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Abstract

We present a succinct data structure for permutation graphs, and their superclass of
circular permutation graphs, i.e., data structures using optimal space up to lower
order terms. Unlike concurrent work on circle graphs (Acan et al. in Theor Comput
Sci, https://doi.org/10.1016/j.tcs.2022.06.022, 2022), our data structure also supports
distance and shortest-path queries, as well as adjacency and neighborhood queries,
all in optimal time. We present in particular the first succinct exact distance ora-
cle for (circular) permutation graphs. A second succinct data structure also supports
degree queries in time independent of the neighborhood’s size at the expense of an
O (logn/loglog n)-factor overhead in all running times. Furthermore, we develop a
succinct data structure for the class of bipartite permutation graphs. We demonstrate
how to run algorithms directly over our succinct representations for several prob-
lems on permutation graphs: CLIQUE, COLORING, INDEPENDENT SET, HAMILTONIAN
CYCLE, ALL- PAIR SHORTEST PATHS, and others. Finally, we initiate the study of
semi-distributed graph representations; a concept that smoothly interpolates between
distributed (labeling schemes) and centralized (standard data structures). We show
how to turn some of our data structures into semi-distributed representations by stor-
ing only O (n) bits of additional global information, circumventing the lower bound
on distance labeling schemes for permutation graphs.
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1 Introduction

As aresult of the rapid growth of data sets, memory requirements become a bottleneck
in many applications; in particular when data structures do no longer fit into faster levels
of the memory hierarchy of computer systems. Research on succinct data structures
has lead to optimal-space data structures for many types of data [27], significantly
extending the size of data sets that can be analyzed efficiently on commodity hardware.
A data structure is called succinct when its space usage is optimal up to lower order
terms, i.e., optimal up to a factor of 1 + o(1).

Graphs are one of the most widely used types of data. In this paper, we study
succinct representations of specific classes of graphs, namely permutation graphs and
related families of graphs. A graph is a permutation graph (PG) if it can be obtained as
the intersection graph of chords (line segments) between two parallel lines [29], i.e.,
the vertices corresponding to two such chords are adjacent, if and only if the chords
intersect. PGs are a well-studied class of graphs; they are precisely the comparability
graphs of two-dimensional partial orders, and the class of comparability graphs whose
complement graph is also a comparability graph [13] (see Sect.2 for definitions of
these concepts). Many generally intractable graph problems can be solved efficiently
on PGs, for instance CLIQUE [22, 23], INDEPENDENT SET [22, 23], COLORING [22,
23], CLIQUE COVER [22, 23], DOMINATING SET [6], HAMILTONIAN CYCLE [11], and
GRAPH ISOMORPHISM [8]. ALL- PAIR SHORTEST PATHS on PGs can be solved faster
than in general graphs [4, 24]. Moreover, PGs can be recognized in linear time [22].

In this paper we study how to succinctly encode permutation graphs, while sup-
porting the following queries efficiently:

adj(u, v): whether vertices u and v are adjacent;

deg(v): the degree of vertex v, i.e., the number of vertices adjacent to v;
nbrhood(v): the vertices adjacent to vertex v;

next_nbr(u, v): the successor of vertex v in the adjacency list of vertex u;
spath(u, v): listing a shortest path from vertex u to vertex v;

spath_succ(u, v): the first vertex after vertex u on a shortest path from u to
vertex v;

e dist(u, v): the length of the shortest path from vertex u to vertex v.

Data structures

A succinct data structure is space optimal in the sense that it stores a given com-
binatorial object using asymptotically only the information-theoretic minimum of
bits. Specifically, given a class of graphs C and denoting by C, for the set of graphs
G € C on |V(G)| = n vertices, a succinct data structure for C is allowed to spend
(14 0(1))1g|Cy| bits of space when representing a graph in C,. We present the first
succinct data structures that support the above queries on a PG (Theorem 3.1), as well
as on its generalization, the circular permutation graphs (CPGs, see Theorem 6.4).
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Moreover, we present the first succinct data structure for the special case of a bipartite
permutation graph (BPG, see Theorem 5.1). Table 1 summarizes these results.!

To our knowledge, the only centralized data structures that store PGs are presented
by Gustedt et al. [18] and by Crespelle and Paul [9]. The former are not succinct
(using O (n lgn) words of space), but are parallelizable [18]. The latter support only
adj queries (in constant time), but are dynamic (supporting insertions and deletions
of vertices/chords and edges). We are not aware of previous work on data structures
for CPGs, or on space-efficient data structures for BPGs.

Bazzaro and Gavoille [4] present distance labeling schemes for PGs, a distributed
distance oracle, where the distance of two vertices can be computed solely from the two
labels of the vertices. Their scheme uses labels of ~ 91g n bits per vertex?, and their
dist queries take constant time. By concatenating all labels, their labeling scheme
implies a data structure with matching time complexity and total space of ~ 9nlgn
bits. Our data structures (Theorem 3.1) improve upon that space, while simultaneously
supporting further queries besides dist.

Interestingly, Bazzaro and Gavoille [4] further give a lower bound of 31gn —
O (Iglgn) bits per vertex for dist labeling schemes on PGs. Comparing our data
structures to this lower bound reveals a separation in terms of total space between their
distributed and our centralized model: giving up the distributed storage requirement,
a data structure using the optimal ~ n 1g n bits of space, i.e., 1g n per vertex, becomes
possible, proving that the centralized model is strictly more powerful.

Semi-distributed graph representations

To further explore the boundary of the above separation between standard centralized
data structures and fully distributed labeling schemes, we introduce a semi-distributed
model of computation for graph data structures that smoothly interpolates between
these two extremes: in a (L(n), D(n))-space semi-distributed representation, each
vertex locally stores a label of L(n) bits, but all vertices also have access to a “global”
data structure of D(n) bits to support the queries. Such a representation uses a total of
nL(n) 4+ D(n) bits of space, but apart from the global part, only the labels of queried
vertices are accessible to compute the answer.

The lower bound from [4] implies that when D(n) = 0, we must have L(n) >
31gn — O(lglgn) to support dist on PGs, making the total space at least a factor
3 worse than the information-theoretic lower bound. But what happens if we allow
a small amount of global storage on top of the labels? Is access to global storage
inherently more powerful, even if insufficient encode the entire PG? If so, what is
the least amount of global storage that is necessary to overcome the labeling-scheme
lower bound?

We do not comprehensively answer the latter question, but settle the former in
the affirmative: we show that PGs admit a (21gn, O (n))-space semi-distributed rep-

1 Throughout this paper, running times assume the word-RAM model with word size w = ® (logn), where
n denotes the number of vertices of the input PG.

2 By ~ we denote a leading-term asymptotic approximation, i.e., f(n) ~ g(n) iff f(n)/g(n) — 1 as
n — oQ.
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resentation that answers distance queries in constant time, i.e., although the global
space cannot distinguish all possible PGs, it suffices to circumvent the lower bound
for labeling schemes in terms of total space and label size. Thus having access even to
limited amounts of global space is inherently more powerful than a fully distributed
data structure.

Applications

Our data structures can replace the standard (space-inefficient) representation by adja-
cency lists in graph algorithms. For several known algorithms on PGs that make explicit
use of their special structure (namely, linear-time algorithms for computing minimum
colorings, maximum cliques, maximum independent sets, or minimum clique covers),
we show that they can be run with minimal extra space directly on top of our succinct
representation.

Moreover, our data structures immediately yield an optimal-time all-pairs shortest-
paths algorithm on PGs: For a PG with n vertices and m edges we can report all
pairwise distances in O(nz) time, matching the result of Mondal et al. [24]; however,
our approach is more flexible in that we can report the distances of any & specified pairs
of vertices in just O (n + m + k) total time. Furthermore, we can report the shortest
paths (not just their lengths) in total time O(n 4+ m + s), where s is the size of the
output; this does not immediately follow from [24]. The labeling scheme of [4] yields
the same running times, but uses more space.

Further related work

Similar to our work on PGs, succinct data structures that support the considered set of
queries have been presented for chordal graphs [25] and interval graphs [3, 19]. The
latter also consider the special class of unit/proper interval graphs and the generaliza-
tion to circular interval graphs.

Concurrently? to this work, Acan et al. [2] presented succinct data structures for
circle graphs (i.e., the intersection graph of chords of a (single) circle) and related
classes (specifically k-polygon circle graphs and trapezoid graphs). They show space
lower bounds for these classes and data structures with asymptotically matching space
usage. Since a PG is also a circle graph, their data structures can be applied to PGs, but
this is not known for CPGs. Superficially, their grid-based representation [2, Thm. 4.4]
is similar to ours, but the construction uses a different point set with different properties
for queries: Acan et al. support navigational operations adj, deg, and nbrhood,
but none of their data structures offer dist or spath, which are a main technical
challenge of our work. A further difference is that for general circle graphs, no succinct
data structures with constant query time are known, whereas for PGs, we can use
our array-based data structure, offering constant-time support for adj, next _nbr,
spath _succ, dist.

