
Algorithmica (2023) 85:1754–1785
https://doi.org/10.1007/s00453-022-01047-2

Constructing the first (and coolest) fixed-content
universal cycle

Joe Sawada1 · Aaron Williams2

Received: 18 January 2022 / Accepted: 23 September 2022 / Published online: 4 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We explicitly construct the first universal cycles for strings with fixed-content—also
known as strings with the same Parikh vector, or multiset permutations—using their
shorthand encoding, which omits the final symbol as it is redundant. For exam-
ple, 112312131132 is a universal cycle for content S = {1, 1, 2, 3}. Its first three
windows—112, 123, and 231—are the shorthand representatives of 1123, 1231,
and 2311, respectively. Our first construction V(S) applies the classic cycle-joining
approach on the first-inversion tree of necklace cycles with content S. For example,
when S = {1, 1, 2, 3} the root is the necklace cycle 1123 and its children are 1213
and 1132 by swapping their first (i.e., leftmost) inversions. From this construction, we
derive a successor rule to generate successive symbols of V(S) in O(n)-time, where
n = |S| is the cardinality of S. Our second construction U(S) concatenates fixed-
content necklaces together in a cool-lex order using the necklace-prefix algorithm.
For example, U(S) = 1123 · 1213 · 1132 for S = {1, 1, 2, 3}. Central to this con-
struction is the first shift Gray code for fixed-content necklaces, and a new efficient
algorithm for generating these strings. From this construction, we can generate succes-
sive symbols of U(S) in O(1)-amortized time while using O(n)-space. We complete
our investigation with a pleasant surprise: V(S) = U(S). Our new results simultane-
ously generalize universal cycle constructions of shorthand permutations by Ruskey et
al. (Algorithmica 64, 2012) and shorthand fixed-weight binary strings by Ruskey et al.
(SIAM J Disc Math 26(2):605–617, 2012). They also provide a prefix-shift Gray code
for multiset permutations in which the first symbol moves into the last or second-last
position, which tightens the previous prefix-shift Gray code byWilliams (Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2009).

B Aaron Williams
aaron.williams@williams.edu

Joe Sawada
jsawada@uoguelph.ca

1 University of Guelph, Guelph, ON, Canada

2 Williams College, Williamstown, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01047-2&domain=pdf
http://orcid.org/0000-0001-7364-2993
http://orcid.org/0000-0001-6816-4368

Algorithmica (2023) 85:1754–1785 1755

Finally, we draw parallels between our constructions and the well-known granddaddy
de Bruijn sequence for binary strings.

Keywords de Bruijn sequence · Universal cycle · Fixed content · Multiset
permutation · Parikh vector · Shorthand · Cool-lex order · Shift gray code

1 Introduction

A universal cycle for a setE of length n strings1 is a circular string of length |E|where
each string inE, or an encoding of it, appears exactly once as a substring [6]. Universal
cycles generalize de Bruijn sequences, where E is the set of k-ary strings of length n
[9, 51] (and see [10]). For example, 00010111 is a de Bruijn sequence for k = 2 and
n = 3 since its substrings—000, 001, 010, 101, 011, 111, 110, 100—are precisely the
kn = 23 = 8 binary strings of length 3. When visualizing de Bruijn sequences and
universal cycles it is common to picture a window moving through the circular string,
where the width of the window is equal to the length of the encodings of the objects in
E. See [18, 19] and a new website [40] for recent surveys on the rich history of these
objects.

This paper constructs the first fixed-content universal cycle. More precisely, we
construct two different universal cycles with content S: V(S) and U(S). Then we
show that the constructions are equivalent (i.e., V(S) = U(S)), and develop efficient
algorithms for generating our universal cycle.

Throughout the article, S is a multiset of symbols referred to as the content. By
convention, S has k distinct symbols 1, 2, . . . , k, and its cardinality (including repeti-
tions) is n. For example, k = 3 and n = 4 when S = {1, 1, 2, 3}. The symbol · denotes
concatenation and is optional, so a · b = ab.

1.1 Fixed-Content Universal Cycles

De Bruijn sequences are examples of universal cycles that store the contents of E
without any encoding, and additional examples exist for many other interesting sets
[6, 11, 25, 26, 30, 31, 47]. But this is not possible for many other natural sets, including
the permutations of {1, 2, . . . , n} in one-line notation, and the n-bit binary strings with
weight w (i.e., w copies of 1). To illustrate this point, if the permutations of n = 3
(i.e., E = {123, 132, 213, 231, 312, 321}) had a universal cycle, then 123abc would
be such a cycle (as any cycle could be rotated to have 123 as its first substring). Since
23a is a window of the universal cycle, it must be that 23a ∈ E, and hence a = 1.
Similarly, b = 2 and c = 3. But 123abc = 123123 is not a universal cycle for E.
Likewise, there is no universal cycle for the binary strings of length n = 4 and weight
w = 2 (i.e., S = {0011, 0101, 0110, 1001, 1010, 1100}).

Fortunately, permutations and fixed-weight binary strings have a simple alternate
encoding: The shorthand representation of a string omits its final symbol. This is a

1 Universal cycles can also be defined for objects other than strings (e.g., graphs [3]).

123

1756 Algorithmica (2023) 85:1754–1785

suitable choice since permutations and fixed-weight strings are determined by their
length n−1 prefixes, as the final symbol is redundant.

Example 1 Consider the set E1 = {12, 13, 21, 23, 31, 32} of shorthand permutations
for n = 3. Observe that 231321 is a universal cycle for E1.

Example 2 Consider the set E2 = {0001, 0010, 0100, 1000, 0011, 0110, 0101, 1001,
1010, 1100} of shorthand fixed-weight strings of length n = 5 and weight w = 2.
Observe that 1010011000 is a universal cycle for E2.

In this paper, we consider the natural generalization of permutations and fixed-
weight binary strings, namely strings with fixed-content. These objects are also known
strings with the same Parikh vector and as multiset permutations. Owing to the latter
term, we let Perm(S) denote the strings with content S. For example, the set of strings
with content S = {1, 1, 2, 3} is

Perm(S) = {1123, 1132, 1213, 1231, 1312, 1321, 2113,
2131, 2311, 3112, 3121, 3211}.

We let Shor t(S) denote the shorthand representation of strings with content S. For
example, the set of shorthand representations of strings with content S = {1, 1, 2, 3}
is

Shor t(S) = {112, 113, 121, 123, 131, 132, 211, 213, 231, 311, 312, 321}.

As with permutations and fixed-weight binary strings, the final symbol of a string with
content S is redundant, so the shorthand encoding can be used in a universal cycle
without any loss of information. Such a cycle can be referred to as universal cycle of
Shor t(S), or as a shorthand universal cycle of Perm(S), or simply as fixed-content
universal cycle over S. Regardless of the name, the windows provide the strings in
Shor t(S), which provide a simple encoding of the strings in Perm(S).

Example 3 Observe that 112312131132 is a universal cycle of Shor t(S) with S =
{1, 1, 2, 3}. It can also be described as a shorthand universal cycle for Perm(S), or
as a fixed-content universal cycle over S.

1.1.1 First Symbol or Missing Symbol

Ifβ = b1·b2 · · · bn−1 ∈ Shor t(S), thenb1 isβ’sfirst symbol. Themissing symbol from
β is bn for the unique bn with β · bn ∈ Perm(S). We also use z = bn for the missing
symbol to emphasize that it is not included in β. For example, if S = {1, 1, 2, 3}
and β = 213 ∈ Shor t(S), then β’s first symbol is b1 = 2 and its missing symbol
is z = b4 = 1. When viewed symbol-by-symbol, fixed-content universal cycles
repeatedly select between the first symbol and the missing symbol of the current
window, as formalized by the following lemma.

123

Algorithmica (2023) 85:1754–1785 1757

Lemma 1 LetW be a fixed-content universal cycle over S and β = b1 · b2 · · · bn−1 ∈
Shor t(S) with missing symbol z. The window β appears exactly once in W and it is
immediately followed by its first symbol b1 or its missing symbol z. Equivalently, if β ′
is the window following β inW , then

Case 0: β ′ = b2 · · · bn−1 · z or
Case 1: β ′ = b2 · · · bn−1 · b1.
Proof Since z is missing from β ∈ Shor t(S), we have β · z = b1 · b2 · · · bn−1 ·
z ∈ Perm(S) and S = {b1, b2, . . . , bn−1, z}. Since β ′ follows β, we have β ′ =
b2 · · · bn−1 · x ∈ Shor t(S) for some symbol x ∈ S. Thus, the claim holds by the
following (where − denotes multiset difference),

x ∈ S − {b2, . . . , bn−1} = {b1, b2, . . . , bn−1, z} − {b2, . . . , bn−1} = {b1, z}.

��
It is important to note that a window’s first symbol and missing symbol can be

equal. For example, if S = {1, 1, 2, 3} then b1 = z = 1 for 123 ∈ Shor t(S) and
132 ∈ Shor t(S). In these situations, the two cases of Lemma 1 are identical, and
there is only one choice for next symbol and window.

1.2 Characterizations Using Graphs

Fixed-content universal cycles can be characterized using several different directed
graphs with labeled edges. Each characterization provides its own insights into this
new type of universal cycles.

1.2.1 Transition Graphs: Hamilton Cycles and Binary Representation

The graph T (S) has vertex set Shor t(S) and edges uv for u = b1 · b2 · · · bn−1 ∈
Shor t(S) and v = b2 ·b3 · · · bn with label bn . In other words, the vertices arewindows,
and edges transition from window to window by shifting in their label. This type of
graph is often known as a transition graph within the universal cycle literature, and it
leads directly to the characterization in Remark 2, which views universal cycles and
Hamilton cycles as cyclic objects (i.e., they are unchanged by rotation).

Remark 2 Universal cycles with fixed-content S are in one-to-one correspondence
with the concatenation of the edge labels along the Hamilton cycles in T (S).

