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Abstract
In this paper, we investigate the complexity of theMaximum Happy Set problem on
subclasses of co-comparability graphs. For a graph G and its vertex subset S, a vertex
v ∈ S is happy if all v’s neighbors inG are contained in S. Given a graph G and a non-
negative integer k,Maximum Happy Set is the problemoffinding avertex subset S of
G such that |S| = k and the number of happy vertices in S is maximized. In this paper,
we first show that Maximum Happy Set is NP-hard even for co-bipartite graphs.
We then give an algorithm for n-vertex interval graphs whose running time is O(n2 +
k3n); this improves the best known running time O(kn8) for interval graphs. We also
design algorithms for n-vertex permutation graphs and d-trapezoid graphs which run
in O(n2+k3n) and O(n2+d2(k+1)3dn) time, respectively. These algorithmic results
provide a nice contrast to the fact that Maximum Happy Set remains NP-hard for
chordal graphs, comparability graphs, and co-comparability graphs.

Keywords Graph algorithm · Co-comparability graphs · Interval graphs ·
Permutation graphs · d-trapezoid graphs · Happy set problem
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Fig. 1 a A graph G, and b an optimal solution S = {v1, v2, v6, v7} for G and k = 4, where only v1 and v7
are happy vertices

1 Introduction

Easley and Kleinberg [2] said that homophily is one of the most basic notions govern-
ing the structure of social networks. Homophily is the principle that we are likely to
associate with people who are similar in characteristics, such as their ages, their occu-
pations, and their interests. Motivated from homophily of social networks, Zhang and
Li [3] formulated two graph coloring problems, and recently Asahiro et al. [4] intro-
duced another formulation on graphs. In this paper, we study the latter formulation,
defined as follows.

For a graph G = (V , E) and a subset S ⊆ V , a vertex v ∈ S is happy if all its
neighbors in G are contained in S. Given an undirected graph G = (V , E) and a
non-negative integer k, Maximum Happy Set is the problem of finding a subset
S ⊆ V such that |S| = k and the number of happy vertices in S is maximized. For
example, the set S = {v1, v2, v6, v7} in Fig. 1b is an optimal solution to Maximum
Happy Set for the graph G in Fig. 1a and k = 4, where only two vertices v1 and v7
are happy.

1.1 Known Results

AlthoughMaximum Happy Setwas proposed recently,1 it has been already studied
from various viewpoints such as polynomial-time solvability, approximability, and
fixed-parameter tractability.

Polynomial-Time Solvability: Maximum Happy Set is NP-hard even for bipartite
graphs [5], cubic graphs [5], and split graphs [4]. On the other hand, the problem is
solvable in O(k2n) time for block graphs [5], and solvable in O(kn8) time for interval
graphs [5], where n is the number of vertices in a graph.

Approximability: Maximum Happy Set admits a polynomial-time approximation
algorithm whose approximation ratio depends on the maximum degree of a graph [5].

Fixed-Parameter Tractability:Maximum Happy Set is W[1]-hard when parameter-
ized by k even on split graphs [4], and hence it is very unlikely that the problem admits
a fixed-parameter algorithm even when restricted to split graphs and parameterized by

1 We note that the graph coloring problem introduced by Zhang and Li [3] is called a similar name,
Maximum Happy Vertices, but it is a different problem from ours.
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k. On the other hand, the problem admits fixed-parameter algorithms when parame-
terized by graph structural parameters such as tree-width, clique-width, neighborhood
diversity, and twin-cover number of a graph [4].

1.2 Our Contributions

In this paper, we further investigate the polynomial-time solvability of Maximum
Happy Set, by focusing on subclasses of co-comparability graphs. In particular,
we consider co-bipartite graphs, interval graphs, permutation graphs and d-trapezoid
graphs. See the relationship of graph classes illustrated in Fig. 2.

We first show thatMaximum Happy Set is NP-hard even for co-bipartite graphs.
As far as we know, this is the first intractability result of Maximum Happy Set on
subclasses of co-comparability graphs. We thus need to focus on other subclasses of
co-comparability graphs, in order to seek polynomial-time solvable cases, as below.

We then give a polynomial-time algorithm for interval graphs. Recall that the
polynomial-time solvability for interval graphs is already known [5]. However, our
algorithm runs in O(n2 + k3n) time for n-vertex interval graphs, which improves the
best known running time O(kn8) [5].

We finally extend our algorithmic techniques for interval graphs to permutation
graphs and d-trapezoid graphs, and give algorithms for n-vertex permutation graphs
and d-trapezoid graphs which run in O(n2 + k3n) and O(n2 + d2(k + 1)3dn) time,
respectively. These are new polynomial-time solvable cases, and give a nice contrast to
the known fact that Maximum Happy Set is NP-hard for comparability graphs and
co-comparability graphs (see also Fig. 2). We note that if k and d are fixed constants,
then all of our algorithms in this paper run in O(n2) time.

Fig. 2 Our results together with known ones for Maximum Happy Set on subclasses of perfect graphs.
Each arrow represents the inclusion relationship between graph classes: A → B means that the graph class
B is a subclass of the graph class A
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1.2.1 Technical highlight

Our polynomial-time algorithms for interval graphs, permutation graphs and d-
trapezoid graphs employ basically the same technique, that is, a dynamic programming
approach based on graph representation models. Details and formal definitions will be
given later, but we here explain the key point. Given an n-vertex graph G = (V , E),
we define a subgraph Gi = (Vi , Ei ) for each integer i = 1, 2, . . . , n, depending on a
representation model for G. Then, we wish to compute a partial solution Si = S∗ ∩Vi
for each Gi , where S∗ is an optimal solution of G. Note that Si is not always optimal
forGi , and hence it is not enough to compute an optimal solution ofGi . The key of our
algorithms is that partial solutions Si of Gi can be characterized by only two vertices
that are not contained in S∗ if G is an interval graph or a permutation graph, and
characterized by 2d vertices that are not contained in S∗ if G is a d-trapezoid graph.
This efficient characterization of partial solutions leads to improving the running time
for interval graphs.

1.3 Contrasts to Related Results

Our initial motivation was to develop a polynomial-time algorithm for Maximum
Happy Set on co-comparability graphs, because it is known that several classical
problems are tractable for co-comparability graphs even if they are NP-hard on perfect
graphs (see again Fig. 2). Such examples include Minimum Dominating Set [6],
Hamiltonian Cycle [7], and Minimum Feedback Vertex Set [8]. Our result
of NP-hardness for co-comparability graphs gives an interesting contrast to these
complexity examples.

The Densest k-Subgraph problem [9], which has been studied for more than two
decades in thefield of graph theory, canbe seen as an edgevariant ofMaximum Happy
Set: given an undirected graph G = (V , E) and a non-negative integer k, the task of
the problem is to find a vertex subset S ⊆ V of size exactly k such that the number
of edges whose both endpoints are contained in S is maximized. Interestingly, the
complexity of Densest k-Subgraph remains open for interval graphs, permutation
graphs, and planar graphs. Although results on Maximum Happy Set cannot be
converted directly to Densest k-Subgraph, our complexity results in this paper may
give new insights to Densest k-Subgraph.

