
Algorithmica (2023) 85:1459–1489
https://doi.org/10.1007/s00453-022-01079-8

Fair Allocation of Indivisible Items with Conflict Graphs

Nina Chiarelli1 ·Matjaž Krnc1 ·Martin Milanič1 · Ulrich Pferschy2 ·
Nevena Pivač1 · Joachim Schauer3

Received: 8 October 2021 / Accepted: 25 November 2022 / Published online: 12 December 2022
© The Author(s) 2022

Abstract
We consider the fair allocation of indivisible items to several agents and add a graph
theoretical perspective to this classical problem. Namely, we introduce an incompat-
ibility relation between pairs of items described in terms of a conflict graph. Every
subset of items assigned to one agent has to form an independent set in this graph.
Thus, the allocation of items to the agents corresponds to a partial coloring of the
conflict graph. Every agent has its own profit valuation for every item. Aiming at a
fair allocation, our goal is the maximization of the lowest total profit of items allo-
cated to any one of the agents. The resulting optimization problem contains, as special
cases, both Partition and Independent Set. In our contribution we derive com-
plexity and algorithmic results depending on the properties of the given graph. We
show that the problem is strongly NP-hard for bipartite graphs and their line graphs,
and solvable in pseudo-polynomial time for the classes of chordal graphs, cocompa-
rability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of

A preliminary version containing some of the results presented here appeared in [22].

B Ulrich Pferschy
ulrich.pferschy@uni-graz.at

Nina Chiarelli
nina.chiarelli@famnit.upr.si

Matjaž Krnc
matjaz.krnc@upr.si

Martin Milanič
martin.milanic@upr.si

Nevena Pivač
nevena.pivac@iam.upr.si

Joachim Schauer
joachim.schauer@fh-joanneum.at

1 FAMNIT and IAM, University of Primorska, Koper, Slovenia

2 University of Graz, Graz, Austria

3 FH JOANNEUM, Kapfenberg, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01079-8&domain=pdf
http://orcid.org/0000-0002-8169-0925
http://orcid.org/0000-0002-4960-8901
http://orcid.org/0000-0002-8222-8097
http://orcid.org/0000-0001-8881-1497
http://orcid.org/0000-0002-2268-0612

1460 Algorithmica (2023) 85:1459–1489

the pseudo-polynomial algorithms can also be turned into a fully polynomial approx-
imation scheme (FPTAS).

Keywords Fair division · Conflict graph · Partial coloring

1 Introduction

Allocating resources to several agents in a satisfactory way is a classical problem in
combinatorial optimization. In particular, interesting questions arise if agents have
different valuations of resources or if additional constraints are imposed for a feasible
allocation. In this work we study the fair allocation of n indivisible goods or items
to a set of k agents. Each agent has its own additive utility function over the set of
items. The goal is to assign every item to exactly one of the agents so that the minimal
utility over all agents is as large as possible. Related problems of fair allocation are
frequently studied in Computational Social Choice, see, e.g., [18]. Recent papers from
this field containing many pointers to the literature and studying fairness issues, also
in connection with an underlying graph structure, are given by [11, 17]. In the area
of Combinatorial Optimization a similar problem is well-known as the Santa Claus
problem (see [9]), which can also be seen as a scheduling problem.

In this paper we look at the problem from a graph theoretical perspective and add
a major new aspect to it. We allow an incompatibility relation between pairs of items,
meaning that incompatible items should not be allocated to the same agent. This can
reflect the fact that items rule out their joint usage or simply the fact that certain items
are identical (or of a similar type) and it does not make sense for one agent to receive
more than one of these items. We will represent such a relation by a conflict graph
where vertices correspond to items and edges express incompatibilities.

As a more concrete example consider the distribution of transportation orders
among a number of shipping partners which should all be treated as equally as possible
according to a joint master agreement. In some industries, goods cannot be combined
in an arbitrary way due to safety regulations or rules for hazardous materials (see [59]
for the delivery of goods from incompatible categories to small neighborhood stores).
Then, a conflict graph can be used to express forbidden freight combinations (see,
e.g., [33, 41]).

When items represent tasks with a starting and end time, each agent should be
allocated a fair subset of non-overlapping tasks. Again, the mutual exclusion of two
tasks/items, will be represented by the edges of a conflict graph (see, e.g., [32, 46]).
Note that in [20] a general treatment of conflict graphs was performed for the COIN
OR Branch-and-Cut (CBC) solver.1

In all such scenarios every feasible allocation to one agent must be an independent
set in the conflict graph. This means that the overall solution can also be expressed as
a partial k-coloring of the conflict graph G, but in addition every vertex/item has a
profit value for every color/agent and the sum of profits of vertices/items assigned to
one color/agent should be optimized in a maxi-min sense.

1 https://github.com/coin-or/Cbc.

123

https://github.com/coin-or/Cbc

Algorithmica (2023) 85:1459–1489 1461

We believe that this problem combines aspects of independent sets, graph coloring,
and weight partitioning in an interesting way, offering new perspectives to look at
these classical combinatorial optimization problems.

1.1 Problem Definitions

The classical fair division problem
We consider a set V of items with cardinality |V | = n and k profit functions

p1, . . . , pk : V → Z+. An ordered k-partition of V is a sequence (X1, . . . , Xk) of
k pairwise disjoint subsets of V such that

⋃k
i=1 Xi = V . The satisfaction level of

an ordered k-partition (X1, . . . , Xk) of V (with respect to p1, . . . , pk) is defined as
the minimum of the resulting profits p j (X j) := ∑

v∈X j
p j (v), where j ∈ {1, . . . , k}.

The classical
Fair k- Division of Indivisible Items

Input A set V of nitems , kprofit functions p1, . . . , pk : V → Z+.

Task Compute an ordered k − partition of Vwith maximum satisfaction
level.

Connections with scheduling and knapsack problems
For the special case where all k profit functions are identical, i.e., p1 = p2 =

. . . = pk , the problem can also be represented in a scheduling setting. There are k
identical machines and n jobs, which have to be assigned to the machines by a k-
partitioning. The goal is to maximize the minimal completion time (corresponding
to the satisfaction level) over all k machines. It was pointed out in [30] that this
problem is weakly NP-hard even for k = 2 machines. Indeed, it is easy to see that an
algorithm deciding the above scheduling problem for two machines would also decide
the classical Partition problem: given n integers a1, . . . , an , can they be partitioned
into two subsets with equal sums? For k ≥ 3, one can simply add jobs of length one
half of the sum of weights in the instance of Partition. If k is not fixed, but part of the
input, the same scheduling problem is strongly NP-hard as mentioned in [8] (a PTAS
was derived in [64]). In fact, an instance of the strongly NP-complete 3- Partition
problem with 3m elements and target bound B could be decided by any algorithm for
the scheduling problem with n = 3m jobs, k = m machines and a desired minimal
completion time equal to B. We conclude for later reference.

Observation 1 Fair k-Division of Indivisible Items, even with k identical profit
functions, is weakly NP-hard for any constant k ≥ 2 and strongly NP-hard for k being
part of the input.

Note that for k = 2, the decision version of Fair k- Division of Indivisible

Items also generalizes the decision version of the Knapsack problem: Given a set
V = {1, . . . , n} of items with weights w1, . . . , wn ∈ Z+ and values v1, . . . , vn ∈ Z+,
and two positive integers W and C such that W <

∑
j∈V w j , is there a subset of the

items having total weight at most W and total value at least C?2

2 Indeed, by considering two profit functions p1, p2 : V → Z+ defined by p1(i) = � · vi where
� = ∑

j∈V w j − W and p2(i) = C · wi for all i ∈ V , it is not difficult to verify that such a set S exists if
and only if V admits an ordered 2-partition with satisfaction level at least C · �.

123

1462 Algorithmica (2023) 85:1459–1489

It should be noted that Fair k-Division of Indivisible Items is still only weakly
NP-hard for constant k even for arbitrary profit functions, since we can construct
a pseudo-polynomial algorithm solving the problem with a k-dimensional dynamic
programming array.

Our generalization In this paper we study a generalization of Fair k-Division of

Indivisible Items, where a conflict graph G = (V , E) on the set V of items to be
divided is introduced. An edge {i, j} ∈ E means that items i and j should not be
assigned to the same subset of the partition. Allocating items in a conflict-free way
immediately gives rise to (partial) colorings of the graph, a concept studied by Berge
[12] and de Werra [29].

Definition 1 A partial k-coloring of a graph G is a sequence (X1, . . . , Xk) of k pair-
wise disjoint independent sets in G.

Combining the profit structure with the notion of coloring we define for the k profit
functions p1, . . . , pk : V → Z+ and for each partial k-coloring c = (X1, . . . , Xk)

a k-tuple (p1(X1), . . . , pk(Xk)), called the profit profile of c. The minimum profit of
a profile, i.e., minkj=1{p j (X j)}, is the satisfaction level of c. Now we can define the
problem considered in this paper:
Fair k-Division Under Conflicts

Input A graph G = (V , E), kprofit functions p1, . . . , pk : V → Z+.

Task Compute a partial k − coloring of Gwith maximum satisfaction
level.

In the hardness reductions of this paper we will frequently use the decision version
of this problem: for a given q ∈ Z+, does there exist a partial k-coloring of G with
satisfaction level at least q?

Note that an optimal partial k-coloring (X1, . . . , Xk) does not necessarily select
all vertices from V . Furthermore, note also that for k = 1, the problem coincides
with the Weighted Independent Set problem: given a graph G = (V , E) and a
weight function on the vertices, find an independent set of maximum total weight. In
particular, since the case of unit weights and k = 1 coincides with the Independent
Set problem, we obtain the following result.

Observation 2 Fair 1-Division Under Conflicts is strongly NP-hard.

Thus, the addition of the conflict structure gives rise to a much more complicated
problem, since Fair k-Division of Indivisible Items (which arises naturally as
a special case for an edgeless conflict graph G) is trivial for k = 1 and only weakly
NP-hard for k ≥ 2 (see Observation 1).

1.2 Our Goal and Contributions

The goal of our research is a characterization of the computational complexity of Fair
k-Division Under Conflicts for different classes of conflict graphs. We study the

123

Algorithmica (2023) 85:1459–1489 1463

Fig. 1 Relationships between various graph classes and the complexity of Fair k-Division Under Con-

flicts (decision version). An arrow from a class G1 to a class G2 means that every graph in G1 is also in
G2. Label ‘PP’ means that for each fixed k the problem is solvable in pseudo-polynomial time in the given
class, and label ‘sNPc’ means that for each fixed k ≥ 2 the decision version of the problem is strongly
NP-complete. For graph classes with round corners the result is shown in the cited theorem of this paper.
Results depicted in rectangles follow from the inclusion of graph classes. For all graph classes in the fig-
ure, the problem is solvable in strongly polynomial time for k = 1, as it coincides with the Weighted

Independent Set problem

boundary between strongly NP-hard cases and those where a pseudo-polynomial algo-
rithm can be derived for a constant k. Observation 1 implies that this is the only type
of positive result we can achieve. Moreover, considering Observation 2, it only makes
sense to consider graph classes where the Weighted Independent Set problem is
(pseudo-)polynomially solvable. One such prominent example is the class of perfect
graphs (see [40]). Thus, in this paper we concentrate (mainly) on various subclasses of
perfect graphs as depicted in Fig. 1. Additionally, we show how to adapt the algorithm
for chordal graphs to obtain a pseudo-polynomial algorithm for graphs of bounded
treewidth. For k = 2 our pseudopolynomial dynamic programming approaches gen-
eralize the standard dynamic program for the Knapsack problem.