For our purposes, it is helpful to consider an augmented transition graph T ′(S).
This graph has vertex set Shor t(S) and its edge set is defined based on the first and
missing symbols fromLemma 1. That is, if u = b1 ·b2 · · · bn−1 ∈ Shor t(S) is missing
z, then there are two edges of the form uv where

Edge 0: v = b2 · · · bn−1 · z with label z, and
Edge 1: v = b2 · · · bn−1 · b1 with label b1.

123

1758 Algorithmica (2023) 85:1754–1785

(a) (b)

Fig. 1 a The transition graph T (S) with a Hamilton cycle. b The augmented transition graph T ′(S).
Transition graphs for S = {1, 1, 2, 3}. Our universal cycle 112312131132 follows the Hamilton cycle from
vertex 132 in (a). It has binary representation 001000110001 starting from vertrex 112 in (b), where thick
straight and thin curved edges are of type 0 and 1, respectively. Its weight of 4 is minimum possible for S

This definition ensures that each vertex has out-degree two. Furthermore, each vertex
has in-degree two. This is because the edges partition into two vertex-disjoint directed
cycle covers: one includes the 0 edges, and the other includes the 1 edges. Figure1
shows T (S) and T ′(S) for S = {1, 1, 2, 3}.

The augmented transition graph visualizes a simple consequence of Lemma 1:
fixed-content universal cycles can be represented in binary. More precisely, a binary
representation is an initial window in Shor t(S) and a binary string of length
|Shor t(S)| whose bits follow the cases of Lemma 1 or the edge types of T ′(S). If we
use the convention that the initial window is the lexicographically smallest string in
Shor t(S) (e.g., 112 for S = {1, 1, 2, 3}), then the binary string suffices by itself. A
fixed-content universal cycle has weight w if it has a binary representation of weight
w, and it has minimum-weight if it has a binary representation of minimum possible
weight for its content S.

1.2.2 Arc Digraphs: Eulerian Circuits and Universal Cycle Existence

To prove that universal cycles exist we can model the windows as edges rather than
vertices. Let the vertices of A(S) be the (n − 2)-permutations of S (i.e., two symbols
are absent from S) with an edge from u = b1 · b2 · · · bn−2 to v = b2b3 · · · bn−1 with
label bn−1 if b1 · b2 · · · bn−1 ∈ Shor t(S). This type of graph is known as an arc
digraph within the literature, and it leads to a second characterization.

Remark 3 Universal cycles with fixed-content S are in one-to-one correspondence
with the concatenation of the edge labels along the Eulerian circuits in A(S).

Figure 2 shows A(S) for S = {1, 1, 2, 3}. The fact that A(S) is always Eulerian is
a consequence of our new results; it also provides a nice exercise for active readers.
Remark 3 was previously proven for permutations (i.e., k = n) by Jackson [27] and
fixed-weight binary strings (i.e., k = 2) [35].

123

Algorithmica (2023) 85:1754–1785 1759

Fig. 2 The arc digraph A(S) for
S = {1, 1, 2, 3}. Our shorthand
universal cycle 112312131132
starts at vertex 32 and then
travels to 21 and 11

1.2.3 Rotator Graphs: Shift Gray Codes for (Multiset) Permutations

Recall that the vertex set of T ′(S) is Shor t(S). By replacing each vertex with its
correspondingmember of Perm(S)weobtain ourfinal graph R(S). Figure3 illustrates
R(S) for S = {1, 1, 2, 3}.

The edges of R(S) can be understood as applying an operation known as a shift.
Given string α = b1 · b2 · · · bn , let shift[(α)]i, j (or simply shifti, j ()) be the result of
moving bi into the j th position. In the special case of i = 1 (i.e., the first symbol is
moved to the right) we let σ j denote shifti, j (). If u = b1 · b2 · · · bn−1bn ∈ Perm(S),
then R(S) contains two edges of the form uv where

Edge 0: v = shift[(u)]1, n = b2 · · · bn−1 · bn · b1 with label σn , and
Edge 1: v = shift[(u)]1, n − 1 = b2 · · · bn−1 · b1 · bn with label σn−1.

In other words, an edge shifts the first symbol into the last or second-last position.
Thus, Hamilton cycles of R(S) provide a shift Gray code of Perm(S), meaning that
each succesive string is obtained by a shift. The Gray codes are also cyclic since a
shift transforms the last string into the first string.

Remark 4 Universal cycles with fixed-content S are in one-to-one correspondence
with the Hamilton cycles of R(S). In turn, the Hamilton cycles are in one-to-one
correspondence with cyclic Gray codes of Perm(S) in which each α ∈ Perm(S) is
followed by shift[(α)]1, n or shift[(α)]1, n−1.

Our main results contribute to the literature on shift Gray codes for (multiset)
permutations due to Remark 4. Corbett provided the first such result with a Hamilton
cycle in the rotator graphwhose vertices are permutations (i.e., Perm(S)with n = k)
and whose edges apply σi for all 2 ≤ i ≤ n [8]. The rotator graph is used as a
multiprocessor network topology and Corbett’s cycle can be generated by the greedy
Gray code algorithm [54]. It is possible to create a Hamilton cycle using only the
following three operations [49]: τ = σ2; σ3; σ = σn . If edges in the opposite direction
are also allowed, then σ , σ−1, and τ are sufficient [7]. When n is odd, σ and τ allow
for Hamilton paths [43] and cycles [44], but only Hamilton paths are possible when n
is even [33, 50]. When S is a multiset rather than a set, then Gray codes do not exist
using σ , σ−1, and τ when k = 2 [5]. However, a cyclic Gray code known as cool-lex

123

1760 Algorithmica (2023) 85:1754–1785

(a) (b)

Fig. 3 a The graph R(S) for S = {1, 1, 2, 3}. b Our Hamilton cycle is a shift Gray code of Perm(S). The
graph R(S) for S = {1, 1, 2, 3} in (a). The Hamilton cycle in R(S) starting from vertex 1321 corresponds
to our universal cycle V(S) = U(S) = 112312131132 in (b)

order had been shown to exist using all σi [52]. Cool-lex order was first discovered
for fixed-weight binary strings (i.e., Perm(S) with k = 2) which are also known as
combinations, and its name comes from its similarity to co-lexicographic order [36].

1.3 Necklaces and Necklace Cycles

A necklace is a lexicographically smallest string in an equivalence class of strings
under rotation. Let N(S) be the set of necklaces with content S. For example, N(S) =
{1123, 1132, 1213} for S = {1, 1, 2, 3}. A necklace cycle is a cyclic order of length n
strings obtained by repeatedly applying shift1,n(). In general, the length of a necklace
cycle divides n. For example, the necklace cycle containing 132132 has length 3. A
necklace cycle contains one necklace, which is its representative. For example, the
thick straight edges in Fig. 3a create necklace cycles with representatives 1123, 1213,
and 1132 from left-to-right. The aperiodic prefix of a string is its shortest prefix that
can be repeated to create it. For example, the aperiodic prefix of 132132 is 132.

1.4 New Results

It is important to note that the graph-basedmodels in Fig. 1.2 require exponential space
with respect to n, and so they do not lead to efficient algorithms for generating a single
universal cycle. With this point in mind, we now summarize our main results below.

1. The construction of a minimum-weight universal cycle V(S) using cycle-joining
in Sect. 2. More specifically, necklace cycles are joined together according to a
first-inversion tree.

– A successor rule that generates successive symbols of V(S) in O(n)-time.

2. The construction of universal cycle U(S) using a necklace concatenation approach
in Sect. 4. More specifically, we concatenate N(S) in reverse cool-lex order (using
aperiodic prefixes).

– A new shift Gray code for fixed-content necklaces with an O(n)-amortized
time algorithm.

123

Algorithmica (2023) 85:1754–1785 1761

– The reversal of U(S) can be generated in O(1)-amortized time per symbol
using O(n) space.

3. A proof that the two constructions are equivalent in Sect. 5. That is, V(S) = U(S).

Our constructions are implemented in C and are provided in the Appendix. The
output can be viewed at http://debruijnsequence.org [40]. Section6 concludes with
future work and open problems.

Prior to this article, universal cycles for shorthand permutations (where n = k)
and shorthand fixed-weight binary strings (where k = 2) were constructed and effi-
ciently generated under slightly different names (see [24, 37] and [35]). Note that
these previous works use lexicographically largest representatives for necklaces. Our
use of lexicographically smallest representatives is more standard, but it requires an
adjustment to the original definition of cool-lex order in Sect. 4. A preliminary version
of this paper presented our necklace concatenation construction [45].

1.5 Granddaddy and Cool-Daddy

Besides our main results, we wish to suggest to the reader that our fixed-weight uni-
versal cycle is both natural and fundamental. As a point of comparison, we consider
the most famous de Bruijn sequence.

The granddaddy de Bruijn sequence Gk(n) (as coined by Knuth [29]) is the lexi-
cographically smallest de Bruijn sequence for k-ary strings of length n. For example,
G2(4) = 0000100110101111 is the granddaddy for n = 4 and k = 2. The granddaddy
can be constructed in several elegant ways.

– The granddaddy is constructed by a simple prefer-smallest greedy algorithm (see
[32]).

– The granddaddy is constructed by a simple cycle joining approach. More specifi-
cally, necklace cycles are joined together according to a last non-k tree (see [18,
19]); here we use the term last-0 treewhen referring to the binary case (i.e., k = 2).

– The granddaddy is constructed by a simple necklace concatenation approach.More
specifically, necklaces are concatenated in lexicographic order (using aperiodic
prefixes) (see [15, 16]).

To our knowledge, no simple greedy algorithm constructs our fixed-content uni-
versal cycle. However, our contributions match the latter two bullets quite closely,
especially in the binary case.

In terms of cycle joining, when constructing the granddaddy G2(6), the necklace
cycle represented by 001011 is joined to the necklace cycle represented by 001111 by
complementing the last zero (as underlined). Similarly, when constructing our fixed-
content universal cycle with S = {1, 1, 2, 2, 3, 3}, the necklace cycle represented by
123123 is joined to the necklace cycle represented by 121323 by swapping the first
inversion (as underlined).

