 factor
expansion of the balls.

Lemma 16 Using factor 4.24 expansion of the balls the flow of any cluster can be
assigned to the chosen balls without violating the capacities.

Proof Consider any cluster of a heavy ball Bh ∈ H1. Let c = (1 + √
5)/2. If Bh is

one of the top 10 largest balls in the cluster, then select all the balls larger than Bh and
also Bh . Only Bh is expanded by a factor of 3. The flow rerouted from any selected
ball of L1 to Bh is assigned to the selected ball. Note that for the remaining balls of
L1 which are in the same cluster and not chosen, are smaller than Bh and thus can be
covered by a factor 3 expansion of Bh . The remaining flow is assigned to Bh . Note
that in this case the capacities of the selected light balls are trivially satisfied. Also, the
remaining flow assigned to Bh must have an amount at most Uh . Thus, the capacity
constraint of Bh is satisfied.

Now, suppose Bh is not one of the top 10 largest balls. Let B� be the 10th largest
ball of this cluster. Also, let rh and r� be the radius of Bh and B�, respectively. Now,
there can be two cases (i) rh ≥ r�/c or (ii) rh < r�/c. In the first case, we select the top
9 largest balls all of which are in L1 and also Bh . The flow rerouted from any selected
ball (except Bh) to Bh is assigned to the selected ball. Now consider the remaining
flow assigned to the cluster. Also consider a point p j which receives a part of this
flow and not in any of the balls selected from L1. Then, by triangle inequality, the
distance between p j and the center ch of Bh is at most rh +2r� ≤ rh +2crh ≤ 4.24rh .
We expand Bh by the factor 4.24 and assign the remaining flow to Bh . Selected balls
which are in L1 are not expanded. The capacity constraints are also satisfied due to
the same reason mentioned above.

In the second case, the top 10 largest balls are selected all of which are in L1.
The flow rerouted from any selected ball to Bh is assigned to the selected ball. Now
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consider the remaining flow assigned to the cluster. Also consider a point p j which
receives a part of this flow and not in any of the selected balls. Let Bt = B(ct , rt ) be
a selected ball. Then, by triangle inequality, the distance between p j and ct is at most
rt + 2rh + 2r� ≤ rt + 2r�/c+ 2r� ≤ (3+ 2/c)rt ≤ 4.24rt . The second last inequality
follows, as r� is the smallest of the selected balls. We expand each selected ball by
the factor 4.24. The remaining flow is assigned arbitrarily to selected balls respecting
their capacity. Let the total amount of flow rerouted from the selected 10 light balls
to Bh in Cluster Formation step be f . The total available capacity of all these balls is
at least 10U ′

� − f , as B� is the smallest radius ball among these 10 balls. Now, as the
capacity of each ball of L1 is reduced to a factor 10 of the original capacity and the
capacity of Bh remains unchanged, Uh ≤ 10U ′

�. Hence, the available capacity of all
these 10 balls is at least Uh − f . As the remaining flow is at most Uh − f , it follows
that the capacity constraints of these balls are satisfied. �


Theorem 3 There is an O(1)-approximation for MCC by expanding the balls by a
factor of at most 4.24.

6 The Algorithm for MLC

In this section,we consider themetric lower-bounded covering (MLC) problem.Recall
that in MLC, the goal is to find a minimum-sized subset B′ ⊆ B and an assignment
of the points in P to B′, such that each point p ∈ P is assigned to a ball that contains
p and for each ball Bi ∈ B′, at least L points are assigned to Bi . We assume that each
ball contains at least L points, as otherwise it is not possible to satisfy its lower bound.

We design a simple LP rounding based exact algorithm for MLC that expands the
balls by at most 5.83 factor. It is interesting to note that such a simple algorithm is not
known for metric capacitated covering.

Naturally, the ILP formulation ofMLC is similar to that ofMCC orMMCC (MMC-
C-LP), except here Constraint 2 is replaced by the following constraint.

