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Abstract
We resolve the open problem posed by Arbitman, Naor, and Segev [FOCS 2010]
of designing a dynamic dictionary for multisets in the following setting: (1) The
dictionary supports multiplicity queries and allows insertions and deletions to the
multiset. (2) The dictionary is designed to support multisets of cardinality at most
n (i.e., including multiplicities). (3) The space required for the dictionary is (1 +
o(1)) · n log u

n + Θ(n) bits, where u denotes the cardinality of the universe of the
elements. This space is 1 + o(1) times the information-theoretic lower bound for
static dictionaries over multisets of cardinality n if u = ω(n). (4) All operations are
completed in constant time in the worst case with high probability in the word RAM
model. A direct consequence of our construction is the first dynamic counting filter
(i.e., a dynamic data structure that supports approximate multiplicity queries with a
one-sided error) that, with high probability, supports operations in constant time and
requires space that is 1+ o(1) times the information-theoretic lower bound for filters
plus O(n) bits. The main technical component of our solution is based on efficiently
storing variable-length bounded binary counters and its analysis via weighted balls-
into-bins experiments in which the weight of a ball is logarithmic in its multiplicity.
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1 Introduction

We consider the dynamic dictionary problem for multisets. The special case of dic-
tionaries for sets (i.e., multiplicities are ignored) is a fundamental problem in data
structures and has been well studied [2, 11, 27, 32]. In the case of multisets, elements
can have arbitrary (adversarial) multiplicities and we are given an upper bound n on
the total cardinality of the multiset (i.e., including multiplicities) at any point in time.
The goal is to design a data structure that supports multiplicity queries (i.e., howmany
times does x appear in themultiset?) and allows insertions and deletions to themultiset
(i.e., the dynamic setting).

A related problem is that of supporting approximate membership and multiplicity
queries. Approximate set membership queries allow for one-sided errors in the form
of false positives: given an error parameter ε > 0, the probability of returning a “yes”
on an element not in the set is at most ε. Such data structures are known as filters. For
multisets, the corresponding data structure is known as a counting filter (or a spectral
filter). A counting filter returns a count that is at least the multiplicity of the element
in the multiset and overcounts with probability bounded by ε. Counting filters have
received significant attention over the years due to their applicability in practice [6, 9,
17]. One of the main applications of dictionaries for multisets is in designing dynamic
filters and counting filters [2]. This application is based on Carter et al. [8] who showed
that by hashing each element into a random fingerprint, one can reduce a counting
filter to a dictionary for multisets by storing the fingerprints in the dictionary.

The lower bound on the space required for storing a dictionary follows froma simple
counting argument (i.e., information theoretic lower bound). Namely, the space of a
dictionary for multisets of cardinality n is at least log

( u+n−1
n

) = n log(u/n) + Θ(n)

bits, where u is the size of the universe.1,2,3 In the case of filters, the lower bound is
at least n log(1/ε)+Θ(n) bits [25]. A data structure is succinct if the total number of
bits it requires is (1+o(1)) ·B, where B denotes the lower bound on the space and the
o(1) term converges to zero as n tends to infinity. A data structure is space-efficient if
it is succinct up to an additive O(n) term in space.

For the design of both dictionaries and filters, the performance measures of interest
are the space the data structure takes and the time it takes to perform the operations.
The first goal is to design data structures for dictionaries over multisets that are space-
efficient with high probability.4 Our dictionary and counting filter are space-efficient
for all ranges of parameters and succinct if the lower bound on the space satisfies
B = ω(n). Indeed, this is the case in a dictionary if u = ω(n) and in a filter if
ε = o(1).

1 To see why this is the case, consider a u× (n+ 1) grid and all the shortest paths that go from the leftmost
bottom vertex to the rightmost top vertex. Such a path consists of u + n − 1 edges and can be completely
described by its n horizontal edges, where each horizontal edge corresponds to one occurence of an element
of the universe in the input set.
2 All logarithms are base 2 unless otherwise stated. ln x is used to denote the natural logarithm.
3 This equality holds when u is significantly larger than n.
4 By with high probability (whp), we mean with probability at least 1 − 1/nΩ(1). The constant in the
exponent can be controlled by the designer and only affects the o(1) term in the space of the dictionary or
the filter.
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The second goal is to support queries, insertions, and deletions in constant time in
the word RAM model. The constant time guarantees should be in the worst case with
high probability (see [1, 2, 7, 23] for a discussion on the shortcomings of expected or
amortized performance in practical scenarios). We assume that each memory access
can read/write a word of w = log u contiguous bits.

The current best known dynamic dictionary for multisets was designed by Pagh,
Pagh, and Rao [27] based on the dictionary for sets of Raman and Rao [32]. The
dictionary is space-efficient and supports membership queries in constant time in
the worst case. Insertions and deletions take amortized expected constant time and
multiplicity queries take O(log n) in the worst case. In the case of sets, the state-of-
the-art dynamic dictionary of Arbitman, Naor, and Segev [2] achieves the “best of both
worlds”: it is succinct and supports all operations in constant time whp. Arbitman et
al. [2] pose the open problem of whether a similar result can be achieved for multisets.

1.1 The Challenge with Multisets

Recently, progress on the multiset problem was achieved by Bercea and Even [4]
who designed a constant-time dynamic space-efficient dictionary for random multi-
sets. In a random multiset, each element is sampled independently and uniformly at
random from the universe (with repetitions). Multiplicities of elements in the dictio-
nary in [4] are handled by storing duplicates. Namely, an element x with multiplicity
m(x) hasm(x) duplicate copies in the dictionary. The analysis employs ball-into-bins
experiments in which the weight of a ball is linear in its multiplicity (more precisely,
log(u/n) ·m(x)). Their analysis breaks if the multiset is arbitrary (i.e., not random).5

To see this, consider an adversary that chooses the input, in particular, the vector of
elements and their multiplicities. Suppose we want to design a dictionary for multisets
that is space-efficient and supports operations in constant time with respect to such an
adversary. The challenge in designing such a data structure is that the dictionary must
“compress” the input (to achieve space-efficiency) while requiring only constant time
per operation. If the data structure uses long counters (expecting high multiplicities),
then the adversary can choose small multiplicities, causing the data structure to waste
space. If the data structure uses short counters, then the adversary can choose high
multiplicities, which the data structure may accommodate by storing several dupli-
cates whose counters are added to maintain the overall multiplicity of the element.
This, however, may require too many duplicates to be stored, causing load balancing
problems (that impede constant time operations).