2 Preliminaries

Let G = (V , E) be a graph; we denote by V (G) and E(G) the vertex set and the edge
set of G, respectively. We assume that all graphs in this paper are simple, undirected,
and unweighted. For a vertex v of G, we denote by NG(v) and NG [v] the open and
closed neighborhood of v in G, respectively, that is, NG(v) = {w ∈ V (G) : vw ∈
E(G)} and NG [v] = NG(v) ∪ {v}. For a vertex subset V ′ ⊆ V , we denote by G − V ′
the subgraph of G obtained by deleting all the vertices in V ′ and their incident edges.
We shall often write G − v instead of G − {v} for a vertex v ∈ V .
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For a graph G = (V , E) and its vertex subset S ⊆ V , we say that a vertex v ∈ V
is happy with respect to S if NG [v] ⊆ S; otherwise v is unhappy with respect to
S. We denote by H(G;S) the set of happy vertices with respect to S. We note that
H(G;∅) = ∅. Given a graph G = (V , E) and a non-negative integer k, Maximum
Happy Set is the problem of finding a vertex subset S ⊆ V such that |S| = k
and the size of H(G;S) is maximized. For simplicity, our algorithms in this paper
only compute the maximum value of |H(G;S)|. However, one can easily modify the
algorithms so that they find an actual subset S in the same time complexity.

3 NP-Hardness for Co-bipartite Graphs

A graph is co-bipartite if it is the complement of a bipartite graph. In other words, a
co-bipartite graph is a graph whose vertex set can be partitioned into two cliques. In
this section, we give the following hardness result.

Theorem 1 Maximum Happy Set is NP-hard for co-bipartite graphs.

Proof We give a polynomial-time reduction from Maximum Happy Set on general
graphs to Maximum Happy Set on co-bipartite graphs. Let (G, k) be an instance
of Maximum Happy Set on general graphs. We construct an instance (G ′, k′) of
Maximum Happy Set on co-bipartite graphs from (G, k) as follows. Let n = |V (G)|
and V (G) = {v1, v2, . . . , vn}. The graph G ′ consists of disjoint two cliques whose
vertex subsets are A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn+k+1}. In addition,
G ′ has an edge aib j if and only if i = j or viv j ∈ E(G) for each i, j ∈ {1, 2, . . . , n}.
This completes the construction of G ′, and we let k′ = n + k. Clearly, this reduction
can be done in polynomial time.

We show that for any integer � ≥ 0, there exists a subset S ⊆ V (G) such that
|S| = k and |H(G;S)| ≥ � if and only if there exists a subset S′ ⊆ V (G ′) such that
|S′| = k′ and |H(G ′;S′)| ≥ �.

We first prove the necessity. Assume that there exists a subset S ⊆ V (G) such that
|S| = k and |H(G;S)| ≥ �. Let S′ = A ∪ {b j | v j ∈ S}. Clearly, |S′| = n + k = k′.
To show that |H(G ′;S′)| ≥ �, we indicate that for any happy vertex vi ∈ H(G;S),
the corresponding vertex ai ∈ A of G ′ is also happy with respect to S′. Obviously,
NG ′ [ai ] ∩ A ⊆ S′. Moreover, since vi is happy with respect to S on G, any vertex
v j ∈ NG [vi ] is in S. By the construction of S′, we have b j ∈ S′ that is adjacent
to ai on G ′. Therefore, NG ′ [ai ] ⊆ S′, that is, ai ∈ H(G ′;S′). This implies that
|H(G ′;S′)| ≥ |H(G;S)| ≥ �.

Conversely, we prove the sufficiency. Assume that there exists a subset S′ ⊆ V (G ′)
such that |S′| = k′ = n + k and |H(G ′;S′)| ≥ �. Since |S′| = n + k and B forms
a clique of n + k + 1 vertices, at least one vertex b j ∈ B is not in S′ and hence all
vertices in B are unhappy with respect to S′. This means that any happy vertex with
respect to S′ is in A. In the remainder of this proof, we assume that A ⊆ S′; otherwise
|H(G ′;S′)| = 0. In addition, if there exists a vertex b j ∈ S′ for an integer j with
n + 1 ≤ j ≤ n + k + 1, then we remove b j from S′ and arbitrarily add a vertex
b j ′ /∈ S′ into S′ for an integer j ′ ∈ {1, . . . , n}. We denote by S′′ a set obtained by
repeating this operation until S′′ ∩ {bn+1, . . . , bn+k+1} = ∅. Since no vertex in A is
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adjacent to b j for an integer j ∈ {n + 1, . . . , n + k + 1} from the construction of G ′,
H(G ′;S′) ⊆ H(G ′;S′′) holds. Let S = {v j | j ∈ {1, 2, . . . , n} and b j ∈ S′′}. Notice
that, since S′′ contains all vertices in A, we have |S| = |S′′| − |A| = k. We now show
that for any happy vertex ai ∈ H(G ′;S′′), the corresponding vertex vi ∈ V (G) is
also happy with respect to S. Since ai is happy, any vertex b j ∈ NG ′ [ai ] ∩ B is in S′′
and hence v j ∈ S. This implies that NG [vi ] ⊆ S, that is, vi ∈ H(G;S). Therefore,
|H(G;S)| ≥ |H(G ′;S′′)| ≥ |H(G ′;S′)| ≥ �. This completes the proof. �


4 Polynomial-Time Algorithm for Interval Graphs

A graph G = (V , E) with vertices v1, v2, . . . , vn is called an interval graph if, for
some set I = {I1, I2, . . . , In} of intervals on the real line, there is a one-to-one
correspondence between V and I such that viv j ∈ E if and only if Ii intersects I j for
each i, j ∈ {1, 2, . . . , n}. Such a set I of intervals is called an interval representation
of G. For instance, Fig. 3 shows the interval representation and its corresponding
interval graph. In this section, we give a polynomial-time algorithm for Maximum
Happy Set on interval graphs.

Theorem 2 Given an n-vertex interval graph G and a non-negative integer k,Max-
imum Happy Set is solvable in O(n2 + k3n) time.

Before the detailed description of our algorithm, we give the following simple but
useful lemma.

Lemma 3 Let G = (V , E) be a graph, and let V ′ and S be subsets of V . Then, it
holds that H(G;S)\V ′ ⊆ H(G − V ′;S\V ′). Moreover, if V ′ ⊆ S, then it holds that
H(G;S)\V ′ = H(G − V ′;S\V ′).

Proof We first prove the former statement. The case of H(G;S)\V ′ = ∅ is trivial.
Suppose that H(G;S) \ V ′ �= ∅ and consider a vertex v ∈ H(G;S) \ V ′. Since
NG [v] ⊆ S holds from the definition, NG−V ′ [v] ⊆ S \ V ′. This implies that v ∈
H(G − V ′;S \ V ′), that is, H(G;S)\V ′ ⊆ H(G − V ′;S\V ′).