123

http://debruijnsequence.org

1762 Algorithmica (2023) 85:1754–1785

Fig. 4 Comparing the binary granddaddy de Bruijn sequence G2(n) for n-bit binary strings, and our fixed-
content universal cycle U(S) = V(S) with content S. See Fig. 5 and (1)–(2) for specific examples

In terms of necklace concatenation, when n = 4 and k = 3, the granddaddy G3(4)
is equal to

0 · 000001 · 000011 · 000101 · 000111 · 001 · 001011 · 001101
·001111 · 01 · 010111 · 011 · 011111 · 1 (1)

owing to the lexicographic order of binary necklaces of length 6 (and their aperi-
odic prefixes). Similarly, our fixed-content universal cycle U(S) with content S =
{1, 1, 2, 2, 3, 3} is equal to

112233·122313·123213·122133·121233·112332·123132·132·121332·113322
·131322·113232·112323·123·121323·113223 (2)

owing to the reverse cool-lex order of necklaces in N(S) (and their aperiodic prefixes).
These comparisons with the binary granddaddy are summarized in Fig. 4. Due to

the similarities, we refer to our fixed-content universal cycle as the cool-daddy.

2 Cycle Joining feat. the First-Inversion Spanning Tree

We begin this section by outlining the classic cycle-joining approach used to construct
deBruijn sequences anduniversal cycles.We then apply the approach to derive a simple
successor rule for a fixed-content universal cycle. The rule is based on a string’s “first-
inversion”, where an inversion in a string a1 · · · an is a consecutive pair ai , ai+1 where
ai > ai+1.

2.1 Cycle Joining

Call a string in Shor t(S) a state. A function f : Shor t(S) → S is said to be a feedback
function. Given such a feedback function f , let function F : Shor t(S) → Shor t(S)

map a state β = b1b2 · · · bn−1 to state b2 · · · bn−1 f (β). A cycle is a sequence of
distinct states β1, β2, . . . , β j such that F(βi) = βi+1 for 1 ≤ i < j and F(β j) = β1.
Each cycle can be represented by a single string c1 · · · c j where ci corresponds to the
first symbol of βi .

Example 4 Consider content S = {1, 1, 2, 2, 3, 3}. Let f (β) = z, recalling βz has
content S. That is, β ∈ Shor t(S) and z is its missing symbol with respect to S. Then
the cycles

123

Algorithmica (2023) 85:1754–1785 1763

12132, 21323, 13231, 32312, 23121, 31213 and 12312, 23123, 31231

can be represented by the strings C1 = 121323 and C2 = 123, respectively.
Note that C1 is a universal cycle for {12132, 21323, 13231, 32312, 23121, 31213}

and C2 is a universal cycle for {12312, 23123, 31231}.
If β1 = xb2 · · · bn−1 and β2 = yb2 · · · bn−1 are both states where x �= y then we

say β1 and β2 form a conjugate pair. For each state β there is at most one other state
that forms a conjugate pair with β because of the content restrictions. If C1 and C2 are
disjoint cycles where C1 contains one state from a conjugate pair and C2 contains the
other, then the two cycles can be “joined” together to form a single cycle by swapping
the successors of the conjugate states. This “cycle-joining” process is well known, and
formally stated in [13, Thm. 1] and [46, Lemma 3]. The process is a special case of
Hierholzer’s cycle joining algorithm for producing Euler cycles [23].

Example 5 Consider the cycles C1 and C2 from Example 4 and the conjugate pair
32312, 12312; the state 32312 is in C1 and the state 12312 is in C2. By swapping the
successors of these states we obtain a single cycle for the union of the states from C1
and C2:

12132, 21323, 13231, 32312, 23123, 31231, 12312,23121, 31213

corresponding to C = 121323123.

This cycle-joining process has been formalized in [18, 19] to produce a number of
simple successor rules for de Bruijn sequences and universal cycles. Next we apply
the cycle-joining approach to construct a universal cycle for Shor t(S).

2.2 The First-Inversion Tree

Let β = b1b2 · · · bn−1 ∈ Shor t(S), where z denotes themissing symbol, and consider
the following feedback function

f (β) = z. (3)

This function can be used to partition Shor t(S) into necklace cycles whose
representatives are in N(S). More specifically, each b1b2 · · · bn−1 ∈ Shor t(S)

with missing symbol z is followed by b2 · · · bn−1z ∈ Shor t(S) in a cycle.
For example, the cycle associated with 112233 ∈ N(S) includes the strings
11223, 12233, 22331, 23311, 33112, 31122 ∈ Shor t(S).

Let tail(S) denote the unique non-decreasing string composed of all the elements
of S; it is a necklace. The cycles can be joined together into a spanning tree rooted
at tail(S) where the parent of every necklace α, not including tail(S), is obtained by
transposing the two symbols in the “first inversion” of α. We call the resulting tree
the first-inversion tree 2. For example, see the first-inversion tree in Fig. 5b for content

2 This generalizes the decreasing spanning tree presented in [24], but with the relative values of the symbols
inverted.

123

1764 Algorithmica (2023) 85:1754–1785

(a) (b)

Fig. 5 a The last-0 tree for binary strings of length n = 6 rooted at the necklace 111111. Parents are obtained
by complementing the last zero (underlined). b The first-inversion tree for content S = {1, 1, 2, 2, 3, 3}
rooted at the necklace 112233. Parents are obtained by swapping the first inversion (underlined). Necklace
cycles are joined into tree-like structures in both the a (binary) grand-daddy de Bruijn sequenceGk (n), and b
our cool-daddy universal cycle V(S). (The non-binary grand-daddy sequences (i.e., with k > 2) are similar,
but somewhat more complicated. Specifically, the necklace cycles do not group into conjugate pairs, but
rather groups of size k. Thus, the actual cycle joining is more complicated, even though a similar tree-like
structure is present.). In both figures, the underlines illustrate the parent rule, and each necklace cycle is
denoted by the aperiodic prefix of its representative. For example, in (a) the necklace cycle containing
010101 is denoted 01, and in (b) the necklace cycle 123123 is denoted 123

S = {1, 1, 2, 2, 3, 3}. It is easy to see that such a mapping always induces a tree since
the parent of each necklace α is lexicographically smaller than α. In fact, the paths
from each node to the root resembles insertion sort (or more accurately, gnome sort
[39])

2.3 A Simple Successor Rule

When the symbols involved in the first inversion of a necklace are rotated to the
front of both the necklace and its parent, then the length n − 1 suffixes correspond
to conjugate pairs whose successors are swapped during the cycle joining process.
For example, given the necklace 113322 and its parent 113232, the conjugate pairs
are 22113 and 32113. Let X(S) denote the set of all 2|N(S) − 1| states from such
conjugate pairs. Repeated application of the cycle-joining approach yields a universal
cycle for Shor t(S) with the following successor-rule:

g(β) =
{
b1 ifβ ∈ X(S)

z otherwise.

123

Algorithmica (2023) 85:1754–1785 1765

Let V(S) denote the universal cycle for Shor t(S) obtained by starting with tail(S) and
repeatedly applying g on the last n − 1 symbols. In other words, g(β) is the symbol
following β in the universal cycle V(S). For example, V({1, 1, 2, 2, 3, 3}) =

11223312231312321312213312123311233212313213212133211

3322131322113232112323123121323113223.

Testing whether or not a state β is in X(S) can be done in O(n) time as follows.
Let h(β) be the rotation of β that takes the longest non-decreasing suffix of b3 · · · bn
and rotates it to the front of β. For example h(123321233) = 123312332.

Lemma 5 Let β = b1b2 · · · bn−1 be a state with missing symbol z. Then β ∈ X(S) if
and only if

– b1 > z and h(b1zb2 · · · bn−1) is a necklace and b1 ≥ bn−1, or
– z > b1 and h(zb1b2 · · · bn−1) is a necklace and z ≥ bn−1.

Proof Let x, y denote the elements z and b1 listed in decreasing order. For β to be in
X(S), the conjugate pair zb1b2 · · · bn−1 and b1zb2 · · · bn−1 must satisfy the properties
that x �= y and xy is the first inversion in the necklace representative for xyb2 · · · bn−1.
Since xy is the first inversion, h(xyb2 · · · bn−1) must be a necklace and x ≥ bn−1. ��

Together, Lemma 5 and Lemma 9 (in Sect. 4.2) imply the following result.

Corollary 6 If β = b1 · · · bn−1 is in X(S) then both h(zβ) and h(b1zb2 · · · bn−1) are
necklaces.

Example 6 If β = b1 · · · b5 = 32113 for content S = {1, 1, 2, 2, 3, 3}, then z = 2
and b1 = 3. Since b1 > z, h(322113) = 113322 is a necklace, and b1 ≥ b5, the state
belongs to X(S).

Based on Lemma 5, the following is a successor rule to construct V(S). An illus-
tration is in Fig. 6.

Successor rule for fixed-content universal cycle V(S)

Let β = b1b2 · · · bn−1 be a state where z is the missing symbol. Then

g(β) =
⎧⎨
⎩

b1 if z > b1 and h(zb1b2 · · · bn−1) is a necklace and z ≥ bn−1 (4a)

b1 if b1 > z and h(b1zb2 · · · bn−1) is a necklace and b1 ≥ bn−1(4b)

z otherwise. (4c)

Since testing if a string is a necklace can be done in O(n) time [2] we obtain the
following theorem. The minimum-weight property is a direct consequence of using
the feedback function in (3) since the spanning tree joins the necklace cycles (which
use weight 0 edges) using as few weight 1 edges as possible.

Theorem 7 V(S) is a minimum-weight universal cycle for Shor t(S) that can be con-
structed in O(n) time per symbol.