We resolve this dilemma by identifying a threshold of log3 n between low and high
multiplicities. Lowmultiplicities are encoded using variable length counters. The anal-
ysis deals with ball-into-bins experiments in which the weight of a ball is logarithmic
in its multiplicity (more precisely, log(u/n) + O(log(m(x)))). Each variable-length
counter requires on average a constant number of bits. High multiplicities are encoded
by log n-bit counters, but there are only O(n/ log3 n) high multiplicity elements.

5 For example, storing n copies of the same element would lead to almost all the elements being stored in
the second level spare, causing the spare to overflow.
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1.2 Results

In the following theorem, overflow refers to the event that the space allocated in
advance for the dictionary does not suffice. Such an event occurs if the random hash
function fails to “balance loads”.

Theorem 1 (dynamicmultiset dictionary)There exists a dynamic dictionary thatmain-
tains dynamic multisets of cardinality at most n from the universeU = {0, 1}log2 u with
the following guarantees: (1) For every polynomial in n sequence of operations (mul-
tiplicity query, insertion, deletion), the dictionary does not overflow whp. (2) If the
dictionary does not overflow, then every operation can be completed in constant time.
(3) The required space is (1 + o(1)) · n log(u/n) + O(n) bits.

Our dictionary construction considers a natural separation into the sparse and dense
case based on the size of the universe relative to n. The sparse case, defined when
log(u/n) = ω(log log n), enables us to store additional Θ(log log n) bits per element
without sacrificing space-efficiency. However, the encoding of the elements is longer,
so fewer encodings can be packed in a word. In this case, we propose a dictionary for
multisets that is based on dynamic dictionaries that support both membership queries
and satellite data (i.e., it stores (key, value) pairs where the key is the element and
the value is its satellite data). We use two separate dictionaries: (1) One dictionary is
used for the elements with multiplicity at most log3 n (in which the satellite data is
the multiplicity that is encoded using O(log log n) bits). (2) The second dictionary is
used for the elements with multiplicity at least log3 n (in which the satellite data is the
multiplicity that is encoded using log n bits). This construction is described in Sect. 3.

The dictionary for the dense case deals with the case in which log(u/n) =
O(log log n).6Following [4], we hash distinct elements into a first level that consists
of small space-efficient “bin dictionaries” of fixed capacity. The first level only stores
elements of multiplicity strictly smaller than log3 n, just like in the sparse case. How-
ever, we employ variable-length counters to encode multiplicities and store them in
a separate structure called a “counter dictionary”. We allocate one counter dictionary
for each bin dictionary. The space (i.e., number of bits) of the counter dictionary is
linear in the capacity of the associated bin dictionary (i.e., the maximum number of
elements that it can store). Namely, we spend a constant number of bits on average to
encode the multiplicity of each element in the first level.

Elements that do not fit in the first level are stored in a secondary data structure
called the spare. We prove that whp, the number of elements stored in the spare is
O(n/ log3 n). Hence, even if a log n-bit counter is attached to each element in the
spare, then the spare still requires o(n) bits. To bound the number of elements that are
stored in the spare, we cast the process of hashing counters into counter dictionaries
as a weighted balls-into-bins experiment in which balls have logarithmic weights (see
Sect. 4.5).

As a corollary of Theorem 1, we obtain a counting filter with the following guar-
antees.7

6 The dense case is especially relevant in practical approximate membership (filter) settings in which
u/n = 1/ε due to the reduction of Carter et al. [8].
7 Note that we allow ε to be as small as n/u (below this threshold, we can simply use a dictionary instead).
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Corollary 1 (dynamic counting filter) There exists a dynamic counting filter for mul-
tisets of cardinality at most n from a universe U = {0, 1}u such that the following
hold: (1) For every polynomial in n sequence of operations (multiplicity query, inser-
tion, deletion), the filter does not overflow whp. (2) If the filter does not overflow,
then every operation can be completed in constant time. (3) The required space is
(1+ o(1)) · log(1/ε) · n + O(n) bits. (4) For every multiplicity query, the probability
of overcounting is bounded by ε.

We note that our filter is guaranteed to be succinct when ε = o(1). The problem of
designing succinct dynamic filters for constant ε remains an interesting open problem,
even in the case of sets [4]. In this latter case, the lower bound of Lovett and Porat
[25] requires that we use at least C(ε) · n log(1/ε) bits, where the constant C(ε) > 1
depends only on ε.

1.3 RelatedWork

The dictionary for multisets of Pagh et al. [27] is space-efficient and supports member-
ship queries in constant time in the worst case. Insertions and deletions take amortized
expected constant time and multiplicity queries take O(log c) for a multiplicity of
c. Multiplicities are represented “implicitly” by a binary counter whose operations
(query, increment, decrement) are simulated as queries and updates to dictionaries on
sets.8 Increments and decrements to the counter take O(1) bit probes (and hence O(1)
dictionary operations) but decoding the multiplicity takes O(log n) time in the worst
case. We are not aware of any other dictionary constructions for multisets.9

Dynamic dictionaries for sets have been extensively studied [1, 2, 10–12, 14, 19,
30, 32]. The dynamic dictionary for sets of Arbitman et al. [2] is succinct and supports
operations in constant time whp. In [2], they pose the problem of designing a dynamic
dictionary for multisets as an open question.