Our contributions are as follows. We first show that for all k ≥ 1, the decision
version of our Fair k-Division Under Conflicts is strongly NP-complete for
conflict graphs from any graph class G for which Independent Set is NP-complete,
provided a certain mild technical ‘extendability’ condition is satisfied (Sect. 2.1). By a
similar reasoning we can also reach a strong inapproximability result for our problem.
For bipartite conflict graphs as well as their line graphs Fair k-Division Under

Conflicts can be shown to be strongly NP-hard for all k ≥ 2 (Sect. 2.2), even

123

1464 Algorithmica (2023) 85:1459–1489

though the corresponding Weighted Independent Set problem is polynomial-
time solvable. On the other hand, for the relevant special case of biconvex bipartite
graphs (cf. [42, 47]), Fair k-Division Under Conflicts can be solved by a pseudo-
polynomial time algorithm. This result is based on an insightful pseudo-polynomial
algorithm for the problem on a cocomparability conflict graph (Sect. 3). Besides these
results, in Sect. 3 we present dynamic programming based solutions for the classes of
chordal graphs and graphs of bounded treewidth. Finally, Sect. 4 explains how fully
polynomial time approximation schemes (FPTAS) can be derived from the pseudo-
polynomial algorithms of this paper. Figure1 gives on overview of the results.

1.3 Overview of RelatedWork

The first elaborate treatment of the Fair k-Division of Indivisible Items problem
was given in [13], where two approximation algorithms with non-constant approx-
imation ratios were given. The authors also mention that the problem cannot be
approximated by a factor better than 1/2 (under P �= NP). In [38] further approxi-
mation results were derived, among them a bicriteria approximation algorithm, which
allocates a guaranteed fraction of the optimal solution value to almost all agents. In
2006 Bansal and Sviridenko [9] coined the term Santa Claus problem, which corre-
sponds to the variant of the above problem when k is not fixed but part of the input.
Since then various approximation results have appeared on this problem of allocat-
ing indivisible items exploring different concepts of objective functions and various
approximation measures, see, e.g., [7, 21].

An interesting variant is the maximin share concept. Here, one considers the hypo-
thetical scenariowhere every agent is allowed to partition the set of items into k subsets
and receives the least valued subset. An allocation should give to every agent at least
that amount. While this is known to be impossible in general, several approximation
algorithms were derived, see [4, 10, 37, 43].

A different specialization is assumed in the widely studied Restricted Max-Min
Fair Allocation problem. This is a special case of Fair k-Division of Indivisible

Items where every item vi ∈ V has a fixed valuation p(vi) and every agent either
likes or ignores item vi , i.e., the profit function p j (vi) ∈ {0, p(vi)}. A fairly recent
overview of approximation results both for this restricted setting as well as for the
general case of the Santa Claus problem can be found in [5].

Disjunctive constraints represented by conflict graphs were considered in the lit-
erature for a wide variety of combinatorial optimization problems. Related to the
allocation problem studied in this paper, there is the knapsack problem with conflicts
for which several exact algorithms were developed, most recently by [23]. Moreover,
from a similar perspective as in the current paper [52, 54] identified special graph
classes as conflict graphs which still permit a pseudopolynomial solution algorithm.
Also the distribution of items into bins as required in the classical bin packing problem
has some resemblance to Fair k-Division of Indivisible Items, where (not all)
items are distributed to a fixed number of agents. The bin packing problem with a
conflict graph was studied in a number of papers, most notably in [34, 50, 57]. Also
scheduling problems, where the allocation of jobs to machines is subject to pairwise

123

Algorithmica (2023) 85:1459–1489 1465

conflicts between certain jobs, should be named as a related optimization problem.
The resulting complexity and approximation questions were considered, e.g., in [15,
32, 35], and most recently in [46].

From a more general perspective, various optimization problems on graphs were
studied with the feature of an added conflict structure, e.g., [28, 53, 58]. Recently, [48]
presented an interesting model for consistency in databases based on a conflict graph.
This widespread attention to conflict graphs in combinatorial optimization underlines
the relevance of investigating disjunctive constraints also for our fair allocation prob-
lem.

The problem studied by Berge [12] and deWerra [29] is similar to Fair k-Division
Under Conflicts but differs from it in one crucial aspect: instead of maximizing the
minimum profit of a profile, the goal is to maximize the sum

∑k
j=1 p j (X j) of all the

profits. Furthermore, they considered the case of unit profit functions p j : V → {1},
for all j , that is, the the Maximum Induced k-Colorable Subgraph problem.
This problem has been extensively studied in the literature (see, e.g., [36, 44, 49, 65]);
the case k = 2 is is equivalent to the Odd Cycle Transversal problem (see, e.g.,
[27, 55]).

Berge [12] gave a sufficient condition for a partial k-coloring to be optimal, in
terms of existence of a particular family of cliques, and gave several characterizations
of graphs for which this condition is satisfied by every optimal solution. Using connec-
tions with perfect graphs and balanced hypergraphs, Berge showed that line graphs
of bipartite multigraphs satisfy this property. De Werra [29] continued this line of
research, applying network flow techniques and linear programming to several classes
of graphs. These characterizations rely on a min-max relation, which does not hold
in general but does hold for several classes of perfect graphs (including the classes of
comparability and cocomparability graphs). The above results imply the existence of
polynomial-time algorithm for the Maximum Induced k-Colorable Subgraph

problem in the corresponding class of graphs, since the problem reduces to that of
finding a maximum independent set in a derived perfect graph. Berge [12] asked if
for every k, the problem is solvable in polynomial time in the class of perfect graphs.
This is not the case unless P = NP, since Addario-Berry et al. [2] identified a subclass
of perfect graphs on which the problem is NP-complete already for k = 2.

Due to the non-linearity of the objective function, we have no reason to expect sim-
ilar min-max results for Fairk-Division Under Conflicts for k ≥ 2. The intuition
that this seems to be a much more complicated problem than Maximum Induced

k-Colorable Subgraph is also confirmed by the hardness results developed in this
paper, in particular, that for all k ≥ 2 the problem is strongly NP-complete in the
classes of bipartite graphs and their line graphs.

1.4 Definitions and Notation

All graphs considered in this paper are finite, simple, and undirected. A vertex in a
graph G is said to be isolated if it has no neighbors and universal if it is adjacent to
all other vertices. A clique in a graph G is a set of pairwise adjacent vertices and an
independent set is a set of pairwise nonadjacent vertices. A matching in G is a set

123

1466 Algorithmica (2023) 85:1459–1489

of pairwise disjoint edges, and a matching M is perfect if every vertex of G is an
endpoint of an edge of M . For a graph G = (V , E) and a set X ⊆ V , we denote by
G[X] the subgraph of G induced by X , that is, the graph with vertex set X in which
two vertices are adjacent if and only if they are adjacent in G. Given two graphs G
and H , we say that G is H -free if no induced subgraph of G is isomorphic to H .

2 Hardness Results

Observation 2 shows that Fair k-Division Under Conflicts is strongly NP-hard
even for k = 1 for general graphs, while Observation 1 shows the weak NP-hardness
of the problem for constant k ≥ 2 in the absence of conflicts. In what follows, we show
that Fair k-Division Under Conflicts is strongly NP-hard also for all k ≥ 2, for
various well-known graph classes.

2.1 General Hardness Results

We start with the following general property of graph classes. Let us call a graph
class G sustainable if every graph in the class can be enlarged in polynomial time to a
graph in the class by adding to it one vertex. More formally, G is sustainable if there
exists a polynomial-time algorithm that computes for every graph G ∈ G a graph
G ′ ∈ G and a vertex v ∈ V (G ′) such that G ′ − v = G. Clearly, any class of graphs
closed under adding isolated vertices, or under adding universal vertices is sustainable.
This property is shared by many well known graph classes, including planar graphs,
bipartite graphs, chordal graphs, perfect graphs, etc. Furthermore, all graph classes
defined by a single nontrivial forbidden induced subgraph are sustainable.

Lemma 3 For every graph H with at least two vertices, the class of H-free graphs is
sustainable.

Proof Let G be the class of H -free graphs and let G ∈ G. Since H has at least two
vertices, it cannot have both a universal and an isolated vertex. If H has no universal
vertex, then the graph obtained from G by adding to it a universal vertex results in a
graph in G properly extending G. If H has no isolated vertex, then the disjoint union
of G with the one-vertex graph results in a graph in G properly extending G. �	

For an example of a graph classG closed under vertex deletion that is not sustainable,
consider the family of all cycles and their induced subgraphs. Then every cycle is
in G but cannot be extended to a larger graph in G. The importance of sustainable
graph classes for Fair k-Division Under Conflicts is evident from the following
theorem.

Theorem 4 Let G be a sustainable class of graphs and let k be a positive integer such
that the decision version of Fair k-Division Under Conflicts is (strongly) NP-
complete. Then, for every � ≥ k, the decision version of Fair �-Division Under

Conflicts with conflict graphs from G is (strongly) NP-complete.

123

Algorithmica (2023) 85:1459–1489 1467

Proof Let G be a sustainable class of graphs for which the decision version of
Fair k-Division Under Conflicts is (strongly) NP-complete and let � > k. Let
(G, p1, . . . , pk, q) be an instance of Fair k-Division Under Conflicts (decision
version) such that G ∈ G. Since G is sustainable, one can compute in polynomial time
a graph G ′ ∈ G such that G ′ − {x1, . . . , x�−k} = G for some � − k additional vertices
x1, . . . , x�−k . We now define the profit functions p′

1, . . . , p
′
� : V (G ′) → Z+. For all

j = 1, . . . , k, let

p′
j (v) =

{
p j (v) if v ∈ V (G),

0 if v ∈ {
x j | 1 ≤ j ≤ � − k

}
.

and in addition let, for all j = k + 1, . . . , �, let

p j (v) =
{
q if v = x j−k,

0 if v ∈ V
(
G ′) \ {

x j−k
}
.

Observe that G ′ has a partial k-coloring (X ′
1, . . . , X

′
k) such that p′

j (X
′
j) ≥ q for

all j = 1, . . . , � if and only if G has a partial k-coloring (X1, . . . , Xk) such that
p j (X j) ≥ q for all j = 1, . . . , k. Since all the numbers involved in the reduction are
polynomially bounded, we conclude that Fair �-Division Under Conflicts with
conflict graphs from G is also (strongly) NP-complete. �	

Since the Independent Set problem is a special case of Fair 1-Division Under
Conflicts, Theorem 4 immediately implies the following.

Corollary 5 Let G be a sustainable class of graphs for which the decision version of
Independent Set is NP-complete. Then, for every k ≥ 1, the decision version of Fair
k-Division Under Conflicts with conflict graphs from G is strongly NP-complete.

It is known (see, e.g., [3]) that for every graph H that has a component that
is not a path or a subdivision of the claw (the complete bipartite graph K1,3), the
decision version of Independent Set is NP-complete on H -free graphs. Thus, for
every such graph H , Lemma 3 and Corollary 5 imply that for every k ≥ 1, Fair
k-Division Under Conflicts (decision version) with H -free conflict graphs is
strongly NP-complete. Further exploiting the relation to Independent Set, we also
get the following strong inapproximability result for general graphs. Its proof is closely
related to the inapproximability result for Independent Set, but to keep the paper
self-contained, we include the detailed construction in Appendix A.

Theorem 6 For every k ≥ 1 and every ε > 0, it is NP-hard to approximate Fair

k-Division Under Conflicts within a factor of |V (G)|1−ε, even for unit profit
functions.

2.2 Bipartite Graphs and Their Line Graphs

In this section we show that for all k ≥ 2, Fair k-Division Under Conflicts is
NP-hard in two classes of graphs where the Weighted Independent Set problem

123

1468 Algorithmica (2023) 85:1459–1489

is solvable in polynomial time: the classes of bipartite graphs and their line graphs.
Recall that for a graph H , its line graph has a vertex for each edge of H , with two
distinct vertices adjacent in the line graph if and only if the corresponding edges share
an endpoint in H . Polynomial-time solvability of the Weighted Independent Set

problem in the class of bipartite graphs is well-known from a reduction to a network
flow problem (see, e.g., [60, Corollary 21.25a]). For line graphs of bipartite graphs
polynomial-time solvability follows from the facts that we can compute in linear time
a bipartite graph H such that the input graph G is the line graph of H [45, 56] and
that the Weighted Independent Set problem on G is equivalent to the weighted
matching problem on H . Clearly, polynomial-time solvability for the two classes also
follows from the fact that both classes are subclasses of the class of perfect graphs
(cf. Fig. 1 and [60, Section 66.1]).