3 The preprint [1] (now published as [2]) appeared shortly after an initial version of this article [37] was
published on arXiv.
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Outline

The rest of this paper is organized as follows. Section2 collects previous results on
PGs and succinct data structures. In Sect. 3, we describe our main result: the succinct
data structures for PGs. Our other results extend the techniques established in that
section. Section 4 describes how to simulate various algorithms on top of our succinct
representation. Section5 discusses our data structure for bipartite PGs, and Sect.6
extends our approach to circular PGs. Finally, Sect. 7 introduces semi-distributed graph
representations and our corresponding results. Section 8 concludes the paper.

2 Preliminaries

We write [n..m] for {n, ..., m} C Z and [n] = [1..n]. We use standard notation for
graphs, in particular (unless stated otherwise) n denotes the number of vertices, m the
number of edges. N (v) is the neighborhood of v, i.e., the set of vertices adjacent to
v. In a directed graph G = (V, E), we distinguish out-neigborhood N (v) = {u :
(v,u) € E} and in-neigborhood N~ (v) = {u : (u,v) € E} of avertex v € V.
The complement graph of G is denoted by G. We use the “Iverson bracket” notation:
[cond] is 1 if cond is true and O otherwise.

2.1 Permutation Graphs

It is easy to see from the intersection model of a PG G (as intersections of chords
between parallel lines) that only the relative order of upper (resp. lower) endpoints
of the chords are relevant (cf. Fig.1). Hence, a graph G is a PG if there exists a
permutation 7 and a bijection between the vertices of G and the elements of 7, such
that two vertices are adjacent if and only if the corresponding elements are reversed
by m; that explains the name.

To avoid confusion in counting results, we carefully distinguish three related notions
for PGs. First, given a permutation 7 : [n] — [n], the ordered PG induced by m,
denoted G, = (V, E), has vertices V = [n] and (undirected) edges {i, j} € E for
alli > j with 77 l3) < n_l(j), i.e., if  has an inversion (i, j). Given an ordered
PG G, we can uniquely reconstruct the permutation 7 with G, = G: By setting b},
for each vertex j, to the number of its neighbors i withi > j, we obtain the inversion
table by, ..., b, of the permutation, from which there is a well-known bijection to
itself [21, §5.1.1]. Hence, ordered PGs and permutations are in bijection. This yields
a simple recognition algorithm for ordered PGs: Compute 7 as above and check if the
given graph equals G .

The ordered PG G, can be characterized by its grid representation, which is a
collection of integer points in the plane associated with the vertices of G: a vertex
v is associated with the unique point (v, 71 W)) (see Fig. 1). A useful property of
the grid representation is that the neighbors of the vertex v are exactly those vertices
whose points are located in the top left or the lower right quadrant around the point of
v.
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Fig. 1 Example permutation graph (top left) from [4] in different representations: a representation
as intersections of chords between two parallels (top right), corresponding to the permutation 7 =
(5,7,2,6,1,11,8,10,4,3,9), and the points (v, nfl(v)) on a 2D grid (bottom right). A point in the
grid can “see” (is adjacent to) all points in the top left resp. lower right quadrant around it as illustrated on
the bottom left [4]

A graph G = ([n], E) is a labeled PG, written G € P", if there is set of n chords
between two parallel lines and an assignment of vertices to chords, so that {i, j} € E
iff chords i and j intersect. In other words, G € P" iff there are two permutations
mw : [n] — [n] and p : [n] — [n], so that p(G) = ([n], p(E)) = G, where
p(E) = {{,o(u), p()}:{u,v} e E}; in short: G is a labeled PG iff it is isomorphic
to some ordered PG G .

The set of unlabeled PGs of size n, denoted by P, is the family of equivalence
classes of labeled graphs in P" under (graph) isomorphism. To illustrate the notions
of ordered, labeled, and unlabeled PGs, and to make the distinction between them
clear, we consider a few simple examples. Both the empty or complete unlabeled
graph correspond to a single ordered PG, namely with 7 the sorted (resp. reverse
sorted) permutation. Similarly, there is only one labeled empty or complete graph; in
this case, the three notions coincide. However, the unlabeled graph with just a single
edge corresponds to n — 1 ordered PGs, namely all n — 1 permutations with a single
inversion; and there are (g) labeled graphs with a single edge. We can always select a
representative (a labeled PG) for an isomorphism class (the unlabeled PG) that is an
ordered PG, but in general, there are more ordered PGs than unlabeled PGs.

A graph is comparability if its edges can be oriented such that if there are edge
(a,b) and (b, c), then there is an edge (a, c). We will use the following classical
characterization of PGs.
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Theorem 2.1 (PG & comparability, [13]) A graph G is a PG if and only if both G and
G are comparability graphs.

Finally, for the construction of our data structures, we will assume that an ordered PG
G is given; the following result allows to compute such from a given PG in linear
time.

Theorem 2.2 (PG recognition, [22]) There is an algorithm that given a graph G =
(V,E) onn = |V| vertices and m = |E| edges computes in O(n + m) time two
bijections w : [n] — [n]and p : V — [n] with p(G) = Gy, or determines that G is
not a PG.

2.2 Space Lower Bounds

Recall that P,, denotes the set of unlabeled PGs on n vertices. We obtain information-
theoretic lower bounds for storing an unlabeled PG from known counting results [4].

Corollary 2.3 1g|P,| > nlgn — O(nloglogn) bits are necessary to represent an
unlabeled permutation graph on n vertices.

Proof Recall that we write P" for the set of labeled PGs on n vertices and P, for
the set of unlabeled PGs on n vertices. [4, Thm.5.2] shows that Ig [P"| > 2nlgn —
O (nloglogn). Clearly |P"*| < n!|P,| since there are at most n! ways of assigning
labels [r]. Using the Stirling approximation, lg(n!) = nlgn — O(n), we obtain that
Ig|P,| = 2nlgn — O(nloglogn) —1g(n!) > nlgn — O(nloglogn). O

Up to lower order terms, this lower bound coincides with 1g(n!), so succinctly
storing a given grid representation of an ordered PG in our data structures suffices for
a succinct PG data structure.

Generalizing a construction from Acan et al. [2], we can strengthen the above lower
bound.

Theorem 2.4 (Space lower bound) lg|P,| > nlgn — O(n) bits are necessary to

represent an unlabeled permutation graph on n vertices.

Proof Sketch We build on the proof of Thm. 4.2 of [2]; we reproduce the parts that
need amendment here.

We construct a specific family of vertex-colored PGs that is large enough so that —
even after discounting the overcounting due to counting colored graphs —it corresponds
to 2"127=0( (distinct unlabeled PGs, yielding the claim. We represent the colored
graphs via their (colored) permutation diagram. We begin with two parallel lines and
place n “chord slots” (points) on each line; we will later connect these to n disjoint
chords. Let pq, ..., p, resp. q1, - .., g, denote these points on the upper resp. lower
line, numbered from left to right; cf. Fig.2.

As in [2], we fix parameters k and ¢ so that k¢ + 2k = n. Now fix
2k special cords as follows: The first k special cords connect gqi,...,qx to
the points pei1, page+1)s P3¢+1), - - - » Pk(e+1), the second k special cords connect
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Aq A A3 Ay

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

91 492 93 9494 95 496 497 98 99 910 911 912 913 914 915 916 917 918 919 920

D N N —1

By By B3 By

Fig.2 The colored PG construction from Theorem 2.4 for ¢ = 3 and k = 4, and hence n = k¢ + 2k = 20.
Special chords are shown in blue and red. The highlighted chord (pg, ¢14) intersects the special chords
[i..j1=1{3,4,5,6,7} and has endpoints in A; = A3 and Bj_j = B7_4 = B3 (Color figure online)

Pr—k+1s -+ > Pn With @ry 1, Qe 14(e+1)s Gr+14+2(¢+1)» - - - » ¢n- Each of the 2k special
cords is colored using a unique color in [2k], assigned from left to right; all other
chords (added below) have color 0.

We have so far used 4k of the chord slots; the remaining 2n — 4k slots are partitioned
by the special chords into 2k intervals of £ chord slots each: k on the upper line, k
on the lower line, each separated by an endpoint of a special chord. We name these
intervals Ay, ..., Ay on the upper line and By, ..., By on the lower line (see Fig.2).

We now consider matchings of the remaining k¢ slots on the upper line with the
remaining k¢ slots on the lower line. Each such matching corresponds to one way
of adding the remaining k¢ chords; Fig.2 shows an example (gray lines). In general,
different matchings can correspond to the same unlabeled colored graph, but we will
see that this can only happen for bad matchings [2]: a matching is bad if it contains
3 or more of chords connecting the same A; with the same Bj; otherwise it is good.
A good matching can be uniquely reconstructed from its induced colored PG: First,
each colored vertex is unique and its color uniquely determines which special chord
it corresponds to. Next, each 0-colored vertex must be adjacent to special chords with
colors from a contiguous range [i..j] C [2k]; its upper endpoint then lies on A; and its
lower endpoint on B;_;. Hence we can uniquely reconstruct the intervals each chord’s
endpoints belong to. Finally, if two chords u, v both end in the same A;, their relative
order is determined by whether or not they are adjacent. Since the matching is good,
there is at most one such pair u, v where the relative order of endpoints on the bottom
line is not already determined, so we can work out a total order of the endpoints within
A; from the colors and adjacencies. The argument for two chords ending in the same
Bj is similar.