In terms of counting filters, several constructions do not come with worst case
guarantees for storing arbitrary multisets [6, 17]. The only previous counting filter
with worst case guarantees we are aware of is the Spectral Bloom filter of Cohen
and Matias [9] (with over 500 citations in Google Scholar). The construction is a
generalization of the Bloom filter and hence requires Θ(log(1/ε)) memory accesses
per operation. The space usage is similar to that of a Bloom filter and depends on the
sum of logs of multiplicities. Consequently, when the multiset is a set, the required
space is 1.44 · log(1/ε) · n + Θ(n).

1.4 Paper Organization

Preliminaries are in Sect. 2. The construction for the sparse case can be found in Sect. 3
and the one for the dense case is described and analyzed in Sect. 4. Section 5 describes

8 To be more exact, for each bit of the counter, the construction in Pagh et al. [27] allocates a dictionary on
sets such that the value of the bit can be retrieved by performing a lookup in the dictionary. Updating a bit
of the counter is done by inserting or deleting elements in the associated dictionary.
9 Data structures for predecessor and successor queries such as [31] can support multisets but they do not
meet the required performance guarantees for multiplicity queries.
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how our analysis in the dense case works without the assumption of access to truly
random hash functions. Possible implementations of the dictionary from Sect. 4 are
discussed in Sect. 6. Finally, Corollary 1 is proved in Sect. 7.

2 Preliminaries

For k > 0, let [k] denote the set {0, . . . , �k� − 1}. Let U � [u] denote the universe of
all possible elements. We often abuse notation, and regard elements in [u] as binary
strings of length log u. For a string a ∈ {0, 1}∗, let |a| denote the length of a in bits.

Definition 1 (multiset) A multiset M over U is a function M : U → N. We refer to
M(x) as the multiplicity of x .The cardinality of a multisetM is denoted by |M| and
defined by |M| �

∑
x∈U M(x).

The support of the multiset is denoted by σ(M) and is defined by σ(M) �
{x | M(x) > 0}.

Operations overDynamicMultisetsWeconsider the followingoperations: insert(x),
delete(x), and count(x). Let Mt denote the multiset after t operations. A dynamic
multiset {Mt }t is specified by a sequence

{
opt

}
t≥1 of as follows.

10

Mt (x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t = 0

Mt−1(x) + 1 if opt = insert(x)

Mt−1(x) − 1 if opt = delete(x)

Mt−1(x) otherwise.

We say that a dynamic multiset {Mt }t has cardinality at most n if |Mt | ≤ n, for every
t .
Dynamic Dictionary for Multisets A dynamic dictionary for multisets maintains a
dynamic multiset {Mt }t . The response to count(x) is simplyMt (x).
Dynamic Counting Filter A dynamic counting filter maintains a dynamic multiset
{Mt }t and is parameterized by an error parameter ε ∈ (0, 1). Let outt denote the
response to a count(xt ) at time t . We require that the output outt satisfy the following
conditions:

outt ≥ Mt (xt ) (1)

Pr [outt > Mt (xt )] ≤ ε . (2)

Namely, outt is an approximation of Mt (xt ) with a one-sided error.

Definition 2 (overcounting) Let Errt denote the event that opt = count(xt ), and
outt > Mt (xt ).

10 We require that opt = delete(xt ) only if Mt−1(xt ) > 0.
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Note that overcounting generalizes false positive events in filters over sets. Indeed, a
false positive event occurs in a filter for sets if Mt (xt ) = 0 and outt > 0.11

2.1 TheModel

2.1.1 Memory Access Model

We assume that the data structures are implemented in the word RAMmodel in which
every access to the memory accesses a word. Let w denote the memory word length
in bits. We assume that w = log u. As is standard in this model, we assume that
in constant time, the following operations can be performed on a word in constant
time: read/write, addition, subtraction, multiplication, division, shifting, and bitwise
operations (AND, OR, XOR). In one of the implementations we propose (the Elias-
Fano encoding from Sect. 6), we also employ rank and select operations on words,
which can also be performed in constant time [21].

2.1.2 Oblivious Adversary

Our data structures are designed to work against an oblivious adversary, that is, the
input sequence of the adversary is independent of the random bits used for the con-
struction of the data structure. Such independence occurs, for example, if the adversary
fixes the input sequence before the data structure randomly chooses the hash functions.

2.1.3 Probability of Overflow

We prove that overflow occurs with probability at most 1/poly(n) and that one can
control the degree of the polynomial (the degree of the polynomial only affects the
o(1) term in the size bound). The probability of an overflow depends only on the
random choices that the dictionary makes.

2.1.4 Hash Functions

Our dictionary employs similar succinct hash functions as in Arbitman et al. [2] which
have a small representation and can be evaluated in constant time. For simplicity, we
first analyze the data structure assuming fully random hash functions (Sect. 4.5). In
Sect. 5 , we prove that the same arguments hold when we use succinct hash functions
and that the techniques in [2] used for sets can also be employed for multisets. The
counting filter reduction additionally employs pairwise independent hash functions.

3 Dictionary for Multisets via Key-Value Dictionaries (Sparse Case)

In this section, we show how to design a multiset dictionary based on a key-value
dictionary on sets that supports attaching satellite data per element. Such a key-value

11 The probability space is induced only by the random choices (i.e., choice of hash functions) that the filter
makes. Note also that if opt = opt ′ = count(x), then the events Errt and Errt ′ need not be independent.
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dictionarywith satellite data supports the operations: query, insert, delete, retrieve, and
update. A retrieve operation for x returns the satellite data of x . An update operation
for x with new satellite data d stores d as the new satellite data of x . Loosely speaking,
we use the satellite data to store a counter with Θ(log log n) bits. Hence, a succinct
multiset dictionary is obtained from a succinct key-value dictionary for sets only if
log(u/n) = ω(log log n).