123

1766 Algorithmica (2023) 85:1754–1785

Fig. 6 The fixed-content universal cycleV(S) for S = {1, 1, 2, 2, 3, 3} in column-major order, as generated
by the successor rule in (4). More specifically, the columns labeled β show successive states of the universal
cycle, and any single column (e.g., b1 or b5) provides the universal cycle. Each state is amember of Shor t(S)

and hence is shorthand for a member of Perm(S). The columns labeled case provide the symbol following
β in the universal cycle; the next symbol is β’s first symbol b1 when (4a) or (4b) applies, and is β’s missing
symbol z = b6 when (4a) applies. For example, the first state β = 11223 has case (4c) applied. In other
words, βz = 112233 appears in the universal cycle (as opposed to βb1 = 112231). As a check, note that
this next symbol 3 is the final symbol in the next state 12233. When (4b) applies, the N(S) column provides
the necklace h(zb1b2 · · · bn−1), and these cases correspond to going downward in the first-inversion tree
(see Fig. 5b). Similarly, when (4c) applies, the N(S) column provides the necklace h(b1zb2 · · · bn−1), and
these cases correspond to going upward in the first-inversion tree. In both of these cases, the necklace comes
from the child of the parent–child conjugate pair. For example, 121233 appears twice in the N(S) column,
first going downward from the root 112233 via state 22331, and then going upward to the root 112233 via
state 12331 (where 22331 and 12331 are conjugates of each other). The Gray code for Perm(S) using two
operations, as generated by (5), can be obtained from this figure as follows: Add the missing symbol to
each β, and map the cases (4a)–(4b) to (5a), and (4c) to (5b). For example, 112233 ∈ Perm(S) is followed
by 122331 ∈ Perm(S) using shift1,n(=)shift1,6() in this order because (4c) maps to (5b). Similarly, a
minimum-weight binary representation is obtained by using 1 for each (4a) or (4b), and 0 for each (4c)

123

Algorithmica (2023) 85:1754–1785 1767

3 A Shift Gray Code for Multiset Permutations

An immediate consequence of the successor rule described in the previous section is
a shift Gray code for Perm(S) whose successor-rule, defined as follows, shifts the
first symbol to either the nth or (n−1)st position in the string.
Successor rule for Perm(S) using two operations
Let α = a1a2 · · · an ∈ Perm(S). Then

nextMultiPerm(α) =
{

shift[(α)]1, n−1 if g(a1 · · · an−1) = a1, (5a)

shift[(α)]1, n if g(a1 · · · an−1) = an . (5b)

Theorem 8 Starting with any initial string α in Perm(S) and repeatedly applying
the function nextMultiPerm(α) a total of |Perm(S) − 1| times produces a cyclic shift
Gray code for Perm(S). Moreover, the Gray code can be generated in O(n)-time per
string.

Example 7 Let S = {1, 1, 2, 3} and consider V(S) = 112312131132. It corresponds
to the following shift Gray code for Perm(S), with the index where the first symbol
is shifted to obtain the next string in the listing given in the final column:

Short hand Shift gray code Shift index

112 1123 (4)
123 1231 (4)
231 2311 (3)
312 3121 (4)
121 1213 (4)
213 2131 (4)
131 1312 (3)
311 3112 (3)
113 1132 (4)
132 1321 (4)
321 3211 (4)
211 2113 (3)

Note that the first symbol is shifted in to the n−1st position exactly 2|N(S) − 1|
times.

4 Necklace Concatenations feat: Cool-lex Order

In this section we start by providing a brief background of fixed-content necklaces.
We introduce cool-lex order for Perm(S) and provide a successor rule to produce
the corresponding listing; a special focus is given to N(S). We then describe a known
necklace concatenation approach that is applied to construct a universal cycle for
Shor t(S). We conclude by providing a recursive description of cool-lex and use it to
efficiently list N(S) in cool-lex order.

123

1768 Algorithmica (2023) 85:1754–1785

4.1 Necklaces with Fixed-Content

Let α = a1a2 · · · an be a string. Let αt denote the string composed of t copies of α.
The period of α is the smallest value p such that α = (a1 · · · ap)t for some integer t .
Let ap(α) = a1 · · · ap where p is the period of α; we say ap(α) is the aperiodic prefix
of α. If α has period n we say it is aperiodic; otherwise we say it is periodic.

The number of fixed-content necklaces in N(S) can be deduced using Pólya theory
as discussed in [21]. In the following formula, it is assumed that the content S is
composed of ni ≥ 1 occurrences of each symbol i , |S| = n, and k ≥ 1:

|N(S)| = 1

n

∑
j |gcd(n1,n2,...,nk)

φ(j)
(n/ j)!

(n1/ j)! · · · (nk/ j)! (6)

where Euler’s totient function φ(j) denotes the number of positive integers less than
or equal to j that are relatively prime to j .

There exists a O(1)-amortized time algorithm to list N(S) in reverse lexicographic
order [41].

4.2 Cool-lex Order

Cool-lex order for fixed-content strings was introduced in [52]. In the binary case,
when k = 2, cool-lex order has been well-studied under two natural equivalences
[34, 35, 42]. When extending cool-lex to fixed-content strings where k > 2, there are
a number of equivalent ways to present the ordering. The presentation we give here
differs from the original presentation in [52]. In particular, we consider the longest
non-decreasing prefix instead of the longest non-increasing prefix of the strings in
question. Cool-lex order for Perm(S) is a shift Gray code, where successive strings
differ by the shift of a single symbol. If α = a1a2 · · · an ∈ Perm(S), then recall that

shift[(α)]t, s = a1 · · · as−1atasas+1 · · · at−1at+1 · · · an,

denotes the operation that shifts at into position s. This operation can be implemented
in constant time by using a doubly-linked list data structure, so long as pointers to the
symbol and position are provided. Cool-lex order provides a prefix-shift Gray code for
Perm(S)meaning that successive strings differ by a single prefix-shift corresponding
to the operation shift[(α)]t, 1. Moreover, the next value of t can be updated in constant
time after each shift. The ordering is also cyclic because a prefix-shift transforms the
last string in the order into the first. As an example, the set Perm({1, 1, 2, 2, 3, 3}) is
listed in cool-lex order on the left side of Fig. 7.

One of the most notable features of cool-lex order is that it has a simple successor
rule; the prefix-shift that creates the next fixed-content string in the order can be
specified by the following rule.

Cool-lex Successor Rule for Fixed-Content Strings
Let α = a1a2 · · · an ∈ Perm(S) and let j denote the length of α’s longest

non-decreasing prefix. The string following α in cool-lex order, denoted next(α),

123

Algorithmica (2023) 85:1754–1785 1769

is obtained from α by the prefix-shift in the following cumulative cases

next(α) =
⎧⎨
⎩

shift[(α)] j, 1 if j = n (7a)

shift[(α)] j+1, 1 if j = n − 1 or a j > a j+2 (7b)

shift[(α)] j+2, 1 otherwise. (7c)

Another benefit of cool-lex order is that its relative order provides shift Gray codes
for numerous interesting subsets of Perm(S). This phenomenon was discussed in the
binary case in [34], and more generally in [53]. In particular, this occurs for necklaces,
as illustrated in Fig. 7 for S = {1, 1, 2, 2, 3, 3}. By adapting the techniques from [34,
53], we obtain the following successor rule for fixed-content necklaces.3

Cool-lex Successor Rule for Fixed-Content Necklaces
Let α = a1a2 · · · an ∈ N(S) and let j denote the length of α’s longest non-

decreasing prefix. When j < n − 1, let α′ = a1 · · · a ja j+2a j+1a j+3 · · · an ; it is α

with a j+1 and a j+2 transposed. The necklace following α in cool-lex order, denoted
next(α), is obtained from α by the shift in the following cumulative cases

next(α) =
⎧⎨
⎩

shift[(α)] j, 1 if j = n (8a)

shift[(α)] j+1, 1 if j = n − 1 or a j > a j+2 (8b)

shift[(α)] j+2, 1 otherwise. (8c)

where s is the smallest index such that the result of shifting the specified element
yields a necklace.

Example 8 Consider the necklace α = a1a2a3a4a5a6 = 122133 with longest non-
decreasing prefix of length j = 3. Since a3 < a5 and 122313 is a necklace, next(α) =
lshiftα(j+2).We can determine the result of lshiftα(5) by bubbling the symbol a5 = 3
to the left, starting from α, as follows:

a1a2a3a4a5a6 = 122133is a necklace;

a1a2a3a5a4a6 = 122313is a necklace;

a1a2a5a3a4a6 = 123213is a necklace;

a1a5a2a3a4a6 = 132213is not a necklace;

a5a1a2a3a4a6 = 312213is not a necklace.

The result is the last necklace in this list.Hence, lshiftα(5) = a1a2a5a3a4a6 = 123213.

Observe from the previous example, that the necklaces that result from shifting
the specified symbol to the left are all contiguous. This property is formalized in the
upcoming Lemma 10. Its proof requires the following technical result.

3 In this presentation, we use the lexicographically smallest representative for necklaces rather than the
lexicographically largest.