Using Lem. 4.1 of [2], which shows that for k = n3/4¢ ¢ > 0 fixed, a 1 — o(1)
fraction of all possible matchings is good, we can now finish the proof as in [2]:
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n
| Pul (2k> (2k)!

# PGs with 2k vertices assigned unique colors in [2k]
# colored PGs obtained from above construction

IV IV 1V

# good matchings
(1 —o())(ke)! = (1 —o(1))(n —2k)!;

hence we have, denoting by nk = ]_[f:_é (n — i) the kth falling power of n, that

Ig|Pal > lg((n — 2k +1g(1 — o(1)) — Ig(n*
> lg((n —2k)) —g(n™) — 0(1)
= ((n = 2k) 1g(n(1 — 2k/n)) — (n — 2k) Ig(e) + O(logn)) — 2k lg(n) — o(1)
> nlgn —lg(e)n — O(klogn).
This concludes the proof. O

Remark 2.5 We note that in the data-structures and graph-labeling-schemes commu-
nities, the above approach for proving space optimality of graph representations via
lower bounds on the number of unlabeled graphs in the class is quite typical [3, 4, 16,
26]: One establishes a lower bound on the number |A},| of unlabeled graphs in a given
class X by first deriving a lower bound on the number |X”| of labeled (or colored)
graphs in the class, and then applying the obvious relation | X" | < n!|A},| (or a similar
one for partially colored graphs). The non-trivial part in this approach is the former
one, and it usually boils down to an ad-hoc construction of a large family of labeled
graphs. For leading-term estimates, a recent work of Sauermann [33] provides a uni-
form framework for deriving tight lower bounds on the number of labeled graphs in
any semi-algebraic graph class. The family of semi-algebraic graph classes contains
many geometric intersection graphs classes, including interval graphs and PGs.

2.3 Succinct Data Structures

For the reader’s convenience, we collect used results on succinct data structures here.
First, we cite the compressed bit vectors of Patragcu [28].

Lemma 2.6 (Compressed bit vector) Let B[1..n] be a bit vector of length n, containing

m 1-bits. For any constant ¢ > 0, there is a data structure using 1g (::l) + 0 (lochn) <
n

m lg(n%) + O(k)g_“n + m) bits of space that supports in O (1) time operations (for
i €[l,n]):

1. access(B,i): return B[i], the bit at index i in B.
2. ranky (B, i): return the number of bits with value « € {0, 1} in B[1..i].
3. selecty(B,i): return the index of the i-th bit with value o € {0, 1}.

Remark 2.7 (Simpler bitvectors) The result of Paatragcu has the best theoretical guar-
antees, but requires rather complicated data structures. Compressed bitvectors with
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space

le <n> n O(nloglogn)
m logn

nH<Z> n O(nloglogn)
n logn
log1
= w2 + 0B )
m logn

have been proposed by Raman et al. [30] and implemented [17].

For our application, indeed a plain (uncompressed) bitvector with O (1)-time sup-
port for rank and select and using n 4+ O (n/ loglog n) bits of space is sufficient (see,
e.g., [27, §4.2.2 & §4.3.3], originally proposed in [7, 20]).

Using wavelet trees, based on above bitvectors, we can also handle non-binary
arrays.

Lemma 2.8 (Wavelet trees for constant o) Let S[1..n] be a static array with entries
Sli]l € ¥ = [1..0]foro afixed constant. There is a data structure using 1g(o )n+o(n)
bits of space that supports the following queries in O(logo) = O(1) time (without
access to S at query time)

1. access(S,i): return S[i), the symbol at index i in S.
2. ranky(S, i): return the number of indices with value o € % in S[1..i].
3. selecty(S,i): return the index of the i-th occurrence of value « € X in S.

Proof Wavelet trees [27, §6.2] support these operations in the stated time. For the case
of a small fixed o that we need, we can use a separate compressed bitvector Lemma
(2.6) for each of the O (o) nodes in the wavelet tree. By the aggregation property of
the entropy, the overall space is bounded by n Hy 4+ o(on) < nlg(o) + o(n), where
H) is the (zeroth-order) empirical entropy of S (see, e.g., [27, §6.2.4]). O

Given an array A[l..n] of comparable elements, (e.g., numbers), range-minimum
queries (resp. range-maximum queries) are defined for | <i < j <n by

rmgy (i, j) = argmin A[K],
i<k<j

rMau (i, j) = argmax A[k].
i<k<j

In both cases, ties are broken by the index, i.e., the index of the leftmost minimum
(resp. maximum) is returned.

Lemma 2.9 (RMQ index, [14, Thm. 3.7]) For any constant € > 0 the following holds.
Given a static array A[l..n] of comparable elements, there is a data structure using
€n bits of space on top of A that answers range-minimum queries in O(1/€) time
(making as many queries to A).

Clearly, the same data structure can also be used to answer range-maximum queries
by building the data structure w.r.t. the reverse ordering.
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Remark 2.10 (Sublinear RMQ) Indeed, € can be chosen smaller than constant, yielding
sublinear extra space, at the cost of increasing the query time to superconstant; we
only need € = Q=119 for some § > 0.

Given a static set of points in the plane, orthogonal range reporting asks to find
all points in the point set that lie inside a query rectangle [x1, x2] X [y1, y2]. Range
counting queries only report the number of such points.

Lemma 2.11 (Succinct point grids, [5, Thm. 1]) A set N of n points in an n X n integer
grid can be represented using nlgn + o(nlogn) bits of space so that

1. orthogonal-range-counting queries are answered in O (logn/loglogn) time, and
2. orthogonal-range-reporting queries are answered in O ((k + 1)logn/loglogn)
time, where k is the output size.

Lemma 2.12 (Permutation grid) Given a permutation : [n] — [n], we can represent
the point set P = P () = {(x, w(x)) : x € [n]} using nlgn + o(nlogn) bits of space
so that we can answer the following queries:

1. orthogonal-range-counting queries, RCountp(x1, x2; y1, Y2) = |P N[xg, x2] x
[y1, y2]| in O(logn/loglogn) time;

2. orthogonal-range-reporting queries, RPointsp(x1, x2; y1, y2) = PN[x1, x2] %
[y1, y21in O((k + 1)logn/loglogn) time, where k = RCount p(x1, xX2; y1, y2);

3. application of r, YForXp(m)(x) = m(x) for x € [n] in O(logn/loglogn) time;

4. inverse of m, XForYp)(y) = 7~ (y) for y € [n] in O(logn/loglogn) time.

Proof We use the grid data structure from Lemma 2.11 on P; counting and
reporting queries are immediate, and for others we use that YForXp)(x) =
RPointsp(x, x; 1,n).y and XForYp)(y) = RPointsp(l, n;y, y).x. Here we
write Q.x to denote the projection of point set Q to the x-coordinates of the points. O

Remark 2.13 (Iterate over range) It is not clear if we can iterate over the result of
RPoints with O(logn/loglogn) time per point instead of obtaining all points in
one go.

Remark 2.14 (Simpler alternatives) At the slight expense of increasing running times
by a O (log log n) factor, we can replace the grid data structure by a wavelet tree, which
is likely to be favorable for an implementation [3, 27].

A lastingredient for our data structures is arecent result on succinct distance oracles
for proper interval graphs. Here, an interval graph is the intersection graph of a set
of intervals on the real line, and a proper interval graph is one that has an interval
realization where no interval strictly contains another one.

Lemma 2.15 (Succinct proper interval graphs [19, Thm. 12]) A proper interval graph
on n vertices can be represented in 3n + o(n) bits of space so that dist(u, v) for
u, v € [n] can be computed in O (1) time, and vertices are identified by the rank of the
left endpoints of their interval in some realization of the proper interval graph. We can
also answer adj, deg, nbrhood in O(1) time and spath(u, v) in O(dist(u, v))
time. For connected graphs, the space can be reduced to 2n + o(n) bits.
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Remark2.16 (O(1) time neighborhood) It might sound impossible to do nbrhood
in constant time independent of the output size; this is possible in proper interval
graphs since neighborhoods are contiguous intervals (of vertex labels) and thus can
be encoded implicitly in a constant number of words.

Remark 2.17 (Routing) By inspection of the proof, the data structure from [19] can
also support spath_succ(u, v) in constant time. Thus, not just can spath(u, v) be
answered in optimal overall time, but we can output the path step by step in optimal
time per edge.