To prove the latter statement, we also show that H(G − V ′;S\V ′) ⊆ H(G;S)\V ′
if V ′ ⊆ S. The case of H(G − V ′;S\V ′) = ∅ is trivial and hence assume that there
is a vertex v ∈ H(G − V ′;S\V ′). Since NG−V ′ [v] ⊆ S\V ′ and V ′ ⊆ S, we have
NG [v] ⊆ S, that is, v ∈ H(G;S). It follows from v /∈ V ′ that v ∈ H(G;S)\V ′ and
thus H(G − V ′;S\V ′) ⊆ H(G;S)\V ′. �


Fig. 3 a The interval representation and b its corresponding interval graph
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Fig. 4 If k = 2, the optimal
solution of I5 is {I4, I5}, while
the optimal solution S∗ of I6
and the partial solution
S5 = S∗ ∩ I5 are {I1, I2} or
{I2, I3}

Notice that Lemma 3 is applicable to general graphs as well as interval graphs.
To explain our algorithm, we need several assumptions and notations. Given an

interval graph G, an interval representation I of G can be constructed in linear time
[10–12]. For a subset S ⊆ I, we say that an interval I ∈ I is happy with respect to S
if I ′ ∈ S for every interval I ′ such that I ∩ I ′ �= ∅. It is easy to see that for a subset
S ⊆ I and its corresponding vertex subset S ⊆ V (G), an interval I ∈ I is happy with
respect to S if and only if its corresponding vertex v ∈ V (G) is happy with respect
to S. Therefore, we consider Maximum Happy Set on an interval representation I
instead of its original interval graph G. Let H(I;S) be a set of happy intervals with
respect to S ⊆ I and our task is to find S such that |H(I;S)| is maximized.

We denote by left(Ii ) and right(Ii ) the left endpoint and the right endpoint of an
interval Ii ∈ I, respectively. One can easily transform an interval representation I
of G into another one without changing G so that distinct integers between 1 and 2n
are assigned to the endpoints left(Ii ) and right(Ii ) of every interval Ii . Moreover, we
assume that intervals of I are sorted in increasing order of the right endpoints, that is,
right(Ii ) < right(I j ) for any integers i, j with 1 ≤ i < j ≤ n. We then add dummy
intervals I0 and In+1 with left(I0) = −1, right(I0) = 0, left(In+1) = 2n + 1, and
right(In+1) = 2n + 2 into I. The addition of I0 and In+1 is not essential for proving
Theorem 2, but this simplifies the description of our algorithm. In the remainder of
this section, we assume that I has I0 and In+1. For an integer i ∈ {0, . . . , n + 1}, we
let Ii = {I0, I1, . . . , Ii } and Ii = I\Ii .

We describe the idea of our algorithm. Let S∗ be a subset of I \ {I0, In+1} such
that |H(I;S∗)| is maximized among all subsets of I \ {I0, In+1} of size k. Since both
I0 and In+1 have no intersection with other intervals of I, S∗ is also the optimal
solution of the original interval representation that has no dummy intervals I0 and
In+1. In order to find S∗, we wish to compute a partial solution Si = S∗ ∩ Ii for
each i ∈ {0, 1, . . . , n + 1} by means of dynamic programming. Since I = In+1, we
have S∗ = Sn+1. Notice that, however, a partial solution Si is not always equal to an
optimal solution of Ii (see Fig. 4 as an example). This indicates that it is not enough
to find only an optimal solution of Ii as a partial solution Si . To correctly compute Si
for each i ∈ {0, . . . , n + 1}, we guess integers r , �, and k′ that satisfy the following
three conditions for S∗:

• the interval Ir has the largest right endpoint among all intervals in Ii \ S∗, that is,
Ir /∈ S∗ and right(Ii ′) ≤ right(Ir ) for any Ii ′ ∈ Ii\S∗;

• the interval I� has the smallest left endpoint among all intervals in Ii \S∗, that is,
I� /∈ S∗ and left(I�) ≤ left(Ii ′) for any Ii ′ ∈ Ii\S∗; and

• |Si | = k′.
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Fig. 5 For the above interval representation I = {I1, I2 . . . , I7}, if k = 3, the optimal solution S∗
is {I1, I2, I6}, which is drawn with dotted line segments. Then, for i = 3, the interval I3 (resp. I5)
has the largest right (resp. the smallest left) endpoint among all intervals in Ii\S∗ (resp. Ii\S∗), and
|Si | = |S∗ ∩ Ii | = 2. Therefore, a quadruple (3, 3, 5, 2) is compatible with S∗

We say that a quadruple (i, r , �, k′) of integers is compatible with S∗ if i, r , �, and
k′ satisfy the above three conditions (see Fig. 5). Clearly, if (i, r , �, k′) is compatible
with S∗, then 0 ≤ r ≤ i < � ≤ n + 1 and 0 ≤ k′ ≤ k hold. For integers i , r , and �, let−→Ir = {Ii ′ ∈ Ii | right(Ir ) < right(Ii ′)} and let Ii,� be a shorthand for Ii ∪ {I�} (See
again Fig. 5 as an example. If i = 3, we have

−→Ir = ∅ because r = 3, and if i = 6, we

have
−→Ir = {I6} because r = 5). We then obtain the following lemma.

Lemma 4 For an interval representation I and an integer k, let S∗ be an optimal
solution of I \ {I0, In+1} such that |S∗| = k. Suppose that a quadruple (i, r , �, k′) of
integers is compatible with S∗ and S ′

i ⊆ Ii,�\{I0, Ir , I�} is an optimal solution of Ii,�
such that

−→Ir ⊆ S ′
i and |S ′

i | = k′. Then, there is an optimal solution S� of I\{I0, In+1}
such that S ′

i = S� ∩ Ii .

Proof Let Si = S∗ ∩ Ii and S� = (S∗\Si ) ∪S ′
i . Note that Ii\S∗ = Ii\S� holds. We

then show that the following three inequalities:

(I) |H(I;S∗) ∩ Ii,�| ≤ |H(Ii,�;Si )|;
(II) |H(Ii,�;S ′

i )| ≤ |H(I;S�) ∩ Ii,�|; and
(III) |H(I;S∗)\Ii,�| ≤ |H(I;S�)\Ii,�|.
Since |H(Ii,�;Si )| ≤ |H(Ii,�;S ′

i )| from the maximality of S ′
i , we have |H(I;S∗)|

from the inequalities (I)–(III) as follows:

|H(I;S∗)| = |H(I;S∗) ∩ Ii,�| + |H(I;S∗) \ Ii,�|
≤ |H(Ii,�;Si )| + |H(I;S�) \ Ii,�|
≤ |H(Ii,�;S ′

i )| + |H(I;S�) \ Ii,�|
≤ |H(I;S�) ∩ Ii,�| + |H(I;S�) \ Ii,�|
= |H(I;S�)|.

Namely, S� is also the optimal solution of I \ {I0, In+1} from the maximality of
|H(I;S∗)|.