Let Dict(U , n, r) denote a dynamic key-value dictionary for sets of cardinality at
most n over a universe U , where r bits of satellite data are attached to each element.
One can designDict(U , n, r) fromDict(U ′, n, 0), whereU ′ � U×[2r ] if the first com-
ponent of an element is a key. Namely, we require that the dataset D′(t) ⊂ U × [2r ]
does not contain two elements (x1, d1) and (x2, d2) such that x1 = x2. An implemen-
tation of Dict(U , n, r) (for r = O(log n)) with constant time per operation can be
obtained from the dictionary of Arbitman et al. [2] (see also [3]). The space of such
an implementation is (1 + o(1)) · (log(u/n) + r) · n + O(n).

LetMS-Dict(U , n) denote a dynamic dictionary for multisets over U of cardinality
at most n. We propose a reduction that employs two key-value dictionaries. The space
for these dictionaries is allocated up front before the first element is inserted. (Hence,
overflow of MS-Dict(n) occurs if one of these dictionaries overflows.)

Observation 1 One can implement MS-Dict(U , n) using two dynamic key-value dic-
tionaries: D1 = Dict(U , n, 3 log log n) and D2 = Dict(U , n/(log3 n), log n). Each
operation overMS-Dict can be performed using a constant number of operations over
D1 and D2.

Proof (sketch) An element is light if its multiplicity is at most log3 n, otherwise it is
heavy. Dictionary D1 is used for storing the light elements, whereas dictionary D2 is
used for storing the heavy elements. The satellite data in both dictionaries is a binary
counter of the multiplicity. Counters in D1 are 3 log log n bits long, whereas counters
in D2 are log n bits long. ��
Lemma 1 If log(u/n) = ω(log log n), then there exists a dynamic multiset dictionary
that is succinct and supports operations in constant time in the worst case whp.

Proof The implementation suggested in Obs. 1 employs two dictionaries D1 and D2
(each with satellite data). The space of D1 is (1+o(1)) · ((log(u/n)+3 log log n) ·n+
O(n). The space of D2 is (1+o(1)) ·((log((u log3 n)/n)+ log n) · n

log3 n
+O( n

log3 n
) =

o(log(u/n) ·n). Hence, the space of the multiset dictionaryMS-Dict(n) is: (1+o(1)) ·
((log(u/n) + 3 log log n) · n + O(n). In the sparse case log(u/n) = ω(log log n).
The lower bound on the space per element is log(u/n) bits, and hence the obtained
MS-Dict(n) is succinct. ��
This completes the proof of Theorem 1 for the sparse case.

Remark An alternative solution stores the multiplicities in an array separately from a
dictionary that stores the support of the multiset. Let s denote the cardinality of the
support of the multiset. Let h : U → [s + o(s)] be a dynamic perfect hashing that
requires Θ(s log log s) bits and supports operations in constant time (such as the one
in [11]). Store the (variable-length) binary counter for x at index h(x) in the array.
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The array can be implemented in space that is linear in the total length of the counters
and supports query and update operations in constant time [5].

4 Dictionary for Multisets (Dense Case)

In this section, we prove Theorem 1 for the case in which log(u/n) = O(log log n),
which we call the dense case. We refer to this dictionary construction as the MS-
Dictionary (Multiset Dictionary) in the dense case.

The MS-Dictionary construction follows the same general structure as in [2, 4, 11].
Specifically, it consists of two levels of dictionaries. The first level is designed to store
a (1− o(1)) fraction of the elements (Sect. 4.3). An element is stored in the first level
provided that its multiplicity is at most log3 n and there is enough capacity. Otherwise,
the element is stored in the second level, which is called the spare (Sect. 4.4).

The first level of the MS-Dictionary consists of m bin dictionaries {BDi }i∈[m]
together with m counter dictionaries {CDi }i∈[m]. Each bin dictionary stores at most
nB = (1 + δ)B distinct elements, where δ = o(1) and B � n/m denotes the mean
occupancy of a bin dictionary (see Sect. 4.1 for further parametrizations). We say that
a bin dictionary is full if it stores nB distinct elements. Elements are assigned to bin
dictionaries via a hash function (see Sect. 4.2). If, upon insertion of a new element x ,
the bin dictionary is full, then the insertion is forwarded to the spare.

Each counter dictionary stores variable-length binary counters that encode the mul-
tiplicities of elements in the associated bin dictionary. The counter dictionaries require
that the maximum multiplicity is polylogarithmic. In addition, the sum of the loga-
rithms of the multiplicities is O(B), stated formally as follows.

Definition 3 (full counter dictionary) Consider a bin dictionary BDi and its corre-
sponding counter dictionary CDi . We say that the counter dictionary CDi is full if∑

x∈BDi
�log(M(x) + 1)� > 12B.

If upon an insertion of a new counter or an increment of an already existing counter,
the counter dictionary is full or becomes full, then the element and its multiplicity are
moved to the spare.

Overall, we maintain the following invariant on which elements are stored in the
spare.

Invariant 2 An element x such that Mt (x) > 0 is stored in the spare at time t if:
(1) Mt (x) ≥ log3 n, or (2) the bin dictionary corresponding to x is full, or (3) the
counter dictionary corresponding to x is full.

We emphasize that an element x cannot further stay in the spare if it does not satisfy
Invariant 2. Namely, if the justification for storing x in the spare does not hold anymore,
then x has to be transferred to the first level of the dictionary. This transfer may be
performed in a “lazy" fashion. Namely, instead of searching for elements in the spare
that should be transferred to the first level, the transfer takes place when we “stumble”
upon themwhile trying to insert an element. Please refer to Sect. 4.4 for further details
on implementation.