3 Data Structures for Permutation Graphs

In this section, we assume a permutation 7 : [n] — [n] is given and we describe how
to answer queries on G, i.e., we describe our data structures for ordered PGs. We
present two approaches: the first solution uses a grid data structure that can support
all queries, albeit with superconstant running time; the second solution stores 7 as
an array and achieves optimal query times for all operations except deg. Our formal
result is as follows.

Theorem 3.1 (Succinct PG) A permutation graph can be represented

(a) using nlgn + o(nlgn) bits of space while supporting adj, deg, dist,
spath _succ in O(logn/loglogn) time, nbrhood(v) in O((deg(v) + 1) -
logn/loglogn) time, and spath(u, v) in O((dist(u,v) + 1)logn/loglogn)
time; or

(b) using nlgn + (6.17 + €)n + o(n) bits of space (for any constant € > 0) while
supporting adj, dist, spath _succ, next _nbrin O(1) time, nbrhood(v),
deg(v) in O(deg(v)+1) time, and spath(u, v) in O(dist(u, v)+1) time. The
time for next_nbr(v) is amortized O (1) over iterating through nbrhood(v).

3.1 Grid-Based Data Structure
We first present the simpler grid-based data structure. Here, we store P(w) =
{(v, 77 lw) v e [7]} in the data structure of Lemma 2.12 and identify vertices

with the x-coordinates of these points (the rank of the vertex’ chord endpoint on the
upper line).

3.1.1 Adjacent

Given two vertices u and v, w.l.0.g. u < v. We compute 7' (1) = YForX(u) and
771 (v) = YForX(v); then adj(u, v) =[x~ (w) > 7~ (v)].

3.1.2 Neighborhood

We separate the neighbors of a vertex v into nbrhood(v) = N~ (v) U N ' (v) where
N~ (v) = nbrhood(w) N [l..v — 1] and N*(v) = nbrhood(v) N [v + 1..1].
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Using the graphical representation of neighborhoods from Fig. 1, we immediately
obtain N~ (v) = RPoints(l,v — 1; YForX(v), n) and N*(v) = RPoints(v +
1,n; 1, YForX(v)).

3.1.3 Degree

Replacing the range-reporting queries from nbrhood by range-counting queries
yields deg(v) = [N~ ()| + |[NT(v)].

3.2 Array-Based Data Structure

To improve the query time, we now give an alternative representation. A key observa-
tion is that we never compute 7; only 7 ~! is needed. Hence we simply store an array
T1[1..n] with T1[i] = 7 ~'(i) using n[lgn] < nlgn + n bits of space. At the expense
of a slightly more complicated data structure, one can improve this space usage to
[nlgn] = nlgn 4+ O(1) using the techniques of Dodis et al. [12], still retaining
access to IT in constant time.

For legibility, we continue to write 7~ 10) in operations, but it is understood that
this is indeed an access to I[7].

3.2.1 Adjacency

adj queries only use 7 !, and thus they are solved exactly as above.

3.2.2 Neighborhood

Like in our previous approach, we separately handle the neighbors u of v withu < v
(in N~ (v)) and with u > v (in N (v)). Even though we do not explicitly store the
point set P(;r) in our data structure, we can still answer the above range queries,
because these are effectively two-sided range queries (dominance queries):

For N~ (v) = RPoints(l,v — 1; 7' (v), n), we maintain the range-maximum
index from Lemma 2.9 on I1[1..n] using en bits of space. We can then iterate through
the vertices in N~ (v) using the standard algorithm for three-sided orthogonal range
reporting that uses priority search trees: We compute i = rMqp (1, v—1);if 7 ~1() >
771 (v), we report i as a neighbor and recursively continue in the ranges [1..; — 1] and
[i + 1..v — 1]. Otherwise, if 7 =1 (i) < 7~ (v), we terminate the recursion. (We also
terminate recursive calls on empty ranges). Each recursive call only takes constant
time and either terminates or outputs a new neighbor of v, so we can iterate through
N~ (v) with constant amortized time per vertex.

For NT(v) = RPoints(v+1, n: 1, 771 (v)), we use the same technique, reflected:
we store a range-minimum index on I1[1..n], starting with the range [v + 1, n] and
continue as long as the returned minimum is at most 771 (v).
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3.2.3 Next neighbor

The above method can easily be used to iferate over neighbors one at a time,
instead of generating and returning the full neighborhood. The order of iteration is
implementation-defined (ultimately by the RMQ index), but fixed for any G,. An
easy argument shows that reporting the kth neighbor with the above algorithm can
take © (k) time, but amortized over the entire neighborhood of a vertex, iteration takes
constant time per neighbor. However, if done naively, it would require O (k) extra
working space to store the k ranges wherein the kth neighbor might be found.

We can improve the extra space to O (1) (words) and support starting at an arbitrary
given neighbor w to find next_nbr (v, w) in the traversal. For that, we have to look
into the black box that is the RMQ index from Lemma 2.9. Indeed, what we describe
here is modification of the construction of Fischer and Heun [14, Thm. 3.7] that has the
same asymptotic performance characteristics as in Lemma 2.9, but allows to iterate
over values above a threshold.

Lemma 3.2 (RMQ index with next-above) Letr A[1..n] be a static array of comparable
elements. For any constant € > 0, there is a data structure using €n bits of space on
top of A that supports the following queries in O(1/€) time (making as many queries
to A) and using O (1) words of working memory:
(a) range-maximum queries, tMaa (£, r),
(b) next-above queries, next_aboves(l,r, y; i), enumerating {i € [£,r] : Ali]
v} in amortized O (1/€) time.
Formally, next _above implicitly defines a sequence (ij)j>0 via iy =
rMag (¢, r) if Alio]l > y and iy = null otherwise, and i; 1| = next_abovey
C,r,y:ij) ifij # null and i1 = null otherwise. Then we require {i; : i; #
null} = {i e [€,r] : A[i] > y}.

This index can be used to iterate over the result of 3-sided orthogonal range queries

with amortized constant delay and using constant working memory by computing the
sequence (i;).
Proof A 2en + o(n) bit RMQ index for an array A[1..n] can be obtained by (concep-
tually) dividing A into en blocks of [1/€] elements each and storing the Cartesian
tree [15, 38] of the block maxima as a succinct binary tree [10, Thm. 3] in 2en + o(n)
bits. This tree data structure allows in constant time to (a) map between nodes and
their corresponding block indices in A, (b) map between nodes and preorder indices,
(c) find the lowest common ancestor (LCA) of two nodes, and (d) return the number
of descendants of a node. We first discuss how to solve the problem for e = 1, i.e.,
when all elements are part of the tree. We will identify nodes in the Cartesian tree 7
with their inorder number, i.e., the index in A. To answer rMqgy (¢, r), we simply use
the Cartesian tree operations to find the nodes (of inorder index) ¢ and r and return
(the inorder index of) their LCA.

To iterate through all indices i € [£, r] with A[i] > y, we will now show how to
compute the next such index, next_abovey (¢, r, y; i), given only a current such
index i (and £, r and y); if no further such index exists, we will return “null”.

First, we compute ig = rMgy (£, r). We will iterate through indices in the order of
a preorder traversal of the subtree rooted at iy, starting from the current node i. The

v
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challenge is to, in constant time, skip over parts of the tree that are outside of the range
[£, r] or have all A-values below y. More specifically, the first step is to find the next
candidate index s € [£, r], for which A[s] > y might hold, given the current index i.
We initialize s to the successor of i in preorder.

Now, we repeat the following steps until we have either found the next index or
have determined that none exists. If s is not a descendant of i in 7', then there are
no more indices to report and we return null; we can check this condition in constant
time by comparing the preorder index of s to the sum of the preorder index of iy and
ig’s subtree size.

If s is within iy’s subtree, we check whether s € [£, r]; if not, s is too far left or
too far right, and we have to find the next node (in preorder) that lies inside [¢, r]. If
s < Landi > ¢, then s is the left child of i, and following right-child links from s
eventually brings us back into the range [¢, ] since node i — 1 € [£, r] must lie in
s’s right subtree. In this case, we update s to the LCA of £ and i — 1 to obtain, in
O(1) time, the first node (in preorder) where this sequence of right-child links from
s enters the inorder range [¢, r] again. If s < £ and i = ¢, i is the leftmost node in
the range and we have to skip its left subtree. We can do this by advancing from s (in
preorder) by as many nodes as s’s right child has descendants; the tree data structure
again supports this in constant time. The symmetric case of s > r is handled similarly.
Ifi <r,wesetstoLCAofi+ 1andr;ifs > r andi = r, i was the last node in
preorder with inorder index in range [¢, r], so we can return null.

In all cases, after O(1) time, we either terminate or arrive at the next candidate
node s. If A[s] > y we return s and are done. Otherwise, i.e., if A[s] < y, then s and
its entire subtree have to be skipped; the tree data structure supports this in constant
time (as above). Then we repeat the above steps with the new s.

We note that the accesses to A are the same as in the naive implementation of three-
sided range reporting, and only constant time is needed between two such accesses;
hence the same time bounds hold.