We first show the inequality (I). Consider an interval representation I of an interval
graph G on Lemma 3, and set I ′ = I\Ii,� and S = S∗. Then, we have

H(I;S∗) ∩ Ii,� = H(I;S∗) \ I ′
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⊆ H(I \ I ′;S∗ \ I ′)
= H(Ii,�;S∗ ∩ Ii,�).

SinceSi = S∗∩Ii and I� /∈ S∗, we have |H(I;S∗)∩Ii,�| ≤ |H(Ii,�;S∗∩Ii,�)| =
|H(Ii,�;Si )|.

We next show the inequality (II). Consider an interval I j ∈ H(Ii,�;S ′
i ). Then, I j ∈

S ′
i and I j intersects with none of intervals in Ii,�\S ′

i = Ii,�\(S� ∩ Ii ) = Ii,�\S�. In
particular, right(I j ) < left(I�) holds. For any interval I j ′ ∈ Ii\S∗, equivalently I j ′ ∈
Ii\S�, we also have left(I�) ≤ left(I j ′) from the definition of I�. Thus, right(I j ) <

left(I j ′) holds and I j has no intersection with I j ′ . As a consequence, I j intersects with
none of intervals in I\S�, that is, I j ∈ H(I;S�)∩Ii,�. Thismeans that |H(Ii,�;S ′

i )| ≤
|H(I;S�) ∩ Ii,�|.

Finally, we show the inequality (III). Consider an interval I j ∈ H(I;S∗)\Ii,�.
Then, I j ∈ S∗\Ii,� and I j intersects with none of intervals in I \ S∗. In particular,
right(Ir ) < left(I j ) holds. Recall that Ii\S∗ = Ii\S�. This means that I j ∈ S�\Ii,�
and I j intersects with none of intervals in Ii \S�. Moreover, from the assumptions that−→Ir ⊆ S ′

i andS� = (S∗\Si )∪S ′
i , it holds that right(I j ′) ≤ right(Ir ) for any interval I j ′

in Ii\S ′
i = Ii\S�. Combinedwith right(Ir ) < left(I j ), we have right(I j ′) < left(I j ),

that is, I j has no intersection with I j ′ ∈ Ii\S�. Therefore, I j intersects with none of
intervals in I \ S� and thus I j ∈ H(I;S�)\Ii,�. We conclude that |H(I;S∗)\Ii,�| ≤
|H(I;S�)\Ii,�|. �


Lemma 4 suggests that, in order to compute a partial solution of Ii for each i ∈
{0, . . . , n}, it suffices to guess a quadruple (i, r , �, k′) of integers that is compatible
with S∗ and find S such that |H(Ii,�;S)| is the maximum among all subsets S ⊆
Ii,�\{I0, Ir , I�} that satisfies −→Ir ⊆ S and |S| = k′.

4.1 Algorithm

Our algorithm employs the following main function f (Ii,�;r , k′) and the subfunction
fmax(Ii,�;k′), where i, r , �, and k′ are integers such that 0 ≤ i < � ≤ n+1,max{0, i−
k′} ≤ r ≤ i , and 0 ≤ k′ ≤ k;

• f (Ii,�;r , k′) returns the maximum of |H(Ii,�;S)| among all subsets S ⊆
Ii,�\{I0, Ir , I�} such that

−→Ir ⊆ S and |S| = k′;
• fmax(Ii,�;k′) returns the maximum of |H(Ii,�;S)| among all subsets S ⊆
Ii,�\{I0, I�} such that |S| = k′.

We let f (Ii,�;r , k′) = −∞ and fmax(Ii,�;k′) = −∞ if there exists no subset S that
satisfies all the prescribed conditions for f and fmax, respectively. We remark that
the integer r must be at least i − k′; otherwise it implies |S| > k′ and violates the
condition |S| = k′. We will compute values f (Ii,�;r , k′) and fmax(Ii,�;k′) by means
of dynamic programming in accordance with the lexicographical order of a quadruple
(i, r , �, k′). We lastly obtain the value fmax(In,n+1;k), which is the maximum size of
H(I;S) such that S ⊆ I \ {I0, In+1} and |S| = k.
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For each triple (i, �, k′) of integers, it is easy to see that fmax(Ii,�;k′) is obtained
as follows:

fmax(Ii,�;k′) = max
max{0,i−k′}≤r≤i

f (Ii,�;r , k′).

We compute f (Ii,�;r , k′) by dividing two cases (i) r < i and (ii) r = i .

Case (i): r < i
If i = 0, then we have f (Ii,�;r , k′) = −∞ because there exists no integer r such

that max{0, i − k′} ≤ r < i . If k′ = 0, then we also have f (Ii,�;r , k′) = −∞ for any
i , �, and r because there is no subset S such that Ii ∈ S and |S| = 0.

Suppose that i > 0 and k′ > 0. Let S be a subset of Ii,� \ {I0, Ir , I�} such that−→Ir ⊆ S, |S| = k′, and |H(Ii,�;S)| is maximized. Especially, Ii ∈ S in this case.
From Lemma 3, it holds that H(Ii,�;S)\{Ii } = H(Ii−1,�;S\{Ii }). We thus compute
f (Ii,�;r , k′) from f (Ii−1,�;r , k′−1) by decidingwhether the interval Ii is happywith
respect to S. If Ii intersects with the interval Ir /∈ S or I� /∈ S, then Ii is unhappy.
Conversely, assume that Ii intersects with neither Ir nor I�. Let I ′

i,� be a set of intervals
of Ii,� that intersect with Ii . Since the intervals of Ii,� are sorted in increasing order

of the right endpoints, we have I ′
i,� ⊆ −→Ir from the definition of Ir . Combined with

−→Ir ⊆ S, we have I ′
i,� ⊆ S and hence Ii is happy. Therefore, it suffices to check that

Ii intersects with Ir or I� to decide whether Ii is happy, and we have

f (Ii,�;r , k′) =
{
f (Ii−1,�;r , k′ − 1) if Ii ∩ Ir �= ∅ or Ii ∩ I� �= ∅,

f (Ii−1,�;r , k′ − 1) + 1 otherwise.

Case (ii): r = i
If i = 0, an interval representation Ii,� consists of the two disjoint intervals I0

and I�. Only S = ∅ satisfies the prescribed conditions for f (Ii,�;i, k′). Thus, for any
integer � > 0, we have f (Ii,�;i, k′) = 0 if k′ = 0; otherwise f (Ii,�;i, k′) = −∞.
Suppose that i > 0. To calculate f (Ii,�;i, k′) for each integers i, �, and k′, we give
the following lemma.

Lemma 5 Let S be a subset of Ii,�\{I0, Ii , I�} such that |S| = k′. In addition, let
�′ ∈ {i, �} be an integer such that left(I�′) ≤ min{left(Ii ), left(I�)}. Then, H(Ii,�;S) =
H(Ii−1,�′ ;S).

Proof We first show that H(Ii,�;S) ⊆ H(Ii−1,�′ ;S). Let I ′ ∈ {Ii , I�} be the other
interval that is distinct from I�′ . Since I ′ /∈ S, we have H(Ii,�;S) = H(Ii,�;S)\{I ′}.
Moreover, from Lemma 3, it holds that

H(Ii,�;S) \ {I ′} ⊆ H(Ii,� \ {I ′};S \ {I ′}) = H(Ii−1,�′ ;S).