We denote the upper bound on the cardinality of the support of the multiset stored
in the spare by nS . We say that the spare overflows when more than nS elements are
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Table 1 Setting of parameters in the MS-Dictionary in the dense case (i.e., log(u/n) = O(log log n))

Parameter Value Meaning

u Cardinality of the universe U
n Maximum cardinality of the multiset M(t)

B � log n
log(u/n)

Average number of elements per bin

m � n
B Number of bins

δ � Θ(
log log n√

B
) Over-provisioning fraction per bin

nB � (1 + δ) · B Maximum number of distinct elements stored in a bin

nS � 3n
log3 n

Maximum number of distinct elements stored in the spare

stored in it. In Sect. 4.5, we show that this does not happen whp over a polynomial
sequence of insertions.

4.1 Parametrization

The choice of parameters in the design of the MS-Dictionary for the dense case is
summarized in Table 1.

4.2 Hash Functions

We employ a permutation π : U → U . We define hb : U → [m] to be the leftmost
logm bits of the binary representation of π(x) and by hr : U → [u/m] to be the
remaining log(u/m) bits of π(x). An element x is hashed to the bin dictionary of
index hb(x). Hence storing x in the first level of the dictionary amounts to storing
hr (x) in BDi , where i = hb(x), and storing Mt (x) in CDi . (This reduction in the
universe size is often called “quotienting” [11, 24, 27, 28]).

The overflow analysis in Sect. 4.5 assumes that π is a perfect random permutation
(i.e., chosen uniformly at random from the set of all permutations on U). In Sec 5,
we discuss how one can replace this assumption with the succinct hash functions of
Arbitman et al. [2].

4.3 The First Level of theMultiset Dictionary

The first level of the MS-Dictionary consists of bin dictionaries and counter dictio-
naries. We review their functionality here and refer the reader to Sect. 6 for details on
implementation.

4.3.1 Bin Dictionaries

Each bin dictionary(BD) is a deterministic dictionary for sets of cardinality at most
nB that supports queries, insertions, and deletions. Each bin dictionary can be imple-
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mented using global lookup tables [2] or Elias-Fano encoding [4]. Implementation via
global lookup tables is succinct,whereas theElias-Fano encoding requires 2+log(u/n)

bits per element, and is succinct only if log(u/n) = ω(1). Moreover, each BD fits in a
constant number of words and performs queries, insertions and, deletions in constant
time in the worst case.

4.3.2 Counter Dictionaries

Let (x1, . . . x	) denote the sequence of (distinct) elements stored in BDi . Let M(xi )
denote the multiplicity of xi . The counter dictionary CDi stores the sequence of multi-
plicities (M(x1), . . . ,M(x	)). Namely, the order of the element multiplicities stored
in CDi is the same order in which the corresponding elements are stored in BDi . Mul-
tiplicities in CDi are encoded using variable-length counters. We employ a trivial 2-bit
alphabet to encode 0, 1 and “end-of-counter” symbols for encoding the multiplicities.
Consider a counter that stores the value c. We refer to �log2(c + 1)� as the length of
the counter. However, the encoding of the counter is 2(1 + �log2 c�) bits long. The
contents of CDi is simply a concatenation of the encoding of the counters. We allo-
cate 2(12B + nB) = O(B) bits per CD.12 Alternatively, one can also employ global
lookup tables in which every operation to the counter dictionary specifies the index of
the multiplicity it is applied to. Please refer to Sect. 6 for further details.

4.3.3 Operations to the Counter Dictionaries

TheCD supports the operations ofmultiplicity query, increment, and decrement. These
operations are carried out naturally in constant time because each CDi fits in O(1)
words. We note that an increment to x may cause the CD to be full, in which case
x is deleted from the bin dictionary and is inserted into the spare together with its
updated counter. Similarly, a decrement may zero the counter, in which case x is
deleted from the bin dictionary (and hence its multiplicity is also deleted from the
counter dictionary).

4.4 The Spare

Since the multiplicity of every element in the spare is at most n, the multiplicity
can be represented by a log n-bit counter. We can thus implement the spare using a
dynamic dictionary Dict(U , nS, log n). An additional requirement from that spare is
that it supports moving elements back to the first level if their insertion no longer
violates Invariant 2.

For this purpose, we propose to employ the dictionary of Arbitman et al. [1] that is a
de-amortized construction of the cuckoo hash table of Pagh and Rodler [29]. Namely,
each element is assigned two locations in an array. If upon insertion, both locations are
occupied, then space for the newelement ismadeby “relocating” an element occupying
one of the two locations. Long chains of relocations are “postponed” by employing a

12 Note, however, that we define a CD to be full if the sum of counter lengths is 12B (even if we did not
use all its space). The justification for this choice of constants is to simplify the analysis.
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queue of pending insertions. Thus, each operation is guaranteed to perform in constant
time in the worst case. The space that the dictionary occupies is O(nS(log(u/n) +
log n)) + O(nS) = o(n).

The dynamic dictionary in [1] is used as a spare in the incremental filter in [2]. We
use it in a similar manner to maintain Invariant 2 in a “lazy” fashion. Namely, if an
element x residing in the spare is no longer in violation of Invariant 2 (for instance,
due to a deletion in the bin dictionary), we do not immediately move x from the spare
back to its bin dictionary. Instead, we “delay” such an operation until x is examined
during a chain of relocations. Specifically, during an insertion to the spare, for each
relocated element, one checks if this element is still in violation of Invariant 2. If it is
not, then it is deleted from the spare and inserted into the first level. This increases the
time of operations only by a constant and does not affect the overflow probability of
the spare.

4.5 Overflow Analysis

The event of an overflow occurs if more than nS distinct elements are stored in the
spare. In this section, we prove that overflow does not occur whp when we employ
perfectly random hash functions.

Invariant 2 reduces the dynamic setting to the incremental setting in the sense that
the number of elements in the spare at time t depends only on D(t) (and not on the
complete history).13 The overflow analysis proceeds by proving that, for every t , the
spare does not overflow whp. By applying a union bound, we conclude that overflow
does not occur whp over a polynomial number of operations in the dynamic setting.