The proof for bipartite graphs shows strong NP-hardness even for the case when
all the profit functions are equal.

Theorem 7 For each integer k ≥ 2, the decision version of Fair k-Division Under

Conflicts is strongly NP-complete in the class of bipartite graphs.

Proof We use a reduction from the decision version of the Clique problem: Given
a graph G and an integer �, does G contain a clique of size �? Consider an instance
(G, �) of Clique such that 2 ≤ � < n := |V (G)|. We define an instance of Fair
k-Division Under Conflicts (decision version) consisting of a bipartite conflict
graphG ′, profit functions p1, . . . , pk , and a lower bound q on the required satisfaction
level. The graph G ′ = (A∪ B, E ′) has a vertex for each vertex of the graph G as well
as for each edge of G and k new vertices x1, . . . , xk . It is defined as follows:

A = V (G) ∪ {x1} , B = E(G) ∪ {xi | 2 ≤ i ≤ k} ,

E ′ = {ve | v ∈ V (G) is an endpoint of e ∈ E(G)} ∪ {vxi | v ∈ V (G), 2 ≤ i ≤ k} .

The lower bound q on the satisfaction level is defined by setting q = n4+(
�
2

)
n+(n−�).

For ease of notation we set N1 = n4 and we furthermore introduce a second integer

N2 such that q = N2 +
(
m − (

�
2

))
n, where m = |E(G)|. (Note that N2 ≥ n3.) With

this, the profit functions pi : V (G ′) → Z+, for all i ∈ {1, . . . , k}, are defined as

pi (v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1; if v ∈ V (G);
n; if v ∈ E(G);
N1; if v = x1;
N2; if v = x2;
q; if v = x j for some j ∈ {3, . . . , k}.

Note that all the profits introduced as well as the number of vertices and edges of G ′
are polynomial in n. To complete the proof, we show that G has a clique of size � if
and only if G ′ has a partial k-coloring with satisfaction level at least q. First assume
that G has a clique C of size �. We construct a partial k-coloring c = (X1, . . . , Xk)

123

Algorithmica (2023) 85:1459–1489 1469

of G ′ by setting

X1 = {x1} ∪ {e ∈ E(G) | e ⊆ C} ∪ (V (G) \ C) ,

X2 = {x2} ∪ (E(G) \ X1) ,

X j = {
x j

}
for 3 ≤ j ≤ k.

Observe that the partial k-coloring c gives rise to the corresponding profit profile with
all entries equal to q, which establishes one of the two implications.

Suppose now that there exists a partial k-coloring c = (X1, . . . , Xk) of G ′ for
which the profit profile has all entries ≥ q. Since for each i ∈ {1, . . . , k}, the total
profit of the set V (G) ∪ E(G) is only mn + n < n4, the partial coloring c must use
exactly one of the k vertices x1, . . . , xk in each color class. We may assume without
loss of generality that xi ∈ Xi for all i ∈ {1, . . . , k}. Let U be the set of uncolored
vertices in G ′ w.r.t. the partial coloring c. Since for each of the profit functions pi , the
difference between the overall sum of the profits of vertices of G ′ and k · q is equal
to �, we clearly have

∑
v∈U pi (v) ≤ � < n, which implies that U ⊆ V (G). Next,

observe that every vertex of E(G) belongs to either X1 or to X2, since otherwise we
would have p1(X1) + p2(X2) < 2q, contrary to the assumption that the satisfaction
level of c is at least q.

Consider the setsW = X1 ∩V (G) and F = X1 ∩ E(G). Then X1 = {x1}∪W ∪ F
and, since

∑
v∈X1

p1(v) ≥ q = N1 + (
�
2

)
n + (n − �), it follows that X1 contains

exactly
(
�
2

)
vertices from E(G) (if |F | >

(
�
2

)
, then p2(X2) < q) and at least n − �

vertices from V (G). Let C denote the set of all vertices of G ′ with a neighbor in F .
By the construction of G ′ and since |F | = (

�
2

)
, it follows that C is of cardinality at

least �. Furthermore, since X1 is independent, we have C ∩ W = ∅. Consequently,
n = |V (G)| ≥ |C | + |W | ≥ � + (n − �) = n, hence equalities must hold throughout.
In particular, C is a clique of size � in G. �	
Theorem 8 For each integer k ≥ 2, the decision version of Fair k-Division Under

Conflicts is strongly NP-complete in the class of line graphs of bipartite graphs.

Proof Note that it suffices to prove the statement for k = 2. For k > 2, Theorem 4
applies, since the class of line graphs of bipartite graphs is sustainable. Indeed, if G ′
is the line graph of a bipartite graph G, then the graph obtained from G ′ by adding to
it an isolated vertex is the line graph of the bipartite graph obtained from G by adding
to it an isolated edge.

For k = 2, we use a reduction from the following problem: Given a bipartite
graph G and an integer Q, does G contain two disjoint matchings M1 and M2 such
that M1 is a perfect matching and |M2| ≥ Q? This problem was shown to be NP-
complete by Pálvölgi (see [51]). Consider an instance (G, Q) of this problem such
that 1 ≤ Q ≤ n/2 and n = |V (G)| is even. Then we define the following instance of
the decision version of Fair 2-Division Under Conflictswith a conflict graphG ′,
where G ′ is the line graph of G. The lower bound q on the satisfaction level is defined
by setting q = n · Q/2. The profit functions p1, p2 : V (G ′) → Z+ are defined as
p1(v) = Q for all v ∈ V (G ′), and p2(v) = n/2 for all v ∈ V (G ′). Clearly, all the

123

1470 Algorithmica (2023) 85:1459–1489

profits introduced as well as the number of vertices and edges of G ′ are polynomial
in n. Recall that every matching in G corresponds to an independent set in G ′.

Wenowshow that the instances of the twodecision problemshave the sameanswers.
Suppose first that G has two disjoint matchings M1 and M2 such that M1 is a perfect
matching and |M2| ≥ Q. Then the sequence (M1, M2) is a partial 2-coloring of G ′
such that

p1(M1) = Q|M1| = Q · n/2 = q and p2(M2) = (n/2) · |M2| ≥ (n/2)Q = q.

Conversely, suppose that G ′ has a partial 2-coloring (X1, X2) with satisfaction level
at least q. Then the independent sets X1 and X2 in G ′ are disjoint matchings in G.
Moreover, since

p1(X1) = Q|X1| ≥ q = Q · n/2 and p2(X2) = (n/2) · |X2| ≥ q = Q · n/2,

we obtain |X1| ≥ n/2 and |X2| ≥ Q. Thus, X1 is a perfect matching in G and any set
of Q edges in X2 is a matching in G disjoint from X1. This proves that the decision
version of Fair 2-Division Under Conflicts is strongly NP-complete in the class
of line graphs of bipartite graphs. �	

3 Pseudo-Polynomial Algorithms for Special Graph Classes

In this section we turn our attention to classes of graphs for which the Fair k-Division
Under Conflicts is solvable in pseudo-polynomial time.As shown inTheorem7, for
each k ≥ 2, Fair k-Division Under Conflicts is stronglyNP-complete in the class
of bipartite graphs, and this rules out the existence of a pseudo-polynomial time algo-
rithm for the problem in the class of bipartite graphs, unless P = NP.We show that for
every k there is a pseudo-polynomial time algorithm for the Fair k-Division Under

Conflicts in a subclass of bipartite graphs, the class of biconvex bipartite graphs (see
the definition in Sect. 3.2). The algorithm reduces the problem to the class of bipartite
permutation graphs. To solve the problem in the class of bipartite permutation graphs,
we develop a solution in a more general class of graphs, the class of cocomparabil-
ity graphs (containing permutation graphs). Further, using a dynamic programming
approach, we show that for every k there is a pseudo-polynomial time algorithm for
Fair k-Division Under Conflicts in the classes of chordal graphs and graphs
of bounded treewidth. It will be shown in Sect. 4 that all these pseudo-polynomial
dynamic programming algorithms allow the construction of a fully polynomial time
approximation scheme (FPTAS).

Let us first fix some notation. Given a graph G and k profit functions p1, . . . , pk :
V → Z+, we denote by n the number of vertices in G, n = |V (G)|. All pseudo-
polynomial results in this section dependon anupper boundon themaximumreachable
profit value Q = max1≤ j≤k p j (V). Given an integer k > 0, the addition and subtrac-
tion of k-tuples is defined component-wise, and for all � ∈ {1, . . . , k}, we denote by
e�(x) the k-tuple with all coordinates equal to 0, except that the �-th coordinate is
equal to x .

123

Algorithmica (2023) 85:1459–1489 1471

3.1 Cocomparability Graphs

AgraphG = (V , E) is a comparability graph if it has a transitive orientation, that is, if
each of the edges {u, v} ofG can be replaced by exactly one of the ordered pairs (u, v)

and (v, u) so that the resulting set A of directed edges is transitive (that is, for every
three vertices x, y, z ∈ V , if (x, y) ∈ A and (y, z) ∈ A, then (x, z) ∈ A). A graph G
is a cocomparability graph if its complement is a comparability graph. Comparability
graphs and cocomparability graphs are well-known subclasses of perfect graphs. The
class of cocomparability graphs is a common generalization of the classes of interval
graphs, permutation graphs, and trapezoid graphs (see, e.g., [19, 39]).

Since every bipartite graph is a comparability graph, Theorem 7 implies that for
each k ≥ 2, Fair k-Division Under Conflicts is strongly NP-complete in the
class of comparability graphs. For cocomparability graphs, we prove that the problem
is solvable in pseudo-polynomial time. The key result in this direction is the following
lemma.

Lemma 9 For every k ≥ 1, given a cocomparability graph G = (V , E) and k profit
functions p1, . . . , pk : V → Z+, the set of all profit profiles of partial k-colorings of
G can be computed in time O(nk+2(Q + 1)k), where Q = max1≤ j≤k p j (V).

Proof Let G be a cocomparability graph. In timeO(n2), we compute the complement
of G and a transitive orientation D of it [61]. Since D is a directed acyclic graph, one
can compute in linear time a topological sort of D, that is, an ordering v1, . . . , vn of
the vertices such that if (vi , v j) is an arc of D, then i < j (see, e.g., [24]). Note that

(∗) a set X = {vi1, . . . , vi p } ⊆ V with i1 < . . . < i p is independent in G if and only
if (vi1 , . . . , vi p) is a directed path in D.

Thus, a partial k-coloring inG corresponds to a collection of k vertex-disjoint directed
paths in D, and vice versa. We process the vertices of G in the ordering given by the
topological sort of D and try all possibilities for the color (if any) of the current vertex
v j in order to extend a partial k-coloring of the already processed subgraph of G with
v j . (In terms of D, we choose which of the k directed paths will be extended into v j .)
To avoid introducing additional terminology and notation, we present the details of
the algorithm in terms of partial k-colorings of G instead of systems of disjoint paths
in D.

