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Abstract
Real-world applications often involve “uncertain” objectives, i.e., where optimisation
algorithms observe objective values as a random variables with positive variance. In
the past decade, several rigorous analysis results for evolutionary algorithms (EAs) on
discrete problems show that EAs can cope with low-level uncertainties, i.e. when the
variance of the uncertain objective value is small, and sometimes even benefit from
uncertainty. Previous work showed that a large population combined with a non-elitist
selection mechanism is a promising approach to handle high levels of uncertainty.
However, the population size and the mutation rate can dramatically impact the per-
formance of non-elitist EAs, and the optimal choices of these parameters depend on
the level of uncertainty in the objective function. The performance and the required
parameter settings for non-elitist EAs in some common objective-uncertainty scenar-
ios are still unknown. We analyse the runtime of non-elitist EAs on two classical
benchmark problems OneMax and LeadingOnes in in the one-bit, the bitwise, the
Gaussian, and the symmetric noise models, and the dynamic binary value problem
(DynBV). Our analyses are more extensive and precise than previous analyses of
non-elitist EAs. In several settings, we prove that the non-elitist EAs outperform the
current state-of-the-art results. Furthermore, we provide more precise guidance on
how to choose the mutation rate, the selective pressure, and the population size as a
function of the level of uncertainty.
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1 Introduction

Evolutionary Algorithms (EAs) are widely applied to solve industrial optimisation
problems [2–8]. EAs are applicable in black-box optimisation problems in which a
fitness function is optimised by only evaluating the fitness of search points [9–11]. The
algorithm has only access to the fitness function via a fitness value oracle. Practical
examples of black-box optimisation include tuning of hyper-parameters of machine
learning systems and optimising air foils in simulation [12]. In these scenarios, it is
hard to formulate the relationship between solutions and fitness values, and fitness
function evaluations are often expensive. Therefore, the cost (or runtime) of black-
box optimisation algorithms is defined as the number of queries to the oracle until an
optimal solution is obtained.

The exact objective value of a search point is often impossible to obtain, or a fitness
function could change over time in practice. Therefore, a wide range of uncertainties
have to be considered in real-world optimisation problems [13]. Most studies of how
EAs respond to uncertainties are empirical [13–15]. In the theory community, runtime
analysis is the main approach to theoretically evaluate the performance of EAs, which
mathematically estimates the expected number of evaluations of the objective function
until an optimum is found. In uncertain environments, runtime analyses of EAs have
considered four abstract uncertainty models which are prior noise [16–22], posterior
noise [16, 19, 21–26], dynamic environment [27–31] and partial evaluation [32,
33]. In pseudo-Boolean optimisation, the prior noise randomly flips one or several
bits in the search point before each evaluation, e.g. one-bit noise [34], which flips
one bit uniformly with probability q, and bit-wise noise [17], which flips each bit
independently with probability p, while the posterior noise makes some changes on
the fitness value after each evaluation, e.g. Gaussian noise [16], which adds a value
sampled from a Gaussian distribution with zero mean and σ 2 variance, i.e.,N (

0, σ 2
)
.

In dynamic optimisation, the fitness function is fixed in each generation but is varied
by time, e.g. the noisy linear function [30] and the DynBV problem [15].

The simple (1+1) EA is robust to some uncertainties but can also be inefficient
under high-level uncertainties. In noisy environments, the runtime of the (1+1) EA
on LeadingOnes is exponential if noise levels are q = �(1) and p = �

(
1/n2

)

under one-bit noise and bit-wise noise, respectively [16–18]. Some algorithms can
furthermore improve the robustness, such as estimation of distribution algorithms
(EDAs) [23], ant colony optimisation (ACO) [19], the (1+1) EA using a resampling
strategy [17, 21], the voting algorithm [26] and population-based algorithms [16, 22,
32, 35]. A common method to cope with high levels of uncertainty is using such a
resampling strategy which averages the value of many uncertain evaluations [17, 21].
The (1+1) EA using a resampling strategy solves OneMax and LeadingOnes in
higher-level one-bit, bit-wise and Gaussian noise models in expected polynomial time
[17, 21].However, the (1+1)EA fails in the symmetric noisemodel, inwhich the fitness
value of a solution x is C −OM(x) with probability 1/2, otherwise OM(x) [24] (The
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definition of the functionOM(x) can be found in Sect. 2.1.), where C ∈ R. A solution
to deal with the symmetric noise model can be to use a population. Qian et al. proved
that the (μ+1) EA and the (1+λ) EA can solve theOneMax problem in the symmetric
noise model in expected polynomial time [24]. For the efficiency of non-elitist EAs
under uncertainties, Dang and Lehre [22] showed that binary tournament selection
with a sufficient population size and a conservative mutation rate has expected runtime
O(n log(n) log(log(n))) on OneMax under any one-bit noise level. They also proved
that the non-elitist EAcan handle extremely high-levelsGaussian noise [22] and partial
evaluation optimisation [32]. However, the robustness of non-elitist EAs to noise is
still unknown in several settings. For the robustness in the dynamic environments,
Lengler and Schaller [30] proved that the (1+1) EA can optimise the random weights
linear function, in which the positive weights in each generation are randomly sampled
independently from some distribution, in expected O(n log(n)) time. The efficiency
of population-based algorithms in this setting is currently unknown, though Lengler
and Riedi [31] proved that the runtime of the (μ+1)EA on theDynBV is O(n log(n))

by assuming that the population is initialised close to the optimum.
Tables 1, 2, 3, 4, 5, 6, 7 and 8 summarise recent theoretical studies (including this

paper) of EAs in noisy settings. Tables 1 and 2 show results for the one-bit noise
model (q) on OneMax and LeadingOnes, respectively. Table 3 and 4 show results
for the bit-wise noise model (p) onOneMax and LeadingOnes, respectively. Table 5
and 6 show results for the Gaussian noise model (σ ) on OneMax and LeadingOnes,
respectively. Tables 7 and 8 show results for the symmetric noise model (C, q) on
OneMax and LeadingOnes, respectively. Note that some previous studies do not
contain exact runtimes. In these cases, the runtime results are deduced from proofs. For
convenience, we call the non-elitist EA with 2-tournament selection as 2-tournament
EA.

In this paper, we theoretically analyse the runtime of non-elitist EAs with 2-
tournament and (μ, λ) selection in several uncertain settings. For the 2-tournament
EA, we first use the level-based theorem [36] to derive a general theorem in uncertain
environments. Then we apply this general theorem to obtain upper bounds of runtimes
on OneMax and LeadingOnes in prior and posterior noise models, i.e., one-bit, bit-
wise, Gaussian and symmetric noise models. In noisy settings, our analyses are more
extensive and precise than previous analyses of non-elitist EAs [22]. We provide more
precise guidance on how to choose the mutation rate and the population size as a
function of the level of uncertainty. We also use the negative drift theorem for popu-
lations [37] to show that a too high mutation rate relative to the noise level leads to
an exponentially low probability to find the optimum within exponential time. For the
(μ, λ) EA, we analyse the runtime under symmetric noise for the first time. Similarly,
we provide guidance on how to choose the mutation rate, the selective pressure and
the population size as a function of the noise level. We also show that too low selective
pressure, i.e., λ/μ, and too high mutation rate according to the noise level lead to
inefficient optimisation. Overall, in several noisy settings, we prove that non-elitist
EAs outperform the current state of the art results (see Tables 1, 2, 3, 4, 5, 6, 7 and 8).
Note that the runtime for a certain level of noise can be obtained by plugging the noise
level and the appropriate parameters into the general results in these tables. Finally,
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we prove for the first time that non-elitist EAs can optimise the DynBV problem in
expected polynomial time.

This paper extends our preliminary work [1]. We extend analyses to the symmetric
noise model (C, q) and the (μ, λ) EA. We also add analyses to show what mutation
rate makes optimisation inefficient in the symmetric noise model.

The paper is structured as follows. Section 2 introduces the studied algorithms,
the analysed uncertainty models and mathematical tools used in the paper. Section 3
provides a general theorem for analysing non-elitist EAs with 2-tournament selection
in uncertain environments. In Sect. 4, we consider four noisemodels.We prove that the
expected runtime of the 2-tournament EA onOneMax and LeadingOnes under one-
bit, bit-wise and Gaussian noise are polynomial for appropriate parameter settings
in Sects. 4.1–4.3, respectively. In Sect. 4.4, we show that non-elitist EAs with 2-
tournament and (μ, λ) selection can find the optimum of OneMax and LeadingOnes
under symmetric noise in expected polynomial time if using appropriate parameter
settings, otherwise runtimes are exponential. Section 5 then shows the runtime analysis
for the 2-tournament EA on theDynBV function. Finally, Sect. 6 concludes the paper.

2 Preliminaries

We consider a non-elitist EA with binary tournament and (μ, λ) selection optimising
four noisy versions and one dynamic version of pseudo-Boolean functions. We first
define some notations which are used later. For any integer n > 0, we define [n] :=
{1, . . . , n} and [0...n] := {0} ∪ [n]. We use H(·, ·) to denote the Hamming distance.
The natural logarithm is denoted by ln(·), and the logarithm to the base 2 is denoted
by log(·). Let f : X → R be any pseudo-Boolean function, where X = {0, 1}n is the
set of bitstrings of length n.

2.1 Noise and Dynamic Fitness Models

We consider two well-known pseudo-Boolean functionsOneMax and LeadingOnes
which are defined as OM(x) := ∑n

i=1 xi and LO(x) := ∑n
i=1

∏i
j=1 x j , respectively.

In this paper, we consider four noise models and the DynBV problem, which are
defined as follows.

For noisy optimisation, we let f n(x) denote the noisy fitness value, and f (x) the
fitnesswithout noise. The one-bit noisemodel (q) [16–19, 34, 38] is the easiest starting
point for theoretical analysis, which can be described as: given a probability q ∈ [0, 1],
i.e., noise level, and a solution x ∈ {0, 1}n , then

f n(x) =
{
f (x) with probability 1 − q

f (x ′) with probability q

where x ′ is a uniformly sampled Hamming neighbour of x .
In real-world problems, noise can affect a stochastic number of bits rather than at

most one bit. The bit-wise model (p) [16–18] can more closely imitate reality: given
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a probability p ∈ [0, 1] and a solution x ∈ {0, 1}n , then f n(x) = f (x ′) where x ′
obtained by independently flipping each bit of the original solution x with probability
p, i.e., noise level.