123

1770 Algorithmica (2023) 85:1754–1785

Fig. 7 Cool-lex order for the strings with content S = {1, 1, 2, 2, 3, 3} (i.e., Perm(S)) appear to the left of
the vertical line in column-major order, as generated by the successor rule in (7). Observe that each of these
strings is obtained from the previous by a prefix-shift (i.e., shifti,1() for some i > 1). For example, the third
string 113223 is transformed into the fourth string 211323 by moving the underlined symbol to the left
into the first position (or equivalently by rotating the prefix 1132 one position to the right to obtain 2113).
The order is also cyclic in this regard, since the last string is transformed into the first by a prefix-shift.
The column to the right of the vertical line illustrates the necklaces with content S (i.e., N(S)) as they
appear in cool-lex order. Observe that each necklace is obtained from the previous by a shift given by (8).
For example, the first necklace 113223 is transformed into the second necklace 121323 by moving the
underlined symbol two positions to the left (or equivalently by rotating the substring 132 one position to
the right to obtain 213). The order is again cyclic in this regard, since the last string is transformed into the
first by a shift. The fixed-content universal cycle U(S) is obtained by reversing the order of these necklaces,
and concatenating their aperiodic prefixes, as shown in Fig. 9. In particular, note that 112233 is last here,
and first in Fig. 9

Lemma 9 If a1a2 · · · an is a necklace that contains a smallest index t such that at >

at+1, then a1 · · · at−1at+1atat+2 · · · an is a necklace.
Proof Let β = b1b2 · · · bn = a1 · · · at−1at+1atat+2 · · · an . Let β j denote the rotation
of β starting at b j and let α j denote the rotation of α = a1a2 · · · an starting at a j . If
β ≤ β j for each 2 ≤ j ≤ n, then β is a necklace. Since α is a necklace, each ai ≥ a1

123

Algorithmica (2023) 85:1754–1785 1771

and thus each bi ≥ b1. Since b1 · · · bt−1 is non-decreasing it is straightforward to
observe that β j > β for 2 ≤ j ≤ t + 1. Now consider the prefix of length t for β j

where t + 2 ≤ j ≤ n. This prefix is the same as the length t prefix of α j . If this
prefix is less than or equal to b1 · · · bt , then it must be strictly less than a1 · · · at since
at > bt . But this contradicts the fact that α is a necklace. Thus this prefix must be
strictly greater than b1 · · · bt . Thus β j ≥ β for each 2 ≤ j ≤ n and hence β is a
necklace. ��

Given α = a1a2 · · · an ∈ N(S), then from (8), let t correspond to the index of the
element shifted to position s so

next(α) = a1 · · · as−1atas · · · at−1at+1 · · · an .

Using this notation, the following result illustrates the “bubble property” that neck-
laces have with respect to cool-lex order.

Lemma 10 For s ≤ i < t , a1 · · · ai−1atai · · · at−1at+1 · · · an is a necklace.
Proof When i = s, next(α) = a1 · · · as−1atas · · · at−1at+1 · · · an is a necklace by
definition. For i > s, we step through the cases of (8) and the possible values of t ,
recalling that j is the length of the longest non-decreasing prefix of α. If |N(S)| =
1, then the necklace is either 1n or 1n−12, and the result clearly holds as part of
case (8a). Otherwise there are at least two symbols that are not 1. Case (8a) implies
that α is non-decreasing and t = n. From the definition of a necklace, it is easy to
observe that s =
n1/2� + 1, where n1 is the number of occurrences of the symbol
1. Moreover, shift[(α)]n, i is a necklace for all s ≤ i < n. Otherwise, if t = j + 1
(from case (8b)) then by Lemma 9, shift[(α)]t, t − 1 is a necklace; if t = j + 2
(from case (8c)) then the successor-rule itself requires shift[(α)]t, t − 1 is a necklace.
Now, suppose there exists some r , where s < r < t − 1, such that σ = d1 · · · dn =
shift[(α)]t, r = a1 · · · ar−1atar · · · at−1at+1 · · · an is not a necklace. Since a1 · · · at−2
is non-decreasing, Lemma 9 implies that d1 · · · dr is non-decreasing. Thus, by the
definition of a necklace, there is some suffix σ ′ of dr+1 · · · dn that is less than or equal
to d1 · · · dr (namely, a prefix of a rotation that is a necklace). If at > ds , then since
next(α) also has suffix σ ′, a1 · · · as−1at is greater than σ ′, contradicting the fact that
next(α) is a necklace. Otherwise it must be that each element in as · · · ar−1 is at and
hence σ = next(α) which we already stated is a necklace, a contradiction. ��

Since O(n) time is sufficient for testing whether or not a string is a necklace [2],
the necklace successor rule runs in O(n2) time. In Sect. 4.4, a recursive description of
cool-lex order is provided. When focusing on necklaces, an optimization allows N(S)

to be listed in cool-lex order in O(n)-amortized time per necklace.

4.3 Necklace Concatenation Construction

As mentioned in Sect. 1.5, the most well-known de Bruijn sequence is the so-called
grand-daddy de Bruijn sequence; it is the lexicographically smallest k-ary de Bruijn
sequence of order n. It can be generated very elegantly using an approach that is often

123

1772 Algorithmica (2023) 85:1754–1785

referred to as the FKM construction or FKM algorithm, due to its discoverers [15,
16]. As discussed in [35], the authors of this article prefer to describe the construction
using a slightly different approach called the necklace-prefix algorithm. The difference
between the algorithms is that the former uses an ordering of Lyndon words (i.e.,
aperiodic necklaces) whose length divides n, while the latter uses an order of necklaces
that is then reduced to the same set of Lyndonwords.4 For example, the FKMalgorithm
is based on column (b) of Fig. 8, while the necklace-prefix algorithm uses column (a).
When using lexicographic order, the resulting constructions are identical, but this is
not true for other orders. For example, the two concatenation schemes give different
results when using co-lexicographic order (which orders strings from right-to-left),
with the necklace-prefix algorithm creating the grandmama de Bruijn sequence [12]
and the FKM algorithm not working. Similarly, we use the necklace-prefix algorithm
when working with cool-lex order, since cool-lex order is only defined for strings of
the same length.

Formally, the necklace-prefix algorithm takes an order of strings, filters out the non-
necklaces, reduces the remaining necklaces to their aperiodic prefix, and concatenates
the prefixes. Amazingly, the granddaddy de Bruijn sequence is created by applying
the necklace-prefix algorithm to the k-ary strings of length n in lexicographic order.
This is illustrated in Fig. 8 for n = 6 and k = 2. The approach has been generalized
to other sets in [47].

Unfortunately, the magic runs out when we consider fixed-content strings, even in
their shorthand representatives. As an illustration, note that the lexicographic order of
necklaces with content S = {1, 1, 2, 2, 3, 3} places the following necklaces consecu-
tively,

. . . 113322, 121233, . . . ,

and so, the necklace-prefix algorithm generates · · · 113322121233 · · · . The bold sub-
string of length n−1 = 5 is not shorthand for a string with the content S because it
has too many 2’s. The cause of the issue is also clear: The leftmost 2 moves several
positions to the left from 113322 to 121233. This issue leads us to instead use reverse
cool-lex order, since this will ensure that individual symbolsmove atmost one position
to the left between successive necklaces.

Let α1, α2, . . . , αm denote the necklaces N(S) listed in reverse cool-lex order.
Amazingly, by applying the necklace-prefix algorithm outlined with respect to cool-
lex order, we obtain a universal cycle for Shor t(S). Let

U(S) = ap(α1) ap(α2) · · · ap(αm).

An example of U(S) is provided in Fig. 9 for S = {1, 1, 2, 2, 3, 3}.
Theorem 11 U(S) is universal cycle for Shor t(S). Moreover, U(S) = V(S).

This concatenation construction does not attain the sufficient conditions provided
in [17] for when concatenating smaller cycles yields a larger universal cycle. Instead,

4 Note that the aperiodic prefix of a necklace of length n is a Lyndon word whose length divides n.

123

Algorithmica (2023) 85:1754–1785 1773

(a) (b) (c)
Fig. 8 The grand-daddy de Bruijn sequence Gk (n) for n = 6 and k = 2 is constructed by the necklace-
prefix algorithm applied to the binary strings of length 6. The algorithm starts with the lexicographic order
of binary strings of length 6 (which are not shown), then reduces the order to the necklaces in column
(a), and their aperiodic prefixes in column (b), and concatenates these prefixes to get the grand-daddy de
Bruijn sequence in (c). The FKM algorithm yields the same concatenation directly from column (b), since
it contains the Lyndon words of length 1, 2, and 3 (i.e., the divisors of n = 6) in lexicographic order

this theorem is proved in Sect. 5 by demonstrating that the symbol following a given
length n − 1 substring β in U(S) is given by the successor-rule g(β) used to generate
V(S). By applying an efficient algorithm to list N(S) in cool-lex order, as presented
in the next section, we obtain the following result.

Theorem 12 The reversal of U(S) can be generated in O(1)-amortized time per sym-
bol using O(n) space.

4.4 Recursive Generation of Fixed-Content Necklaces in Cool-lex

In [52], a recursive description is given to list all strings with fixed-content S in cool-
lex order. In that description, the focus is on strings in reverse lexicographic order,
whereas,wewill focus on lexicographic order. In this section,we restate this recurrence
using the original terminology and then apply it to generate the necklaces N(S) in
cool-lex order.

Recall tail(S) denotes the unique non-decreasing string (and necklace) with content
S. A scut5 of S is any non-decreasing string α composed of some of the elements of
S such that α is not a suffix of tail(S), but every proper suffix of α is a suffix of

5 In nature, a scut is a short tail. Here, it is a suffix of tail(S) with a small symbol prepended.

123

1774 Algorithmica (2023) 85:1754–1785

(a) (b) (c)

Fig. 9 Our cool-daddy fixed-content universal cycle U(S) for content S = {1, 1, 2, 2, 3, 3}. The cycle
uses the shorthand representation, and is constructed using the necklace-prefix algorithm on reverse cool-
lex order. The fixed-content necklaces over S are given in reverse cool-lex order in column (a), they are
reduced to their aperiodic prefix in column (b), and their concatenation gives the universal cycle in column
(c)

tail(S). Let αi (S) (or simply, αi) denote the i-th scut of S when the scuts are listed
in decreasing order of the first symbol, then by decreasing length. Let Ri denote the
multiset S with the content of αi (S) removed.

Example 9 Consider S = {1, 1, 2, 2, 3, 3}. Then tail(S) = 112233 and the scuts of S
in decreasing order of the first symbol, then decreasing length, are:

23, 2, 1233, 133, 13, 1.

Note α4(S) = 133 and R4 = {1, 1, 2, 2, 3, 3}\{1, 3, 3} = {1, 2, 2}.