For each j ∈ {0, 1, . . . , n} and each k-tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k , we
compute the set Pj (i1, . . . , ik) of all k-tuples (q1, . . . , qk) ∈ Z

k+ such that there exists
a partial k-coloring (X1, . . . , Xk) of the subgraph ofG induced by {v1, . . . , v j } (which
is empty if j = 0) such that q� = p�(X�) and

i� =
{
max{r : vr ∈ X�}, if X� �= ∅;
0, if X� = ∅ (1)

for all � ∈ {1, . . . , k}. Note that for each � ∈ {1, . . . , k}, the possible values of the
�-th coordinate of any member of Pj (i1, . . . , ik) belong to the set {0, 1, . . . , Q}where
Q = max1≤ j≤k p j (V). Thus, each set Pj (i1, . . . , ik) has at most (Q + 1)k elements.
Note also that the total number of sets Pj (i1, . . . , ik) is of the order O(nk+1).

123

1472 Algorithmica (2023) 85:1459–1489

In what follows we explain how to compute the sets Pj (i1, . . . , ik). For j = 0, the
only feasible choice for the k-tuple (i1, . . . , ik) is (0, . . . , 0) andwe set P0(0, . . . , 0) =
{0}k = {(0, . . . , 0)}. This is correct since the only partial k-coloring of the graph
with no vertices is the k-tuple (∅, . . . ,∅). Suppose that j > 1 and that the sets
Pj−1(i1, . . . , ik) are already computed for all (i1, . . . , ik) ∈ {0, 1, . . . , j−1}k . Fix a k-
tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k . To describe how to compute the set Pj (i1, . . . , ik),
we will use the following notation. We consider three cases. For each of them, we
first give a formula for computing the set Pj (i1, . . . , ik) and then we argue why the
formula is correct.

1. If j appears at least twice as a coordinate of (i1, . . . , ik), then we set

Pj (i1, . . . , ik) = ∅. (2)

Note that since j appears at least twice as a coordinate of (i1, . . . , ik), there is no
partial k-coloring (X1, . . . , Xk) of the subgraph ofG induced by {v1, . . . , v j } such
that equality (1) holds for all � ∈ {1, . . . , k}. Thus, Eq. (2) is correct.

2. If j does not appear as any coordinate of (i1, . . . , ik), then we set

Pj (i1, . . . , ik) = Pj−1(i1, . . . , ik). (3)

Since j does not appear as any coordinate of (i1, . . . , ik), every partial k-coloring
of the subgraph of G induced by {v1, . . . , v j−1} such that equality (1) holds for all
� ∈ {1, . . . , k} is a partial k-coloring of the subgraph of G induced by {v1, . . . , v j }
and vice versa. This implies relation (3).

3. If j appears exactly once as a coordinate of (i1, . . . , ik), say is = j , then we set

Pj (i1, . . . , ik) =
⋃

{
j ′ : j ′ = 0 or
v j ′ ∈ N−

D (v j)

}
{q + es(ps(v j)) | q∈ Pj−1(i1, . . . , is−1, j

′, is+1, . . . , ik)},

(4)

where N−
D (v j) denotes the set of all vertices v j ′ such that (v j ′, v j) is an arc of D.

(Note that j ′ < j for all v j ′ ∈ N−
D (v j), since v1, . . . , vn is a topological sort of

D.)
Let q = (q1, . . . , qk) ∈ Pj (i1, . . . , ik) and consider a partial k-coloring
(X1, . . . , Xk) of the subgraph of G induced by {v1, . . . , v j } such that p�(X�) = q�

and equality (1) holds for all � ∈ {1, . . . , k}. Then max{q : vq ∈ Xs} = is = j . In
particular, v j ∈ Xs . Let X ′

s = Xs \ {v j } and let

j ′ =
{
max{r : vr ∈ X ′

s}, if X ′
s �= ∅;

0, if X ′
s = ∅.

Note that if X ′
s �= ∅ then v j ′ ∈ N−

D (v j). Indeed, digraph D is an orientation
of the complement of G, in which vertices v j ′ and v j are adjacent (recall that
they belong to the independent set Xs in G). This implies that either (v j , v j ′) or

123

Algorithmica (2023) 85:1459–1489 1473

(v j ′ , v j) is an arc of D, but since j ′ < j and v1, . . . , vn is a topological sort of D,
the pair (v j ′, v j) must be an arc of D. Let (i ′1, . . . , i ′k) be the k-tuple obtained from
(i1, . . . , ik) by replacing is with j ′, and let (X ′

1, . . . , X
′
k) be the k-tuple obtained

from (X1, . . . , Xk) by replacing Xs with X ′
s . Then (X ′

1, . . . , X
′
k) is a partial k-

coloring of the subgraph ofG induced by {v1, . . . , v j−1} such that equality obtained
from (1) by replacing X� with X ′

� and i� with i ′� holds for each � ∈ {1, . . . , k}.
Furthermore, (p1(X1), . . . , pk(Xk)) = (p1(X ′

1), . . . , pk(X
′
k)) + es(ps(v j)). This

shows that if q = (q1, . . . , qk) ∈ Pj (i1, . . . , ik), then the k-tuple q belongs to the
union

⋃

{
j ′: j ′=0 or v j ′ ∈N−

D (v j)
}
{q + es(ps(v j)) | q ∈ Pj−1(i1, . . . , is−1, j

′, is+1, . . . , ik)}.

For the converse direction, let j ′ ∈ {0} ∪ {1 ≤ j ′ ≤ j − 1 | v j ′ ∈ N−
D (v j)}, let

(i ′1, . . . , i ′k) be the k-tuple obtained from (i1, . . . , ik) by replacing is with j ′, and
let q = (q1, . . . , qk) ∈ Pj−1(i ′1, . . . , i ′k). Then, there exists a partial k-coloring
(X ′

1, . . . , X
′
k) of the subgraph of G induced by {v1, . . . , v j−1} such that for each

� ∈ {1, . . . , k}, we have p�(X ′
�) = q� and equality obtained from (1) by replacing

X� with X ′
� and i� with i ′� holds. Let (X1, . . . , Xk) be the k-tuple obtained from

(X ′
1, . . . , X

′
k) by replacing X ′

s with X ′
s ∪ {v j }. To show that (X1, . . . , Xk) is a

partial k-coloring of the subgraph of G induced by {v1, . . . , v j }, it suffices to
verify that Xs = X ′

s ∪{v j } is an independent set inG. If X ′
s = ∅, then Xs = {v j } is

independent. Suppose that X ′
s �= ∅. Then, by (∗), X ′

s corresponds to a directed path
in D ending inv j ′ . Extending this pathwith vertexv j ∈ N+

D (v j ′) results in a directed
path in D with vertex set Xs , which shows, again by (∗), that Xs is independent
in G. Clearly, we have that max{r : vr ∈ Xs} = j , and hence (X1, . . . , Xk) is a
partial k-coloring of the subgraph of G induced by {v1, . . . , v j } equality (1) holds
for each � ∈ {1, . . . , k}. Furthermore, (p1(X1), . . . , pk(Xk)) = q + es(ps(v j)).
This shows that if q ∈ Pj−1(i ′1, . . . , i ′k), then the k-tuple q + es(ps(v j)) belongs
to Pj (i1, . . . , ik). Therefore, Eq. (4) is correct.

Finally, the set of all profit profiles of partial k-colorings of G equals to the union,
over all (i1, . . . , ik) ∈ {0, 1, . . . , n}k , of the sets Pn(i1, . . . , ik).

The algorithm can be easily modified so that for each profit profile also a cor-
responding partial k-coloring is computed. We would just need to store, for each
j ∈ {0, 1, . . . , n}, each (i1, . . . , ik) ∈ {0, 1, . . . , j}k , and each k-tuple (q1, . . . , qk) ∈
Pj (i1, . . . , ik), one partial k-coloring (X1, . . . , Xk) of the subgraph of G induced by
{v1, . . . , vi } such that p�(X�) = q� and equality (1) holds for all � ∈ {1, . . . , k}.

It remains to estimate the time complexity of the algorithm. For each j ∈ {1, . . . , n}
and each of the O(nk) k-tuples (i1, . . . , ik) ∈ {0, 1, . . . , j}k , we can decide which of
the three cases (i)–(iii) occurs in time O(k). Step (2) takes constant time, step (3)
takes time O((Q + 1)k), and step (4) can be implemented in time O(n(Q + 1)k).
Altogether, this results in running time O(n(Q + 1)k) for each fixed j ∈ {1, . . . , n}
and each k-tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k . Consequently, the total running time
of the algorithm is O(nk+2(Q + 1)k). �	

Lemma 9 implies the following.

123

1474 Algorithmica (2023) 85:1459–1489

Theorem 10 For every k ≥ 1, Fair k-Division Under Conflicts is solvable
in time O(nk+2(Q + 1)k) for cocomparability conflict graphs G, where Q =
max1≤ j≤k p j (V (G)).

Proof ByLemma9,we can compute the set�of all profit profiles of partial k-colorings
of G in the stated running time. For each profit profile in �, we can determine the
satisfaction level of the corresponding partial k-coloring of G. Taking the maximum
satisfaction level over all profiles gives the optimal value of Fair k-Division Under

Conflicts for (G, p1, . . . , pk). �	

3.2 Biconvex Bipartite Graphs

Recall from Theorem 7 that Fair k-Division Under Conflicts is strongly NP-hard
for bipartite conflict graphs. Thus, we consider in the following the more restricted
case of biconvex bipartite conflict graphs. Recall that a bipartite graphG = (A∪B, E)

is biconvex if it has a biconvex ordering, that is, an ordering of A and B such that for
every vertex a ∈ A (resp. b ∈ B) the neighborhood N (a) (resp. N (b)) is an interval
of consecutive vertices in the ordering of B (resp. ordering of A).

It is known that a connected biconvex bipartite graph G can always be ordered in
such a way that the first and last vertices on one side have a special structure. Fix
a biconvex ordering of G, say A = (a1, . . . , as) and B = (b1, . . . , bt). Define aL
(resp. aR) as the vertex in N (b1) (resp. N (bt)) whose neighborhood is not properly
contained in any other neighborhood set (see [1, Def. 8]). In case of ties, aL is the
smallest such index (and aR the largest). We always assume that aL ≤ aR , otherwise
the ordering in A could be mirrored. Under these assumptions, the neighborhoods of
vertices appearing in the ordering before aL and after aR are nested.

Lemma 11 [Abbas and Stewart [1]] Let G = (A ∪ B, E) be a connected biconvex
graph. Then there exists a biconvex ordering of the vertices of G such that:

1. For all ai , a j with a1 ≤ ai < a j ≤ aL we have N (ai) ⊆ N (a j).
2. For all ai , a j with aR ≤ ai < a j ≤ as we have N (a j) ⊆ N (ai).
3. The subgraph G ′ of G induced by vertex set {aL , . . . , aR} ∪ B is a bipartite per-

mutation graph.

Property (iii) can be put in context with Theorem 10. Indeed, it is known that
every permutation graph is a cocomparability graph (see, e.g., [19]). This gives rise to
the following result that Fair k-Division Under Conflicts on biconvex bipartite
graphs is indeed easier (from the complexity point of view) than on general bipartite
graphs. The high-level idea of the algorithm is illustrated in Algorithm 3.2.

Theorem 12 For every k ≥ 1, Fair k-Division Under Conflicts is solvable in
time O(n3k+2(Q + 1)k) for connected biconvex bipartite conflict graphs G, where
Q = max1≤ j≤k p j (V (G)).