TheGaussiannoisemodel (σ 2) [14, 16, 21–23, 26] is a typeof posterior noise,which
adds a value independently sampled from a normal distribution in each evaluation. We
can define it as: given a parameter σ ≥ 0, i.e., noise level, and a solution x ∈ {0, 1}n ,
then f n(x) = f (x) + N (0, σ 2).

The symmetric noise model was first introduced by Qian et al. [24]. They show that
the (1+1) EA with a resampling strategy can fail in the symmetric noise model with
fixed noise level q = 1/2, while using a population can be helpful. In this paper, we
propose a more general symmetric noise model using variable noise level q: given a
probability q ∈ [0, 1], i.e., noise level, and an arbitrary number C ∈ R and a solution
x ∈ {0, 1}n , then

f n(x) =
{
f (x) with probability 1 − q

C − f (x) with probability q.

For dynamic optimisation, we use f t (x) instead of f (x), where t ∈ N repre-
sents the current generation. Unlike noisy optimisation, the uncertainty of dynamic
optimisation is reflected in different generations rather than in different evaluations.
For example, the weight of each bit position in a linear function is sampled from a
distribution in each generation, and each individual is evaluated by computing the
weighted sum. This dynamic version of linear functions was first proposed by Lengler
and Schaller [30]. The DynBV problem is a special case of random linear functions,
which was first proposed by Lengler and Meier [15]. It can be regarded as a dynamic
version of the BinVal problem. For the DynBV problem, we uniformly sample a
new permutation πt : [n] → [n] and evaluate the individuals in the t-th generation by
f t (x) = ∑n

i=1 2
n−i xπt (i).

2.2 Non-elitist EAs

Non-elitism means that the fittest individual in a generation is not always copied to
the next generation. There exist many non-elitist selection mechanisms [39–43]. It
may seem counterintuitive not to keep the fittest individuals in the population dur-
ing optimisation. However, in recent studies, non-elitism (or with parameter control
mechanisms) shows its benefits for helping algorithms escaping local optima [44–46],
but parameters, e.g., mutation rate, should be set carefully. In this paper, we con-
sider two popular selection mechanisms: 2-tournament and (μ, λ) selection [47] (see
Sect. 2.3). Algorithm 1 describes a non-elitist EA framework. In the t-th generation,
we obtain a new individual via selection and mutation. We first select an individual z
by independently sampling from a distribution Psel(Pt ) : X λ → X which selects one
individual from the population Pt . Then we obtain a new individual y by mutating
each bit-position in z independently with probability χ/n, the so-called mutation rate.
The distribution Psel(Pt ) is determined by the selection mechanism.
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Algorithm 1 Non-elitist EA
Require: Fitness function f : X → R; Population sizes λ ∈ N where λ ≥ 2; Mutation parameter

χ ∈ (0, n); Initial population P0 ∈ X λ.
1: for t = 0, 1, 2, ... until termination condition met do
2: for i = 1 to λ do
3: Sample z ∼ Psel (Pt )
4: Pt+1(i) ← y, y is obtained by mutating z with mutation rate χ/n.
5: end for
6: end for

In practice, the time spent on performing fitness function evaluation is usually
significantly higher than the time spent on the rest of operations in each generation.
Therefore, the runtime of an EA can be defined by the number of fitness function
evaluations until an optimum is found, i.e., T := min{tλ | |Pt ∩ A∗| > 0} where A∗
is a set containing all optimal solutions. We say that optimisation is efficient if the
expected runtime E[T ] = poly(n), and it is inefficient if the runtime is in e�(n) with
a probability 1 − e−�(n).

2.3 SelectionMechanisms

Algorithm 2 describes the binary tournament selection mechanism in which the fittest
individual is picked up from two uniformly selected individuals x1 and x2. Thus, the
2-tournament EA can be described as Algorithm 1 using the 2-tournament selection
mechanism shown in Algorithm 2. For noisy optimisation, we compare the pair of
individuals based on the noisy function f n(x) instead of f (x). In practice, we often
evaluate once for each individual in the population Pt before selection and mutation.
In this case, each comparison in 2-tournament selection would not be an independent
event which can make analysis difficult. Thus, the reevaluation strategy [16, 17,
19, 21, 22, 24] is applied in this study which means the noisy fitness value of an
individual will be reevaluated every time the individual enters a tournament. Similarly,
for dynamic optimisation, we replace f (x1) ≥ f (x2) with f t (x1) ≥ f t (x2) in line 3
of Algorithm 2.

Algorithm 2 2-tournament selection mechanism
Require: Fitness function f : X → R; Population sizes λ ∈ N where λ ≥ 2; population P ∈ X λ.
1: x1 ← P(i1) where i1 � Uniform([λ])
2: x2 ← P(i2) where i2 � Uniform([λ])
3: if f (x1) ≥ f (x2) then z ← x1 else z ← x2
4: Return z

Algorithm 3 describes the (μ, λ) selection mechanism in which an individual is
selected uniformly at random among the μ individuals with the highest fitness. Note
that we usually sort P once in a generation in practice. In noisy environments, we
assume that the noisy fitness value of an individual will not change during a generation,
i.e., we also sort P once in a generation. We define the selection pressure of the (μ, λ)
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selection mechanism as λ/μ, which refers to the expected number of offspring from
any given individual ranked μ or better [39].

Algorithm 3 (μ, λ) selection mechanism
Require: Fitness function f : X → R; Population sizes μ, λ ∈ N where λ > μ ≥ 2; population P ∈ X λ.
1: Sort P s.t. f (P(1)) ≥ · · · ≥ f (P(λ))

2: z ← P(i) where i � Uniform([μ])
3: Return z

2.4 Analytical Tools

2.4.1 Level-Based Analysis

The level-based theorem [36, 48, 49] is a runtime analysis tool used to obtain upper
bounds on the runtime of many EAs on a wide variety of optimisation problems [38,
45, 50]. The theorem applies to algorithms that follow the scheme of Algorithm 4.
Assume that the search space X is partitioned into m + 1 disjoint subsets A0, A1,
..., Am , which are called levels. The final level Am consists of the optimal solution
of function f . We denote A≥ j := ∪m

k= j Ak the search points in level j and higher.

Let D be some mapping from the set of all possible populations X λ into the space
of probability distributions of X . Thus, we can consider that each individual in Pt+1
is sampled from a distribution D(Pt ) which represent all genetic operators, such as
selection and mutation. For example, line 3 of Algorithm 4 is corresponding to lines
3 and 4 of Algorithm 1.

Theorem 1 (Level-based theorem [36]) Given a partition (A0, A1, ..., Am) of a finite
state space X , let T := min{tλ | |Pt ∩ Am | > 0} be the first point in time that the
elements of Am appear in Pt of Algorithm 4. If there exist z0, z1, . . . , zm−1, δ ∈ (0, 1],
and γ0 ∈ (0, 1) such that for any population P ∈ X λ,

(G1) for all j ∈ [0..m − 1], if |P ∩ A≥ j | ≥ γ0λ then

Pr
y∼D(P)

(
y ∈ A≥ j+1

) ≥ z j ,

(G2) for all j ∈ [0..m−2], and all γ ∈ (0, γ0], if |P∩A≥ j | ≥ γ0λ and |P∩A≥ j+1| ≥
γ λ then Pr

y∼D(P)

(
y ∈ A≥ j+1

) ≥ (1 + δ)γ ,

(G3) and the population size λ ∈ N satisfies

λ ≥ 4/(γ0δ
2) ln

(
128(m + 1)/(z∗δ2)

)
where z∗ := min

{
z j

}
,

then E[T ] ≤ 8
δ2

∑m−1
j=0

(
λ ln

(
6δλ

4+z j δλ

)
+ 1

z j

)
.

123



Algorithmica (2024) 86:396–441 411

Algorithm 4 Population-based Algorithm

Require: Finite state space X and population size λ ∈ N; Map D from X λ to the space of probability
distributions over X

Require: Initial population P0 ∈ X λ

1: for t = 0, 1, 2, ... until termination condition met do
2: for i = 1 to λ do
3: Sample Pt+1(i) ∼ D(Pt )
4: end for
5: end for

2.4.2 Negative Drift for Populations

In this paper, we apply the negative drift theorem for populations [37] to obtain tail
bounds on the runtime of Algorithm 1 in uncertain environments. Let It ( j) denote the
j-th sampled index in generation t . We first define the reproductive rate α0 [37] of
the individual Pt (i) in Algorithm 2 as the expected number of times the individual is
sampled from Psel(Pt ), i.e., E[Rt (i) | Pt ]where Rt (i) := ∑λ

j=1[It ( j) = i] for t ∈ N

and i ∈ [λ]. Informally, the negative drift theorem for populations (Theorem 2) states
that if all individuals close to a given search point x∗ ∈ X have a reproductive rate
below e−χ , then the algorithm needs exponential time to reach x∗.

Without uncertainties, it is well-know that α0 = 2(1 − 1/λ) and α0 = λ/μ for
2-tournament selection and (μ, λ), respectively [51]. By Theorem 2, the runtime of
optimising on any function with a polynomially number of global optima, e.g., One-
Max and LeadingOnes, with the 2-tournament EA is exponential if the mutation rate
is greater than ln(α0 + δ)/n for a constant δ > 0. Section 4.4 shows that uncertain-
ties essentially affect the maximal reproductive rate α0, where a low mutation rate is
required to avoid exponential runtime according to a high-level noise.

Theorem 2 [37] The probability that Algorithm 1 with population size λ = poly(n),
mutation rate χ/n and maximal reproductive rate bounded by α0 < eχ − δ, for a
constant δ > 0, optimises any function with a polynomial number of optima within
ecn generations is e−�(n), for some constant c > 0.