If S is a multiset with j scuts, then the following recurrence C(S, γ) (simplified
from Definition 2.4 in [52]) produces a listing for all strings of the form βγ where β

has content S as they appear in cool-lex order:

C(S, γ) = C(R1, α1γ),C(R2, α2γ), . . . ,C(R j , α jγ), tail(S)γ.

123

Algorithmica (2023) 85:1754–1785 1775

Note that C(S, ε) will produce a listing of all strings with fixed-content S. Recall
Fig. 7 illustrating the cool-lex order for Perm({1, 1, 2, 2, 3, 3}). This is the same
listing generated by C({1, 1, 2, 2, 3, 3}, ε). In particular observe that the strings are
ordered by suffixes corresponding to the scuts: 23, 2, 1233, 133, 13, 1.

We now focus on how to modify this recurrence to list N(S) as they appear in
cool-lex order.

Lemma 13 C(S, γ) contains a necklace if and only if tail(S)γ is a necklace.

Proof (⇐) tail(S)γ is in C(S, γ) by definition. Thus if tail(S)γ is a necklace then
C(S, γ) contains a necklace. (⇒) If C(S, γ) contains necklace then it must be of the
form λγ where λ has content S. If λ = tail(S), then we are done. Otherwise, repeated
application of Lemma 9 implies that tail(S)γ is a necklace. ��

BasedonLemma13, the recurrenceC(S, γ) canbeupdated to list only the necklaces
as follows (where 〈 〉 denotes an empty list).

N (S, γ) =
{ 〈 〉 iftail(S)γ is not a necklace;
N (R1, α1γ), . . . ,N (R j , α jγ), tail(S)γ otherwise,

Note thatN (S, ε)will produce a listing of all necklaceswith fixed-content S as they
appear in C(S, ε). Recall from (8), the corresponding successor-rule which implies
that successive necklaces in this ordering differ by a shift.

The function Cool(t) in Algorithm 1 implements the recurrence for N (S, γ).
Given content S, by initializing the global string a1a2 · · · an to tail(S), the initial call
Cool(n) generates the necklaces N(S) in cool-lex order. The parameter t passed in the
functionCool(t) indicates how the string a1a2 · · · an is partitioned into the two pieces
based on N (S′, γ): a1a2 · · · at = tail(S′) and at+1 · · · an = γ . Each call Cool(t)
corresponding toN (S′, γ) iterates through the scuts of S′ in the proper order. This is
done by scanning tail(S′) = a1 · · · at from right to left until we reach an index i where
ai �= ai−1 (Line 4). To produce all scuts starting with ai−1, and their corresponding
recursive calls if a necklace can be produced, we iteratively shift this symbol through
positions i, i + 1, . . . , t obtaining a new scut for each swap (Lines 5-7). Once all
scuts starting with ai−1 have been processed we restore a1 · · · at to tail(S′) (Line
8). We repeat this approach by continuing to traverse tail(S) from right to left until
we reach a symbol that is the same as a1 (Line 3). The function Visit() outputs the
string a1a2 · · · an , and the function Swap(i, j) swaps the symbols at index i and j in
a1a2 · · · an .

When analyzing this algorithm, if every string tested in Line 7 was a necklace, then
the work done by each necklace test can be assigned to the following recursive call.
Since each recursive call generates at least one necklace, and since the necklace testing
can be done in O(n)-time [2], the overall algorithm runs in O(n)-amortized time per
necklace. However, within each recursive call, there can be a number of negative
necklace tests. For instance, consider the string α = 112233112233 and the call to
Cool(6). This results in necklace tests for the following 6 strings, none of which are
necklaces since the rotation starting with the suffix 112233 is smaller than string in

123

1776 Algorithmica (2023) 85:1754–1785

Algorithm 1Recursive algorithm to list the necklaces N(S) as they appear in cool-lex
order. The string a1a2 · · · an is intialized to tail(S), and the initial call is Cool(n).
1: procedure Cool(t)
2: i ← t
3: while ai �= a1 do
4: while ai = ai−1 do i ← i−1

5: for j from i to t do
6: Swap(j−1, j)
7: if a1a2 · · · an is a necklace then Cool(j−1)
8: for j from t down to i do Swap(j−1, j)
9: i ← i−1
10: Visit()

question:

112323112233, 112332112233, 121233112233,

122133112233, 122313112233, 122331112233.

Fortunately there exists a simple optimization: once a string tested on Line 7 is
not a necklace, then by Lemma 10 none of the following strings tested will be either.
This optimization can be applied to Cool(t) by replacing Line 7 with the following
fragment:

if a1a2 · · · an is a necklace then Cool(j−1)
else

for s from j down to i do Swap(s−1, s)
Visit()
return

This optimization ensures that at most one necklace test is negative per recursive
call.

Theorem 14 If a1a2 · · · an is initialized to tail(S), then a call to the optimizedCool(n)
lists the necklaces N(S) in cool-lex order in O(n)-amortized time per string.

In the binary case when k = 2, N(S) can be generated in O(1)-amortized time
[42].

4.4.1 Application: Efficient Construction ofU(S) in Reverse

To construct the reverse of the universal cycle U(S), which itself is a fixed-content
universal cycle over S, we can directly apply the optimized Algorithm 1 to list N(S) in
cool-lex order with a simple modification. Instead of outputting the current necklace
α = a1a2 · · · an , the function Visit()

� determines the period p of α and then

123

Algorithmica (2023) 85:1754–1785 1777

� outputs apap−1 · · · a1.
Since the aperiodic prefix of α can be determined in O(n) (see [2]), the modified

algorithm still runs in O(n)-amortized time per necklace. Since the total length ofU(S)

is proportional to n|N(S)| (see Section 5 in [41] which implies |U(S)| ≥ n|N(S)|/2)
we obtain the result previously stated in Theorem 12.

5 Proof of Theorem 11

If |N(S)| = 1, then the content of S is either all 1 s, or all 1 s and a single 2; the
necklaces are 1n and 1n−12, respectively. In these cases we clearly have U(S) = V(S).
Otherwise, let α1, α2, . . . , αm denote the necklaces of N(S) listed in reverse cool-lex
order, allowing αm+1 = α1. Recall that

U(S) = ap(α1) ap(α2) · · · ap(αm).

Wefocus on consecutive necklacesαi andαi+1,where 1 ≤ i ≤ m. Letαi = c1c2 · · · cn
and let αi+1 = a1a2 · · · an . From (8), there exists some s and t such that

αi = a1 · · · as−1atas · · · at−1at+1 · · · an .

Applying this notation, we obtain the following result.

Lemma 15 The length n − 1 suffix of ap(αi) ap(αi+1) is the same as the length n − 1
suffix of αi+1.

Proof Let p be the period of αi+1. If p = n, the result is trivial. Otherwise αi+1 is
periodic, and from the definition of a necklace and the assumptions on the content,
a1 = ap+1 = 1 andap > 1. Sinceαi+1 is periodic it is a simple exercise to demonstrate
that αi is aperiodic since it is the cool-lex successor of αi+1. Let a ja j+1 be the leftmost
inversion in αi+1. Clearly j ≤ p. If j < p, then t ≤ p + 1 and the result follows.
If j = p then a1 · · · ap is non-decreasing. We consider two cases based on (8)b. If
ap > ap+2 = a2, then t = p + 1 and again the result follows. Otherwise, it must be
that a2 · · · ap are all the same symbol, namely 2. Swapping ap+1 = 1 and ap+2 = 2 in
αi+1 to obtain γ does not yield a necklace because the rotation starting from position
p + 2 in γ will be lexicographically smaller than γ . Thus based on (8)b, t = p + 1,
and again the result follows. ��

We now prove that U(S) = V(S). Let β = b1 · · · bn−1 be a substring of U(S).
We show (i) β is an element of Shor t(S) with missing symbol z and (ii) the symbol
following β in U(S) is g(β), and hence one of z or b1.

Suppose β is completely contained in some ap(αi). Then clearly β is an element of
Shor t(S) and ap(αi) = αi , which means αi is an aperiodic necklace. Thus βz = αi

or zβ = αi . Since each necklace in N(S) begins with 1, the symbol following β in
each case is the missing symbol z. In both cases h(zβ) is not a necklace since it is a
proper rotation of the aperiodic necklace αi . Thus by Corollary 6, β is not in X(S)

123

1778 Algorithmica (2023) 85:1754–1785

and hence g(β) = z. For the remaining cases, β = σ1σ2 where σ2 is a non-empty
prefix of some ap(αi+1), and by applying Lemma 15, σ1 is a non-empty suffix of αi .
Let |σ2| = x and thus σ2 = a1a1 · · · ax and σ1 = cx+2 · · · cn . Note x < n − 1 and the
symbol following β in U(S) is ax+1. Let p denote the period of αi+1.

Case 1: σ2 = ap(αi+1). This means αi+1 is periodic, i.e., αi+1 = (a1 · · · ap) j , for
some j > 1. By Lemma 15, β is a suffix of αi+1 which means zβ = αi+1. Both z
and the symbol following β are 1 as they are each the first symbol of some necklace
in N(S). If a1 · · · ap contains an inversion, then h(zβ) is rotation of αi+1 that must be
lexicographically larger than αi+1 by the definition of p. Thus by Corollary 6, g(β) =
z. Otherwise, suppose a1 · · · ap is non-decreasing. If z = b1, g(β) = z from (4).
Otherwise b1 > z. By the content assumptions, it must be that b1 = 2. If b1 < bn−1,
then g(x) = z from (4). Otherwise, a1 · · · ap = 12p−1, and h(b1zb2 · · · bn−1) =
12p−1212p−2(a1 · · · ap) j−2 is not a necklace. Again g(x) = z from (4).