Proof At first Lemma 11 is applied for obtaining from G the cocomparability graph
G ′. However, we have to consider also the vertex sets AL := {a1, . . . , aL−1} and

123

Algorithmica (2023) 85:1459–1489 1475

Algorithm 1 Algorithmic Idea for a Connected Biconvex Graph G
apply Lemma 11 for getting the cocomparability graph G′ and vertices aL , aR
let AL := {a1, . . . , aL−1} and AR := {aR+1, . . . , as }
for all j ∈ {1, . . . , k} do

guess a j ∈ AL with largest index (resp. smallest index a j ∈ AR) included in X j
end for
each such guess can be represented by a 2k-tuple σ = (a1, . . . , ak , a1, . . . , ak)
for each guess σ do

for all j ∈ {1, . . . , k} do
exclude all vertices v of the neighborhood N (a j) ⊆ B (and N (a j) ⊆ B)
from insertion into X j by setting their profit p j (v) := 0

end for
apply Lemma 9 to the cocomparability graph G′ and the modified profit functions to obtain the set
�σ of all profit profiles (q1, . . . , qk) of partial k-colorings of G

′ with respect to the modified profits

increase each profit profile by setting q j := q j + p j (a j) + p j (a j)

augment these profiles with vertices from AL and AR
end for
choose the best solution over all guesses σ

AR := {aR+1, . . . , as}. This is done by considering assignments of vertices in AL∪AR

to the k subsets of a partial k-coloring of G in an efficient way as follows.
For every j ∈ {1, . . . , k}, we guess, by going through all possibilities, the largest

index vertex a j ∈ AL (resp. smallest index a j ∈ AR) inserted in X j . One can
add an artificial vertex a0 (resp. as+1) to represent the case that no vertex from AL

(resp. AR) is inserted in X j . Thus, every guess is represented by a 2k-tuple σ =
(a1, . . . , ak, a1, . . . , ak). The total number of such guesses (i.e., iterations) is bounded
by (n + 1)k for each of AL and AR , i.e., O(n2k) selections to be considered in total.

For each such guess σ we perform the following computations. For every j ∈
{1, . . . , k} the vertices in the neighborhood N (a j) ⊆ B (and N (a j) ⊆ B) of the
chosen index must be excluded from insertion into the corresponding set X j . This
can be easily realized by setting to 0 the profits p j of all vertices in N (a j) (resp.
N (a j)). With these slight modifications of the profits we can apply Lemma 9 for the
cocomparability graph G ′ and the modified profit functions pσ

j to obtain the set �σ

of all (pseudo-polynomially many) profit profiles (q1, . . . , qk) of partial k-colorings
of G ′ with respect to pσ . Every entry q j of a profit profile in �σ is increased by
p j (a j) + p j (a j), to account for inclusion of the vertices selected by the guess σ .

In every guess there are the two vertices a j and a j permanently assigned to X j

for every j and their neighborhoods N (a j) and N (a j) are excluded from X j . Now
it follows from properties (i) and (ii) of Lemma 11 that for each vertex a′ ∈ AL

with a′ < a j (resp. a′ ∈ AR with a′ > a j) the neighborhood N (a′) is a subset of
N (a j) (resp. N (a j)). Thus, these vertices a′ could also be inserted in X j without
any violation of the conflict structure. Therefore, we can start from the set �σ of
profit profiles computed for (G ′, pσ) and consider iteratively (in arbitrary order) the
addition of a vertex a′ ∈ AL to one of the color classes X j , as it is usually done in
dynamic programming. Each a′ is considered as an addition to every profit profile
(q1, . . . , qk) ∈ �σ and for every index j with a′ < a j yielding new profit profiles
(q1, . . . , q j−1, q j + p j (a′), q j+1, . . . , qk) to be added to�σ . An analogous procedure

123

1476 Algorithmica (2023) 85:1459–1489

is performed for all vertices a′ ∈ AR where the addition is restricted to indices j with
a′ > a j .

For every guess σ , the running time is dominated by the effort of computing the
O((Q + 1)k) profit profiles of (G ′, pσ) according to Lemma 9, since adding any of
the O(n) vertices a′ requires only k operations for each profit profile.

In this way, we construct the set �σ of all profit profiles of partial k-colorings of G
for each guess σ . It remains to identify the optimal solution in the set � := ⋃

σ �σ

similarly as in the proof of Theorem 10. Going over all O(n2k) guesses σ , the total
running time can be given from Lemma 9 as O(n3k+2(Q + 1)k). �	

For disconnected conflict graphs, we can easily paste together the profit profiles of
all connected components. Note that this construction applies for general graphs.

Lemma 13 Given a conflict graph G consisting of c > 1 connected components G�,
� = 1, . . . , c, each of them with a set of profit profiles ��, where the size of each ��

is of order O((Q + 1)k) with Q = max1≤ j≤k p j (V (G)), Fair k-Division Under

Conflicts can be solved for G in time O((c − 1)(Q + 1)2k).

Proof We maintain a set of profit profiles �, initialized by � := �1, and iteratively
merge each of the profit profiles �2, . . . ,�m with �. To merge a set of profit profiles
��, we consider every pair of profiles from � and �� and perform a vector addition
to obtain a (possibly) new profit profile which is added to �. At most (Q + 1)2k such
pairs may exist. In each of the c − 1 iterations the number of different profit profiles
in � remains bounded by the trivial upper bound (Q + 1)k . Finally, the best objective
function value is determined by evaluating all profit profiles. The total running time
of this procedure is of order O((c − 1)(Q + 1)2k). �	

Running Algorithm 3.2 for all c components of a graph with n vertices can be
done in timeO(n3k+2(Q + 1)k). Applying Lemma 13 on the resulting profit profiles,
we obtain the following corollary. Note that the computational complexity does not
depend on the size of the components.

Corollary 14 For every k ≥ 1, Fair k-Division Under Conflicts is solvable in
time O(n3k+2(Q + 1)k + (c − 1)(Q + 1)2k) for biconvex bipartite conflict graphs G
consisting of c connected components, where Q = max1≤ j≤k p j (V (G)).

Note that the increased running time factor of (Q + 1)2k cannot be easily avoided.
In particular, the natural idea of connecting the biconvex components by inserting
dummy vertices to obtain a single connected biconvex graph does not work. This is
shown in Appendix B.

3.3 Chordal Graphs

In this section we present a pseudo-polynomial time algorithm that solves the Fair

k-Division Under Conflicts on chordal graphs. Recall that a graph is chordal if
all its induced cycles are of length three. First we state some known results on chordal
graphs and their tree decompositions.

123

Algorithmica (2023) 85:1459–1489 1477

A tree decomposition of a graph G is a pair T = (T , {Bt }t∈V (T)) where T is a tree
whose every node t is assigned a vertex subset Bt ⊆ V (G) called a bag such that the
following conditions are satisfied:

– Every vertex of G is in at least one bag.
– For every edge {u, v} ∈ E(G) there exists a node t ∈ V (T) such that Bt contains
both u and v.

– For every vertex u ∈ V (G) the subgraph of T induced by the set {t ∈ V (T) : u ∈
Bt } is connected (that is, a tree).

A tree decomposition (T , {Bt }t∈V (T)) is rooted if we distinguish one vertex r of
T which will be the root of T . This introduces natural parent–child and ancestor–
descendant relations in the tree T . Following [26],wewill say that a tree decomposition
(T , {Bt }t∈V (T)) is nice if it is rooted and the following conditions are satisfied:

– If t ∈ V (T) is the root or a leaf of T , then Bt = ∅;
– Every non-leaf node t of T is one of the following three types:

– Introduce node a node t with exactly one child t ′ such that Bt = Bt ′ ∪ {v} for
some vertex v ∈ V (G) \ Bt ′ ;

– Forget node a node t with exactly one child t ′ such that Bt = Bt ′ \{v} for some
vertex v ∈ Bt ′ ;

– Join node a node t with exactly two children t1 and t2 such that Bt = Bt1 = Bt2 .

The width of a tree decomposition (T , {Bt }t∈V (T)) of a graph G is defined as
maxt∈V (T) |Bt | − 1. Lemma 7.4 from [26] shows that every tree decomposition of
width at most � can be transformed in polynomial time into a nice tree decomposition
of width at most �. The proof actually shows the following statement, which will be
useful for our purpose.

Lemma 15 Given a tree decomposition T = (T , {Bt }t∈V (T)) of an n-vertex graph G,
one can in time O(n2 · max{n, |V (T)|}) compute a nice tree decomposition T ′ of G
that has at mostO(n2) nodes and such that every bag of T ′ is a subset of a bag of T .

Let us now apply these concepts to chordal graphs. A clique tree of a graph G is a
tree decomposition (T , {Bt }t∈V (T)) such that the bags are exactly the maximal cliques
of G. It is well known (see, e.g., [14]) that a graph is chordal if and only if it has a
clique tree, and in such a case a clique tree can be constructed in linear time (see, e.g.,
[62]). Furthermore, every chordal graph G has at most |V (G)| maximal cliques (see,
e.g., [14]).

Lemma 16 Given an n-vertex chordal graph G, we can compute in linear time a tree
decomposition (T , {Bt }t∈V (T)) of G with O(n) bags, all of which are cliques.

Combining Lemmas 15 and 16 yields the following.

Lemma 17 Given an n-vertex chordal graph G, we can compute in timeO(n3) a nice
tree decomposition (T , {Bt }t∈V (T)) of G with O(n2) bags, all of which are cliques.

We will also need the following technical lemma about tree decompositions (see,
e.g., [26]).

123

1478 Algorithmica (2023) 85:1459–1489

Lemma 18 Let (T , {Bt }t∈V (T)) be a tree decomposition of a graph G and let {a, b}
be an edge of T . The forest T − {a, b} obtained from T by deleting edge {a, b}
consists of two connected components Ta (containing a) and Tb (containing b). Let

A =
(⋃

t∈V (Ta) Bt

)
\(Ba ∩ Bb) and B =

(⋃
t∈V (Tb) Xt

)
\(Ba ∩ Bb). Then no vertex

in A is adjacent to a vertex in B.

Before we proceed to the main result for chordal graphs, we need to introduce an
auxiliary definition. Let G = (V , E) be a graph, let U ⊆ V , let c = (X1, . . . , Xk) be
a partial k-coloring of G[X], and let c′ = (Y1, . . . ,Yk) be a partial k-coloring of G.
We say that c′ agrees with c on U if X j ∩U = Y j for all j ∈ {1, . . . , k}.

Theorem 19 For every k ≥ 1,Fair k-Division Under Conflicts is solvable in time
O(nk+2(Q + 1)2k) for a chordal conflict graph G, where Q = max1≤ j≤k p j (V (G)).

Proof Fix k ≥ 1 and let G be a chordal graph equipped with profit functions
p1, . . . , pk : V (G) → Z+. We will show that we can compute the set � of all profit
profiles of partial k-colorings of G in the stated running time. The maximum satisfac-
tion level over all profit profiles will then give the optimal value of Fair k-Division
Under Conflicts for (G, p1, . . . , pk).

We first apply Lemma 17 and compute in time O(n3) a nice tree decomposition
(T , {Bt }t∈V (T))ofGwithO(n2)bags, all ofwhich are cliques.Recall that by definition
T is a rooted tree decomposition ofG. Let r be the root of T . For every node t ∈ V (T),
we denote by Vt the union of all bags Bt ′ such that t ′ ∈ V (T) is a (not necessarily
proper) descendant of t in T .

We traverse tree T bottom-up and use a dynamic programming approach to com-
pute, for every node t ∈ V (T) and every partial k-coloring c of G[Bt], the family
P(t, c) of all profit profiles of partial k-colorings of G[Vt] that agree with c on Bt .

Since (T , {Bt }t∈V (T)) is a nice tree decomposition, we have Br = ∅; in particular,
the trivial partial k-coloring ∅k consisting of k empty sets is the only partial k-coloring
of G[Br]. Thus, since Vr = V (G) and every partial k-coloring of G agrees with the
trivial partial k-coloring of G[Br] on Br , the set P(r ,∅k) is the set of all profit profiles
of partial k-colorings of G, which is what we want to compute.

We consider various cases depending on the type of a node t ∈ V (T) in the nice
tree decomposition. For each of them we give a formula for computing the set P(t, c)
from the already computed sets of the form P(t ′, c′) where t ′ is a child of t in T , and
argue why the formula is correct.

1. t is a leaf node. By the definition of a nice tree decomposition it follows that
Bt = ∅. Thus, the only partial k-coloring of G[Bt] is the trivial one, ∅k . Clearly,
P(t,∅k) = {(0, . . . , 0)}.

