
Algorithmica (2023) 85:384–405
https://doi.org/10.1007/s00453-022-01031-w

Solving Target Set Selection with Bounded Thresholds
Faster than 2n

Ivan Bliznets1 · Danil Sagunov1

Received: 14 April 2019 / Accepted: 23 August 2022 / Published online: 14 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper we consider the Target Set Selection problem. The problem nat-
urally arises in many fields like economy, sociology, medicine. In the Target Set

Selection problem one is given a graph G with a function thr : V (G) → N ∪ {0}
and two integers k, �. The goal of the problem is to activate at most k vertices initially
so that at the end of the activation process there are at least � activated vertices. The
activation process occurs in the following way: (i) once activated, a vertex stays acti-
vated forever; (ii) a vertex v becomes activated if at least thr(v) of its neighbours are
activated. The problem and its different special cases were extensively studied from
the approximation and parameterized points of view. For example, parameterizations
by the following parameters were studied: treewidth, feedback vertex set, diameter,
size of target set, vertex cover, cluster editing number and others. Despite the exten-
sive study of the problem it is still unknown whether the problem can be solved in
O∗ ((2 − ε)n) time for some ε > 0. We partially answer this question by presenting
several faster-than-trivial algorithms thatwork in cases of constant thresholds, constant
dual thresholds or when the threshold value of each vertex is bounded by one-third
of its degree. Also, we show that the problem parameterized by � is W[1]-hard even
when all thresholds are constant.

Keywords Target set selection · Exact exponential algorithms · Vertex thresholds ·
Social influence · Irreversible conversions of graphs · Bootstrap percolation

This research was supported by the Russian Science Foundation (project 16-11-10123-Π).

B Danil Sagunov
danilka.pro@gmail.com

Ivan Bliznets
iabliznets@gmail.com

1 St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,
Fontanka River Embarkment 27, 191011 St. Petersburg, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01031-w&domain=pdf
http://orcid.org/0000-0003-2291-2556
http://orcid.org/0000-0003-3327-9768

Algorithmica (2023) 85:384–405 385

1 Introduction

In this paper we consider the Target Set Selection problem. In the problem one
is given a graph G with a function thr : V (G) → N ∪ {0} (a threshold function), and
two integers k, �. The question of the problem is to find a vertex subset S ⊆ V (G)

(a target set) such that |S| ≤ k and if we initially activate S then eventually at least �
vertices of G become activated. The activation process is defined by the following two
rules: (i) if a vertex becomes activated it stays activated forever; (ii) vertex v becomes
activated if either it was activated initially or at some moment there is at least thr(v)

activated vertices in the set of its neighbours N (v). Often in the literature by Target
Set Selection people refer to the special case of Target Set Selection where
� = |V (G)|, i.e. where we need to activate all vertices of the graph. We refer to this
special case as Perfect Target Set Selection.

Target Set Selection problem naturally arises in such areas as economy, soci-
ology,medicine. Let us give an example of a scenario [7, 25] underwhichTarget Set

Selection may arise in the marketing area. Often people start using some product
when they find out that some number of their friends are already using it. Keeping this
in mind, it is reasonable to start the following advertisement campaign of a product:
give out the product for free to some people; these people start using the product, and
then some friends of these people start using the product, then some friends of these
friends and so on. For a given limited budget for the campaign we would like to give
out the product in a way that eventually we get the most users of the product. Or we
may be given the desired number of users of the product and we would like to find out
what initial budget is sufficient. It is easy to see that this situation is finely modelled
by the Target Set Selection problem.

The fact that Target Set Selection naturally arises in many different fields
leads to a situation that the problem and its different special cases were studied under
different names: Irreversible k- Conversion Set [11, 17], P3- Hull Number

[3], r - Neighbour Bootstrap Percolation [5], (k, �)- Influence [6], monotone
dynamic monopolies [28], a generalization of Perfect Target Set Selec-

tion on the case of oriented graphs is known as Chain Reaction Closure and
t- Threshold Starting Set [1]. Centeno et al. [11] showed that Perfect Target

Set Selection is NP-hard even when all threshold values are equal to 2.
There is an extensive list of results on Target Set Selection from the param-

eterized and approximation points of view. Many different parameterizations were
studied in the literature such as the size of the target set, treewidth, feedback vertex
set, diameter, vertex cover, the cluster editing number and others (for more details, see
Table 1). Most of these studies consider the Perfect Target Set Selection prob-
lem, i.e. the case where � = |V (G)|. However, FPTmembership results for parameters
treewidth [7] and cliquewidth [24] were given for the general case of Target Set