When we use blocks of ¢ = [1/€] elements and only construct 7 based on the
block minima, we modify this procedure as follows. When we are given a current
index i, we first check the indices j > i ini’s block. If any j has A[j] > y, we return
it. Only if none of the indices in i’s block are returned, we continue with the above
procedure to find the next candidate node s. When we compare the candidate node
“Als] > y”, we now iterate through the block corresponding to node s and compare
each array entry with y. When we find i with A[i] > y, we return this index; if none
of the elements in the block where big enough, we continue as if A[s] < y held. O

From the discussion above, it is clear that next_nbr corresponds exactly to next
_above queries (separately for N* and N 7), and so using Lemma 3.2, we can sup-
port next_nbr(u, w) with constant words of extra working memory and amortized
constant running time (amortized over the iteration over all neighbors of u).

Remark 3.3 (Easy degrees) We can compute deg(v) as |[nbrhood(v)|in O (deg(v)+
1) time, but this is not particularly efficient for high-degree vertices. We can obviously
also add support for deg in constant time by storing the degrees of all vertices explicitly
in an array. This occupies an additional n[lg n] bits of space and is thus not succinct,
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but might in implementations be preferable to the grid data structure (and offers all
queries in optimal time complexity).

3.3 Distance and Shortest Paths

Both of the above data structures can be augmented to support distance and shortest-
path queries; the only difference will be the running time to compute 7~ (v).

For that, we follow the idea of [4]; we sketch their approach here and give a more
formal definition below. A shortest path from « to v in a PG can always be found
using only left-to-right maxima (“type A” vertices) and right-to-left minima (“type
B” vertices) as intermediate vertices; moreover, these are strictly alternating. Hence,
after removing an initial segment of at most 2 edges on either end of the path, such a
shortest path has either type A(BA)* A or B(AB)* B. For example, a shortest path from
vertex 15 to vertex 25 in Fig.3 is 15-14-23-22-25. Finally, how many intermediate
B-vertices are needed to move from one A vertex to another is captured by a proper
interval graph G 4, and likewise for B-vertices in Gp. We can hence reduce the
shortest-path queries to proper interval graphs and use Lemma 2.15. We present the
details below.

3.4 Distance

A vertex v € [n] is a type-A vertex iff 7! has a left-to-right maximum at position
v, i.e., when 7~ 1(v) > 7w~ (u) for all u < v. Note that 1 is always a left-to-right
maximum. Similarly, a vertex v € [n] is type B iff = ~! has a right-to-left minimum at
v, i.€., n_l(v) < n_l(u) for all u > v; vertex n is always type B. As in [4], we use
A and B to denote the set of A-vertices and B-vertices, respectively, and we define:

a” (v) = min(nbrhood(v) N A),
at(v) = max(nbrhood(v) N A),
b~ (v) = min(nbrhood(v) N B),
bt (v) = max(nbrhood(v) N B).

If we are computing a shortest path from u to v, then either # and v are adjacent, or
there is a shortest path whose first vertex after u is one of a™* () and b™ (u), if v > u,
or one of a™ (u) and b~ (u), if v < u. It is therefore vital to be able to compute these
four functions. For that, we store four bitvectors with rank/select support Lemma (2.6)
that encode which points belong to A (resp. B) given an x- (resp. y-)coordinate:

A[l.n] with A [u] = [u € A],
Bx[l..n] with Bylu] = [u € B],
Ay[l.n] with Ay[i] = [7(@) € A],
By[l.n] with A[i] = [7(i) € B].
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Fig. 3 Example of a permutation graph with n = 30 vertices, shown as the points P (7). A-vertices are
shown red, B-vertices are green and vertices that have both type A and B (isolated vertices) are shown blue.
Edges in G5 are drawn yellow (Color figure online)

Figures 3 and 4 show examples of these bitvectors. We can now use these to compute
the extremal A and B neighbors of a vertex v as follows:

at() = selectl(Ax, rank(ay, v)),

a (v) = selectl(Ax, ranki(ay, rr_l(v) -1+ 1),
bt (v) selectl(Bx, rankl(By,n_l(v))),

b~ (v) = selectl(Bx, rank|(By,v—1) + 1).

The computation takes O (1) time plus at most one evaluation of 7~ (v).

Remark 3.4 (7' for A/B-vertices) We note here (for later reference) that fora € A
we can compute 7 Ya) = select; (Ay, rank;(Ay, a)) just from the bitvectors
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Fig. 4 Another example of a permutation graph; the drawing is as in Fig.3. This graph is a typical graph
when the 7 is chosen uniformly at random

without access to IT, because 7! is monotonically increasing on A; similarly for

b e B: 1 !(b) = select(By, rank;(By, b)).

In [4, Thm.2.1], Bazzaro and Gavoille show that the distances/shortest paths in a
PG can now be found by testing for the special cases of distance at most 3 (using a®
or b¥) or by asking a distance query in a proper interval graph. More specifically, let
u <.

1. If adj(u, v), the distance is 1 and we are done.

2. Otherwise, if adj(a™* (1), v) or adj (b™ (1), v), which can equivalently be written
asa”(v) <at(u) vV b~ (v) < bT(u), the distance is 2 and we are done.

3. Otherwise, if adj(a™(u), b~ (v)) or adj (b (1), a~ (v)), which is equivalent to
a~(v) <at(bT@) v b~ (v) < bt (at(un)), the distance is 3 and we are done.

4. Otherwise, the distance is the minimum of the following four cases: 2 +
2 - distg,(btw),b"(v)), 3+ 2-distg,(bT(atw),b”(v)), 2 + 2 -
distg,(at(u),a (v)), 3+2-distg,(@ (b (u),a” (v)).
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Here G 4 is the interval graph (intersection graph) defined by intervals [6~ (v), b (v)]
forallv € A and G p by intervals [a~ (v), a™ (v)] forall v € B. In general, these inter-
vals share endpoints, but they can be transformed into a proper realization by breaking
ties by vertex v , e.g., for G4, we use [b~(v) — (n — v) - €, b7 (v) + v - €] instead
of [b~(v), bT(v)] for, say, € = 1 /n?. Then all endpoints are disjoint and no interval
properly contains another; moreover, the ith smallest left endpoint corresponds to the
ith smallest vertex in A.

We compute the data structure of Lemma 2.15 for G 4 and G p; to map vertex v € A
to the corresponding vertex in G 4, we simply compute rankj(Ay, v); recall that the
data structure of Lemma 2.15 identifies vertices with the rank of their left endpoints.
With that, we can compute the four distances above and return the minimum.

The running time for dist is the time needed for a constant number of extremal
neighbor queries (O(1) for the array-based data structure, O (logn/loglogn) for
the grid-based one), a constant number of adjacency checks (same running times), a
constant number of rank-queries (O (1) each), and finally a constant number of dist
queries in proper interval graphs (again O(1)). The running time for dist is thus
dominated by the time for evaluating 7~

3.4.1 Shortest paths

Suppose u < v. As noted by Bazzaro and Gavoille [4], the above case distinction does
not only determine the distance, but also determines in each case a next vertex w after
u on a shortest path from u to v. We output u and unless u = v, we recursively call
spath(w, v).

Since the running time for all checks above is dominated by 7 ~! (v), we can iterate
through the vertices on spath(u, v) in O(1) time per vertex for the array-based data
structure, and in O (logn/loglogn) time per vertex for the grid-based data structure.

3.4.2 Space

The four bitvectors Ay, By, Ay, and By, require no more than 4n + o(n) bits of space
including the support for rank and select operations.

When we allow ourselves to modify 7, we can slightly improve upon this: We first
move all isolated vertices to the largest indices. Note that any connected components
can be freely permuted without changing the graph; in the point grid this has to be
done by shifts along the y = x line. We now store the number w of isolated vertices.
Each of the remaining nodes, [n — w], can either be an A-node, a B-node, or neither,
which can be encoded as a string over {A, B, N}. We store this string as a wavelet
tree Lemma (2.8) with support for rank and select, using at most 1g(3)n + o(n) bits
of space per dimension (x and y), for a total of at most 3.16993n + o(n) bits. (The
data structure can sometimes achieve even better compression since it compresses to
the empirical entropy of the string).

G4 and Gp have no more than n vertices in total, so the data structures from
Lemma 2.15 will use at most 3n + o(n) bits of space. In addition to that, we need
en bits of space for the range-maximum and range-minimum indices, for a total of
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(6.17 4+ €)n 4 o(n) bits of space on top of storing I1. Assuming we using the data
structure of [12] for the latter, the total space is nlgn + (6.17 4 €)n 4 o(n).
This concludes the proof of Theorem 3.1.

4 Algorithms on Succinct Permutation Graphs

Clearly, next _nbr is equivalent to an adjacency-list based representation of a graph,
so our succinct data structures can replace them in standard graph algorithms, like
traversals. Beyond that, there are a few more properties specific to PGs that known
algorithms for this class build on and which are not reflected in our list of standard
operations. Fortunately, as we will show in the following, our data structures are
capable of providing this more specialized access, as well; we formulate these as
remarks for later reference.