2. t is an introduce node. By definition, t has exactly one child t ′ and Bt = Bt ′ ∪ {v}
holds for some vertex v ∈ V \Xt ′ . Clearly, Vt = Vt ′ ∪ {v}, and this is a disjoint
union. (If v ∈ Vt ′ , then the subtree of T consisting of all bags Bτ such that v ∈ Bτ

is not connected; a contradiction.) Consider an arbitrary partial k-coloring c =
(X1, . . . , Xk) of G[Bt]. We want to compute P(t, c) using the set P(t ′, c′), where
c′ = (X1\{v}, . . . , Xk\{v}). (Note that c′ is a partial k-coloring of G[Bt ′].) We

123

Algorithmica (2023) 85:1459–1489 1479

claim that the following equality holds:

P(t, c) =
{ {q + e j (p j (v)) | q ∈ P(t ′, c′)}, if v ∈ X j for some j ∈ {1, . . . , k};
P(t ′, c′), otherwise.

To show the recurrence, note first that if for all j ∈ {1, . . . , k} we have v /∈ X j ,
then c′ = c and thus P(t, c) = P(t ′, c′) in this case. If, however, v ∈ X j

for some j ∈ {1, . . . , k}, then there can only be one such j , and thus c′ =
(X1, . . . , X j−1, X j\{v}, X j+1, . . . , Xk). In this case, we will need the fact that
v is not adjacent to any vertex of Vt ′ \ Bt ′ . Indeed, applying Lemma 18 to a = t
and b = t ′ shows that no vertex of V (G) \ Vt ′ is adjacent to any vertex of Vt ′ \ Bt ′ ,
hence the statement follows since v ∈ V (G)\Vt ′ . The fact that all neighbors of v

in the set Vt ′ are contained in Bt ′ implies that for every partial k-coloring of G[Vt ′]
that agrees with c′ on Bt ′ , adding v to the j-th color class will result in a partial
k-coloring of G[Vt] that agrees with c on Bt . Thus, there is a bijective correspon-
dence between the set of partial k-colorings of G[Vt] that agree with c on Bt and
those of G[Vt ′] that agree with c′ on Bt ′ , given by removing v from the j-th color
class. This implies the claimed equality P(t, c) = {q+ e j (p j (v)) | q ∈ P(t ′, c′)}.

3. t is a forget node. By definition, t has exactly one child t ′ in T and Bt = Bt ′ \{v}
holds for some vertex v ∈ V \Bt . Thus, Vt = Vt ′ . Consider an arbitrary partial k-
coloring c = (X1, . . . , Xk) of G[Bt]. We claim that the following equality holds:

P(t, c) = P(t ′, c) ∪
⋃

j :X j=∅
P(t ′, (X1, . . . , X j−1, {v}, X j+1 . . . , Xk)).

Consider an arbitrary partial k-coloring (Y1, . . . ,Yk) ofG[Vt] that agrees with c on
Bt . If v /∈ Y j for all j ∈ {1, . . . , k}, then (Y1, . . . ,Yk) agrees with c on Bt ′ . Suppose
now that v ∈ Y j for some j ∈ {1, . . . , k}. Then, j is unique. Furthermore, since Bt ′
is a clique inG and hence inG[Vt ′], the fact that v ∈ Y j implies that Y j ∩Bt ′ = {v},
and consequently X j = Y j∩Bt = ∅. In this case, the partial k-coloring (Y1, . . . ,Yk)
agrees with the partial k-coloring (X1, . . . , X j−1, {v}, X j+1, . . . , Xk) ofG[Vt ′] on
Bt ′ . Thus, every partial k-coloring of G[Vt] that agrees with c on Bt either agrees
with c on Bt ′ or agrees with (X1, . . . , X j−1, {v}, X j+1 . . . , Xk) on Bt ′ for some
j ∈ {1, . . . , k} such that X j = ∅. Similar arguments can be used to show the
converse inclusion, that is, any partial k-coloring of G[Vt ′] that satisfies one of the
above conditions is a partial k-coloring of G[Vt] that agrees with c on Bt . This
implies the claimed equality.

4. t is a join node. By definition, t has exactly two children t1 and t2 in T and
it holds that Bt = Bt1 = Bt2 . We claim that Vt1 ∩ Vt2 = Bt . It is clear that
Bt ⊆ Vt1 ∩ Vt2 . Assume for contradiction that there is a vertex v ∈ V (G) such that
v ∈ (Vt1 ∩ Vt2)\Bt . Then there are nodes t ′1 and t ′2 of T such that v ∈ Bt ′1 , v ∈ Bt ′2 ,
and t ′1 and t ′2 are (possibly not proper) descendants of t1 and t2, respectively. It
follows that the subgraph of T consisting of all bags containing v is not connected;
a contradiction. Thus Bt = Vt1 ∩Vt2 , as claimed. Furthermore, applying Lemma 18
to a = t1 and b = t we can show that no vertex of Vt1 \ Bt is adjacent in G to
any vertex of V (G)\Vt1 . Since Vt2\Bt ⊆ V (G)\Vt1 , this implies that no vertex in

123

1480 Algorithmica (2023) 85:1459–1489

Vt1 \ Bt is adjacent in G to any vertex of Vt2 \ Bt . Consider now an arbitrary partial
k-coloring c = (X1, . . . , Xk) of G[Bt] (observe that c is also a partial k-coloring
of G[Bt1] and G[Bt2]). In this case, we have the following recurrence relation:

P(t, c) = {q1 + q2 − (p1(X1), . . . , pk(Xk)) | q1 ∈ P(t1, c),q2 ∈ P(t2, c)}.

It is clear that for any partial k-coloring (X ′
1, . . . , X

′
k) of G[Vt] that agrees with

c on Bt , the k-tuples (X ′
1 ∩ Vt1 , . . . , X

′
k ∩ Vt1) and (X ′

1 ∩ Vt2 , . . . , X
′
k ∩ Vt2)

are partial k-colorings of G[Vt1] and G[Vt2] that agree with c on Bt1 and Bt2 ,
respectively. The fact that no vertex in Vt1 \ Bt is adjacent in G to any vertex
in Vt2 \ Bt implies that the other direction is also true: given partial k-colorings
(X ′

1, . . . , X
′
k) and (X ′′

1 , . . . , X
′′
k) of G[Vt1] and G[Vt2] that agree with c on Bt1 and

Bt2 , respectively, we have X ′
j ∩ Bt = X ′′

j ∩ Bt = X j for all j ∈ {1, . . . , k}, and
thus (X ′

1 ∪ X ′′
1 , . . . , X

′
k ∪ X ′′

k) is a partial k-coloring of G[Vt] that agrees with c
on Bt . Furthermore, for all j ∈ {1, . . . , k}, the fact that Vt1 ∩ Vt2 = Bt implies
that X ′

j ∩ X ′′
j = X j , and hence p j (X ′

j ∪ X ′′
j) = p j (X ′

j) + p j (X ′′
j) − p j (X j). The

claimed equality follows.

It remains to estimate the time complexity of the algorithm. We compute a nice
tree decomposition of G in timeO(n3). Each of theO(n2) bags is a clique, so in total
we have O(nk) partial k-colorings per bag. Furthermore, note that for each partial
coloring (X1, . . . , Xk) of any induced subgraph of G and each j ∈ {1, . . . , k}, we
have p j (X j) ∈ {0, 1, . . . , Q}. Thus, each set P(t, c) has at most (Q + 1)k elements.
For each of theO(nk+2) pairs (t, c)where t is a node of T and c is a partial k-coloring
of G[Bt], we compute the set P(t, c) using the formula corresponding to the type
of node t . The time complexity of this step depends on the type of the node. Case 1
takes constant time. In Case 2, we check in constant time whether v ∈ X j for some
j ∈ {1, . . . , k} and then compute the set P(t, c) in time O((Q + 1)k). In Case 3,
we first compute in (constant) time O(k) the set of indices j ∈ {1, . . . , k} such that
X j = ∅. Then, the union given by the formula can be computed in timeO((Q + 1)k),
simply by iterating over all families in the union and keeping track of which of the
O((Q + 1)k) profit profiles appear in any of the families. Finally, Case 4 can be done
in timeO((Q + 1)2k). Altogether, this results in running timeO((Q + 1)2k) for each
fixed t ∈ V (T) and each partial k-coloring c of Bt . Consequently, the total running
time of the algorithm is O(nk+2(Q + 1)2k). �	

3.4 Graphs with Bounded Treewidth

Recall that the width of a tree decomposition (T , {Bt }t∈V (T)) of a graph G is defined
as maxt∈V (T) |Bt | − 1. The treewidth of a graph G is the minimum possible width
of a tree decomposition of G. A graph class G is said to be of bounded treewidth if
there exists a nonnegative integer � such that each graph in G has treewidth at most
�. For each fixed treewidth bound �, given a graph G of treewidth at most �, a tree
decomposition of G of width at most � can be computed in linear time [16]. Such a
decomposition leads to linear-time algorithms for many problems that are generally
NP-hard (see, e.g., [6, 25]).

123

Algorithmica (2023) 85:1459–1489 1481

A similar approach as the one used in the proof of Theorem 19 for solving the Fair
k-Division Under Conflicts on chordal graphs can be used on graphs of bounded
treewidth.

Fix k, � ≥ 1 and let (G, p1, . . . , pk) be the input toFair k-Division Under Con-

flicts such that the treewidth of G is at most �. In time �O(�3)n we can compute a tree
decomposition ofG a width at most � using the algorithm of Bodlaender [16]. Clearly,
the obtained tree decomposition has at most �O(�3)n bags. By Lemma 15 it follows that
we can compute in timeO(�O(�3)n3) a nice tree decomposition T = (T , {Bt }t∈V (T))

of G of width at most �, withO(n2) bags. Every bag has at most � + 1 vertices, so for
every bag we have at most a constant number, (� + 1)k+1, partial k-colorings, which
in total givesO(n2) pairs (t, c) of a node t ∈ V (T) and a partial k-coloring c of t . For
each such pair (t, c), we again compute the family P(t, c) of all profit profiles of par-
tial k-colorings of G[Vt] that agree with c on Bt . Since T is a nice tree decomposition,
every node is of one of the four possible types, and inCases 1, 2, and 4we have identical
equalities as in the corresponding cases in the proof of Theorem 19, while in Case 3 the
union over all j such that X j = ∅ of the sets P(t ′, (X1, . . . , X j−1, {v}, X j+1 . . . , Xk))

is replaced by the union over all j such that X j ∪ {v} is an independent set in G of
the sets P(t ′, (X1, . . . , X j−1, X j ∪ {v}, X j+1 . . . , Xk)). Since we can compute the
adjacency matrix of G in time O(n2), we may assume that adjacency checks can be
done in constant time. Thus, the expressions in the formulas corresponding to each of
the Cases 2 and 3 can be evaluated in timeO((Q+1)k), while the corresponding time
complexity of Case 4 is O((Q + 1)2k). Altogether, this gives us the claimed running
time and yields the following theorem (where the constant hidden in the O notation
depends on k and �).

Theorem 20 For every k ≥ 1 and � ≥ 1, Fair k-Division Under Conflicts is
solvable in time O(n2(n + (Q + 1)2k)) for a graph G of treewidth at most �, where
Q = max1≤ j≤k p j (V (G)).

4 Approximation

All the pseudo-polynomial dynamic programming algorithms presented in this paper
share the following characteristics. Throughout the execution feasible states are com-
puted, where every state describes a profit allocation given by a feasible solution
of Fair k-Division Under Conflicts. Each such state is represented by a k-
dimensional vector (q1, . . . , qk) ∈ Z

k+, where every entry q j describes the profit
p j (X j) assigned to agent j by a partial coloring (X1, . . . , Xk). While Pareto-
dominated states can be eliminated, the total number of states remains trivially bounded
by (Q + 1)k , where Q = max1≤ j≤k p j (V (G)). The optimal solution with maximum
satisfaction level can be determined at the end of such an algorithm by simply going
through all generated states and inspecting their satisfaction levels.