3 2-Tournament EA in Uncertain Environments

In this section, we introduce a general result (Theorem 3) which is an upper bound
of the expected runtime of the 2-tournament EA in uncertain environments. The key
step is to estimate the probability of the “real" fittest individual being selected from
x1 and x2 in line 3 of Algorithm 2. In an uncertainty-free case, the fittest individual is
selected with probability 1. In uncertain environments, condition (C2) of Theorem 3 is
satisfied if the probability that the truly fitter individual is selected is greater than 1/2.
We call this probability minus 1/2 fitness bias. This property of an uncertain problem
decides how small themutation rate should be set, how large the population size should
be used and how fast the algorithm can achieve the optimum. We summarise fitness
biases in some noisy scenarios in Lemma 1. Note that the concept of fitness bias only
describes a property of an uncertainty model for 2-tournament selection.

123



412 Algorithmica (2024) 86:396–441

The general theorem for the 2-tournament EA is derived from the level-based the-
orem (Theorem 1). Condition (C1) is to estimate a lower bound of the probability of
“level upgrading", i.e., producing an individual in level j + 1 after mutation of an
individual in level j . Condition (C2) shows the fitness bias in uncertain environments.
Condition (C3) states the required population size. Finally, we can get an upper bound
for the runtime.

Theorem 3 Let (A0, A1,…,Am) be a fitness partition of a finite state space X . Let
T := min{2tλ | |Pt ∩ Am | > 0} be the first point in time that the elements of Am

appear in Pt of the 2-tournament EAwith noisy function f n(x) andmutation rateχ/n.
If there exist h0, h1,…, hm−1 and θ ∈ (0, 1/2], and where χ ∈ (0, ln(1 + 2θζ )) for
an arbitrary constant ζ ∈ (0, 1), such that, for an arbitrary constant ξ ∈ (0, 1/16),

(C1) for all j ∈ [0..m − 1], Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥ h j ,
(C2) for all j ∈ [0..m − 2], and all search points x1 ∈ A≥ j+1 and x2 ∈ A≤ j , it

follows Pr( f n(x1) > f n(x2)) + 1
2 Pr( f

n(x1) = f n(x2)) ≥ 1
2 + θ ,

(C3) and the population size λ ∈ N satisfies

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

,

then E[T ] <
16(1+o(1))
θ2ξ(1−ζ )2

∑m−1
j=0

(
λ ln

(
6

ξ(1−ζ )2h j

)
+ 1

ξ(1−ζ )2h j

)
.

Proof We use the level-based theorem (Theorem 1) to prove Theorem 3. Firstly, we
derive some inequalities which are used later. From θ ∈ (0, 1/2], ζ ∈ (0, 1) and
0 < χ < ln(1 + 2θζ ) which are assumptions of Theorem 3, we obtain

eχ < 1 + 2θζ (1)

(1 + 2θ) − eχ > 2θ(1 − ζ ). (2)

Then we define ε and γ0 which are used later. Let constant ε :=
(
1 + √

1 − 4
√

ξ
)

/2,

andwe know that ε ∈ (1/2, 1) by ξ ∈ (0, 1/16).We define γ0 := (1+2θ)−exp(χ)
2θ (1−ε).

By Eq. (2), we know that

γ0 = (1 + 2θ) − eχ

2θ
(1 − ε) >

2θ(1 − ζ )(1 − ε)

2θ
= (1 − ζ )(1 − ε). (3)

We first show that condition (G2) of Theorem 1 holds.We define the “current level”
to be the highest level j ∈ [0..m−1] such that there are at least γ0λ individuals in level
j or higher, and there are fewer than γ0λ individuals in level j+1 or higher. Following
condition (G2) of Theorem 1, we assume that the current level is j ≤ m − 2, which
means that there are at least γ0λ individuals of the population Pt in A≥ j , and at least
γ λ but less than γ0λ individuals in A≥ j+1. Let x1 and x2 be the individuals selected
from the population Pt in lines 1 and 2 of 2-tournament selection (Algorithm 2), z be
the solution after comparison in line 3 of 2-tournament selection (Algorithm 2), and
y be the solution after mutating corresponding to line 4 of Algorithm 1.
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Now we estimate a lower bound on the probability that the offspring y is still in
A≥ j+1. By the law of total probability,

Pr(y ∈ A≥ j+1) ≥ Pr(z ∈ A≥ j+1) · Pr(y ∈ A≥ j+1|z ∈ A≥ j+1).

The probability of selecting an individual zwhich is in A≥ j+1 via binary tournament
is composed of two cases. The first case is both x1 and x2 which are selected in lines 1
and 2 of Algorithm 2 are in A≥ j+1 whose probability is at least γ 2. The second case is
that x1 or x2 is evaluated to be in A≥ j+1, whereas the other is evaluated to be in A≤ j .
In this case, noise leads to incorrect comparison in line 3 of Algorithm 2 with some
probability. Let S be the event of a successful comparison, i.e. the better individual
of x1 and x2 is exactly selected from line 3 of Algorithm 2. Hence, the second case
occurs with probability 2(1 − γ )γ Pr(S). Then,

Pr(z ∈ A≥ j+1) ≥ γ 2 + 2(1 − γ )γ Pr(S).

To estimate a lower bound for Pr(S), we assume without loss of generality x1 ∈
A≥ j+1 and x2 ∈ A≤ j . Then, by condition (C2),

Pr(S) = Pr( f n(x1) > f n(x2)) + 1

2
Pr( f n(x1) = f n(x2)) ≥ 1

2
+ θ.

To estimate a lower bound for Pr(y ∈ A≥ j+1 | z ∈ A≥ j+1), we only consider the
case that the mutation operator does not flip any bits, then by Lemmas 3 and 2,

Pr(y ∈ A≥ j+1 | z ∈ A≥ j+1)

≥
(
1 − χ

n

)n ≥ e−χ

(
1 − χ2

n

)
≥ e−χ

(
1 − 2θ

n

)
for all n > 1.

Overall, we can get a lower bound for Pr(y ∈ A≥ j+1) by plugging in Pr(z ∈
A≥ j+1), Pr(y ∈ A≥ j+1|z ∈ A≥ j+1) and Pr(S),

Pr(y ∈ A≥ j+1)

>
(
γ 2 + 2(1 − γ )γ Pr(S)

)
e−χ

(
1 − 2θ

n

)

≥
(

γ 2 + 2(1 − γ )γ

(
1

2
+ θ

))
e−χ

(
1 − 2θ

n

)

≥ γ (1 + 2θ − 2θγ0) e
−χ

(
1 − 2θ

n

)

by the definition of γ0 = (1+2θ)−exp(χ)
2θ (1 − ε),

= γ
(
1 + 2θ − (

1 + 2θ − eχ
) + (

1 + 2θ − eχ
)
ε
)
e−χ

(
1 − 2θ

n

)
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= γ
(
1 + (

1 + 2θ − eχ
)
εe−χ

) (
1 − 2θ

n

)

letting δ := (
1 + (1 + 2θ − eχ ) εe−χ

)
(1 − 2θ/n) − 1,

= γ (1 + δ). (4)

Now we prove that δ > 0, where

δ = (
1 + (

1 + 2θ − eχ
)
εe−χ

) (
1 − 2θ

n

)
− 1

by Eq. (1),

>
(
1 + 2θe−χε(1 − ζ )

) (
1 − 2θ

n

)
− 1

= 2θe−χε(1 − ζ ) − 2θ

n

(
1 + 2θe−χε

) + 4θ2e−χεζ

n

> 2θe−χε(1 − ζ ) − 6θ

n
= θ

(
2e−χε(1 − ζ ) − 6

n

)

by Eq. (1), we have eχ < 1 + 2θζ < 1 + 2θ < 2,

> θ

(
ε(1 − ζ ) − 6

n

)
= θε(1 − ζ ) (1 − o(1)) . (5)

Thus, we get δ > 0 so condition (G2) of Theorem 1 holds from Eq. 4.
To verify condition (G1), we estimate the probability of sampling an individual

beyond the current level of the population.We assume there are at least γ0λ individuals
in A≥ j where j ∈ [0..m − 1]. We only consider the case that the selected individuals
are both in A j in lines 1 and 2 of Algorithm 2, and the individual increases its level
after mutation,

Pr(y ∈ A≥ j+1) ≥ γ 2
0 Pr(y ∈ A≥ j+1 | z ∈ A≥ j ) ≥ γ 2

0 h j =: z j .

Condition (G3) requires the population size to satisfy

4

γ0δ2
ln

(
128(m + 1)

min{z j }δ2
)

= 4

γ0δ2
ln

(
128(m + 1)

γ 2
0 min{h j }δ2

)
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by Eq. (3) and (5),

<
4 (1 + o(1))

(1 − ζ )(1 − ε) (θε(1 − ζ ))2
· ln

(
128(m + 1) (1 + o(1))

(1 − ζ )2(1 − ε)2 (θε(1 − ζ ))2 min{h j }

)

= 4 (1 + o(1))

θ2ε2(1 − ε)(1 − ζ )3
ln

(
128(m + 1)

θ2ε2(1 − ε)2(1 − ζ )4 min{h j }
)

<
4 (1 + o(1))

θ2ε2(1 − ε)2(1 − ζ )4
ln

(
128(m + 1)

θ2ε2(1 − ε)2(1 − ζ )4 min{h j }
)

because ε2(1 − ε)2 = ξ by the definition of ε =
(
1 + √

1 − 4
√

ξ
)

/2,

<
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

< λ.

Therefore, condition (C3) of Theorem 3 guarantees that the population size satisfies
condition (G3) of Theorem 1.

Finally, all conditions of Theorem 1 hold and the expected time (the reevaluation
strategy is taken into account) to reach the optimum is no more than

E[T ] ≤ 2 · 8

δ2

m−1∑

j=0

(
λ ln

(
6δλ

4 + z jδλ

)
+ 1

z j

)
<

16

δ2

m−1∑

j=0

(
λ ln

(
6

z j

)
+ 1

z j

)

≤ 16

δ2

m−1∑

j=0

(

λ ln

(
6

γ 2
0 h j

)

+ 1

γ 2
0 h j

)

by Eq. (3) and (5),

<
16 (1 + o(1))

θ2ε2(1 − ζ )2

m−1∑

j=0

(
λ ln

(
6

(1 − ε)2(1 − ζ )2h j

)
+ 1/h j

(1 − ε)2(1 − ζ )2

)

<
16 (1 + o(1))

θ2ε2(1 − ε)2(1 − ζ )2

m−1∑

j=0

(
λ ln

(
6

ε2(1 − ε)2(1 − ζ )2h j

)

+ 1/h j

ε2(1 − ε)2(1 − ζ )2

)

= 16 (1 + o(1))

θ2ξ(1 − ζ )2

m−1∑

j=0

(
λ ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2h j

)
.