Remark 4.1 (Transitive orientations & topological sort) A graph is a comparability
graph iff it admits a transitive orientation, i.e., an orientation of all its edges so that
if there is a directed path from u to v, we must also have the “shortcut edge” (u, v).
In any ordered PG G, orienting all edges {u, v} with u < v as (u, v) yields such a
transitive orientation as is immediate from the point-grid representation. Denote the
resulting directed graph by G .

It follows that the partition of the neighborhood into N~ (v) and N ™ (v) introduced
above coincides with in-neighborhood and out-neighborhood of v in G, respectively.
Since both our data structures for PGs handle N~ (v) and N (v) separately, our data
structure can indeed answer adj, nbrhood, deg, dist, and spath queries w.r.t.
digraph G instead of G at no extra cost and in the same running time. (Note that
dist and spath are trivial in a transitively oriented digraph: All shortest directed
paths are single edges.)

It is immediate from the definition that 1,...,n, i.e., listing the vertices by
(increasing) x-coordinate in the point grid, is a topological sort of the vertices in
G”. It is also easy to see that the same is true for decreasing y-coordinate, i.e.,
w(n),w(n — 1),...,7m(1) is a second topological sort of G”. Indeed, PGs are
exactly the comparability graphs of posets of dimension two, i.e., the edge set of
G is obtained as the (set) intersection of two linear orders (namely 1, ..., n and
w(n),...,m(1)).

Remark 4.2 (One data structure for G and G) PGs are exactly the graphs where both
G and the complement graph G are comparability graphs. That immediately implies
that G is also a PG, when G is such.

We can extend our data structure with just O(n) additional bits of space so that
we can also answer all queries in G that the data structure could answer for G; in
fact, only the distance-related data structures (Ax, Ay, By, By and G 4, Gp) need to be
duplicated for G.

With these preparations, we can show how several known algorithms for PGs [22,
23] can efficiently run directly on top of our data structure (without storing G sepa-
rately).
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4.1 Maximum Clique and Minimum Coloring

While computing (the size of) a maximum clique is NP-complete for general graphs,
in comparability graphs, they can be found efficiently: we transitively orient the graph
and then find a longest (directed) path. Note that any directed path in the transitive
orientation is actually a clique in the comparability graph.

Since our data structures already maintain G in oriented form Remark (4.1), the
textbook dynamic-programming algorithm for longest paths in DAGs [34] suffices:
For each vertex v, we store the length of the longest directed path ending in v seen so far
in an array L[v]. We iterate through the vertices in a topological sort;sayv = 1,...,n
(in that order). To process vertex v, we iterate through its in-neighbors N~ (v) and
compute L[v] = max({L[u] +1:ue N (v)}U {1}). Then, £ = max, L[v] is the
length of the longest path in G, and the path can be compute by backtracing. The
same ¢ vertices then form a clique in G. As McConnell and Spinrad [22] noted, L[v]
is simultaneously a valid coloring for G with £ colors, so no larger clique can possibly
exist.

The running time of above algorithm is O (n 4 m), where m is the number of edges
in Gr; the extra space on top of our data structure is just n words to store the colors.

4.2 Maximum Independent Set and Minimum Clique Cover

Clearly, a maximum independent set in G is a maximum clique in G, and similarly, a
minimum clique cover of G equals a minimum coloring of G. As discussed in Remark
4.2, our data structure can without additional space support to iterate through N~ #(v),
the in-neighbors of v in G, which is enough to run the above max-clique/min-coloring
algorithm on G.

5 Bipartite Permutation Graphs

Bipartite permutation graphs (BPGs) are permutation graphs that are also bipartite.
While our data structures for general PGs clearly apply to BPGs, their special structure
allows to substantially reduce the required space.

Theorem 5.1 (Succinct BPG) A bipartite permutation graph can be represented

(a) using 2n+ o(n) bits of space while supporting adj, deg, spath _succin O(1)
time and nbrhood(v) in O(deg(v)) time,

(b) using 5Sn + o(n) bits of space while supporting adj, deg, spath _succ, dist
in O (1) time and nbrhood(v) in O(deg(v)) time.

By iterating spath _succ, we can answer spath(u, v) inoptimal O(dist(u, v)+
1) time.
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Fig.5 An exemplary bipartite permutation graph, shown as the grid P ()

5.1 Data Structure

As already observed in [4], BPGs consist of only A and B vertices. Isolated vertices
are formally of both type A and B; thus it is convenient to assign them to the highest
possible indices and to exclude them from further discussion. (All operations on them
are trivial.)

All vertices being of type A or B means that every vertex corresponds to a left-
to-right maximum or a right-to-left minimum. The permutation 7 ~! thus consists of
two shuffled increasing subsequences and can be encoded using the bitvectors A, and
A,y (introduced in Sect.3.3) in just 2n bits. We add rank and select support to both
bitvectors (occupying o(n) additional bits of space). Figure 5 shows an example.

The key operation is to simulate access to 7 ! (v) based on the above representation:

selecti(ly, ranki(Ay,v)) ifA[v] =1

7' (v) :
selecto(ly, ranko(Ay, v)) ifA[v] =0
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Computation of 7! is thus supported in constant time. That immediately allows
to compute adj(u, v) as before; moreover, a~ (v), a™ (v), are directly supported,
too. For b~ (v), b™(v), we exploit that in BPGs, By[v] = 1 — A,[v] so bT(v) =
selecto(Ay, ranko(ay, 7~ 1(v))), and similarly for 5™ (v).

It is easy to see that for a B-vertex v, its neighbors are exactly all A-vertices in
[a~(v), a™ (v)]; similarly for A-vertex v, we have N(v) = [b~(v), b*(v)] N B. We
can iterate through these (in sorted order) using rank/select on 2., so nbrhood can
be answered in constant time per neighbor.

The degree of a vertex can computed in O (1) time. If v is a B-vertex, deg(v) =
rank|(&y,at(v)) — rank (A, a”(v)) — 1, and similarly for an A-vertex.

Finally, shortest paths in BPGs are particularly simple since there is only one can-
didate successor vertex left: Let u < v and assume u is an A-vertex. Then either « and
v are adjacent, or spath_succ(u, v) = b* (u). The situation where u is a B-vertex
is symmetric.

Computing dist(u, v) faster than ®(dist(u, v)) seems only possible using the
distance oracles for G 4 and G g, which require 3n + o(n) additional bits of space. The
query itself is as for general PGs.

This concludes the proof of Theorem 5.1.

5.2 Space Lower Bound

A known counting result for unlabeled BPGs implies that our data structure from
Theorem 5.1 is succinct. Let us denote by b, the number of unlabeled BPGs and by b,,
the number of unlabeled connected BPGs. Saitoh et al. [32, Thm. 3.14] showed that

S
B

zll(Cn_l + Cpjo-1+ (Jz)) if n is even
(G + ((nn:l)l/z)) if n is odd
Cyu—2(1 +0o(1)),

for n > 2, where C,, is the nth Catalan number. Hence 1g b,, > Ig b, =2n— O (logn)
bits are necessary to represent an unlabeled BPG on n vertices. This is asymptotically
equivalent to the amount of space required by our data structure.

5.3 Algorithms

Our data structure for BPGs can be used to solve the HAMILTONIAN PATH and the
HAMILTONIAN CYCLE problems in O (n) time with no extra space. A Hamilton path
(resp. Hamiltonian cycle) in a graph is a simple path (resp. simple cycle) which contains
every vertex of the graph. Given a graph G, the HAMILTONIAN PATH (resp. HAMIL-
TONIAN CYCLE) problem asks whether the graph G contains a Hamiltonian path (resp.
Hamiltonian cycle). These problems are NP-complete even when restricted to several
special classes of bipartite graphs, but can be solved efficiently in the class of BPGs
(see [35] and references therein). We will show how our data structure can be used to
execute the algorithms from [35] in O (n) time without using extra space.
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In order to explain the algorithms and their execution on the data structure, we
need to introduce some preliminaries from [35]. A strong ordering of the vertices of a
bipartite graph G = (A, B, E) consists of an ordering of A and an ordering of B such
that for all {a, b}, {a’, b’} in E, where a, a’ are in A and b, b’ are in B, a < a’ and
b > b’ imply {a, b’} and {@’, b} are in E. The algorithms are based on the following
characterization of BPGs.

Theorem 5.2 (Strong ordering, [35]) A graph G = (A, B, E) is BPG if and only if
there exists a strong ordering of A U B.

Let G = (A, B, E) be a BPG, where A = {a, ay, ...,ar}, B={b1, by, ..., b},
and the vertices are indexed according to a strong ordering of A U B. Then using the
characterization from Theorem 5.2, the following results were proved in [35].

Theorem 5.3 (Hamiltonian path, [35]) Graph G contains a Hamiltonian path if and
only if

e cithers =k — 1 and a1, by, az, by, ..., br_1, ar is a Hamiltonian path,
e ors =kanday,by,a, by, ..., br_1,ar, by is a Hamiltonian path,

e ors=k+1by,a1,bz,a2,...,ax, b+ is a Hamiltonian path,

e ors =kandby,ay,by,ay,...,ar_1, bk, ar is a Hamiltonian path.