Case 2: σ2 is a proper prefix of ap(αi+1). Consider three cases for x , noting that
x < p:

– (A): t − 1 < x . In this case σ1 = ax+2 · · · an and σ2ax+1σ1 = αi+1. Clearly, β

is in Shor t(S) with missing symbol z = ax+1. Since t − 1 < x < n − 1, by the
definition of t and (8), σ2 must contain an inversion. Since αi+1 is a necklace with
period p, its rotation h(zβ) must be strictly larger than αi+1, and hence is not a
necklace. Thus, by Corollary 6, g(β) = z.

– (B): s − 1 ≤ x < t − 1. In this case σ1 = ax+1 · · · at−1at+1 · · · an and thus β is in
Shor t(S) with missing symbol z = at . Note ax+1 = b1. If z = b1, then clearly
g(β) = b1 = z. Otherwise, by the definitions of s and t and Lemma 10, both
h(zb1 · · · bn−1) and h(b1zb2 · · · bn−1) are necklaces. Also, by the definition of t ,
ax+1(= b1) is greater than or equal to ax (= bn−1). Thus, the larger of z and b1 is
greater than or equal to bn−1. Thus g(β) = b1, from Lemma 5.

– (C): x < s − 1. In this case σ2 = c1 · · · cx and σ2cx+1σ1 = αi . Clearly,
β is in Shor t(S) and z = cx+1 = ax+1. By the definition of s, γ =
c1 · · · cs−2cscs−1cs+1 · · · cn is not a necklace.
If x = s − 2, then γ = h(b1zb2 · · · bn−1) and by Corollary 6 β is not in X(S).
Thus g(β) = z.
Otherwise x < s − 2 and by the definition of t , cx+1 ≤ cx+2. If cx+1 = cx+2 =
b1, then g(β) = z = b1. Otherwise it is a simple exercise to demonstrate that
h(b1zb2 · · · bn−1) is not a necklace since γ is not a necklace. Again, byCorollary 6,
β is not in X(S) and thus g(β) = z.

For each case, we have demonstrated that β is in Shor t(S) and the symbol following
β in U(S) is g(β). Thus U(S) = V(S), completing the proof of Theorem 11.

6 Final Remarks

In this paperwepresented two algorithms that construct thefirst fixed-content universal
cycle.

1. We developed a successor-rule based on the first-inversion tree of necklaces that
runs in O(n) time per symbol using O(n) space.

123

Algorithmica (2023) 85:1754–1785 1779

2. We developed concatenation construction based on cool-lex order of fixed-content
necklaces that runs in O(1)-amortized time per symbol using O(n) space.

The first result provides a cyclic shift Gray code for multiset permutations (i.e., string
with a given Parikh vector) in which the next multiset permutation is obtained by the
shifting the first symbol into the last or second last position. The Gray code can be
generated in O(n)-time per string, starting from any string in the set. The second result
involved the creation of an O(n)-time per string shift Gray code algorithm for listing
necklaces of fixed content in cool-lex order.

6.1 Additional Observations

We conclude with additional observations and avenues for future research, some of
which are expanded upon online [40].

Cycle-Joining. The first-inversion tree swaps the leftmost inversion in a necklace,
and paths to the root node (i.e., tail(S)) resemble insertion sort or gnome sort [39].
Different fixed-content universal cycles can be created by using other trees. For exam-
ple, one could instead swap rightmost inversions according to the last-inversion tree.
Alternatively, one could focus on the smallest value that is not in sorted order. This
change results in paths to the root that follow selection sort, and generalizes the decre-
menting spanning tree from [24] and its associated bell ringer universal cycle for
permutations.

Feedback Functions. Our cycle-joining construction is based on the underly-
ing feedback function f (b1b2 · · · bn−1) = z, which returns the missing symbol z
and creates necklace cycles. Instead, one could start with the feedback function
f (b1b2 · · · bn−1) = b1, which creates initial cycles that are not necklace cycles.
Universal cycles resulting from this feedback function would have maximum-weight
rather than minimum-weight cycles.

With regard to the choice of feedback function, it is worth noting some connections
between this article and foundational work in the area. In the special case when k = 2,
recall that multiset permutations correspond to fixed-weight binary strings. In this
case, the feedback function f (β) = z corresponds to two of the “simple” feedback
functions presented in [22, Ch. 7], depending on the weight w of the strings. The
pure summing register (PSR) and the complementing summing register (CSR) apply
feedback functions defined as follows, where the operator ⊕ denotes addition modulo
2:

PSR(β) = b1 ⊕ b2 ⊕ · · · ⊕ bn−1 and CSR(β) = b1 ⊕ b2 ⊕ · · · ⊕ bn−1 ⊕ 1.

If w is even, then f (β) = PSR(β); if w is odd, then f (β) = CSR(β). Cycle-joining
using these feedback functions has been previously studied in [14]. As we proved in
Theorem 11, they also are the underlying feedback function used in the constructions
from [35] which were later applied to construct weight-range universal cycles in [46].

Shift Gray Codes and Applications. Our Gray codes using shift1,n() and
shift1,n−1() can be used to optimize exhaustive computations for objective function
focused on the (ordered) pairs of symbols in a string. For example, consider a directed

123

1780 Algorithmica (2023) 85:1754–1785

traveling salesman problem, where each permutation of {1, 2, . . . , n} represents a
Hamilton path in the graph, and each ordered pair of symbols represents a directed
edge. Notice that the operation shift1,n() changes only one edge in the associated
path, while shift1,n−1() changes two.6 Thus, the cost of each successive paths can be
updated in O(1)-time. These Gray codes are also helpful when ordering events with
repetition (e.g., multiple deliveries along the same route in a stacker crane problem
[1]).

Other interesting questions can be asked about the existence of Gray codes using
various sets of strings and shifts. For example, there is no Gray code for Perm(S)

using shiftn,1(), shift1,n(), and shift1,2(), even for fixed-weight binary strings (i.e.,
k = 2) [5]. However, the latter two operations are sufficient for permutations (i.e.,
n = k) [44] (also see [38]). A specific open question is whether Perm(S) has a Gray
code using shift1,2(), shift1,3(), and shift1,n() (see [49] when n = k).

Encodings. Shorthand representation is not the only encoding of Perm(S) that
could be considered for use in universal cycles. In particular, order isomorphism [20,
28], relaxed shorthand [55], and graphical representations [4] have all been considered
for permutations.

Acknowledgements We’d like to thank the anonymous referees for helpful comments and corrections.

Funding Joe Sawada: Natural Sciences and Engineering Research Council of Canada (NSERC) grant
RGPIN 400673-2012

Declarations

Conflict of interest The authors have no known conflicts of interest to declare.

Ethical Statement The research of Joe Sawada is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) grant RGPIN-2018-04211.

Appendix A: Successor-rule approach to constructV(S)

//--
// SHORTHAND UNIVERSAL CYCLES FOR FIXED-CONTENT STRINGS IN O(n)-TIME PER SYMBOL
//--
#include <stdio.h>
int N,K,a[100],b[100],total=0;

//---
// Returns length of longest aperiodic prefix if b[1..n] is a necklace; return 0 otherwise
//---
int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {
if (b[i-p] > b[i]) return 0;
if (b[i-p] < b[i]) p = i;

}
if (n % p != 0) return 0;
return p;

}

6 In contrast, the swaps used in the Steinhaus-Johnson-Trotter order [48] cause up to three edges to be
changed.

123

Algorithmica (2023) 85:1754–1785 1781

//---------------------------------
int Coollex(int z) {

int j,t,count,b[100],c[100];

// Set b[1..N] = z a[1..N-1], swapping the first two elements if not an inversion
b[1] = z;
for (j=1; j<N; j++) b[j+1] = a[j];
if (b[1] < b[2]) { b[1] = b[2]; b[2] = z; }

// Rotate the longest increasing suffix b[j..N] of b[3..N] to the front of b[1..N]
j = N;
while (b[j-1] <= b[j] && j > 3) j--;
count = 1;
for (t=j; t<=N; t++) c[count++] = b[t];
for (t=1; t<=j; t++) c[count++] = b[t];

if (b[1] >= b[N] && b[1] != b[2] && IsNecklace(c, N))
return a[1];
return z;

}
//---------------------------------
void GenUC(int z) {

int i,x;

while (1) {
printf("%d", a[1]); total++;
x = Coollex(z);
if (z == x) z = a[1]; // Update missing symbol

for (i=1; i<N-1; i++) a[i] = a[i+1];
a[N-1] = x;

// Break when at initial increasing
i = 1;
while (a[i] <= a[i+1] && i <N-1) i++;
if (i == N-1 && a[N-1] <= z) break;

}
}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("%d", &K);
N = 0;
for (i=1; i<=K; i++) {

printf("N_%d: ", i); scanf("%d", &tmp);
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
GenUC(a[N]);
printf("\nTotal = %d\n", total);

}

Appendix B: Concatenation approach to construct the reverse ofU(S)

#include <stdio.h>
int N, K, a[100];
//---
// If a[1..n] is a necklace return its period p; otherwise return 0
//---

123

1782 Algorithmica (2023) 85:1754–1785

int Necklace() {
int i, p=1;

for (i=2; i<=N; i++) {
if (a[i-p] > a[i]) return 0;
if (a[i-p] < a[i]) p = i;

}
if (N % p != 0) return 0;
return p;

}
//------------------------------
void Visit() {

int i;
for (i=Necklace(); i>=1; i--) printf("%d ", a[i]);

}
//------------------------------
void Swap(int i, int j) {

int temp;
temp = a[i]; a[i] = a[j]; a[j] = temp;

}
//---------------------------------
void Gen(int t) {

int i,j,s;

i = t;
while (a[i] != a[1]) {

while (a[i] == a[i-1]) i--;
for (j=i; j<=t; j++) {

Swap(j-1,j);
if (Necklace()) Gen(j-1);
else {

for (s=j; s>=i; s--) Swap(s-1,s);
Visit();
return;

}
}
for (j=t; j>=i; j--) Swap(j-1,j);
i--;

}
Visit();

}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("
N = 0;
for (i=1; i<=K; i++) {

printf("N_
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
Gen(N);

}

123

Algorithmica (2023) 85:1754–1785 1783

References

1. Avila, T., Corberán, A., Plana, I., Sanchis, J.M.: The stacker crane problem and the directed general
routing problem. Networks 65(1), 43–55 (2015)

2. Booth, K.S.: Lexicographically least circular substrings. Inf. Process. Lett. 10(4/5), 240–242 (1980)
3. Brockman, G., Kay, B., Snively, E.E.: On universal cycles of labeled graphs. Electron. J. Comb. 17(R4),

1 (2010)
4. Cantwell, A., Geraci, J., Godbole, A., Padilla, C.: Graph universal cycles of combinatorial objects.