��
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In Lemma 1, we show fitness biases of OneMax and LeadingOnes functions in
the one-bit, the bit-wise, the Gaussian and the symmetric noise models.

Lemma 1 Let A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n] be a partition of
{0, 1}n. Let x1 and x2 be two individuals in A≥ j+1 and A≤ j respectively, where j ∈
[0...n − 2], then θ1 ≤ Pr

(
f n(x1) > f n(x2)) + 1

2 Pr( f
n(x1) = f n(x2)

) − 1/2 ≤ θ2
where

(a) θ1 = 1/2−q/2(1−q/2)−q/(2n0) for q ∈ [0, 1) and n0 ∈ [3,∞) onOneMax
in the one-bit noise model (q),

(b) θ1 = 1/2 − q(1 − q/2) for q ∈ [0, 1) on LeadingOnes in the one-bit noise
model (q),

(c) θ1 = 9(1/2−p)
64

√
2pn+16

for p ∈ (0, 1/2) on OneMax in the bit-wise noise model (p),

(d) θ1 = (1/2 − 3p/2) e−3np for p ∈ [0, 1/3) on LeadingOnes in the bit-wise
noise model (p), and

(e) θ1 = 1/(6+48σ/π) for σ > 0 onOneMax and LeadingOnes in the Gaussian
noise model (σ 2).

(f) θ1 = θ2 = 1/2− q for any C ∈ R and q ∈ [0, 1/2) on OneMax and Leadin-
gOnes in the symmetric noise model (C, q).

Proof Let E be the event that f n(x1) > f n(x2) or individual x1 is selected uni-
formly from {x1, x2} if f n(x1) = f n(x2), then Pr(E) = Pr( f n(x1) > f n(x2)) +
1
2 Pr( f

n(x1) = f n(x2)). Now we derive the fitness bias in different cases.
(a) To estimate a lower bound for Pr(E) on the OneMax problem in the one-bit

noise model (q), we pessimistically assume that x1 ∈ A j+1 and x2 ∈ A j . Then we
say that x1 “wins” if the event E happens, and we distinguish between four cases:

• Let E00 be the event that there is no noise, and x1 wins, then Pr(E00) = (1− q)2.
• Let E01 be the event that there is no noise in x1 and noise in x2, and x1 wins, then

Pr(E01) ≥ (1 − q)q
((

1 − j
n

)
1
2 + j

n

)
= q(1 − q)

(
j
2n + 1

2

)
.

• Let E10 be the event that there is noise in x1 and no noise in x2, and x1 wins, then

Pr(E10) ≥ q(1 − q)
(

j+1
n · 1

2 +
(
1 − j+1

n

))
= q(1 − q)

(
− j

2n − 1
2n + 1

)
.

• Let E11 be the event that there is noise in x1 and x2, and x1 wins. There are two
situations leading x1 to win:

1. The noise flips one of the j + 1 1-bits of x1 and one of the j 1-bit of x2.
2. The noise flips one of n − ( j + 1) 0-bits of x1.

Thus,

Pr(E11) ≥ q2
(
j + 1

n
· j

n
+

(
1 − j + 1

n

))
=

(
( j + 1)( j − n)

n2
+ 1

)
q2

since ( j + 1)( j − n) achieves the minimum when j = (n − 1)/2,

≥
(
3

4
− 1

2n

)
q2.
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By combining all four cases above, we obtain

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ (1 − q)2 + q(1 − q)

(
j

2n
+ 1

2

)

+ q(1 − q)

(
− j

2n
− 1

2n
+ 1

)
+

(
3

4
− 1

2n

)
q2

= 1 − q

2
+ q2

4
− q

2n
= 1

2
+ 1

2
− q

2

(
1 − q

2

)
− q

2n

≥ 1

2
+ 1

2
− q

2

(
1 − q

2

)
− q

2n0
= 1

2
+ θ

(b) To estimate a lower bound for Pr(E) on the LeadingOnes problem in the one-
bit noise model (q), we pessimistically assume that x1 ∈ A j+1 and x2 ∈ A j . We also
pessimistically assume that the suffix of x1, i.e. the bits after the ( j + 2)-th position,
are all 0-bits, and the suffix of x2, i.e. the bits after the ( j + 1)-th position, are all
1-bits, which is the worst case because if the noise flips the ( j +1)-th bit in x2, then x2
will have the maximal noisy fitness n. We say that x1 “wins” if the event E happens,
then we distinguish between four cases to estimate Pr(E):

• Let E00 be the event that there is no noise, and x1 wins, then Pr(E00) = (1−q)2 =
q2 − 2q + 1.

• Let E01 be the event that there is no noise in x1 and noise in x2, and x1 wins.
By the assumption of x2, x1 only fails if noise flips the only 0-bit in x2. Thus,
Pr(E01) ≥ (1 − q) · q · (1 − 1/n) = − (1 − 1/n) q2 + (1 − 1/n) q.

• Let E10 be the event that there is noise in x1 and no noise in x2, and x1 wins.
Unless any of the first j + 1 1-bits of x1 is flipped, x1 wins. Therefore, Pr(E10) ≥
q · (1 − q) · (1 − ( j + 1)/n) = − (1 − ( j + 1)/n) · q2 + (1 − ( j + 1)/n) q.

• Let E11 be the event that there is noise in x1 and x2, and x1 wins. Because j = n−2
is a special case, we first estimate the probability Pr(E11) when j ≤ n − 3. There
are four situations leading x1 to win:

1. The noise does not flip the first j + 1 1-bits of x1, and does not flip the 0-bit
of x2.

2. The noise flips the i-th 1-bits of x1 where i ≤ j +1, and flips one of the first
i − 1 1-bits of x2,

3. The noise flips the same bit-position in the first j 1-bits of x1 and x2 (tie and
half chance to win).

4. The noise flips the ( j + 1)-th 1-bit of x1, and does not flip the first j 1-bits
of x2 (tie and half chance to win).

Thus,

Pr(E11) ≥ q2
((

1 − j + 1

n

)(
1 − 1

n

)
+

j+1∑

i=2

(
i − 1

n
· 1
n

)
+ j

2n2
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+ 1

2n

(
1 − j + 1

n

))

=
(
j2/2 − (n − 3/2) j + (n − 1)(2n − 1)/2

) q2

n2

since j2/2−(n−3/2) j+(n−1)(2n−1)/2 is monotone decreasing as j increases
when j ≤ n − 3/2, Pr(E11) achieves the minimum if j = n − 3,

≥ 1

2

(
1 + 1

n2

)
q2 >

q2

2
.

Then we estimate Pr(E11) in the special case j = n − 2. Since both x1 and x2
have one 0-bit to the optimum, i.e. x1 has only one 0-bit in the last position and x2
has only one 0-bit in the penultimate position, there are five situations to leading
x1 to win:

1. The noise flips the i-th 1-bits of x1 where i ≤ n−1, and flips one of the first
i − 1 1-bits of x2.

2. The noise flips the same bit-position in the first n − 2 1-bits of x1 and x2 (tie
and half chance to win).

3. The noise flips the last 0-bits of x1, and does not flip the 0-bit of x2.
4. The noise flips both the 0-bits of x1 and x2 (tie and half chance to win).
5. The noise flips the (n − 1)-th 1-bit of x1, and flips the last 0-bits of x2 (tie

and half chance to win).

Thus,

Pr(E11) ≥ q2
(
n−1∑

i=2

(
i − 1

n
· 1
n

)
+ n − 2

2n2
+ 1

n

(
1 − 1

n

)
+ 1

2n2
+ 1

2n2

)

= q2

2
.

Therefore, we obtain Pr(E11) ≥ q2/2 for all j ≤ n − 2.

By combining all four cases above and j ≤ n − 2, we obtain

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ 1 − j + 2

n
q +

(
j + 2

n
− 1

)
q2 + q2

2

≥ 1 − j + 2

n
(1 − q)q − q2 + q2

2
≥ 1 − (1 − q)q − q2 + q2

2

= 1 − q + q2

2
= 1

2
+ 1

2
− q(1 − q

2
) = 1

2
+ θ.

(c) To estimate a lower bound for Pr(E) on the OneMax problem in the bit-wise
noise model (p), we pessimistically assume that x1 ∈ A j+1 and x2 ∈ A j , such that
f (x1) = f (x2) + 1. There exists at least one bit-position i , such that x1 has a 1-bit
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in position i and x2 has a 0-bit in position i . The remaining bits of x1 and x2 have
the same number of 1-bits. Therefore, the bits after noise of x1 and x2 in position
i decide the outcome of the fitness comparison. Let x ′

1 and x ′
2 be two substrings

obtained by excluding position i from x1 and x2 respectively. Since each bit is flipped
independently, we know that f n(x ′

1), f n(x ′
2) ∼ Bin (n − 1 − j, p)+Bin ( j, (1 − p))

which are Poisson-binomially distributed random variables with variance σ 2 = (1 −
p)p(n−1). Thenwe apply Lemma 8with σ = √

(1 − p)p(n − 1) ≤ √
pn and d = 2

to obtain a lower bound for

Pr( f n(x ′
1) = f n(x ′

2)) ≥ (1 − 1/22)2

2 · 2√2pn + 1
≥ 9

64
√
2pn + 16

. (6)

By symmetry, we know that Pr( f n(x ′
1) > f n(x ′

2)) = Pr( f n(x ′
1) < f n(x ′

2)). Let
a = Pr( f n(x ′

1) = f n(x ′
2)) andb = Pr( f n(x ′

1) > f n(x ′
2)), thenweobtaina = 1−2b.

Thus,

Pr(E) = b + a

(
(1 − p)2 + 2 · 1

2
· p(1 − p)

)

= 1

2
(1 − a) + a · (1 − p) = 1

2
+

(
1

2
− p

)
a

by Eq. (6),

≥ 1

2
+ 9 (1/2 − p)

64
√
2pn + 16

= 1

2
+ θ.