Thus, we have H(Ii,�;S) ⊆ H(Ii−1,�′ ;S).
We next show that H(Ii−1,�′ ;S) ⊆ H(Ii,�;S). Since I�′ /∈ S, we have

right(I j ) < left(I�′) for any interval I j ∈ H(Ii−1,�′ ;S). In addition, left(I�′) ≤
min{left(Ii ), left(I�)} holds from the definition of I�′ . Therefore, I j intersects with
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neither Ii nor I�, which implies that I j ∈ H(Ii,�;S).We conclude that H(Ii−1,�′ ;S) ⊆
H(Ii,�;S). �


Lemma 5 immediately leads to the following equation:

f (Ii,�;i, k′) =
{
fmax(Ii−1,i ;k′) if left(Ii ) < left(I�),

fmax(Ii−1,�;k′) otherwise.

4.2 Running Time

We bound the running time of our algorithm for interval graphs. Given an n-vertex
interval graph G and an integer k, we first convert G to its interval representation I
in linear time and add the dummy intervals I0 and In+1. Recall that each endpoint of
intervals can be assigned to an integer between−1 to 2n+2.We can sort intervals of I
in increasing order of their right endpoints by an O(n)-time integer sorting algorithm.
For each integer i ∈ {0, . . . , n + 1}, we compute Ii and Ii in O(n2) time.

We then compute values f (Ii,�;r , k′) and fmax(Ii,�;k′) for each integers i, r , �,
and k′ with 0 ≤ i < � ≤ n + 1, max{0, i − k′} ≤ r ≤ i , and 0 ≤ k′ ≤ k. In fact,
for each i , the interval I� can be chosen from a set I ′ ⊆ Ii of size at most k + 1,
where I ′ consists of the first k + 1 intervals of Ii sorted in increasing order of their
left endpoints; otherwise, from the definition of I�, an optimal solution S∗ of I has
size at least k + 1, a contradiction.

Let (i, r , �, k′) be a quadruple of integers. In the case of r < i , our algorithm
computes f (Ii,�;r , k′) in O(1) time by checking whether Ii ∩ Ir �= ∅ or Ii ∩ I� �= ∅.
In the case of r = i , our algorithm computes f (Ii,�;i, k′) in O(1) time by checking
whether left(Ii ) < left(I�). Thus, for all quadruples (i, r , �, k′), the value in each case
can be computed in O(k3n) time. Obviously, for all triples (i, �, k′), fmax(Ii,�;k′) can
be computed in O(k3n) time.

Finally, by taking the value fmax(In,n+1;k) in O(1) time, we determine the maxi-
mum number of happy vertices for the given interval graph G and integer k. The total
running time of our algorithm is O(n2 + k3n), as claimed in Theorem 2. �


5 Extension of Algorithmic Techniques

In this section, we demonstrate that our idea for interval graphs is applicable to
other subclasses of co-comparability graphs.

5.1 Permutation Graphs

Let π = (π(1), π(2), . . . , π(n)) be a permutation of the integers from 1 to n. We
denote by π−1(i) the position of the number i in π . Consider two horizontal parallel
lines on the plane, where the upper line has distinct n points labeled 1, 2, . . . , n, and
the lower line has distinct n points labeled π(1), π(2), . . . , π(n) in the order from left
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Fig. 6 a The line representation and b its corresponding permutation graph, where π = (4, 2, 5, 1, 3)

to right, respectively. For each integer i ∈ {1, 2, . . . , n}, let Li be a line segment from
a label i on the upper line to a label i on the lower line. A graph G = (V , E) with
vertices v1, v2, . . . , vn is called a permutation graph if there exists a permutation π

between 1 and n such that for any two distinct integers i, j ∈ {1, . . . , n}, viv j ∈ E
if and only if Li intersects with L j . A set L of line segments corresponding to G is
called a line representation of G. We illustrate an example of the line representation
and its corresponding permutation graph in Fig. 6.

Theorem 6 Given an n-vertex permutation graph G and a non-negative integer k,
Maximum Happy Set is solvable in O(n2 + k3n) time.

Thealgorithmic approach for permutationgraphs is basically the sameas for interval
graphs in Sect. 4. Given a permutation graph G, a line representation L of G can be
constructed in linear time [13].We say that a line segment L ∈ L is happy with respect
to S if L ′ ∈ S for every line segment L ′ such that L∩L ′ �= ∅.Maximum Happy Set
on L is the problem of finding S ⊆ L such that the size of a set H(L;S) of happy line
segments with respect to S is maximized. We add a dummy line segment L0 (resp.
Ln+1) that connects a label 0 (resp. n+1) on the upper line and a label π(0) = 0 (resp.
π(n+1) = n+1) on the lower line. Both L0 and Ln+1 intersect with none of the other
line segments in L. For an integer i ∈ {0, . . . , n + 1}, we let Li = {L0, L1, . . . , Li }
and Li = L\Li .

Let S∗ be an optimal solution for L and let Si = S∗ ∩ Li . To characterize a
partial solution Si of Li , we seek integers r , �, and k′ that satisfy the following three
conditions for S∗:
• Lr ∈ Li \ S∗ and π−1(i ′) ≤ π−1(r) for any Li ′ ∈ Li\S∗;
• L� ∈ Li \ S∗ and π−1(�) ≤ π−1(i ′) for any Li ′ ∈ Li\S∗; and
• |Si | = k′.
We say that a quadruple (i, r , �, k′) of integers is compatible with S∗ if i, r , �, and

k′ satisfy the above three conditions (see Fig. 7). For integers i , r , and �, let Li,� be a

shorthand for Li ∪ {L�} and let
−→Lr = {Li ′ ∈ Li | π−1(r) < π−1(i ′)}. For example,

if i = 4 in Fig. 7, we have
−→Lr = {L1, L4} because r = 2. Analogous to Lemma 4, we

give the following lemma.

Lemma 7 For a line representation L and an integer k, let S∗ be an optimal solution
ofL\ {L0, Ln+1} such that |S∗| = k. Suppose that a quadruple (i, r , �, k′) of integers
is compatible with S∗ and S ′

i ⊆ Li,�\{L0, Lr , L�} is an optimal solution of Li,� such
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Fig. 7 For the above line representation L = {L1, L2 . . . , L6}, if k = 3, the optimal solution S∗ is
{L1, L4, L6}, which is drawn with dotted line segments. For i = 4, Li\S∗ = {L2, L3} with π−1(3) <

π−1(2), Li \S∗ = {L5}, and |Si | = |S∗ ∩Li | = 2. Thus, a quadruple (4, 2, 5, 2) is compatible with S∗

that
−→Lr ⊆ S ′

i and |S ′
i | = k′. Then, there is an optimal solution S� of L\{L0, Ln+1}

such that S ′
i = S� ∩ Li .

Proof We replace the words and notations in the proof of Lemma 4 as follows:

• an interval I → a line segment L;
• an interval representation I → a line representation L; and
• left and right → π−1.