In a canonical step of our algorithms a vertex v (resp. item) is feasibly assigned to
an agent j thereby generating a new state (q1, . . . , q j−1, q j + p j (v), q j+1, . . . , qk)
from a previous state (q1, . . . , qk). The decisions taken by the algorithms depend only

123

1482 Algorithmica (2023) 85:1459–1489

on the graph but not on the profit values of previously generated states. Every vertex
is assigned to each agent at most once.

Under these preconditions, we can derive a fully polynomial time approximation
scheme (FPTAS) for each such dynamic programming algorithm (considering k as a
constant). For an optimal satisfaction level z∗, an FPTAS computes for every given
ε > 0, an approximate solution with satisfaction level zA fulfilling zA ≥ z∗/(1 + ε)

with running time polynomial in the size of the encoded input and in 1/ε.
The FPTAS is based on the observation that the k profit values of a solution can

also be seen as k objective function values in a multiobjective optimization problem.
Thus, the technique for deriving an FPTAS for the multiobjective knapsack problem
described in [31] can be applied as follows.

Denote the upper bound for the profit assigned to agent j by UBj = p j (V (G))

and set u j = �n log1+ε UBj�, where, as usual, n = |V (G)|. Partition the profit range
for each agent j into u j intervals

[1, (1 + ε)1/n), [(1 + ε)1/n, (1 + ε)2/n), [(1 + ε)2/n, (1 + ε)3/n), . . .

[(1 + ε)(u j−1)/n, (1 + ε)u j /n] .

To obtain an FPTAS from the generic dynamic programming algorithm indicated
above we restrict the possible profit values q j allocated to agent j to the lower interval
endpoints of these intervals. The FPTAS mimics exactly the operations of the exact
dynamic program, but whenever a vertex v is assigned to j , the resulting profit q j +
p j (v) is rounded down to the nearest interval endpoint. Note that this does not change
the steps of the dynamic program since we assumed that its decisions do not depend
on the profit values of states.

The bound u j = �n log1+ε UBj� is inO(n/ε · log2(UBj)), which is polynomial in
the encoding length of the input, since

log1+ε UBj = (ln 2 log2 UBj)/ ln(1 + ε) ≤ (2 ln 2 log2 UBj)/ε,

for all ε ∈ (0, 1). The above inequality follows from x ≤ 2 ln(1 + x), which can be
verified to hold for all x ∈ (0, 1) by standard calculus. Thus, the total number of states
in the modified algorithm is bounded by O((n/ε)k(log2 Q)k).

Concerning the loss of accuracy we can proceed similarly to [31] and compare
an arbitrary state (q1, q2, . . . , qk) of the exact dynamic program to some state of
the FPTAS consisting of lower interval endpoints (q̃1, q̃2, . . . , q̃k). For every state
(q1, . . . , q j , . . . , qk) generated by the exact algorithm after assigning i vertices to
agent j , we claim that in the FPTAS there exists a state (q̃1, q̃2, . . . , q̃k) of lower
interval endpoints such that

q j ≤ (1 + ε)i/nq̃ j . (5)

This claim can be shown by induction. For i = 1, there was one vertex v assigned to
agent j giving profit q j = p j (v). In the FPTAS, there will be a state where q̃ j is the

123

Algorithmica (2023) 85:1459–1489 1483

largest lower interval endpoint not exceeding q j . By construction of the intervals, we
have (1 + ε)1/nq̃ j ≥ q j .

Assuming the claim to be true for some i − 1, we consider the i-th assignment of
a vertex v to j . In the exact algorithm, p j (v) is added to some value q j for which
there exists a lower interval endpoint q̃ j fulfilling q j ≤ (1 + ε)(i−1)/nq̃ j . During the
FPTAS, p j (v) will also be added to q̃ j and the result will be rounded down to a lower
interval endpoint q̃ ′ with (1+ ε)1/nq̃ ′ ≥ q̃ j + p j (v) ≥ (1+ ε)−(i−1)/nq j + p j (v) ≥
(1+ ε)−(i−1)/n(q j + p j (v)). Moving terms around, this proves (5) for the new profit
q j + p j (v).

Since there can be at most n vertices assigned to any agent, (5) holds also for the
satisfaction level of the optimal solution.

Summarizing the above discussion and the proofs of Theorem 10, Corollary 14,
Theorem 19, and Theorem 20, we conclude:

Theorem 21 Fair k-Division Under Conflicts with constant k admits an FPTAS
if the conflict graph is a cocomparability graph, a biconvex bipartite graph, a chordal
graph, or a graph of bounded treewidth.

To put Theorem 21 in perspective, recall that by Theorem 6 no constant-factor
approximation for Fair k-Division Under Conflicts exists for general graphs,
unless P = NP.

5 Conclusions

In this paper we introduced the Fair k-Division Under Conflicts and studied it
from a computational complexity point of view, with respect to various restrictions
on the conflict graph. In particular, we could show that the problem is strongly NP-
hard on general bipartite conflict graphs, but can be solved in pseudo-polynomial
time on biconvex bipartite graphs, on chordal graphs, on cocomparability graphs, and
on graphs of bounded treewidth. There are other graph classes sandwiched between
the two classes of our results, for which the complexity of Fair k-Division Under

Conflicts is still open. In particular, we can derive open problems from the following
sequence of inclusions: biconvex bipartite ⊆ convex bipartite ⊆ interval bigraph ⊆
chordal bipartite ⊆ bipartite. We believe that a positive result for convex bipartite
graphs could be within reach. Outside this chain of inclusions, we pose the complexity
of the problem for planar bipartite conflict graphs as another interesting open question.

Acknowledgements The work of this paper was done in the framework of two bilateral projects between
University of Graz and University of Primorska, financed by the OeAD (SI 22/2018 and SI 31/2020)
and the Slovenian Research Agency (BI-AT/18-19-005 and BI-AT/20-21-015). The authors acknowledge
partial support of the Slovenian Research Agency (I0-0035, research programs P1-0285, P1-0383, and P1-
0404, research projects N1-0102, N1-0160, N1-0210, J1-3001, J1-3002, J1-3003, J1-4008, and J5-4596,
and a Young Researchers Grant) and the European Commission for funding the InnoRenew CoE project
(Grant Agreement #739574) under the Horizon2020 Widespread-Teaming program and the Republic of
Slovenia (Investment funding of the Republic of Slovenia and the EuropeanUnion of the European Regional
Development Fund) and by the Field of Excellence “COLIBRI” at the University of Graz and by the Federal
Ministry for Digital and Economic Affairs of the Republic of Austria through the COIN project FIT4BA.

123

1484 Algorithmica (2023) 85:1459–1489

Funding Open access funding provided by University of Graz.

Declarations

Conflict of interest The authors declare that they have no conflict of interest related to this work.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Theorem 6

Fix an integer k ≥ 1. We give a reduction from the Independent Set problem.
We construct a graph G ′ by taking k copies of G and by adding all possible edges
between vertices from different copies. Furthermore we take k “unit” profit functions
p1, . . . , pk from V (G ′) to {1}. We claim that the maximum size of an independent set
in G equals the maximum satisfaction level of a partial k-coloring in G ′ (with respect
to the profit functions p1, . . . , pk). Given a maximum independent set I in G of size q
one can immediately obtain a partial k-coloring (X1, . . . , Xk) of G ′ with satisfaction
level q by inserting all vertices of I in the j-th copy of G into X j , for all j = 1, . . . , k.
On the other hand, given a partial k-coloring (X1, . . . , Xk) of G ′ with satisfaction
level q, one can simply choose X1, which is an independent set completely contained
in one copy of G. Thus, X1 corresponds to an independent set in G of size q.

Suppose that for some ε ∈ (0, 1) there exists a polynomial-time algorithm A that
approximates Fair k-Division Under Conflicts within a factor of |V (G)|1−ε on
input instances with unit profit functions. We will show that this implies the existence
of a polynomial-time algorithm A′ approximating the Independent Set problem
within a factor of |V (G)|1−ε′

where ε′ = ε/2. As shown by Zuckerman [66], this
would imply P = NP.

Consider an input graph G to the Independent Set problem. The algorithm A′
proceeds as follows. If |V (G)| < k2(1−ε)/ε, then the graph is of constant order and the
problem can be solved optimally in O(1) time. If |V (G)| ≥ k2(1−ε)/ε, then the graph
G ′ is constructed following the above reduction, a partial k-coloring (X1, . . . , Xk)

is computed using algorithm A on G ′ equipped with k unit profit functions, and
a subset of V (G) corresponding to X1 is returned. Clearly, the algorithm runs in
polynomial time and computes an independent set in G. Let q denote the maximum
satisfaction level of a partial k-coloring in G ′. By the above claim, the independence
number of G equals q. Thus, to complete the proof, it suffices to show that |X1| ≥
q/(|V (G)|1−ε′

). By assumption on A, we have that |X1| ≥ q/(|V (G ′)|1−ε). We want
to show that q/|V (G ′)|1−ε ≥ q/|V (G)|1−ε′

, or, equivalently, 1/k1−ε|V (G)|1−ε ≥
1/|V (G)|1−ε/2. After some straightforward algebraic manipulations, this inequality

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2023) 85:1459–1489 1485

Fig. 2 Two forbidden induced subgraphs for biconvex bipartite graphs

Fig. 3 A 12-vertex biconvex bipartite graph and a biconvex labeling of it

simplifies to the equivalent inequality |V (G)| ≥ k2(1−ε)/ε, which is true by assump-
tion.

B A Remark on Biconvex Graphs

Biconvex bipartite graphs were characterized by forbidden induced subgraphs by
Tucker in [63]. The list of forbidden induced subgraphs includes all cycles except
the cycle of length four and five additional graphs, including the two graphs F1 and
F2 depicted in Fig. 2.

Proposition 1 There exists a disconnected biconvex bipartite graph that is not an
induced subgraph of any connected biconvex bipartite graph.

Proof Consider the graph G depicted in Fig. 3.
As shown by the vertex labeling in the figure, G is a biconvex bipartite graph.

Consequently, the graph G + K2, the disjoint union of G and a complete graph of
order two, is also a biconvex bipartite graph. We will show that G + K2 is not an
induced subgraph of any connected biconvex bipartite graph.

Fix a labeling ofG as in Fig. 3, take a disjoint copy of K2, call itG ′, and suppose for
a contradiction that the disjoint union G + G ′ is an induced subgraph of a connected
biconvex bipartite graph H . Let A and B denote the two parts of a bipartition of H so
that {a1, . . . , a6} ⊆ A (and then {b1, . . . , b6} ⊆ B).

Since H is connected, it contains a path from V (G ′) to V (G). Let P be a shortest
such path. Since the sets V (G) and V (G ′) are disjoint and the are no edges between

123

1486 Algorithmica (2023) 85:1459–1489

them, P has at least three vertices. Let x be the only vertex on P that has a neighbor
in G, let y be the neighbor of x on P such that y /∈ V (G), and let z be defined as
follows:

z =
{
the neighbor of yon Pother than x, if Phas at least 4 vertices;
the neighbor of yin G ′, if Phas exactly three vertices.

Since H is bipartite, it contains no cycle of length three. This implies that vertices x
and z are not adjacent to each other.

By symmetry of G, we may assume that x ∈ A (and thus y ∈ B and z ∈ A).
Furthermore, by the minimality of P , vertices y and z do not have any neighbors in
V (G). We make a series of observations about the neighborhood of x in V (G).

– Vertex x cannot be adjacent to both b3 and b4, since otherwise H would contain
an induced F1 with vertex set {x, y, z, b3, a2, b4, a5}.
By symmetry, we may assume that x is not adjacent to b4.