(d) To estimate a lower bound for Pr(E) on the LeadingOnes problem in the
bit-wise noise model (p), we pessimistically assume that x1 ∈ A j+1 and x2 ∈ A j .
We also pessimistically assume that the suffix of x1, i.e. the bits after the ( j + 2)-th
position, are all 0-bits, and the suffix of x2, i.e. the bits after the ( j + 1)-th position,
are all 1-bits, which is the worst case since the noise flipping ( j + 1)-th bit of x2 to
achieve the optimum which leads to incorrect comparison while the noise only can at
most increase 1 fitness for x1. We distinguish between three cases to estimate Pr(E):

• Let E0 be the event that f n(x1) ≥ j + 1 and f n(x2) ≤ j , then Pr(E0) =
(1− p) j+1(1− p)+ (1− p) j+1 p

(
1 − (1 − p) j

) = (
1 − p(1 − p) j

)
(1− p) j+1.

• Let E1i be the event that f n(x1) = i and f n(x2) ≤ i − 1 for any i ∈
[1, j], then Pr(E1) = ∑ j

i=1 Pr(E1i ) = ∑ j
i=1

(
p(1 − p)i · (

1 − (1 − p)i
) ) =

p
(∑ j

i=1(1 − p)i − ∑ j
i=1(1 − p)2i

)
, by the sum of a geometric series,

Pr(E1) = p

(
1 − (1 − p) j+1

1 − (1 − p)
− 1 − (1 − p)2( j+1)

1 − (1 − p)2

)

= 1

2
− p

2(2 − p)
− (1 − p) j+1 + 1

2 − p
(1 − p)2( j+1).
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• Let E2i be the event that f n(x1) = i and f n(x2) = i for any i ∈ [0, j] then x1 is
selected uniformly, then

Pr(E2) = 1

2

j∑

i=0

Pr(E2i )

= 1

2

⎛

⎝
j−1∑

i=0

p2(1 − p)2i + p(1 − p)(1 − p)2 j

⎞

⎠

since p < 1/3,

≥ 1

2

j∑

i=0

p2(1 − p)2i

by the sum of a geometric series,

= 1

2
p2

(
1 − (1 − p)2( j+1)

1 − (1 − p)2

)

= p

2(2 − p)
− p

2(2 − p)
(1 − p)2( j+1).

By combining all three cases above, we obtain

Pr(E) ≥ Pr(E0) + Pr(E1) + Pr(E2)

=
(
1 − p(1 − p) j

)
(1 − p) j+1 + 1

2
− p

2(2 − p)
− (1 − p) j+1

+ 1

2 − p
(1 − p)2( j+1) + p

2(2 − p)
− p

2(2 − p)
(1 − p)2( j+1)

= 1

2
+ (1 − p)2( j+1)

2 − p
− p

2(2 − p)
(1 − p)2( j+1) − p(1 − p)2 j+1

= 1

2
+ 1

2
(1 − p)2 j+2 − p(1 − p)2 j+1 = 1

2
+

(
1

2
− 3

2
p

)
(1 − p)2 j+1

by
(
(1 − x)1/x−1

)y ≥ e−y (see Lemma 4),

≥ 1

2
+

(
1

2
− 3

2
p

)
e−(2 j+1) p

1−p >
1

2
+

(
1

2
− 3

2
p

)
e−2( j+2) p

1−p

by 0 ≤ j ≤ n − 2 and p ∈ [0, 1/3),

≥ 1

2
+

(
1

2
− 3

2
p

)
e−3np ≥ 1

2
+ θ.
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(e) To estimate a lower bound for Pr(E) on the OneMax and LeadingOnes prob-
lem in the Gaussian noise model (σ 2), we pessimistically assume that x1 ∈ A j+1 and
x2 ∈ A j . Let X ∼ N (0, 2σ 2) be a random variable, then

Pr(E) ≥ Pr( f n(x1) − f n(x2) > 0) = Pr(X > −1) = Pr(X < 1)

by Lemma 6 with x = 1 and standard deviation is
√
2σ ,

> 1 − 1/
√

π/(
√
2
√
2σ) + 4

=
(
1 −

(
1/

√
π/(2σ) + 4

)2)
/
(
1 + 1/

√
π/(2σ) + 4

)

>

(
π/(2σ) + 3

π/(2σ) + 4

)
/
3

2
= 1 + 6σ/π

1 + 8σ/π
· 4
3

· 1
2

= 1

2
+ 1

6 + 48σ/π

= 1

2
+ θ.

(f) To estimate a lower bound for Pr(E) on OneMax and LeadingOnes in the
symmetric noise model (C, q), we assume that x1 ∈ Aa and x2 ∈ Ab where a > b.
Then we say that x1 “wins” if event E happens, and we distinguish between three
cases:

• If a + b > C , then x1 wins if and only if there is noise in x1, i.e, Pr(E) =
(1 − q)2 + (1 − q)q.

• If a + b = C , then x1 wins if and only if there is no noise in both x1 and x2, or
there is noise in either x1 and x2 (same fitness values, so with half chance), i.e.,
Pr(E) = (1 − q)2 + (1 − q)q/2 + q(1 − q)/2.

• If a + b < C , then x1 wins if and only if there is no noise in x2, i.e., Pr(E) =
(1 − q)2 + q(1 − q).

Therefore, we obtain

Pr(E) = (1 − q)2 + (1 − q)q = 1

2
+ 1

2
− q = 1

2
+ θ.

��

4 Noisy Optimisation

This section provides runtimes bounds for non-elitist EAs with 2-tournament and
(μ, λ) selection on two classical functions in four noise models. We give the upper
bound of runtime and the appropriate parameter settings, e.g., mutation rate, which
leads to efficient optimisation for each noise model. In particular, we show for which
parameter settings the non-elitist EA is inefficient in the symmetric noise model.
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4.1 One-Bit Noise Model

Theorems 4 and 5 imply that the one-bit noise does not impact the asymptotical runtime
of the 2-tournament EA if we choose a constant mutation parameter χ , which satisfies
the assumption. However, we have fewer choices of the mutation rate as the level of
is noise growing. In contrast, the (1+1) EA becomes inefficient if the noise level is
a constant (see Tables 1 and 2). Compared to other EAs, e.g., ACO-fp, UMDA and
(1+1) EA (resampling), the 2-tournament EA can outperform the current state of the
art results in these two settings (see Tables 1 and 2).

Theorem 4 For any constant q ∈ [0, 1], any constant n0 ∈ [3,∞) and any χ ∈
(0, ln(1 + 2θ)), where θ := 1/2 − (q/2)(1 − q/2) − q/(2n0), the 2-tournament
EA with mutation rate χ/n and population size λ > c log (n/χ) for a sufficiently
large constant c achieves the optimum on OneMax in the one-bit noise model (q) in
expected time O (λn log(1/χ) + n log(n)/χ).

Proof We apply Theorem 3 to prove Theorem 4. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. By constants q ∈ [0, 1] and
n0 ∈ [3,∞), we obtain 1/12 < θ ≤ 1/2 which satisfies the assumption in Theorem 3.

By case (a) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1
2 Pr( f

n(x1) = f n(x2)) >

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0...n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that no 1-bits is flipped and one of 0-bits
is flipped after mutation, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: h j ∈ �((n − j)χ/n) .

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O(log(n/χ)).

Condition (C3) is satisfied by λ ≥ c log(n/χ) for a sufficiently large constant c.
Finally, all conditions ofTheorem3hold and the expected time to reach the optimum

is no more than

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠
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= O

⎛

⎝λ

m−1∑

j=0

ln

(
n

(n − j)χ

)
+

m−1∑

j=0

n

(n − j)χ

⎞

⎠

= O

⎛

⎝λ ln

⎛

⎝
m−1∏

j=0

n

(n − j)χ

⎞

⎠ + n
m−1∑

j=0

1

(n − j)χ

⎞

⎠

= O

(
λ ln

(
nn

n!χn

)
+ n log(n)/χ

)

using the lower bound n! > (n/e)n ,

= O (λn log(1/χ) + n log(n)/χ) .

��
Theorem 5 For any constant q ∈ [0, 1) and any χ ∈ (0, ln(1 + 2θ)), where θ :=
1/2−q(1−q/2), the 2-tournament EAwithmutation rateχ/n and population sizeλ >

c log (n/χ) for a sufficiently large constant c achieves the optimum on LeadingOnes
in the one-bit noise model (q) in expected time O

(
nλ log (n/χ) + n2/χ

)
.

Proof We apply Theorem 3 to prove Theorem 5. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. By q ∈ [0, 1), we know that
0 < θ ≤ 1

2 which satisfies the assumption in Theorem 3.
By case (b) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1

2 Pr( f
n(x1) = f n(x2)) >

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0...n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that the first 0-bit is flipped and other
bits are not flipped. By Lemma 5 it follows,

Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥
(
1 − χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: h j = �(χ/n) . (7)

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O (log (n/χ))

Condition (C3) is satisfied by λ ≥ c log (n/χ) for a sufficiently large constant c.
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Finally, all conditions ofTheorem3hold and the expected time to reach the optimum
is no more than

E[T ] <
16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝λ

m−1∑

j=0

ln (n/χ) +
m−1∑

j=0

n/χ

⎞

⎠ = O
(
nλ log (n/χ) + n2/χ

)
.

��

4.2 Bit-Wise Noise Model

The best-known result on OneMax in the bit-wise noise model is that the (1+1) EA
using a resampling strategy can achieve the optimum in expected polynomial time
even if the noise level is extremely high, i.e. p = 1/2 − 1/nb for any constant b > 0
(see Table 3). By Theorem 6, we can compute that for extremely high-levels of bit-
wise noise, the 2-tournament EA with mutation rate χ/n = θζ/n which is less than
ln(1 + 2θζ )/n by Lemma 7, i.e., χ = d/nb+1/2 for some constant d > 0, and
a sufficiently large population size λ ∈ �

(
n2b+1 log(n)

)
has polynomial expected

runtime O
(
n2b+2λ log(n)

)
on OneMax. In contrast, the (1+1) EA cannot find the

optimum in expected polynomial time if noise level q ∈ ω
(
log(n)/n2

)
(see Table 3).