One can verify the correctness of Lemma 7 by the proof after replacing them. �


5.1.1 Algorithm

Given a line representation L and an integer k, suppose that i, r , �, and k′ are integers
such that 0 ≤ r ≤ i < � ≤ n + 1 and 0 ≤ k′ ≤ k. Our algorithm for permutation
graphs employs the following three functions:

• gin(Li,�;r , k′) returns the maximum of |H(Li,�;S)| among all subsets S ⊆
Li,�\{L0, Lr , L�} such that

−→Lr ∪ {Li } ⊆ S and |S| = k′;
• gout(Li,�;r , k′) returns the maximum of |H(Li,�;S)| among all subsets S ⊆
Li,�\{L0, Lr , Li , L�} such that

−→Lr ⊆ S and |S| = k′; and
• gmax(Li,�;k′) returns the maximum of |H(Li,�;S)| among all subsets S ⊆
Li,�\{L0, L�} such that |S| = k′.

If there exists no subset S that satisfies the prescribed conditions, we set
gin(Li,�;r , k′) = −∞, gout(Li,�;r , k′) = −∞, and gmax(Li,�;k′) = −∞. It is easy
to see that a value gmax(Li,�;k′) can be obtained as follows:

gmax(Li,�;k′) = max
0≤r≤i

{gin(Li,�;r , k′), gout(Li,�;r , k′)}.

In the remainder of this subsection, we will explain the computation of the functions
gin(Li,�;r , k′) and gout(Li,�;r , k′).

Computation of the function gin: If i = 0, we have gin(Li,�;r , k′) = −∞ for any r , �,
and k′ because there exists no subset S ⊆ Li,� that satisfies Li ∈ S and L0 /∈ S.
Similarly, if i = r , we have gin(Li,�;r , k′) = −∞ for any r , �, and k′; and if k′ = 0,
we have gin(Li,�;r , k′) = −∞ for any i, r , and �. In the remainder of this subsection,
we suppose that i > 0, i �= r , and k′ > 0.
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Fig. 8 The line representations of the case where π−1(i) < π−1(r) and a π−1(i − 1) > π−1(r), b
π−1(i − 1) = π−1(r), and c π−1(i − 1) < π−1(r), respectively

Let S be a subset of Li,�\{L0, Lr , L�} such that |H(Li,�;S)| is the maximum

among all subsets S ⊆ Li,�\{L0, Lr , L�} with −→Lr ∪ {Li } ⊆ S and |S| = k′. From
Lemma 3, it holds that H(Li,�;S)\{Li } = H(Li−1,�;S\{Li }). We thus take values
gin(Li−1,�;r , k′ − 1) and gout(Li−1,�;r , k′ − 1) to compute gin(Li,�;r , k′). However,
Li may be unhappy with respect to S. To determine whether Li ∈ H(Li,�;S), we
consider whether Li intersects with Lr or L�. If Li intersects with Lr or L�, then Li is
clearly unhappy.Conversely, suppose that Li intersectswith neither Lr nor L�. LetL′

i,�

be a set of line segments of Li,� that intersect with Li . Then, π−1(i) < π−1( j) holds
for any L j ∈ L′

i,�. Since Li does not intersect with Lr , we have π−1(r) < π−1(i)

and hence L′
i,� ⊆ −→Lr ⊆ S holds from the definition of Lr , which means that Li is

happy. Thus, to determine that Li is happy, it suffice to confirm whether Li intersects
with Lr or L�.

In addition, we must pay attention to whether Li−1 ∈ S or not to compute

gin(Li,�;r , k′) (see also Fig. 8). If π−1(i − 1) > π−1(r), then Li−1 ∈ −→Lr

and hence Li−1 ∈ S. We thus have gin(Li,�;r , k′) from gin(Li−1,�;r , k′ − 1). If
π−1(i − 1) = π−1(r), then we take gout(Li−1,�;r , k′ − 1) because Li−1 = Lr and
Lr /∈ S. If π−1(i − 1) < π−1(r), then we compare values gin(Li−1,�;r , k′ − 1) and
gout(Li−1,�;r , k′ − 1), and take the larger one. In summary, we obtain the following
formula:
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gin(Li,�;r , k′) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gin(Li−1,�;r , k′ − 1) + c ifπ−1(i − 1) > π−1(r),

gout(Li−1,�;r , k′ − 1) + c ifπ−1(i − 1) = π−1(r), and

max{gin(Li−1,�;r , k′ − 1),

gout(Li−1,�;r , k′ − 1)} + c otherwise,

where

c =
{
0 if Li ∩ Lr �= ∅ or Li ∩ L� �= ∅
1 otherwise.

Computation of the function gout: Suppose that i = 0. As in Case (ii) of Sect. 4.1,
for any integer � > 0, we have gout(Li,�;r , k′) = 0 if r = 0 and k′ = 0; otherwise
gout(Li,�;r , k′) = −∞. For i > 0, we give the following lemma, which can be proved
in the same way as the proof of Lemma 5.

Lemma 8 Let S be a subset of Li,�\{L0, Lr , Li , L�} such that |S| = k′. In addi-
tion, let �′ ∈ {i, �} be an integer such that π−1(�′) ≤ min{π−1(i), π−1(�)}. Then,
H(Li,�;S) = H(Li−1,�′ ;S).

It should be noted that, in contrast to the case for interval graphs, Li /∈ S does
not always mean r = i . It is guaranteed that π−1(i) ≤ π−1(r); otherwise, Li ∈ S,
contradicting the condition of gout. Therefore, in addition towhetherπ−1(i) < π−1(�)

or not, the relationship between i , i − 1, and r must also be carefully considered (see
again Fig. 8). We have

gout(Li,�;r , k′) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gmax(Li−1,�′ ;k′) ifπ−1(i) = π−1(r),
gin(Li−1,�′ ;r , k′) ifπ−1(i) < π−1(r) and π−1(i − 1) > π−1(r),
gout(Li−1,�′ ;r , k′) ifπ−1(i) < π−1(r) and π−1(i − 1) = π−1(r), and
max{gin(Li−1,�′ ;r , k′),
gout(Li−1,�′ ;r , k′)} otherwise,

where �′ ∈ {i, �} is an integer such that π−1(�′) ≤ min{π−1(i), π−1(�)}.

5.1.2 Running Time

Recall that a line representation L can be constructed in linear time from a given n-
vertex permutation graph G. We add dummy line segments L0 and Ln+1 and we then
compute Li and Li in O(n) time for every i ∈ {0, . . . , n+ 1}. This preprocessing can
be done in O(n2) time.