Theorem 5.4 (Hamiltonian cycle, [35]) Graph G contains a Hamiltonian cycle if and
only ifk = s > 2 and a;, b;, aj+1, bi+1 is a cycle of length four for 1 <i <k — 1.

In order to make use of these results, we will show that in our data structure, vertices
of a given ordered BPG are stored in a strong ordering. Recall, that given a permutation
7 : [n] — [n], the ordered PG induced by 7, denoted G, = (V, E), has vertices
V = [n] and edges {i, j} € E foralli > j with w1 (i) < 771 (j).

Claim5.5 Let G, = (A, B, E) be an ordered BPG, then the ordering 1 <2 < ... <
n — 1 < n (restricted to A and B, respectively) is a strong ordering of A U B.

Proof As before, we assume that A is the set of A-vertices and B is the set of B-
vertices of G. Leta,a’ € A and b, b’ € B be such that {a, b} and {a’, b’} are in E,
anda < a’ and b > b’. We will show that in this case {a, b’} and {a’, b} are also in E.
By definition, we need to establish:

() a<b andn~ @) > 7~ 1(H); and
(2) @’ <band 7w~ > 7~ (b).

We will show only (1), as (2) is proved similarly. Since {a’, b’} € E and a’ is an A-
vertex, we have that @’ < b’ and hence a < b’ (as, by assumption, a < a’). To prove
the second part of (1), we note that 7 b)) < 771(a) and b > a because {a,b} €
E. Furthermore, since {b’,b} ¢ E and b’ < b, we have that =1 (b)) < 7~ 1(b).
Consequently, 71 (b") < 7~ (a). O
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5.3.1 Hamiltonian Path

Using Theorem 5.3 and Claim 5.5 the problem can be solved by going in constant time
from the first A-vertex a; to its first B-neighbor b1 = b~ (a;), then going in constant
time from b to its first A-neighbor ap = a™ (b1), and so on until we can no longer
move. If we made n moves, then we have visited all the vertices of the graph following
a Hamiltonian path. Otherwise, we try to do the same but this time starting from the
first B-vertex. Similarly, if we made n moves, then the graph has a Hamiltonian path.
If both attempts fail, the graph does not contain a Hamiltonian path. This algorithm
works in O (n) time.

5.3.2 Hamiltonian Cycle

First, we check that the number of A-vertices is equal to the number of B-vertices. If so,
we check next if the graph contains a Hamiltonian path using the previous algorithm
(this will ensure that A- and B-vertices alternate). In the case of success, at the final
stage of the algorithm, we iterate through A-vertices following the strong ordering,
and for every A-vertex g; calculate in constant time the vertices b; | = b (a;), a; 2 =
a=(bi.1), bi» = b~ (a;2) and check if the vertices a; and b; » are adjacent, (i.e.,
whether all the four vertices induce a cycle on four vertices), which is equivalent to
7 a;) > w1 (b; 2). Theorem 5.4 and Claim 5.5 imply that the graph contains a
Hamiltonian cycle if and only if all stages of the algorithm were successful. Overall,
the algorithm works in O (n) time.

6 Circular Permutation Graphs

Circular permutation graphs (CPGs) are a natural generalization of PGs first introduced
by Rotem and Urrutia [31]. In this section, we show how to extend our data structure
to CPGs.

6.1 Preliminaries

CPGs results from PGs by allowing circular/cyclic permutation diagrams, i.e., in the
intersecting chords representation, we connect the right and left end of the gray ribbon
to form a cylinder. The cylinder can be smoothly transformed into two concentric
circles with chords in the annular region between them; Fig. 6 shows an example.

By cutting the annulus open again, we obtain the permutation diagram with cross-
ings, i.e., where some chords cross the cut and continue from the opposite end; (Fig. 6
right). This induces a linear order of the endpoints on both circles (in counterclockwise
direction starting at the cut) and hence a permutation 7 : [n] — [n] as before; e.g.,
for Fig. 6, we have m = (4, 1,6, 3,2, 7, 5). Note that for CPGs, though, 7 no longer
uniquely determines a graph because chords between circles can wrap around the
inner circle in clockwise or counterclockwise direction and this affects intersections.
The representation becomes unique again upon adding an assignment of chord types
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Fig.6 Small circular permutation graph on 7 vertices (left) that is not a standard permutation graph, shown
as the intersection of chords between concentric circles (middle), and as intersections of chords on a cylinder
that has been cut open (note that chord 2 wraps around the cut)

t:[n] - {N, F, B} to & with the following meaning: N-chords do not cross the cut
at all. F-chords do cross the cut, namely in forward direction, i.e., when following the
chord from the upper endpoint to the lower endpoint, we move to the right. Finally,
B-chords also cross the cut, but in backward direction, i.e., following the chord top
down moves us to the left. A larger example with all types of crossings is shown in
Fig. 8 (page 30).

Note that every PG is also a CPG (setting #(v) = N for all vertices), so the lower
bounds from Sect. 2.2 applies here as well.

Remark 6.1 (Improper diagrams) The original definition of CPGs required the permu-
tation diagram to be “proper”’, meaning that no two chords intersect more than once.
All our permutation diagrams are required to be proper in this sense. (Later works
[36] achieved a similar effect by defining vertices adjacent iff their chords intersect
exactly once.)

Note that monotonic/straight chords and forbidding double crossings of the cut are
not sufficient: not all combinations of 7 and ¢ lead to a proper permutation diagram.
Indeed, the pair (7, ¢) is valid iff no pair of chords u, v has one of the following
forbidden combinations of crossing type and relative location:

1. u < v, 77 w) > 77'® (inversion), t(v) = N, and 1 (u) = F.
2. u <v, 7 ) > 77'® (inversion), #(v) = B, and r(u) = N.
3. u < v, 7 ") < 77 (no inversion), and N # t(v) # t(u) # N.

Each of these cases implies a double crossing and a chord length > n after “pulling
one chord straight” (by turning the two circles against each other).

Sritharan [36] gave a linear-time algorithm for recognizing CPGs, which also com-
putes the circular permutation diagram if the input is a CPG.

6.2 Ordered CPGs and the Thrice-Unrolled PG

Inanalogy to ordered PG G, we define the ordered CPG G ; for a (valid combination
of) permutation 7 : [n] — [n] and chord types ¢ : [n] — {N, F, B}.
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4 1 6 3 2 7 5'4 1 6 3 2 7 5'4 1 6 3 7 5

Fig.7 The circular permutation graph from Fig. 6 and its thrice-unrolled PG G3 as a permutation diagram
and in the grid representation

From now on, we assume such a graph G ; is given. In preparation of our succinct
data structure for CPGs, we again define a planar point set based on which we support
all queries:

P(r.t) = {(+kn, 77 () +kn):velnlke{0,1,2},t(v) =N}
U{@+kn, 77 (v) + (k + Dn) s v € [n], k € {0, 1}, 1(v) = F}
U{@+kn, 7' () + (k — Dn) 1 v € [n], k € {1,2},1(v) = B}
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P(m, t)liesina3n x3n gridand 2n < |P(m, t)| < 3n. Intuitively, P (r, ) is obtained
by unrolling the circular permutation diagram of G ; three times: We record the times
at which we see a chord’s endpoints during this unrolling process and output a point
for these times. We only output chords when we have seen both endpoints during this
process, so each noncrossing chord is output three times, whereas the crossing chords
are only present twice. See Fig. 7 for an example.

Clearly, P(m, t) corresponds to the grid representation of a (larger) PG, denoted
by G3 = G3(m, t), which “contains” G, in the sense detailed in Lemma 6.2 below.
Denote the vertices in G3 by ¢}, ¢j, and r;, j € [n], respectively, where £; is the
vertex corresponding to point (x, y) with x = j € [n], ¢; is the vertex for (x, y) with
X = j+n € (n.2n] and r; is the vertex for (x, y) withx = j+2n € (2n..3n]. (Note
that in general not all £; (resp. r;) will be present.) We call ¢, the main copy of vertex
vin G, and £, and ry, are the left (resp. right) copies of v.

Lemma 6.2 (Neighborhood from G3) Let v be a vertex in G ; and c, its main copy
in G3(m, t). Then v’s neighbors (in Gy) can be deduced from c,’s neighbors in in
G3(m, t) as follows:

N~ () = {w:cy € N (c) VLy € N ()},
NT() = {w:cy € NT(cy) Vry € NT(ey)).