Theorem 6 For any p ∈ (0, 1/2) and any χ ∈ (0, ln(1 + 2θ)), where θ :=
9(1/2 − p)/

(
64

√
2pn + 16

)
, the 2-tournament EA with mutation rate χ/n and

population size λ >
c(1+pn)

(1−2p)2
log

(
n

(1−2p)χ

)
for a sufficiently large constant c

achieves the optimum on OneMax in the bit-wise noise model (p) in expected time

O
(
n(1+pn)

(1−2p)2

(
λ log

(
1
χ

)
+ log(n)

χ

))
.

Proof We apply Theorem 3 to prove Theorem 6. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. Since p ∈ (0, 1/2) , we know that
0 < θ < 9/32 which satisfies the assumption in Theorem 3.

By case (c) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1
2 Pr( f

n(x1) = f n(x2)) >

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0....n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that no 1-bits are flipped and one of the
0-bits is flipped after mutation and by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)
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≥
(
1 − χ

n

)n χ

n
(n − j) ≥ e−χ

(
1 − χ2

n

)
χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: h j = �((n − j)χ/n)

since e−χ ∈ �(1) for any χ ∈ O(1).
Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)

be a constant, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O

(
1

θ2
ln

(
n2

χθ2

))

= O

(
log (n/(χθ))

θ2

)
= O

(
1 + pn

(1 − 2p)2
log

(
n

(1 − 2p)χ

))
.

Condition (C3) is satisfied by λ ≥ c 1+pn
(1−2p)2

log
(

n
(1−2p)χ

)
for a sufficiently large

constant c.
Finally, all conditions ofTheorem3hold and the expected time to reach the optimum

is no more than

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝ 1

θ2

⎛

⎝λ

m−1∑

j=0

ln

(
n

(n − j)χ

)
+

m−1∑

j=0

n

(n − j)χ

⎞

⎠

⎞

⎠

= O

(
1

θ2

(
λ ln

(
nn

χn · n!
)

+ n

χ
log(n)

))

using the lower bound n! > (n/e)n ,

= O

(
1

θ2

(
nλ log

(
1

χ

)
+ n

χ
log(n)

))

= O

(
n(1 + pn)

(1 − 2p)2

(
λ log

(
1

χ

)
+ log(n)

χ

))
.

��
For the LeadingOnes problem, we consider the case of the high bit-wise noise p =

b log(n)/n for any constant b > 0. ByTheorem7,we can get that the 2-tournament EA
withmutation rateχ/n = θζ/nwhich satisfies the condition, i.e.,χ = d/n3b for some
constantd > 0, and a sufficiently large population sizeλ ∈ �

(
n6b log(n)

)
achieves the

optimum on LeadingOnes in expected time O
(
n6b+1λ log(n) + n9b+2

)
. In contrast,

the expected runtime of the (1+1) EA with a resampling strategy is 12mn30b+1 under
high bit-wise noise (see Table 4).
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Theorem 7 For any p ∈ [0, 1/3) and any χ ∈ (0, ln(1 + 2θ)), where θ :=
(1/2 − 3p/2) e−3np, the 2-tournament EA with mutation rate χ/n and popula-

tion size λ ≥ c e6np

(1−3p)2
log

(
n
χ

)
for a sufficiently large constant c achieves the

optimum on LeadingOnes in the bit-wise noise model (p) in expected time

O
(

ne6np

(1−3p)2

(
λ log

(
n
χ

)
+ n

χ

))
.

Proof We apply Theorem 3 to prove Theorem 7. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. Since p ∈ [0, 1/3), we know that
0 < θ ≤ 1/2 satisfies the assumption in Theorem 3.

By case (d) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1
2 Pr( f

n(x1) = f n(x2)) >

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0....n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that the first 0-bit is flipped and other
bits are not flipped, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥
(
1 − χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: h j

= �(χ/n) .

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O
(
log (n/χ)/θ2

)
= O

(
e6np

(1 − 3p)2
log

(
n

χ

))
.

Condition (C3) is satisfied by λ ≥ c e6np

(1−3p)2
log

(
n
χ

)
for a sufficiently large constant

c.
Finally, all conditions ofTheorem3hold and the expected time to reach the optimum

is no more than

E[T ] <
16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝ 1

θ2

⎛

⎝λ

m−1∑

j=0

ln

(
n

χ

)
+

m−1∑

j=0

n

χ

⎞

⎠

⎞

⎠

= O

(
1

θ2

(
nλ log

(
n

χ

)
+ n2

χ

))
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= O

(
1

θ2

(
nλ log (n/χ) + n2

χ

))

= O

(
ne6np

(1 − 3p)2

(
λ log

(
n

χ

)
+ n

χ

))
.

��

4.3 Gaussian Noise Model

Theorem 8 implies that the 2-tournament EA with mutation rate χ/n = θζ/n, i.e.,
χ = d/σ for some constant d > 0, and a sufficiently large population size λ ∈
�

(
σ 2 log(σn)

)
can optimise OneMax and LeadingOnes in expected polynomial

time, i.e., O
(
σ 4 log2(n) + σ 3n log(n)

)
and O

(
σ 4 log2(n) + σ 4n2

)
respectively, even

if σ 2 ∈ poly(n). Similarly to optimisation in the bit-wise noise model, the mutation
rate should be fairly conservative, and the population size should be large enough if
the noise level is extremely high, e.g., σ = nb for any constant b > 0. However, the
(1+1) EA using a resampling strategy and EDAs can outperform the 2-tournament
EA in these scenarios. It may be possible to increase the tournament size to achieve a
better result.

Theorem 8 For any σ > 0 and any χ ∈ (0, ln(1 + 2θ)), where θ := 1/(6+ 48σ/π),
the 2-tournamentEAwithmutation rateχ/n andpopulation sizeλ > cσ 2 log(n/χ) for
a sufficiently large constant c achieves the optimumonOneMax and LeadingOnes in
the Gaussian noise model (σ 2) in expected time O

(
σ 2λn log(1/χ) + σ 2n log(n)/χ

)

and O
(
σ 2λn log(n/χ) + σ 2n2/χ

)
respectively.

Proof We apply Theorem 3 to prove Theorem 8. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. By σ ∈ poly(n), we obtain
0 < θ < 1

6 which satisfies the assumption in Theorem 3.
By case (e) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1

2 Pr( f
n(x1) = f n(x2)) >

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0....n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that no 1-bits is flipped and one of the
0-bits is flipped after mutation for OneMax, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: h j
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For LeadingOnes, we only consider the case that the first 0-bit is flipped and other
bits are not flipped, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥
(
1 − χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: h j .

Then, we get h j ∈ �((n − j)χ/n) and h j ∈ �(χ/n) for OneMax and Leadin-
gOnes respectively.

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant and we know that min{h j } ∈ �(χ/n) for both problems, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O
(
σ 2 log(n/χ)

)

Condition (C3) is satisfied by λ ≥ cσ 2 log(n/χ) for a sufficiently large constant c.
Finally, all conditions of Theorem 3 hold and the expected time on OneMax to

reach the optimum is no more than

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝σ 2

⎛

⎝λ

m−1∑

j=0

ln

(
n

(n − j)χ

)
+

m−1∑

j=0

n

(n − j)χ

⎞

⎠

⎞

⎠

= O

(
σ 2

(
λ ln

(
nn

χnn!
)

+ n log(n)/χ

))

using the lower bound n! > (n/e)n ,

= O
(
σ 2 (λn log(1/χ) + n log(n)/χ)

)
,

and on LeadingOnes,

E[T ] = O

⎛

⎝σ 2

⎛

⎝λ

m−1∑

j=0

ln (σn) +
m−1∑

j=0

σn

⎞

⎠

⎞

⎠

= O
(
σ 2λn log(n/χ) + σ 2n2/χ

)
.

��

4.4 Symmetric Noise Model

Resampling is a common method to cope with uncertainties [17, 21]. It dramatically
improves the robustness of the (1+1) EA on OneMax and LeadingOnes in the one-
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bit, the bit-wise and the Gaussian noise (see Tables 1-6). However, from Table 7, we
know that the symmetric noise model (C, q) for any C ∈ R and q = 1/2 makes the
resampling strategy inefficient, but using an elitist population can help. This section
shows that non-elitist EAs also find the optimum in expected polynomial time if using
an appropriate parameter setting. We also demonstrate a mutation rate error threshold
as a function of the noise level in the symmetric noise model. Optimisation is efficient
if the mutation rate is above the error threshold; otherwise inefficient.

4.4.1 Efficient Optimisation

Theorem 9 states that the 2-tournament EA with any mutation rate can optimise
on noisy OneMax and LeadingOnes functions, for the noise level q < 1/2.
Theorem 10 gives that the (μ, λ) EA can optimise in O (nλ) time under all level
noise if we set a sufficiently large population size, i.e., λ ∈ �(log(n)), a suffi-
ciently large selective pressure, i.e., λ/μ > 1/ ((1 − q)ζ ), and a low mutation rate

χ/n ∈
(
0, ln

(
(1−q)λ
(1+δ)μ

)
/n

)
for any constant ζ, δ ∈ (0, 1) and χ ∈ �(1). This is due

to insufficient selective pressure in 2-tournament selection in the high-level symmetric
noisemodel. If we increase the tournament size, i.e., select k > 2 candidate individuals
from Pt in Algorithm 2, it could be possible to optimise efficiently in such high level
noisy functions, because the selective pressure of the non-elitist EAwith k tournament
selection is approximately k [51].

Theorem 9 For any constant q ∈ [0, 1/2), and C ∈ R and any χ ∈ (0, ln(1 + 2θ)),
where θ := 1/2 − q, the 2-tournament EA with mutation rate χ/n and popula-
tion size λ > c log(n) for a sufficiently large constant c achieves the optimum on
OneMax and LeadingOnes in the symmetric noise model (C, q) in expected time
O (λn log(1/χ) + n log(n)/χ) and O

(
nλ log (n/χ) + n2/χ

)
respectively.