Recall that each component of the first level of the dictionary has capacity param-
eters: each bin dictionary has an upper bound of nB = (1 + δ)B on the number of
distinct elements it stores and each counter dictionary has an upper bound of 12B
on the total length of the counters it stores. Additionally, the first level only stores
elements whose multiplicity is strictly smaller than log3 n. According to Invariant 2,
if the insertion of some element x exceeds these bounds, then x is moved to the spare.

We bound the number of elements that go to the spare due to failing one of the
conditions of Invariant 2 separately. The number of elements whose multiplicity is at
least log3 n is at most n/ log3 n. The number of distinct elements that are stored in the
spare because their bin dictionary is full is at most n/ log3 n whp. The proof of this
bound can be derived by modifying the proof of Lemma 2 (see also [2]). We focus on
the number of distinct elements whose counter dictionary is full.

Lemma 2 The number of distinct elements whose corresponding CD is full is at most
n/ log3 n whp.

Proof Recall that there are m = n/B counter dictionaries and that each CD stores
the multiplicities of at most nB = (1 + δ)B distinct elements of multiplicity strictly
smaller than log3 n. In a full CD, the sum of the counter lengths reaches 12B. We start
by bounding the probability that the total length of the counters in a CD is at least 12B.

13 Note that the fact that we maintain Invariant 2 in a “lazy” fashion does not affect this analysis. If an
insertion to the spare fails due to a non-spare element residing in it, we move the non-spare element to the
first level. Thus, the temporary presence of non-spare elements does not affect the performance of the spare.
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Formally, consider a multiset M of cardinality n consisting of s distinct elements
{xi }i∈[s] with multiplicities { fi }i∈[s] (note that

∑
i∈[s] fi = n). The length of the

counter for multiplicity fi is wi � �log( fi + 1)� (we refer to this quantity as weight).
For β ∈ [m], letMβ denote the sub-multiset ofM consisting of the elements xi such
that hb(xi ) = β. LetCβ denote the event that the weight ofMβ is at least 12B, namely∑

xi∈Mβ wi ≥ 12B. We begin by bounding the probability of event Cβ occurring.
For i ∈ [s], define the random variable Xi ∈ {0, wi }, where Xi = wi if hb(xi ) = β

and 0 otherwise. Since the values
{
(hb(xi ), hr (xi ))

}
i are sampled at random without

replacement (i.e., obtained from a random permutation), the random variables {Xi }i
are negatively associated. Let μ � 1

m · ∑i∈[s] wi denote the expected weight per CD.
Since wi ≤ log(2(1 + fi )), by the concavity of log(x), we have

μ ≤ s

m
log

∑
i∈[s] 2(1 + fi )

s
≤ s

m
log

(
2 + 2n

s

)
≤ 2B .

Since wi ≤ log log3 n (we omit the ceiling to improve readability), by Chernoff’s
bound (Eq.(8) in [20]):

PrCβ = Pr
∑

i∈[s]
Xi ≥ 6 · 2B ≤ 2

− 12B
log log3 n = 1/(log n)ω(1) .

Let I (Cβ) denote the indicator variable for event Cβ . Then E

[∑
β I (Cβ)

]
≤

n/(log n)ω(1). Moreover, the RVs
{
I (Cβ)

}
β
are negatively associated (more weight

in bin b implies less weight in bin b′). By Chernoff’s bound [15, 20]:

Pr
∑

b

I (Cβ) ≥ n

log5 n
≤ O(2−n/(log5 n)) .

Whp, a bin is assigned at most log2 n elements (recall, the average occupancy of a bin
dictionary is B < log n). We conclude that the number of elements that are stored in
the spare due to events

⋃
b Cβ is at most n/(log3 n) whp. ��

4.6 Proof of Theorem 1 for the Dense Case

In Lemma 3 (Sect. 6) we show that each bin dictionary can be implemented using
nB log(u/n)+Θ(nB) bits and each CD occupiesΘ(B) bits. Furthermore, every oper-
ation can be executed in constant time in the worst case, unless overflow happens.
Therefore, the first level of the MS-Dictionary takes (1 + δ)n log(u/n) + Θ(n) bits.
The spare takes O(nS log(u/n)) = o(n) bits, since nS = O(n/ log3 n). Therefore, the
space the whole dictionary takes is (1 + o(1)) · log(u/n) + Θ(n) bits.
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In Lemma 2, we show that overflow happens with low probability over a sequence
of polynomial number of insertions. This completes the proof of Theorem 1 for the
dense case.

5 Succinct Hash Functions

In this section, we discuss how to replace the assumption of truly random permutations
with succinct hash functions (i.e., representation requires o(n) bits) that have constant
evaluation time in the RAM model.

We follow the construction in [2], which we describe as follows. Partition the
universe into M = n9/10 parts using a one-round Feistel permutation (described
below) such that the number of elements in each part is at most n1/10 + n3/40 whp.
The permutation uses highly independent hash functions [13, 34]. Apply the dictionary
construction separately in each part with an upper bound of n9/10 + n3/40 on the
cardinality of the set. Within each part, the dictionary employs a k-wise δ-dependent
permutation. A collection Π of permutations π : U → U is k-wise δ-dependent if for
any distinct elements x1, . . . , xk ∈ U , the distribution on (π(x1), . . . , π(xk)) induced
by sampling π ∈ Π is δ-close in statistical distance to the distribution induced by
a truly random permutation. Arbitman et al. [2] show how one can obtain succinct
k-wise δ-dependent permutations that can be evaluated in constant time by combining
the constructions in [22, 26]. Setting k = n1/10 + n3/40 and δ = 1/nΘ(1) ensures that
the bound on the size of the spare holds whp in each part and hence, by union bound,
in all parts simultaneously.