Adv. Appl. Math. 127, 102166 (2021)
5. Cheng,Y.: Generating combinations by three basic operations. J. Comput. Sci. Technol. 22(6), 909–913

(2007)
6. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discret. Math.

110(1), 43–59 (1992)
7. Compton, R.C., Gill Williamson, S.: Doubly adjacent gray codes for the symmetric group. Linear

Multilinear Algebra 35(3–4), 237–293 (1993)
8. Corbett, P.F.: Rotator graphs: an efficient topology for point-to-point multiprocessor networks. IEEE

Trans. Parallel Distrib. Syst. 3(05), 622–626 (1992)
9. de Bruijn, N.G.: A combinatorial problem. Proc. Koninklijke Nederlandse Academie vanWetenschap-

pen 49, 758–764 (1946)
10. de Bruijn, N. G.: Acknowledgement of priority to c. flye sainte-marie on the counting of circular

arrangements of 2n zeros and ones that show each n-letter word exactly once. (1975)
11. Diaconis, P., Graham, R. L.: Products of universal cycles, In A Lifetime of Puzzles. Demaine, E.,

Demaine, M., Rodgers, T.: eds., A K Peters/CRC Press, pp 35–55, (2008)
12. Dragon, P.B., Hernandez, O.I., Sawada, J., Williams, A., Wong, D.: Constructing de Bruijn sequences

with co-lexicographic order: The k-ary grandmama sequence. Eur. J. Comb. 72, 1–11 (2018)
13. Etzion, T.: An algorithm for constructing m-ary de Bruijn sequences. J. Algorithms 7(3), 331–340

(1986)
14. Etzion, T., Lempel, A.: Algorithms for the generation of full-length shift-register sequences. IEEE

Trans. Inform. Theory 30(3), 480–484 (1984)
15. Fredricksen, H., Kessler, I.: An algorithm for generating necklaces of beads in two colors. Discrete

Math. 61(2), 181–188 (1986)
16. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete

Math. 23, 207–210 (1978)
17. Gabric, D., Sawada, J.: Constructing de Bruijn sequences by concatenating smaller universal cycles.

Theoret. Comput. Sci. 743, 12–22 (2018)
18. Gabric, D., Sawada, J., Williams, A., Wong, D.: A framework for constructing de Bruijn sequences

via simple successor rules. Discret. Math. 341(11), 2977–2987 (2018)
19. Gabric, D., Sawada, J., Williams, A., Wong, D.: A successor rule framework for constructing k-ary de

Bruijn sequences and universal cycles. IEEE Trans. Inf. Theory 66(1), 679–687 (2020)
20. Gao, A.L., Kitaev, S., Steiner, W., Zhang, P.B.: On a greedy algorithm to construct universal cycles for

permutations. Int. J. Found. Comput. Sci. 30(01), 61–72 (2019)
21. Gilbert, E.N., Riordan, J.: Symmetry types of periodic sequences. Illinois J. Math. 5(4), 657–665

(1961)
22. Golomb, S. W.: Shift register sequences: secure and limited-access code generators, efficiency

code generators, prescribed property generators, mathematical models. World Scientific, 3rd edition,
(2017)

23. Hierholzer, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung
zu umfahren. Math. Ann. 6, 30–32 (1873)

24. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algorithmica
64(2), 215–245 (2012)

25. Horan, V., Hurlbert, G.: Universal cycles for weak orders. SIAM J. Discrete Math. 27(3), 1360–1371
(2013)

26. Jackson, B., Stevens, B., Hurlbert, G.: Research problems on Gray codes and universal cycles. Discret.
Math. 309(17), 5341–5348 (2009)

27. Jackson, B.W.: Universal cycles of k-subsets and k-permutations. Discret. Math. 117(1–3), 141–150
(1993)

123

1784 Algorithmica (2023) 85:1754–1785

28. Johnson, J.R.: Universal cycles for permutations. Discret. Math. 309(17), 5264–5270 (2009)
29. Knuth, D.: TheArt of Computer Programming,Volume 4A:Combinatorial Algorithms, Part 1. Number

pt. 1. Pearson Education (2014)
30. Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discret. Math. 310(23),

3303–3309 (2010)
31. Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discret. Math. 310(23),

3303–3309 (2010)
32. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40(12), 859–864 (1934)
33. Rankin, R. A.: A campanological problem in group theory. In Mathematical Proceedings of the Cam-

bridge Philosophical Society, vol. 44, pp 17–25. Cambridge University Press, (1948)
34. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex Gray codes. J. Combin.

Theory Ser. A 119(1), 155–169 (2012)
35. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings. SIAM J.

Discret. Math. 26(2), 605–617 (2012)
36. Ruskey, F., Williams, A.: The coolest way to generate combinations. Discret. Math. 309(17), 5305–

5320 (2009)
37. Ruskey, F., Williams, A.: An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM

Trans. Algorithm 6(3), 45 (2010)
38. Rytter, W., Zuba, W.: Syntactic view of sigma-tau generation of permutations. Theoret. Comput. Sci.

882, 49–62 (2021)
39. Sarbazi-Azad, H.: Stupid sort: A new sorting algorithm. Newsletter of Computing ScienceDepartment,

Univ. of Glasgow Vol. 599, 4 (2000)
40. Sawada, J.: De Bruijn Sequence and Universal Cycle Constructions. http://debruijnsequence.org/.

Accessed: 2021-12-31
41. Sawada, J.: A fast algorithm to generate necklaces with fixed content. Theoret. Comput. Sci. 301(1),

477–489 (2003)
42. Sawada, J., Williams, A.: A Gray code for fixed-density necklaces and Lyndon words in constant

amortized time. Theoret. Comput. Sci. 502, 46–54, (2013). Generation of Combinatorial Structures
43. Sawada, J., Williams, A.: A Hamilton path for the sigma-tau problem. In Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 568–575. SIAM, (2018)
44. Sawada, J., Williams, A.: Solving the sigma-tau problem. ACM Trans. Algorithms 16(1), 1–17

(2019)
45. Sawada, J., Williams, A.: A universal cycle for strings with fixed-content (which are also known

as multiset permutations). In Workshop on Algorithms and Data Structures, pp 599–612. Springer,
(2021)

46. Sawada, J., Williams, A., Wong, D.L Universal cycles for weight-range binary strings. In In: Lecroq
T., Mouchard L. (eds) Combinatorial Algorithms (IWOCA 2013), pp 388–401. Springer, (2013)

47. Sawada, J., Williams, A., Wong, D.: Generalizing the classic greedy and necklace constructions of de
Bruijn sequences and universal cycles. Electron. J. Comb. 23(1), P1.24 (2016)

48. Steinhaus, H.: One hundred problems in elementary mathematics. Courier Corporation, (1979)
49. Stevens, B., Williams, A.: Hamilton cycles in restricted and incomplete rotator graphs. J. Graph Algo-

rithms Appl. 16(4), 785–810 (2012)
50. Swan, R.G.: A simple proof of rankin’s campanological theorem. Am. Math. Mon. 106(2), 159–161

(1999)
51. van Aardenne-Ehrenfest, T.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 203–217

(1951)
52. Williams, A.: Loopless generation of multiset permutations using a constant number of variables by

prefix shifts. In Proceedings of the TwentiethAnnualACM-SIAMSymposiumonDiscreteAlgorithms,
SODA ’09, pp 987–996, USA, (2009). SIAM

53. Williams, A.: Shift Gray codes. PhD thesis, University of Victoria, (2009)
54. Williams, A.: The greedy gray code algorithm. In Workshop on Algorithms and Data Structures, pp

525–536. Springer, (2013)
55. Wong, D.: A new universal cycle for permutations. Graphs Combin. 33(6), 1393–1399 (2017)

123

http://debruijnsequence.org/

Algorithmica (2023) 85:1754–1785 1785

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Constructing the first (and coolest) fixed-content universal cycle
	Abstract
	1 Introduction
	1.1 Fixed-Content Universal Cycles
	1.1.1 First Symbol or Missing Symbol

	1.2 Characterizations Using Graphs
	1.2.1 Transition Graphs: Hamilton Cycles and Binary Representation
	1.2.2 Arc Digraphs: Eulerian Circuits and Universal Cycle Existence
	1.2.3 Rotator Graphs: Shift Gray Codes for (Multiset) Permutations

	1.3 Necklaces and Necklace Cycles
	1.4 New Results
	1.5 Granddaddy and Cool-Daddy

	2 Cycle Joining feat. the First-Inversion Spanning Tree
	2.1 Cycle Joining
	2.2 The First-Inversion Tree
	2.3 A Simple Successor Rule

	3 A Shift Gray Code for Multiset Permutations
	4 Necklace Concatenations feat: Cool-lex Order
	4.1 Necklaces with Fixed-Content
	4.2 Cool-lex Order
	4.3 Necklace Concatenation Construction
	4.4 Recursive Generation of Fixed-Content Necklaces in Cool-lex
	4.4.1 Application: Efficient Construction of mathcalU(S) in Reverse

	5 Proof of Theorem 11
	6 Final Remarks
	6.1 Additional Observations

	Acknowledgements
	Appendix A: Successor-rule approach to construct mathcalV(S)
	Appendix B: Concatenation approach to construct the reverse of mathcalU(S)
	References