∑

p j∈P

xi j ≥ yi · L ∀Bi ∈ B (20)

We compute an optimal fractional solution σ = (x, y) of the LP relaxation of this
ILP. Similar to, in the case of MCC, here also we round this fractional solution to a
semi-integral solution. One can obtain a fully integral solution by solving a similar
minimum cost network flow problem. In the following, we describe our rounding
algorithm.

Again, let OPT be the optimal cost. We say a ball Bj is in the 1-neighborhood of a
ball Bi if Bi ∩ Bj �= ∅. We say a ball Bk is in the 2-neighborhood of a ball Bi if there
is a ball Bj such that Bj is in the 1-neighborhood of both Bi and Bk .

It is not hard to see that the 1-neighborhood of a ball Bi is a subset of its 2-
neighborhood. Our algorithm has two steps. The first step is the coloring step where
we color each ball by either red or green. The set of green balls will determine our
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solution. In the second step, we assign points to these green balls. Now, we describe
the details of the two steps.
First step. Let T be a set which is initialized to the set of all balls with non-zero y
value in σ . Also, let R and G be the set of red and green balls, respectively, both of
which are initially empty. While T is not empty, do the following.

– Remove the largest ball B from T and add it to G. Remove all the balls from T
that are in the 2-neighborhood of B and add them to R.

Set the y value of a ball to 1 if it is in G and to 0 if it is in R.
Second step. For each ball Bi ∈ G, consider any subset of L points in Bi and fully
assign them to Bi (set the x values to 1). Let P ′ be the set of points assigned to the
balls in G in this process. Now, for each ball Bk ∈ R, do the following.

– Let Bj be the ball in G because of which Bk was forced to join R. For each point
p ∈ P \ P ′, reroute its flow from Bk to Bj .

Clearly, we obtain a semi-integral solution. Let us denote it by σ . Next, we analyze
our algorithm. We have the following lemma.

Lemma 17 σ satisfies all the LP constraints except Constraint 4. Moreover, it has the
following properties: (i) cost(σ ) ≤ OPT, and (ii) If a ball Bi serves a point p such
that p /∈ Bi , then p is contained in a ball Bk in the 2-neighborhood of Bi , such that
rk ≤ ri .

Proof Note that only the balls in G serve the points in σ . As y value of each such ball
is 1 and x values can be at most 1, Constraint 1 is satisfied.

In the second step, the algorithm selects a set of L points in each ball Bi ∈ G and
assigns them to Bi . As the balls in G are pairwise disjoint, these sets of points are also
pairwise disjoint. Thus, for each ball in the solution, Constraint 20 is satisfied.

For points in P ′, Constraint 3 is trivially satisfied. For points in P \ P ′, as we only
reroute flow from balls in R to the balls in G, Constraint 3 is satisfied. It is trivial to
verify that the domain constraints are also satisfied.

Now, we prove the moreover part. Note that for each ball Bi ∈ G, there is a
point pi in P ′ that is fully assigned to Bi . Let Ti be the set of balls in the fractional
solution σ = (x, y) that serve pi . Note that

∑
Bk∈Ti yk ≥ 1. Now, consider two balls

Bi , Bj ∈ G and the corresponding sets of balls Ti and Tj . We claim that Ti ∩ Tj = ∅.
Otherwise, there is a ball Bk ∈ Ti ∩Tj . It follows that pi ∈ Bi ∩ Bk and p j ∈ Bj ∩ Bk ,
and thus Bi is in the 2-neighborhood of Bj , and vice versa. But, this is not possible
by the definition of G. Hence, Ti ∩ Tj must be empty. Now,

cost(σ ) = |G| =
∑

Bi∈G
1 ≤

∑

Bi∈G

∑

Bk∈Ti
yk ≤

∑

Bi∈B
yi ≤ OPT

The first inequality follows, as
∑

Bk∈Ti yk ≥ 1. The second inequality follows, as the
sets in {Ti } are pairwise disjoint.