We bound the running time to compute gmax(Li,�;k′), gin(Li,�;r , k′), and
gout(Li,�;r , k′) for each integers i, r , �, and k′, where 0 ≤ r ≤ i < � ≤ n + 1
and 0 ≤ k′ ≤ k. Notice that we do not need to consider an integer r such that
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|−→Lr | > k′ because it violates the condition that |S| = k′. Similarly, we can ignore
an integer � such that the size of {Li ′ ∈ Li | π−1(i ′) < π−1(�)} is at least k + 1.
Thus, we can compute gmax(Li,�;k′) in O(k) time for each triple (i, �, k′), and com-
pute gmax(Li,�;k′) in O(k3n) time for all triples (i, �, k′). Moreover, since both
gin(Li,�;r , k′) and gout(Li,�;r , k′) are computed in O(1) time for each quadruple
(i, r , �, k′), they are computed in O(k3n) time for all quadruples (i, r , �, k′). There-
fore, the total running time of our algorithm is O(n2 + k3n), as claimed in Theorem 6.

�


5.2 d-Trapezoid Graphs

Our definition of d-trapezoid graphs follows [14]. Let d be a fixed positive
integer and consider d horizontal parallel lines L1, L2, . . . , Ld on the plane.
A polygon T is called d-trapezoid if an interval [left j (T ), right j (T )] on L j

for each j ∈ {1, . . . , d} is defined and T is formed by connecting points
left1(T ), left2(T ), . . . , leftd(T ), rightd(T ), rightd−1(T ), . . . , right1(T ), left1(T ). A
graph G = (V , E) with vertices v1, v2, . . . , vn is called a d-trapezoid graph if there
exists a set T = {T1, . . . , Tn} of d-trapezoids such that for any two distinct integers
i, j ∈ {1, . . . , n}, viv j ∈ E if and only if Ti intersects with Tj . A set T of d-trapezoids
that represents G is called a d-trapezoid diagram of G. Figure9 shows an example of
(a) a 3-trapezoid diagram and (b) its corresponding 3-trapezoid graph. Without loss of
generality, for each j ∈ {1, . . . , d}, we suppose that left j (T ), right j (T ) ∈ {1, . . . , 2n}
for any T ∈ T , and any intervals on L j have no endpoint in common.

Unfortunately, computing a d-trapezoid diagram of a given graph G is known to
be NP-hard for any d ≥ 3 [15]. We thus assume that a d-trapezoid diagram of G is
also provided as part of an input of Maximum Happy Set.

Theorem 9 Given an n-vertex d-trapezoid graphG alongwith its d-trapezoid diagram
and a non-negative integer k, Maximum Happy Set is solvable in O(n2 + d2(k +
1)3dn) time.

All interval graphs are 1-trapezoid graphs, and all permutation graphs and trapezoid
graphs are 2-trapezoid graphs. Moreover, for d ∈ {1, 2}, a d-trapezoid diagram of a
given d-trapezoid graph can be obtained in polynomial time [10, 16]. Therefore, The-
orem 9 indeed indicates the polynomial-time solvability of Maximum Happy Set
on interval graphs, permutation graphs, and trapezoid graphs. Notice that Theorem 6
improves the running time of Theorem 9 for d = 2 by applying good properties of
permutation graphs.

Similar arguments for interval graphs in Sect. 4 are also applicable to d-trapezoid
graphs. The only difference of our algorithm for d-trapezoid graphs is that vertices
not contained in an optimal solution are characterized by a set of d-trapezoids of size
at most 2d, whereas for interval graphs, such vertices are characterized by only two
intervals. Thus, we here only describe the notations and the formulae to compute the
optimal value without detailed proofs.

We first label d-trapezoids of T with 1, . . . , n such that right1(Ti ) < right1(Tj ) for
any i, j with 1 ≤ i < j ≤ n.We add dummy trapezoids T0 and Tn+1 into a d-trapezoid
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Fig. 9 a The 3-trapezoid diagramT . Each Ti surrounded by a solid, dotted, or dashed rectangle is associated
with a 3-trapezoid on T formed by the same type of lines. b The 3-trapezoid graph corresponding to T

diagram of G, where right j (T0) < left j (T1) and right j (Tn) < left j (Tn+1) for every
j ∈ {1, . . . , d}. Our task is to find an optimal solution S∗ ⊆ T \{T0, Tn+1} with the
maximum set H(T ;S∗) of happy d-trapezoids. For an integer i ∈ {0, . . . , n + 1}, we
let Ti = {T0, T1, . . . , Ti } and Ti = T \Ti .

We next give the additional notations to define sets corresponding to Ir and I� in
Sect. 4. For non-empty sets R ⊆ Ti and L ⊆ Ti , let

• −→R = {T ∈ Ti | ∀T ′ ∈ R ∃ j ∈ {1, . . . , d} : right j (T ′) < right j (T )}; and
• ←−L = {T ∈ Ti | ∀T ′ ∈ L ∃ j ∈ {1, . . . , d} : left j (T ) < left j (T ′)}.

For two non-empty subsets R and R′ of Ti , we say that R and R′ are equivalent,

denoted byR ∼ R′, if −→R = −→
R′. Similarly, for two non-empty subsets L and L′ of Ti ,

we let L ∼ L′ if ←−L = ←−
L′ . If R ⊆ Ti is the inclusion-wise minimal set with respect

to the equivalence class [R] = {R′ | R ∼ R′}, then R is called a representative
of [R]. Notice that such representative is uniquely determined. A representative of
L ⊆ Ti is also defined in the similar way. For setsR ⊆ Ti and L ⊆ Ti , the mappings
repi (R) and repi (L) return the representatives of [R] and [L], respectively. For an
optimal solution S∗ ⊆ T , we let R∗ = repi (Ti\S∗) and L∗ = repi (Ti\S∗). Note
that

−→R ∗ ⊆ S∗ and
←−L ∗ ⊆ S∗ hold. We guess non-empty sets R ⊆ Ti and L ⊆ Ti

such that R∗ = R and L∗ = L, and then we compute a partial solution of Ti under
the guess.

Let Ri and Li be non-empty families of subsets of Ti and Ti such that for each
R ∈ Ri and L ∈ Li , R and L are the representatives of [R] and [L], respectively.
We write Ti,L = Ti ∪ L and define the following function:
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• t(Ti,L;R, k′) returns the maximum of |H(Ti,L;S)| among all subsets S ⊆
Ti,L\({T0} ∪ R ∪ L) such that

−→R ⊆ S and |S| = k′.

We let t(Ti,L;R, k′) = −∞ if there exists no subset S that satisfies all the prescribed
conditions. Then, t(Ti,L;R, k′) is computed as follows: if Ti /∈ R,

t(Ti,L;R, k′)

=

⎧⎪⎨
⎪⎩

−∞ if i = 0 or k′ = 0,

t(Ti−1,L;R, k′ − 1) if i > 0, k′ > 0 and ∃T ∈ R ∪ L : Ti ∩ T �= ∅,

t(Ti−1,L;R, k′ − 1) + 1 otherwise,

and if Ti ∈ R,

t(Ti,L;R, k′)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = 0,R = {T0}, and k′ = 0,

max
R′∈Ri−1

repi (R′∪{Ti })=R

t(Ti−1,L′ ;R′, k′) if i > 0,

−∞ otherwise,

where L′ = repi−1(L ∪ {Ti }).

5.2.1 Running Time

Obviously, the running time of our algorithm crucially depends on Ri and Li . The
following lemma bounds the running time to construct Ri and Li , and their sizes.