Proof We apply Theorem 3 to prove Theorem 9. If χ ∈ (0, ln(1 + 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n]. By q ∈ [0, 1/2), we obtain
0 < θ ≤ 1

2 which satisfies the assumption in Theorem 3.
By case (f) of Lemma 1, we get Pr( f n(x1) > f n(x2))+ 1

2 Pr( f
n(x1) = f n(x2)) =

1/2 + θ , then condition (C2) of Theorem 3 holds.
Toverify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0...n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. We only consider the case that no 1-bits is flipped and one of the
0-bits is flipped after mutation for OneMax, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: h j ∈ �((n − j)χ/n) .
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For LeadingOnes, we only consider the case that the first 0-bit is flipped and other
bits are not flipped, then by Lemma 5,

Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥
(
1 − χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: h j = �(χ/n) .

Then, we get h j ∈ �((n − j)χ/n) and h j ∈ �(χ/n) for OneMax and Leadin-
gOnes respectively.

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant and we know that min{h j } ∈ �(χ/n) for both problems, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O(log(n/χ)).

Condition (C3) is satisfied by λ ≥ c log(n/χ) for a sufficiently large constant c.
Finally, all conditions of Theorem 3 hold and the expected time on OneMax to

reach the optimum is no more than

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝λ

m−1∑

j=0

ln

(
n

(n − j)χ

)
+

m−1∑

j=0

n

(n − j)χ

⎞

⎠

= O

⎛

⎝λ ln

⎛

⎝
m−1∏

j=0

n

(n − j)χ

⎞

⎠ + n
m−1∑

j=0

1

(n − j)χ

⎞

⎠

= O

(
λ ln

(
nn

n!χn

)
+ n log(n)/χ

)

using the lower bound n! > (n/e)n ,

= O (λn log(1/χ) + n log(n)/χ) .

and on LeadingOnes,

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠
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= O

⎛

⎝λ

m−1∑

j=0

ln (n/χ) +
m−1∑

j=0

n/χ

⎞

⎠

= O
(
nλ log (n/χ) + n2/χ

)
.

��
Theorem 10 For any constant q ∈ [0, 1), and C ≤ 0, any constant δ ∈ (0, 1) and

any χ ∈
(
0, ln

(
(1−q)λ
(1+δ)μ

))
and χ ∈ �(1), the (μ, λ) EA with mutation rate χ/n, pop-

ulation size λ > c log(n) for a sufficiently large constant c and (1 − q)λ/(1 + δ) >

μ ∈ �(log(n)) achieves the optimum onOneMax and LeadingOnes in the symmet-
ric noise model (C, q) in expected time O (λn + n log(n)) and O

(
nλ log (n) + n2

)

respectively.

Proof We use the level-based theorem (Theorem 1) to prove Theorem 10. We use the
partition A j := {x ∈ {0, 1}n| f (x) = j} for all j ∈ [0...n] and we define γ0 := μ/λ.

We first show that condition (G2) of Theorem 1 holds. If current level is j ≤ n−2,
then there are at least γ λ individuals in level j + 1. Let ε := δ2/(1+ δ) be a constant.
We assume that there are at least γ (1−q)(1−ε)λ individuals which are in level j +1
and there is no noise when evaluating these individuals.Wewill verify this assumption
later. Let z be the selected individual and y be the individual after mutating z, then

Pr(y ∈ A≥ j+1) ≥ Pr(z ∈ A≥ j+1) · Pr(y ∈ A≥ j+1|z ∈ A≥ j+1)

≥ γ λ(1 − ε)(1 − q)

μ

(
1 − χ

n

)n

by Lemma 3,

≥ γ λ(1 − ε)(1 − q)

μ
e−χ

(
1 − χ2

n

)

by χ < ln
(

(1−q)λ
(1+δ)μ

)
,

> γ (1 − ε)(1 + δ)(1 − o(1))

by ε = δ2/(1 + δ),

= γ (1 + δ − δ2)(1 − o(1))

= γ
(
1 +

(
δ − δ2

)
(1 − o(1))

)

Toverify condition (G1),weneed to estimate the probability of sampling individuals
beyond the current level of the population if there are at least γ0λ individuals in level
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j ∈ [0....n − 1]. We assume that there is an individual z ∈ A j where j ∈ [0....n − 1],
and let y be obtained from z by the mutation operator with mutation rate χ/n. We
only consider the case that no 1-bit is flipped and one 0-bit is flipped after mutation
for OneMax, then by Lemma 5,

Pr(y ∈ A≥ j+1) = Pr(z ∈ A≥ j ) · Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: z j ∈ �((n − j)χ/n) .

For LeadingOnes, we only consider the case that the first 0-bit is flipped and no other
bit is flipped, then by Lemma 5,

Pr(y ∈ A≥ j+1) = Pr(z ∈ A≥ j ) · Pr(y ∈ A≥ j+1 | z ∈ A j ) ≥
(
1 − χ

n

)n−1 χ

n

≥ e−χ (1 − o(1))
χ

n
=: z j = �(1/n) .

Then, we get z j ∈ �((n − j)/n) and z j ∈ �(1/n) for OneMax and Leadin-
gOnes respectively.

Then we compute the population size required by condition (G3). We know that
min{z j } ∈ �(χ/n) for both problems, then

λ >
4λ

((
δ − δ2

)
(1 − o(1))

)2
μ
ln

(
128(n + 1)

((
δ − δ2

)
(1 − o(1))

)2 min{z j }

)

= O (log(n)) .

Condition (G3) is satisfied by λ ≥ c log(n) for a sufficiently large constant c.
Finally, all conditions of Theorem 1 hold and the expected time on OneMax to

reach the optimum is no more than

t0(n)

≤ 8
(
δ − δ2

)
(1 − o(1))2

⎛

⎝λ

m−1∑

j=0

ln

(
6
((

δ − δ2
)
(1 − o(1))

)2
λ

4 + ((
δ − δ2

)
(1 − o(1))

)2
λz j

)

+
m−1∑

j=0

1

z j

⎞

⎠

= O (λn + n log(n)) ,

and on LeadingOnes,

= O
(
nλ log (n) + n2

)
.

Now we verify the assumption that there are at least γ (1 − q)(1 − ε) individuals
in level j + 1 and the noise does not affect the ranking if the current level is j + 1 for
any j ∈ [n − 2]. We refer to a sequence of 2t0(n)/λ generations as a phase, and call
a phase good if for 2t0(n)/λ consecutive generations the assumption holds. Let Z ∼
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Bin (γ λ, (1 − q)) be a random variable, which represent the number of individuals
not affected by noise in any generation t ∈ N. By a Chernoff bound, the probability
that the assumption holds in a generation is Pr (Z ≤ γ λ(1 − ε)(1 − q)) ≤ e−�(λ). By
a union bound, a phase is good with probability 1 − (2t0(n)/λ) e−�(λ) = �(1). By
Markov’s inequality, the probability of reaching a global optimum in a good phase is
at least 1 − Pr (T ≥ 2t0(n)) ≥ 1 − t0(n)

2t0(n)
≥ 1 − 1

2 = 1
2 . Hence, the expected number

of phases required, each costing 2t0(n) evolutions, is O(1), and the theorem follows.
��

4.4.2 Inefficient Optimisation

Non-elitist EAs fail when the mutation rate becomes too high [37]. In this section,
we investigate what mutation rate is too high for non-elitist EAs in uncertain set-
tings. We use the negative drift theorem for populations to derive what mutation rate
make non-elitist EAs inefficient on OneMax and LeadingOnes (shown in Theo-
rems11 and12). For 2-tournament selection, there exists amutation rate error threshold
ln (2(1 − q)) /n. Similarly, we can find a mutation rate error threshold in (μ, λ) selec-
tion, which is ln ((1 − q)λ/μ) /n. Without uncertainty, it is well-known that error
thresholds of mutation rate is ln(2)/n and ln(λ/μ)/n for the 2-tournament EA and
the (μ, λ) EA, respectively [51]. As we can see from the proofs of Theorems 11
and 12, the presence of uncertainties can reduce themaximal reproductive rate of algo-
rithms. Consequentially, the error threshold of the mutation rate would be reduced.
We should reduce the mutation rate or increase the selection pressure, e.g., reduce μ

in the (μ, λ) EA, as the uncertainty level is increased to ensure efficient optimisation.

Theorem 11 For any C ∈ R and any constant q ∈ [0, 1/2), the probability that
the 2-tournament EA with any population size λ = poly(n), mutation rate χ/n >

ln (2(1 − q) + o(1)) /n, optimisesOneMax or LeadingOnes in the symmetric noise
model (C, q) within ecn generations is e−�(n), for some constant c > 0.

Proof We estimate the maximal reproductive rate under noise. In each generation of
the 2-tournament EA, two individuals x1 and x2 are selected uniformly at random from
the population by lines 1 and 2 of Algorithm 2, respectively. Then the fittest individual
of x1 and x2 is chosen by fitness comparison (line 3). However, the presence of noise
can lead to a failed comparison, i.e., the worse individual is selected in line 3 of
Algorithm 2. we assume without loss of generality f (x1) > f (x2). Let E be the
event that f n(x1) > f n(x2) or individual x1 is selected uniformly from {x1, x2} if
f n(x1) = f n(x2), then Pr(E) = Pr

(
f n(x1) > f n(x2)) + 1

2 Pr( f
n(x1) = f n(x2)

)
.

Then the maximal reproductive rate is the reproductive rate of the best individual,
which is

α0 ≤ E[Rt (i)] = λ

(
1

λ2
+ 2 Pr(E)

λ

(
1 − 1

λ

))
= 1

λ
+ 2 Pr(E)

(
1 − 1

λ

)

< 2 Pr(E) + 1

λ
= 2 Pr(E) + o(1)
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by Lemma 1 (f), Pr(E) = 1 − q,

= 2(1 − q) + o(1).

Then Theorem 11 is proved by applying Theorem 2. ��
Theorem 12 For any constant q ∈ [0, 1], the probability that the (μ, λ) EA with any
population size λ = poly(n), mutation rate χ/n > (ln (1 − q) λ/μ) /n, optimises
OneMaxor LeadingOnes in the symmetric noisemodel (C, q)within ecn generations
is e−�(n), for some constant c > 0.

Proof We first compute the maximal reproductive rate. Let x be the fittest individual
in Pt evaluated by f (x). Only if there is no noise in x , x has a chance to be selected
with probability 1/μ. Then we can compute the maximal reproductive rate α0 ≤
λ
μ

(1 − q)+ 0 = λ
μ

(1 − q). Finally, Theorem 12 is proved by applying Theorem 2. ��

5 Dynamic Optimisation

Now we consider dynamic optimisation. First, we apply the general theorem for the
2-tournament EA (Theorem 3) on the DynBV problem and derive the runtime and
the parameters required. The proof idea is similar to noisy optimisation in which the
critical step is estimating a lower bound of the fitness bias.