To complete the proof, we need to prove that the partitioning is “balanced” whp
also with respect to multisets. (Recall, that the cardinality of a multiset equals the sum
of multiplicities of the elements in the support of the multiset.) Formally, we prove
that the pseudo-random partition induces in each part a multiset of cardinality at most
n1/10 + n3/40 log3/2 n whp. As “heavy” elements of multiplicity at least log3 n are
stored in the spare, we may assume that multiplicities are less that log3 n.

We first describe how the partitioning is achieved in [2]. The binary representation
of x is partitioned into the leftmost logM bits, denoted by xL and the remaining bits,
denoted by xR . A k′-wise independent hash function f : {0, 1}log(u/M) → {0, 1}logM
is then sampled, with k′ = �n1/20/(e1/3)�. The permutation π is defined as π(x) =
(xL ⊕ f (xR), xR).

Note that this induces a view of the universe as a two-dimensional table with
u/M rows (corresponding to each xR value) and M columns (corresponding to each
xL ⊕ f (xR) value). Indeed, each cell of the table has at most one element (i.e., if
x = (xL , xR) and y = (yL , yR) satisfy xL ⊕ f (xR) = yL ⊕ f (yR) and xR = yR ,
then x = y). We define a part of the input multiset as consisting of all the elements
of the input multiset that belong to the same column. The index of the part that x is
assigned to is xL ⊕ f (xR). The corresponding part stores xR .

The following observation follows from [2, Claim 5.4] and the fact that the maxi-
mum multiplicity of each element is strictly less than log3 n.
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Observation 2 The cardinality of every part of the multiset is at most n1/10 +
n3/40 log3/2 n whp.

Proof Fix a part j ∈ [M] and for each i ∈ [u/M], let Mi denote the multiset of all
elements x with the xR value equal to i (i.e., themultisetsMi consist of all the elements
in row i). Each multiset Mi contributes at most one distinct element to the multiset
of part j . Define Xi ∈ [log3 n] to be the random variable that denotes the multiplicity
of the element from Mi that is mapped to part j . Then E [Xi ] = 1

M

∑
x∈U Mi (x).

Now define X = ∑
i∈[u/m] Xi to be the random variable that denotes the cardinality of

the multiset that is mapped into part j . By linearity of expectation, E [X ] = n/M =
n1/10. The random variables {Xi }i are k′-wise independent, since each variable Xi

is determined by a different row in the table (and hence, each {Xi }i depends on a
different xR value). We scale the RVs {Xi }i by log3 n and then apply ’s bound for
k′-wise independent RVs [33] and obtain:

Pr
X

log3 n
≥

(
1 + log3/2 n

n1/40

)
· n9/10

log3 n
≤ exp(−�k′/2�) = exp(−Ω(n1/20)) .

The claim follows. ��

6 Implementation

In this section, we discuss how to implement the bin dictionaries and the counter dic-
tionaries from the first level of the multiset dictionary for the dense case (Sect. 4.3).
Recall that each bin dictionary is a space-efficient dictionary for nB = (1 +
o(1)) log n/ log(u/n) elements that executes all operations in constant time in the
worst case. Similar bin dictionaries have been employed in the dictionaries for sets of
Arbitman et al. [2] and Bercea and Even [4]. We review their implementations here
and show that the following holds:

Lemma 3 The bin dictionaries and the counter dictionaries can be implemented such
that:

1. Each bin dictionary requires nB log(u/n) + Θ(nB) bits,
2. Each counter dictionary requires Θ(B) bits,
3. Every operation can be performed in constant time in the worst case.

For each bin dictionary, the associated counter dictionary stores the variable-length
strings representing the multiplicity of the (distinct) elements stored in the bin dic-
tionary. Given an element stored in the bin dictionary, the counter dictionary must be
able to retrieve, delete and decrement/increment its multiplicity in constant time in the
worst case. To facilitate this, we take advantage of the lexicographic order in which
the elements are stored in the bin dictionary. Specifically, we index the variable-length
strings in the counter dictionary by the lexicographic order of their associated element
in the bin dictionary such that the kth variable-length string represents the multiplicity
of the kth element in the corresponding bin dictionary, in lexicographic order. We then
store the strings in concatenated form in this order.
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Operations to the counter dictionary are then parametrized by the index of the
variable length string they refer to. This can be easily achieved since each operation
to the counter dictionary is preceded by a query to the bin dictionary in order to verify
membership. We thus modify the query operation to the bin dictionary to return the
index of the element in the lexicographic order of the elements currently stored in the
bin dictionary (if the element is found).

In the following, we present two implementations for bin dictionaries and counter
dictionaries that follow the above design idea. Specifically, we show how the global
lookup tables of Arbitman et al. [2] and the Elias-Fano encoding [16] employed in [4]
can be extended to also work with variable-length strings and hence can be used to
store the (variable-length) counters in the counter dictionaries.

6.1 Global Lookup Tables

Arbitman et al. [2] suggest implementing the bin dictionaries using global look up
tables. In this implementation, all bin dictionaries employ a common global lookup
table per operation. Hence, it is sufficient to show that the size of the tables is o(n).
Recall that each bin dictionary stores at most nB = (1 + δ)B distinct elements from
a universe U ′ of size u′ = u/(n/B). Therefore, the total number of states of a bin
dictionary is s �

( u′
nB

)
. Insertions and deletions are implemented as functions from

s × u′ to s. Namely, given the current state s of the dictionary and an element x ∈ U ′,
each function returns an updated state that reflects the corresponding operation to the
set. A query(x) returns an index in [nB] that is the rank of x according to the lexico-
graphic order of the elements in the set corresponding to state s. The global lookup
tables explicitly represent these functions and can be built in advance. Operations
are therefore supported in constant time since all inputs and outputs fit in a constant
number of words.

Moreover, each table requires at most s ·u′ · log s bits. Recall that log(u/n) = ω(1)
and that we are in the dense case, i.e., log(u/n) = O(log log n), hence u = O(n ·
polylog(n)). By fine-tuning B and δ, one can show that, s ≤ √

n and the total number
of bits each table takes is o(n).