Lemma 10 Suppose that, for each j ∈ {1, . . . , d}, we have obtained a set of d-
trapezoids in a d-trapezoid diagram T that are sorted in increasing order of the
right endpoints of intervals on L j . Then, for each i ∈ {0, . . . , n}, Ri and Li of each
size at most (k + 1)d can be constructed in O(n + kd2(k + 1)2d) time.

Proof For each j ∈ {1, . . . , d}, let T j,k+1
i be a maximal subset of Ti of size at most

k + 1 such that right j (T
′) < right j (T ) for any T ∈ T j,k+1

i and any T ′ ∈ Ti\T j,k+1
i .

In particular, if i ≤ k + 1, we have T j,k+1
i = Ti .

Recall that, for an optimal solution S∗ of size k, we defineR∗ = repi (Ti\S∗) such
that

−→R ∗ ⊆ S∗. Then, at least one d-trapezoid of R∗ is contained in T j,k+1
i . Assume

for a contradiction that there is no d-trapezoid of R∗ in T j,k+1
i . This implies that

T j,k+1
i ⊆ −→R ∗ ⊆ S∗. If i ≤ k + 1, then Ti = T j,k+1

i ⊆ S∗, which contradicts that

T0 /∈ S∗ and hence Ti\S∗ �= ∅. If i ≥ k + 1, then the size of T j,k+1
i is exactly k + 1,

which contradicts that the size of S∗ is exactly k.
In addition, for each T ∈ R∗, there exists j ∈ {1, . . . , d} such that right j (T

′) <

right j (T ) for any T ′ ∈ R∗\{T }; otherwise, R∗ is not minimal with respect to the
equivalence class [R∗], contradicting thatR∗ = repi (Ti\S∗). Therefore, we construct
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Ri as follows. We enumerate possible candidates of R∗ by picking a d-trapezoid in
T j,k+1
i for each j ∈ {1, . . . , d} repeatedly. Let R ′

i be a family of the enumerated
sets. Then, we remove R ∈ R ′

i from R ′
i if it is inappropriate as a candidate because

|−→R | > k, or it is redundant, that is, there exists R′ ∈ R ′
i such that R ∼ R′ and

|R| ≥ |R′|. Let Ri be a family obtained after the reduction.
We bound the running time to construct Ri . Recall that, for each j ∈ {1, . . . , d},

we have sorted d-trapezoids in a d-trapezoid diagram T in increasing order of the
right endpoints of intervals on L j . For each i ∈ {0, . . . , n}, we can obtain T j,k+1

i

in O(n) time. Then, we construct R ′
i . Since the size of T

j,k+1
i is at most k + 1 for

every j ∈ {1, . . . , d}, the size of R ′
i is at most (k + 1)d . To obtain Ri from R ′

i ,
we remove inappropriate sets as candidates of R∗ from R ′

i . Notice that for each

R ∈ R ′
i , we can construct

−→R in O(kd2) time because |R| ≤ d and T j,k+1
i has the

size at most k + 1 for each j ∈ {1, . . . , d}. After removing all sets R ∈ R ′
i with

|−→R | > k from R ′
i , we also remove redundant sets by checking whether R ∼ R′

and |R| ≥ |R′| for each pair R,R′ ∈ R ′
i . This reduction of R ′

i can be done in
O(kd2 · |R ′

i | + (k + d) · |R ′
i |2) = O(kd2(k + 1)2d) time. Consequently, Ri of size

at most (k + 1)d is obtained in O(n + kd2(k + 1)2d) time for each i ∈ {0, . . . , n}.
The similar construction ofLi can also be done in O(n+ kd2(k+1)2d) time for each
i ∈ {0, . . . , n}. �


We now estimate the running time of our algorithm. First, for each j ∈ {1, . . . , d},
we sort d-trapezoids in a d-trapezoid diagram T in O(n) time in increasing order
of the right endpoints of intervals on L j and store the results of sorting. We then
compute Ti , Ti ,Ri , andLi for each i ∈ {0, . . . , n}. From Lemma 10, this can be done
in O(n2 + kd2(k + 1)2dn) time.

Consider a quadruple (i,R,L, k′), where R ∈ Ri , L ∈ Li , and k′ ∈ {0, . . . , k}.
If Ti /∈ R, we check whether ∃T ∈ R∪L : Ti ∩ T �= ∅, where |R∪L| ≤ 2d because
|R| ≤ d and |L| ≤ d. For a trapezoid T ∈ R ∪ L, the following observation allows
us to check whether Ti ∩ T �= ∅ in O(d) time.

Observation 11 Let T be a d-trapezoid diagram. For two trapezoids T , T ′ ∈ T ,
T ∩ T ′ = ∅ if and only if

(1) right j (T ) < left j (T ′) for every j ∈ {1, . . . , d}, or
(2) right j (T

′) < left j (T ) for every j ∈ {1, . . . , d}.
Thus, if Ti /∈ R, the value t(Ti,L;R, k′) is computed in O(d2) time.

If Ti ∈ R, we first obtain repi−1(L∪{Ti }) in O(d2) time by removing a d-trapezoid
T from L ∪ {Ti } such that left j (Ti ) < left j (T ) for every j ∈ {1, . . . , d}. Then, for
each R′ ∈ Ri−1, we check in O(d2) time whether repi (R′ ∪ {Ti }) = R and obtain
a value t(Ti−1,L′ ;R′, k′) in O(1) time. Thus, if Ti ∈ R, the value t(Ti,L;R, k′) is
computed in O(d2 + d2 · |Ri−1|) = O(d2(k + 1)d) time.

We finally bound the total running time of our algorithm. The preprocessing can be
done in O(n2 + kd2(k + 1)2dn) time. Since |Ri | ≤ (k + 1)d and |Li | ≤ (k + 1)d , if
Ti /∈ R, our algorithm computes the value t(Ti,L;R, k′) in O(d2(k+1)2d+1n) time for
all quadruples (i,R,L, k′). Notice that the number ofR ∈ Ri such that Ti ∈ R is at
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most (k+1)d−1. Therefore, for all quadruples (i,R,L, k′)with Ti ∈ R, our algorithm
computes the value t(Ti,L;R, k′) in O(d2(k + 1)d · (k + 1)2dn) = O(d2(k + 1)3dn)

time. As a conclusion, we obtain an optimal solution of Maximum Happy Set
on a d-trapezoid graph in O(n2 + d2(k + 1)3dn) time. This completes the proof of
Theorem 9. �


6 Conclusion

In this paper, we studied the complexity of Maximum Happy Set on subclasses
of co-comparability graphs; co-bipartite graphs, interval graphs, permutation graphs,
and d-trapezoid graphs. Especially, our algorithm for interval graphs improved the
best known running time O(kn8). Our polynomial-time algorithms employ basically
the same techniques.

The complexity of Maximum Happy Set has been studied for various graph
classes. However, the (in)tractability of Maximum Happy Set on planar graphs
remains open. We note that the complexity of the edge variant [9] of Maximum
Happy Set is also unknown for planar graphs.
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