Lengler and Schaller [30] proved that the (1+1) EA can achieve the optimum in
O (n log(n)) with standard mutation rate χ/n = 1/n on the noisy linear function
which is a general case of the DynBV problem. However, there only exists a partial
result for population-based EAs, i.e., runtime when the population is initiated close
to the optimum [15]. Theorem 13 gives for the first time the runtime from any start
point onDynBV for a population-based EA. It implies that if choosing a lowmutation
rate, e.g., χ/n = ζ/(2n2) and a population size λ > cn2 log(n) for a sufficiently large
constant c, the 2-tournament EA can optimise the DynBV problem in O

(
n3λ log(n)

)

time. The analysis could be further improved by estimating the maximal Hamming-
distance in all pairs of individuals more precisely.

Theorem 13 For any χ ∈ (0, ln(1 + 2θ)), where θ := 1/(2n), the 2-tournament EA
withmutation rateχ/n and population sizeλ > cn2 log(n) for a large enough constant
c achieves the optimumonDynBV in expected time O

(
n3λ log(1/χ) + n3 log(n)/χ

)
.

Proof We apply Theorem 3 to prove Theorem 13. If χ ∈ (0, ln(1+ 2θ)), there exists
a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ )), which satisfies the condition
in Theorem 3. We first partition the search space into levels. We use the partition
A j := {x ∈ {0, 1}n|OM(x) = j} for j ∈ [0...n]. It is easy to see that θ satisfies the
assumption in Theorem 3.

We first show that condition (C2) of Theorem 3 holds. Let x1 and x2 be two indi-
viduals in A≥ j+1 and A≤ j respectively, where j ∈ [0...n− 2]. Let E be the event that
f t (x1) > f t (x2) or individual x1 is selected uniformly from {x1, x2} if f t (x1) =
f t (x2). The probability of this event is Pr( f t (x1) > f t (x2)) + 1

2 Pr( f
t (x1) =

f t (x2)) = Pr(E).
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To estimate a lower bound for Pr(E) on DynBV, we pessimistically assume that
x1 ∈ A j+1 and x2 ∈ A≤ j , such that OM(x1) = OM(x2) + h where h ∈ [1, j]. We
assume H(x1, x2) ≤ l + l + h = s, where s ≤ n and there exist l bit-positions that
x1 has a 1-bit and x2 has a 0-bit, and there exist another l bit-positions that x1 is with
0-bit and x2 has a 1-bit, such that x1 and x2 have the same bit in the rest of n − 2l − h
positions. For theDynBV problem, the coefficients vary exponentially, thus the largest
coefficient is the deciding factor for the fitness value. We first compare the fitness in
the n − 2l − h positions of x1 and x2, which are the same in the same generation. The
next largest coefficient decides the final fitness value. Then we say that x1 “wins” if
the event E happens. If the next largest coefficient is in the l + h positions, x1 wins,
else in another l positions, x2 wins. Therefore,

Pr (E) ≥ l + h

2l + h
= l + h/2 + h/2

2 (l + h/2)
= 1

2
+ h

2(2l + h)

≥ 1

2
+ 1

2(2l + h)
= 1

2
+ 1

2s

since the Hamming-distance s between any pair of individuals is at most n, then

≥ 1

2
+ θ.

Condition (C2) of Theorem 3 holds. Since s ≤ n, we get the fitness bias θ ≥ 1/(2n).
To verify condition (C1),weneed to estimate the probability of sampling individuals

beyond the current level of the population.We assume that there is an individual z ∈ A j

where j ∈ [0...n − 1], and let y be obtained from z by the mutation operator with
mutation rate χ/n. For a lower bound, it suffices to only consider the case that none
of the 1-bits are flipped and one of 0-bits is flipped after mutation. Then, by Lemma 5
it follows,

Pr(y ∈ A≥ j+1 | z ∈ A j ) >
(
1 − χ

n

) j χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: h j

= �

(
(n − j)χ

n

)
.

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16)
be a constant, then

λ >
4 (1 + o(1))

θ2ξ(1 − ζ )4
ln

(
128(m + 1)

θ2ξ(1 − ζ )4 min{h j }
)

= O
(
n2 log(n/χ)

)
.

Condition (C3) is satisfied by λ > cn2 log(n/χ) for a sufficiently large constant c.
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Finally, all conditions of Theorem 3 hold and the expected time E[T ] to reach the
optimum is no more than

E[T ] ≤ 16 (1 + o(1))

θ2ξ(1 − ζ )2

⎛

⎝λ

m−1∑

j=0

ln

(
6

ξ(1 − ζ )2h j

)
+ 1

ξ(1 − ζ )2

m−1∑

j=0

1

h j

⎞

⎠

= O

⎛

⎝s2

⎛

⎝λ

m−1∑

j=0

ln

(
n

(n − j)χ

)
+

m−1∑

j=0

n

(n − j)χ

⎞

⎠

⎞

⎠

= O

(
s2

(
λ ln

(
nn

χnn!
)

+ n log(n)/χ

))

using the bounds n! > (n/e)n , and s ≤ n,

= O
(
s2nλ log(1/χ) + s2n log(n)/χ

)

= O
(
n3λ log(1/χ) + n3 log(n)/χ

)
.

��

6 Conclusion

This paper has derived runtime results for non-elitists EAs with 2-tournament and
(μ, λ) selection on twowell-known benchmark functions, i.e.,OneMax and Leadin-
gOnes in uncertain environments. For the one-bit, the bit-wise and the Gaussian noise
models, we improve and extend results of the non-elitist EA with 2-tournament from
Dang and Lehre [22]. We introduce the notion of fitness bias which indicates the
probability that the truly fitter individual is selected. We summarise fitness biases for
2-tournament selection in some noisy scenarios in Lemma 1. Thenwe getmore precise
upper bounds for the expected runtimes and also provide more precise guidance on
how to choose the mutation rate and the population size as a function of the level of
noise. From Tables 1, 2, 3, 4, 5, 6, 7 and 8, we conclude that by using an appropriate
mutation parameter, i.e., χ ∈ [θ, ln(1+2θ))where θ is a function of the level of noise,
and a sufficiently large population size, the 2-tournament EA optimises OneMax and
LeadingOnes in less time in expectation under one-bit and extremely high-level bit-
wise noise, than the (1+1) EA using a resampling strategy [17, 21]. In some settings,
such as in the Gaussian noise model, we obtain a lower upper bound of runtimes than
the ACO-fp [19] and a comparable upper bound with EDAs [23, 26, 38].

We then, for the first time, studied the performance of non-elitist EAswith two selec-
tionmechanisms, i.e., 2-tournament and (μ, λ), onOneMax and LeadingOnes in the
symmetric noisemodel.We also provide for the first timemutation rate error thresholds
under the symmetric noise model, which are ln (2(1 − q)) /n and ln ((1 − q)λ/μ) /n
for the 2-tournament and the (μ, λ) selection, respectively. The noise essentially affects
the maximal reproductive rate and the error threshold of a non-elitist population. Fur-
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thermore, in these scenarios, non-elitist EAs can outperform the known best results,
i.e., for the (1+λ) EA and the (μ+1) EA.

Finally, we prove for the first time that with appropriate parameter settings, non-
elitist EAs can optimise the DynBV problem in expected polynomial time. In overall,
we provide advice on how to choose the mutation rate, the selective pressure and
the population size (see Theorems 4–12), for non-elitist EAs with uncertain objec-
tives. In general, non-elitist EAs tolerate high uncertainties when the mutation rate is
sufficiently low, the selective pressure is sufficiently high, and the population size is
sufficiently high, all relative to the level of uncertainty.

Although we can determine the appropriate mutation rate for a given level of uncer-
tainty, this level is often unknown in real-world optimisation. Thus, future work should
investigate the performance of mutation rate or selective pressure adjusting mecha-
nisms, e.g., self-adaptation [46, 52–54] and self-adjusting [55–57] under uncertainties.
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Appendix A Useful Inequalities

Lemma 2 ln(1 + x) <
√
x for 0 ≤ x < ∞.

Proof By Eq. (14) in [58],

ln(1 + x) ≤ x√
1 + x

<
x√
x

= √
x .

��
Lemma 3 [59]

(
1 + x

n

)n ≥ ex
(
1 − x2

n

)
for n ∈ N

∗,|x | ≤ n.

Lemma 4
(
(1 − x)1/x−1)y ≥ e−y for 0 < x < 1 and y > 0.

Proof By Lemma 3,

(1 − x)1/x ≥ e−1 (1 − x) (A1)

(1 − x)1/x−1 ≥ e−1 (A2)
(
(1 − x)1/x−1

)y ≥ e−y (A3)

��
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Lemma 5
(
1 − χ

n

)i χ
n ≥ e−χ (1 − o(1)) χ

n for 0 < χ = O(1), n ∈ N
∗ and 0 ≤ i ≤ n.

Proof

(
1 − χ

n

)i χ

n
≥

(
1 − χ

n

)n χ

n

by Lemma 3,

≥ e−χ

(
1 − χ2

n

)
χ

n
= e−χ (1 − o(1)) χ/n

��
Lemma 6 [22] Let F(x) be the cumulative density function of normal distribution
N (

0, σ 2
)
, for x > 0 we have

F(x) > 1 − 1
√

xπ
σ
√
2

+ 4

Lemma 7 For any θ ∈ (0, 1/2] and any constant ζ ∈ (0, 1), θζ < ln(1 + 2θζ ).

Proof By 2x
2+x ≤ ln(1 + x) from Eq. (3) in [58], we obtain

ln(1 + 2θζ ) ≥ 4θζ

2 + 2θζ
= 2θζ

1 + θζ
>

2θζ

2
= θζ.

��
Lemma 8 [32] Let X and Y be identically distributed independent random variables
with integer support, finite expected value μ and finite non-zero variance σ 2, it holds
that

Pr(X = Y ) ≥
(
1 − 1/d2

)2

2dσ + 1
for any d ≥ 1
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