Proof First note that by construction, any edge in G3 between copies of u and v in
G3 (i.e., any edge between €, ¢, 1y, resp. £y, ¢y, ry) implies an edge in G between u
and v. Hence we never report non-neighbors in the set for N~ (v) and N+ (v) above.
Moreover, for any combination of £, ¢, r where both copies of u and v exist, these
copies are adjacent in G3. It remains to show that any edge in G is witnessed by at
least one pair of copies. For that, consider the permutation diagram of G3 and note
that it contains a complete copy of the permutation diagram with crossings of G in its
middle third (see Fig.7), so every neighbor of v in G can be witnessed from ¢, in G3.
]

Remark 6.3 (Thrice or twice ?) It follows directly from the definition of a proper permu-
tation diagram that the upper endpoints of all backward-crossing chords must precede
all upper endpoints of forward-crossing chords, and vice versa for lower endpoints.
As a consequence, we can remove further copies from G3 without affecting Lemma
6.2; one can show that at most two copies of every noncrossing chord are always
sufficient. Since the size of G3 will only affect lower-order terms of space, we omit
this optimization here for ease of presentation.

6.3 Succinct CPGs

With this preparation, we can now describe our succinct data structure for CPGs.
Conceptually, we store our succinct PG data structure for G3 and reduce the queries to
it. For the space-dominant part, i.e., the inverse permutation 7 ~ !, we store it implicitly,
exploiting the special structure of G3.
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Theorem 6.4 (Succinct CPGs) An (unlabeled) circular permutation graph on n ver-
tices can be represented using nlgn + O(n) bits of space while supporting adj,
dist, spath_succin O(1) time and nbrhood(v) and deg(v) in O (deg(v)+ 1)
time.

As always, we can add constant-time degree support at the expense of another n[lgn]
bits of space.

We are now ready to give the proof of Theorem 6.4. Let a valid pair (7, t) be
given and consider G ;. As for PGs, we store the array I1[1..n] with TI[i] = P (1);
additionally, we store the sequence t = t(1), ..., t(n) over alphabet {N, F, B} for
constant-time access; (two bitvectors suffice for the claimed space).

For the operations, we will show how to simulate access to the grid representation
of G3; the reader will find it useful to consult the larger example CPG in Fig. 8§ when
following the description.

Mapping between vertex v in G and the x-coordinates of £,, ¢y, ry in G3 is triv-
ial. To access the y-coordinate for a point (x, y), y(x), we consult the type of the
corresponding vertex v:

I[v] iftfv]=N
yy) = )

v+ n iftfv]=F

vl +n iftfv]=N
y(cy) = {Ml+2n iftv]=F

[[v] iftffv] = B

Mv] +2n iftfvl=N
() = .

Hv]+n iftfv]=B

All can be answered in O (1) time. Based on that, we can answer the main queries.

6.3.1 Adjacency

u < v are adjacent (in G ;) iff y(c,) > y(cy) V y(ly) > y(cu) V y(cy) > y(ru);
if any of the involved copies does not exist, that part of the condition is considered
unfulfilled.

6.3.2 Neighborhood

Given a vertex v, we use Lemma 6.2 to reduce the query to neighborhood queries on
G3. To compute the neighborhood of ¢, in the PG G3, we use the same method as in
Sect. 3.2; for that we store the range-minimum/maximum index from Lemma 2.9 for
the sequence of y-values of all vertices in G3 (filling empty slot from missing copies
with +o0, resp. —oo, values). Note that this index only requires access to individual
values in the sequence of y-values (which we can provide in constant time); it does
not require the values to be stored explicitly in an array. The additional space cost for
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Fig. 8 A larger circular permutation graph with n = 15 vertices, represented by the permutation diagram
with crossings (top) and the grid representation of the thrice-unrolled PG (bottom). In the permutation
diagram, noncrossing chords are drawn black, forward crossing chords are green (vertices 9, 11, 14, 15)
and backward crossing chords are brown (vertices 1, 6) (Color figure online)
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constant-time range-min/max queries is only en bits. The time stated for deg follows
from counting the neighbors one by one.

6.3.3 Distance and shortest paths

As for neighborhood, we augment our data structure with the additional data structures
from Sect. 3.3 for the PG G3,1.e., we define A, B, ai(v), bi(v), and G 4, G g as before
for G3. All now have up to 3n vertices instead of n, but only occupy O (n) bits in total.

By construction, two vertices # and v in G3 are only adjacent if the corresponding
vertices in G are adjacent. Therefore, the distance between u# and v can be found as
the minimum over all combinations of copies of # and v in G3 (at most 9).

For (the first vertex on) a shortest path, the minimal distance pair of copies can be
used with the spath _succ query on G3.

This concludes the proof of Theorem 6.4.

7 Semi-Distributed Graph Representations

While Bazzaro and Gavoille [4] report that no distance labeling scheme for PGs exists
with less than 31g(n)(1 — o(1)) bits per label, our succinct data structure with overall
nlg(n)(1 + o(1)) bits of space clearly demonstrates that this lower bound can be
overcome in “centralized” data structures. An interesting question is whether this
lower bound can also be circumvented using only a small amount of global memory
on top of the local labels.

More formally, a semi-distributed (distance) oracle consists of a vertex labeling
£ :V — {0, 1}* and a data structure D, so that dist(u, v) can be computed from
(€(u), £(v), D). If we allow arbitrary data structures D, this notion is not very inter-
esting; one could simply ask D to compute all queries. But if we restrict D to less
space than necessary to simply encode the graph, we obtain an interesting model of
computation that interpolates between standard data structures and labeling schemes.

Let us call a representation an (L (n), D(n))-space semi-distributed representation
if for every n-vertex graph we have [£(v)| < L(n) for all vertices v and |D| < D(n).
Our question can then be formulated as follows: What is the smallest D (n) that permits
a ((3—e€)lgn, D(n)) space semi-distributed distance oracle for permutation graphs?

The known distance labeling scheme from [4] implies a (91gn, 0)-space semi-
distributed representation, and our succinct data structure constitutes a (Ig n, n 1g(n) (1+
o(1)))-space semi-distributed representation.

A closer look at Sect. 3 reveals that the dominant space in our (array-based) data
structure comes from storing 7 ~!. In particular, all further data structures required to
answer dist queries occupy only O (n) bits of space. Moreover, all computations to
determine distances, and even the entire shortest path, require only 77 ~! of the original
endpoints (cf. Remark 3.4). We can thus move ~1(v) into the label of node v, thereby
making it inaccessible from any other vertex without affecting the queries. We hence
obtain the following result.
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Theorem 7.1 (Semi-distributed PGs) Permutation graphs admit a (21gn, O (n))-
space semi-distributed representation that allows to answer the following queries:
adj, dist,and spath_succin O(1) time and spath(u, v)in O(dist(u, v)+1)
time.

Proof The label £(v) consists of the pair of (v, 7)), i.e., the x- and y-coordinate
in the grid representation of G. All remaining data structures from Sect.3 occupy
O (n) bits of space. As discussed above, for the listed operations access to 7 ! is only
needed for the queried vertices. O

Remark 7.2 (Who stores the labels) Note that in our succinct data structures, we iden-
tify vertices with the (left-to-right) ranks of the upper endpoints of their chords in the
permutation diagram. That means that the user of our data structure is willing to let
(the construction algorithm of) our succinct data structure decide how to label ver-
tices, and vertices are henceforth referred to using these labels. In a (semi-)distributed
representation, we have to assign and store a unique label for each vertex, because
queries are computed only from the labels of the vertices (and potentially D). The
semi-distributed scheme derived from our succinct representation therefore takes up
a total of ~ 2n g n bits.

This (21gn, O(n)) scheme circumvents the lower bound for distance labelings
in label length and overall space; it thus gives a novel trade-off beyond the fully
distributed and fully centralized representations. In particular, it shows that access
to global storage, even a fairly limited amount, is inherently more powerful than a
fully-distributed labeling scheme.

8 Conclusion

We presented the first space-efficient data structures for permutation graphs (PGs),
circular permutation graphs (CPGs), and bipartite permutation graphs (BPGs). They
use space close to the information-theoretic lower bound for these classes of graphs,
while supporting many queries in optimal time. The use of our data structures as
space-efficient exact distance oracles improves the state of the art and proves a sep-
aration between standard, centralized data structures and distributed graph labeling
schemes for distance oracles in permutation graphs. Our notion of semi-distributed
graph representations interpolates between these two extremes; an initial result shows
that access to global memory is inherently more powerful even if we cannot store the
entire graph there.
There are several interesting directions for future research.

1. Isitpossible to support degree queries in constant time and succinct space, together
with the queries covered by our data structures? With our current approach, this
seems to require improvements to range searching in succinct grids, but the queries
are of a restricted form.

2. What is the least amount of global storage in a semi-distributed representation for
distances in permutation graphs that overcomes the lower bound for distance label-
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ing schemes? Is there a smooth trade-off between the “amount of decentralization”
and total space, or does it exhibit a sharp threshold?

3. Comparability graphs of dimension k. These graphs have representations with
k — 1 chord segments per vertex; PGs correspond to k = 2. It is known [4] that
for k > 3, distance labels require €2 (nl/ 3) bits. Is a succinct distance oracle with
efficient queries possible for these graphs?

4. Circle graphs. While navigational operations are possible [2], efficient distance
queries remain an open problem.
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