– Vertex x is not adjacent to b5. Suppose that it is. Then x is not adjacent to b3, since
otherwise the set {x, b3, a3, b4, a5, b5} would induce a 6-cycle in H . But now, H
contains an induced F1 with vertex set {x, b5, a4, b3, a2, b4, a6}, a contradiction.

– Vertex x is adjacent to b3. Suppose that this is not the case. Then x is not adjacent
to bi for i ∈ {1, 2}, since otherwise H would contain an induced F1 with vertex
set {x, bi , a3, b3, a1, b4, a5}. Therefore, the only possible neighbor of x in V (G)

is b6. But now, H contains an induced F1 with vertex set {x, b6, a4, b3, a1, b4, a5},
a contradiction.

– Vertex x is adjacent to b2, since otherwise H would contain an induced F1 with
vertex set {y, x, b3, a2, b2, a4, b5}.

To conclude the proof, we observe that H contains an induced F2 with vertex set
{z, y, x, b2, a3, b3, a1, b4, a5}, a contradiction. �	

References

1. Abbas, N., Stewart, L.K.: Biconvex graphs: ordering and algorithms. Discrete Appl. Math. 103(1–3),
1–19 (2000)

2. Addario-Berry, L., Kennedy, W.S., King, A.D., Li, Z., Reed, B.: Finding a maximum-weight induced
k-partite subgraph of an i-triangulated graph. Discrete Appl. Math. 158(7), 765–770 (2010)

3. Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph inde-
pendence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13. Gorky
University Press (1982) (in Russian)

4. Amanatidis, G., Markakis, E., Nikzad, A., Saberi, A.: Approximation algorithms for computing max-
imin share allocations. ACM Trans. Algorithms 13(4), 52 (2017)

5. Annamalai, C., Kalaitzis, C., Svensson, O.: Combinatorial algorithm for restricted max–min fair allo-
cation. ACM Trans. Algorithms 13(3), 1–28 (2017)

6. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms
12(2), 308–340 (1991)

7. Asadpour, A., Saberi, A.: An approximation algorithm formax-min fair allocation of indivisible goods.
SIAM J. Comput. 39(7), 2970–2989 (2010)

8. Azar, Y., Epstein, L.: On-line machine covering. J. Sched. 1, 67–77 (1998)
9. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC’06: Proceedings of the 38th Annual

ACM Symposium on Theory of Computing, pp. 31–40 (2006)

123

Algorithmica (2023) 85:1459–1489 1487

10. Barman, S., Krishnamurthy, S.K.: Approximation algorithms for maximin fair division. ACM Trans.
Econ. Comput. 8(1), 1–28 (2020)

11. Bei, X., Lu, X., Manurangsi, P., Suksompong, W.: The price of fairness for indivisible goods. Theory
Comput. Syst. 65, 1–25 (2021)

12. Berge, C.: Minimax relations for the partial q-colorings of a graph. Discrete Math. 74(1–2), 3–14
(1989)

13. Bezakova, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges 5(3), 11–18 (2005)
14. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph Theory and

SparseMatrix Computation, volume 56 of IMAVol.Math. Appl., pp. 1–29. Springer, NewYork (1993)
15. Bodlaender, H., Jansen, K.: On the complexity of scheduling incompatible jobs with unit-times. In:

MFCS ’93: Proceedings of the 18th International Symposium on Mathematical Foundations of Com-
puter Science, pp. 291–300. Springer (1993)

16. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

17. Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., Peters, D.: Fair division of a graph. In: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp.
135–141 (2017)

18. Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair allocation of indivisible goods. In: Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, pp. 284–
310. Cambridge University Press (2016)

19. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. Society for Industrial and Applied
Mathematics (SIAM), SIAM Monographs on Discrete Mathematics and Applications (1999)

20. Brito, S.S., Santos, H.G.: Preprocessing and cutting planes with conflict graphs. Comput. Oper. Res.
128, 105176 (2021)

21. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fairness. In: Proceedings
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 107–116 (2009)

22. Chiarelli, N., Krnc, M., Milanič, M., Pferschy, U., Pivač, N., Schauer, J.: Fair packing of independent
sets. In: Combinatorial Algorithms—31st International Workshop, IWOCA 2020, volume 12126 of
LNCS. Springer, pp. 154–165 (2020)

23. Coniglio, S., Furini, F., San Segundo, P.: A new combinatorial branch-and-bound algorithm for the
knapsack problem with conflicts. Eur. J. Oper. Res. 289(2), 435–455 (2021)

24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,
Cambridge (2009)

25. Courcelle, B.: The monadic second-order logic of graphs: I: recognizable sets of finite graphs. Inf.
Comput. 85(1), 12–75 (1990)

26. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer (2015)

27. Dabrowski,K.K., Feghali, C., Johnson,M., Paesani,G., Paulusma,D.,Rzążewski, P.:On cycle transver-
sals and their connected variants in the absence of a small linear forest.Algorithmica 82(10), 2841–2866
(2020)

28. Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.: Paths, trees and matchings under disjunctive
constraints. Discrete Appl. Math. 159, 1726–1735 (2011)

29. de Werra, D.: Packing independent sets and transversals. In: Combinatorics and Graph Theory, vol-
ume 25 of Banach Center Publ., pp. 233–240. PWN, Warsaw (1989)

30. Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the minimum processor
finish time in a multiprocessor system. SIAM J. Algebraic Discrete Methods 3(2), 190–196 (1982)

31. Erlebach, T., Kellerer, H., Pferschy, U.:Multiobjective knapsack problems.Manag. Sci. 48, 1603–1612
(2002)

32. Even, G., Halldórsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online and offline algo-
rithms. J. Sched. 12(2), 199–224 (2009)

33. Factorovich, P., Méndez-Díaz, I., Zabala, P.: Pickup and delivery problem with incompatibility con-
straints. Comput. Oper. Res. 113, 104805 (2020)

34. Fleszar, K.: A MILP model and two heuristics for the bin packing problem with conflicts and item
fragmentation. Eur. J. Oper. Res. 303(1), 37–53 (2022)

35. Furmańczyk, H., Kubale, M.: Scheduling of unit-length jobs with cubic incompatibility graphs on
three uniform machines. Discrete Appl. Math. 234, 210–217 (2018)

123

1488 Algorithmica (2023) 85:1459–1489

36. Gavril, F.: Algorithms for maximum k-colorings and k-coverings of transitive graphs. Networks 17(4),
465–470 (1987)

37. Ghodsi, M., Hajiaghayi, M.T., Seddighin, M., Seddighin, S., Yami, H.: Fair allocation of indivisible
goods: improvement. Math. Oper. Res. 46(3), 1038–1053 (2021)

38. Golovin, D.: Max–min fair allocation of indivisible goods. Technical Report CMU-CS-05-144,
Carnegie Mellon University (2005)

39. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, volume 57 of Annals of Discrete
Mathematics. Elsevier, second edition (2004)

40. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Algo-
rithms and Combinatorics: Study and Research Texts, vol. 2. Springer-Verlag, Berlin (1988)

41. Hu, Z.-H., Sheu, J.-B., Zhao, L., Lu, C.-C.: A dynamic closed-loop vehicle routing problem with
uncertainty and incompatible goods. Transp. Res. Part C: Emerg. Technol. 55, 273–297 (2015)

42. Khodamoradi, K., Krishnamurti, R., Rafiey, A., Stamoulis, G.: PTAS for ordered instances of resource
allocation problems. In: Proceedings of the 33rd International Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2013, volume 24 of LIPICS, pp. 461–473
(2013)

43. Kurokawa, D., Procaccia, A.D., Wang, J.: Fair enough: guaranteeing approximate maximin shares. J
ACM 65(2), 675–692 (2018)

44. Kuryatnikova, O., Sotirov, R., Vera, J.C.: The maximum k-colorable subgraph problem and related
problems. INFORMS J. Comput. 34(1), 656–669 (2022)

45. Lehot, P.G.H.: An optimal algorithm to detect a line graph and output its root graph. J. Assoc. Comput.
Mach. 21, 569–575 (1974)

46. Mallek, A., Boudhar, M.: Scheduling on uniform machines with a conflict graph: complexity and
resolution. Int. Trans. Oper. Res., to appear (2022)

47. Mastrolilli, M., Stamoulis, G.: Restricted max-min fair allocations with inclusion-free intervals. In:
Proceedings of International Computing andCombinatorics ConferenceCOCOON2012, volume 7434
of LNCS, pp. 98–108. Springer (2012)

48. Miao, D., Cai, Z., Li, J., Gao, X., Liu, X.: The computation of optimal subset repairs. Proc. VLDB
Endowm. 13(12), 2061–2074 (2020)

49. Misra, N., Panolan, F., Rai, A., Raman, V., Saurabh, S.: Parameterized algorithms for max colorable
induced subgraph problem on perfect graphs. Algorithmica 81(1), 26–46 (2019)

50. Muritiba, A., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing problem with conflicts.
INFORMS J. Comput. 22(3), 401–415 (2010)

51. Pálvölgi, D.: Partitioning to three matchings of given size is NP-complete for bipartite graphs. Acta
Universitatis Sapientiae, Informatica 6(2), 206–209 (2014)

52. Pferschy, U., Schauer, J.: The knapsack problemwith conflict graphs. J. GraphAlgorithmsAppl. 13(2),
233–249 (2009)

53. Pferschy, U., Schauer, J.: The maximum flow problem with disjunctive constraints. J. Comb. Optim.
26(1), 109–119 (2013)

54. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and forcing graphs. J.
Comb. Optim. 33(4), 1300–1323 (2017)

55. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)
56. Roussopoulos, N.D.: A max {m, n} algorithm for determining the graph H from its line graph G. Inf.

Process. Lett. 2, 108–112 (1973)
57. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm.

INFORMS J. Comput. 25(2), 244–255 (2013)
58. Saffari, S., Fathi, Y.: Set covering problem with conflict constraints. Comput. Oper. Res. 143, 105763

(2022)
59. Santos, L.F.M., Iwayama, R.S., Cavalcanti, L.B., Turi, L.M., de Souza Morais, F.E., Mormilho, G.,

Cunha, C.B.: A variable neighborhood search algorithm for the bin packing problem with compatible
categories. Expert Syst. Appl. 124, 209–225 (2019)

60. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency., volume 24 of Algorithms and
Combinatorics. Springer (2003)

61. Spinrad, J.: On comparability and permutation graphs. SIAM J. Comput. 14(3), 658–670 (1985)
62. Spinrad, J.P.: Efficient graph representations. Fields Institute Monographs, vol. 19. American Mathe-

matical Society, Providence, RI (2003)

123

Algorithmica (2023) 85:1459–1489 1489

63. Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory Ser. B 12, 153–162
(1972)

64. Woeginger, G.J.: A polynomial-time approximation scheme for maximizing the minimum machine
completion time. Oper. Res. Lett. 20(4), 149–154 (1997)

65. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Inf.
Process. Lett. 24(2), 133–137 (1987)

66. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory Comput. 3, 103–128 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Fair Allocation of Indivisible Items with Conflict Graphs
	Abstract
	1 Introduction
	1.1 Problem Definitions
	1.2 Our Goal and Contributions
	1.3 Overview of Related Work
	1.4 Definitions and Notation

	2 Hardness Results
	2.1 General Hardness Results
	2.2 Bipartite Graphs and Their Line Graphs

	3 Pseudo-Polynomial Algorithms for Special Graph Classes
	3.1 Cocomparability Graphs
	3.2 Biconvex Bipartite Graphs
	3.3 Chordal Graphs
	3.4 Graphs with Bounded Treewidth

	4 Approximation
	5 Conclusions
	Acknowledgements
	A Proof of Theorem 6
	B A Remark on Biconvex Graphs
	References