A similar approach can be employed for implementing the counter dictionaries.
Specifically, a state s′ of a counter dictionary corresponds to an ordered set of at most
nB variable-length strings such that the total length of the strings does not exceed 12B

bits. There are thus at most s′ � 212B ·
(
12B
nB

)
= 2Θ(B) possible states. The functions

corresponding to each operation take as input a state and an index in [nB] denoting the
rank of the variable-length string that the operation is applied to. The output of a query
is a variable length string of length atmost 12B and the output of delete, decrement and
increment is another state in [s′]. Therefore, each table requires at most s′ · nB · log s′
bits. By setting B = Θ(log n/ log(u/n)), we ensure that s′ = 2Θ(B) ≤ √

n and have
that each table requires o(n) bits.
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6.2 Elias-Fano Encoding

In this section, we briefly discuss a variation of the Elias-Fano [16, 18] encoding that
appears as the “ExactMembership Tester 2” inCarter et al. [8]. Its usage as a dictionary
that fits in aword appears in [3, 4]. A bin dictionary implemented using this encoding is
referred to as a “pocket dictionary”.The idea is to represent each element in the universe
[u′] as a pair (q, r), where q ∈ [B] (the quotient) and r ∈ [u′/B] (the remainder).
A header encodes in unary the number of elements that have the same quotient. The
body is the concatenation of remainders. The space required is B + nB(1+ log(u/n))

bits, which meets the required space bound since B = O(nB). Similarly, a counter
dictionary can be implemented by storing the counters consecutively using an “end-
of-string” symbol, i.e., using a 2-bit alphabet to represent 0, 1 and “end-of-string”. We
use a ternary alphabet for this encoding, which requires at most Θ(B) bits to encode
each CD. The counter dictionary contains at most 12B + nB symbols, and hence fits
in O(B) bits.

Both the BDs and the CDs fit in O(1) words. Operations to the BD and the CD
require rank and select instructions. In particular for counter dictionaries, operations
of locating a counter, incrementing, and decrementing a counter can be executed
in constant time. The justification is that: (i) locating a counter amounts to a select
operation, and (ii) increment or decrement can be implemented by add/subtract and
a shift. See [4] for a discussion of how these operations can be executed in constant
time.

7 The Counting Filter

To obtain a counting filter from our dictionary, we employ the reduction of Carter et al.
[8]. The reduction is standard, we briefly review it here. Specifically, we use a pairwise
independent hash function h : U → [n/ε] to map an element x ∈ U to a fingerprint
h(x). Every operation on x to the counting filter is then implemented as an operation
on h(x) to the dictionary.

Formally, let Mh denote the multiset over [n/ε] induced by a multiset M over U
defined by Mh(y) �

∑
x :h(x)=y M(x). We get the following:

Lemma 4 A multiset dictionary for Mh constitutes a counting filter in which the
probability of an overcount is at most ε.

Proof Fix an element x ∈ U . An overcount for x in the counting filter happens if and
only if there is a different element y �= x with M(y) > 0 that hashes to the same
fingerprint, i.e., h(x) = h(y). Because h was chosen to be pairwise independent, we
have that, for a fixed y, Pr h(x) = h(y) ≤ ε/n. By applying a union bound over all
possible elements y, we get that the probability of overcounting the multiplicity of an
element x is at most ε. ��
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7.1 Proof of Corollary 1

Operations to the counting filter are implemented as operations to the dictionary, so
they take constant time in the worst case unless overflow happens. In terms of space,
the dictionary stores a multiset of cardinality at most n from a universe of size n/ε

and so it requires (1 + o(1)) log(1/ε)n + O(n) bits. Together with Lemma 4, this
completes the proof of Corollary 1.

References

1. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: Provable worst-case performance
and experimental results. In: International colloquium on automata, languages and programming pp.
107–118. Springer (2009)

2. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case operations with a
succinct representation. In: 2010 IEEE 51st Annual symposium on foundations of computer science,
pp. 787–796. IEEE (2010)

3. Bercea, I.O., Even, G.: Fully-dynamic space-efficient dictionaries and filters with constant number of
memory accesses. arxiv:1911.05060 (2019)

4. Bercea, I.O., Even, G.: A dynamic space-efficient filter with constant time operations. In: 17th scan-
dinavian symposium and workshops on algorithm theory, SWAT 2020, June 22-24, 2020, Tórshavn,
Faroe Islands, pp. 11:1–11:17 (2020). https://doi.org/10.4230/LIPIcs.SWAT.2020.11

5. Blandford, D.K., Blelloch, G.E.: Compact dictionaries for variable-length keys and data with applica-
tions. ACM Trans. Algorith. 4(2), 1–25 (2008). https://doi.org/10.1145/1361192.1361194

6. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for
counting Bloom filters. In: European symposium on algorithms, pp. 684–695. Springer (2006)

7. Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve ip lookups. In: Proceedings
IEEE INFOCOM 2001. Conference on computer communications. Twentieth annual joint conference
of the IEEE computer and communications society (Cat. No. 01CH37213), vol. 3, pp. 1454–1463.
IEEE (2001)

8. Carter, L., Floyd, R., Gill, J.,Markowsky, G.,Wegman,M.: Exact and approximatemembership testers.
In: Proceedings of the tenth annual ACM symposium on theory of computing, pp. 59–65. ACM (1978)

9. Cohen, S., Matias, Y.: Spectral Bloom filters. In: Proceedings of the 2003ACMSIGMOD International
conference on Management of data, pp. 241–252 (2003)

10. Dalal, K., Devroye, L.,Malalla, E.,McLeish, E.: Two-way chainingwith reassignment. SIAMJ. Comp.
35(2), 327–340 (2005)

11. Demaine, E.D., auf der Heide, F.M., Pagh, R., Pătraşcu, M.: De dictionariis dynamicis pauco spatio
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