Finally, consider a ball Bi that serves a point p such that p /∈ Bi . Note that if
p ∈ P ′, then d(ci , p) ≤ ri . Thus, p ∈ P \ P ′. It follows that in the second step of the
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algorithm, flow was rerouted for p from a ball Bk in R to Bi ∈ G. But, then it must be
the case that Bi is the ball in G because of which Bk was forced to join R. It follows
that Bk is a ball in the 2-neighborhood of Bi , and Bk was present in T when Bi was
added to G. Now, at that moment, Bi was the largest ball in T . Hence, rk ≤ ri . This
completes the proof of our claim, and hence this lemma follows. �


Note that if a ball Bi serves a point p in σ , d(ci , p) can still be very large and thus
the expansion factor of this solution might not be bounded. In the next lemma, we
show how to modify this solution to obtain a new solution with bounded expansion
factor.

Lemma 18 Given the solution σ , it is possible to find another LP solution σ̂ that satis-
fies all the constraints except Constraint 4 and has the following additional properties:
(i) cost(σ̂ ) ≤ OPT, and (ii) If a ball Bi serves a point p in σ̂ , then d(ci , p) ≤ 5.83 · ri .
Proof In the beginning, set σ to be σ̂ . We will modify σ̂ so that it has the desired
properties. For each ball Bi ∈ G, consider the largest ball B� in the 1-neighborhood
of Bi . If r� >

√
2 · ri , reroute flow from Bi to B�, and set ŷi to 0 and ŷ� to 1.

As we just take one ball in the solution σ̂ for every ball in G and each ball has the
same lower bound L , it is not hard to see that σ̂ satisfies all the LP constraints satisfied
by σ . Also, cost(σ̂ ) ≤ |G| ≤ OPT.

Next, we argue about the distance between a point p and the center of a ball
that serves p. Consider any ball Bi ∈ G. From Lemma 17, we know that if Bi
serves a point p in σ and p /∈ Bi , then p must be contained in a ball Bk in the
2-neighborhood of Bi , such that rk ≤ ri . Now, there can be two cases. In the first
case, r� ≤ √

2 · ri , and thus Bi is chosen in the solution σ̂ . Hence, in the worst
case, d(ci , p) ≤ ri + 2r� + 2rk ≤ 3ri + 2r� ≤ (3 + 2

√
2) · ri < 5.83 · ri . In the

second case, r� >
√
2 · ri and B� is chosen in the solution. Thus, in the worst case,

d(c�, p) ≤ r� + 2ri + 2r� + 2rk ≤ 3r� + 4ri < (3 + 4/
√
2) · r� < 5.83 · r�. �


Lemmas 17 and 18 complete the proof of the following theorem.

Theorem 4 There is a polynomial-time algorithm for MLC that returns a solution
with the following properties.

– The cost of the solution is at most the optimal cost.
– Each ball in the solution is assigned at least L points.
– Each ball is expanded by at most a factor of 5.83.

7 Conclusion

In this paper, we improve the expansion factor of the balls for MCC and MMCC
to 4.24 and 5, respectively, in the context of obtaining constant approximation. Our
approximation factor is a large constant. But, it is possible to improve this factor by
setting different values of parameters in the algorithm.Note that the lower bound on the
expansion factor is still 3. So, one obvious problem is to reduce the gap further. Another
interesting problem is to design a true constant approximation for theEuclidean version
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of MCC, which does not expand the balls. We note that this problem is open even in
the plane.

Note that if the capacities are not monotonic, no (O(1), O(1))-approximation is
known. On the other hand, the lower bound on the expansion factor even in this case is
3− ε, similar to the uniform capacity case. So, a very natural and interesting direction
of research is to study this most general version of the problem.

We also obtained a constant bicriteria-approximation for MLC by expanding the
balls by a small constant factor. One interesting open question is to find a constant-
approximation for the lower- and upper-bounded metric covering that expands the
balls by a constant factor. It would also be interesting to see if MLC admits a true
O(log n)-approximation. Lastly, it would be interesting to study the weighted version
of MCC and MLC where instead of minimizing the number of balls in the cover, one
needs to minimize the sum of the weights of the balls.
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