Selection. From approximation point of view, it is known that the minimization ver-
sion (minimize the number of vertices in a target set for a fixed �) of the problem
is very hard and cannot be approximated within O(2log

1−ε n) factor for any ε > 0,
unless NP ⊆ DTIME(n polylog(n)). This inappoximability result holds even for graphs
of constant degree with all thresholds being at most two [12]. Also, the maximization

123

386 Algorithmica (2023) 85:384–405

Table 1 Some known results on different parameterizations of Perfect Target Set Selection. In the
Thresholds columnwe indicate restrictions on the threshold function under which the results were obtained.
Here t denotes the maximum threshold value

Parameter Thresholds Result Reference

Bandwidth b General O∗ (
bO(b log b)

)
Chopin et al. [13]

Clique Cover Number c General NP-hard for c = 2 Chopin et al. [13]

Cliquewidth cw Constant O∗ (
(cw · t)O(cw·t)) Hartmann [24]

Cluster Editing Number ζ General O∗ (
16ζ

)
Nichterlein et al. [27]

Diameter d General NP-hard for d = 2 Nichterlein et al. [27]

Feedback Edge Set Number f General O∗ (
4 f

)
Nichterlein et al. [27]

Feedback Vertex Set Number General W[1]-hard Ben-Zwi et al. [7]

Neighborhood Diversity nd Majority O∗ (
ndO(nd)

)
Dvořák et al. [18]

General W[1]-hard Dvořák et al. [18]

Target Set Size k Constant W[P]-complete Abrahamson et al. [1], Bazgan et al. [6]

Treewidth w Constant O∗ (
tO(w logw)

)
Ben-Zwi et al. [7]

Majority W[1]-hard Chopin et al. [13]

Vertex Cover Number τ General O∗ (
2(2τ +1)·τ)

Nichterlein et al. [27]

version of the problem (maximize the number of activated vertices for a fixed k) is
NP-hard to approximate within a factor of n1−ε for any ε > 0 [25].

Taking into account many intractability results for the problem, it is natural to ask
whether we can beat a trivial brute-force algorithm for this problem or its important
subcase Perfect Target Set Selection. In other words, can we construct an
algorithm with running time O∗ ((2 − ε)n) for some ε > 0. Surprisingly, the answer
to this question is still unknown. Note that the questions whether we can beat brute-
force naturally arise in computer science and have significant theoretic importance.
Probably, themost important such question is the Strong Exponential TimeHypothesis
which informally can be stated as:

Hypothesis 1 (SETH) There is no algorithm for SAT with running timeO∗ ((2 − ε)n)

for any ε > 0.

Another example of such question is the following hypothesis:

Hypothesis 2 [29] For every hereditary graph class Π that can be recognized in
polynomial time, the Maximum Induced Π - Subgraph problem can be solved in
O∗ ((2 − ε)n) time for some ε > 0.

There is a significant number of papers [8, 10, 14–16, 19–21, 23, 30, 31] with the
main motivation to present an algorithm faster than the trivial one.

As in the stated hypotheses and mentioned papers, our goal is to come up with an
algorithm that works faster than brute-force. We partially answer this question by pre-
senting several O∗ ((2 − ε)n) running time algorithms for Target Set Selection

123

Algorithmica (2023) 85:384–405 387

when thresholds, i.e. the values of thr(v), are bounded by some fixed constant and in
case when the values of thr(v) − deg(v), so-called dual thresholds, are bounded by
some fixed constant for every v ∈ V (G). We think that this result may be interesting
mainly because of the following two reasons. Firstly, the result is established for a
well-studied problem with many applications and hence can reveal some important
combinatorial or algorithmic structure of the problem. Secondly, maybe by resolving
the asked question we could make progress in resolving Hypothesis 1 and Hypothe-
sis 2.

Our results. In this paper, we establish the following algorithmic results.
Perfect Target Set Selection can be solved in

– O∗ (1.90345n) if for every v ∈ V (G) we have thr(v) ≤ 2;
– O∗ (1.98577n) if for every v ∈ V (G) we have thr(v) ≤ 3;
– O∗ ((2 − εd)

n) randomized time if for every v ∈ V (G) we have thr(v) ≥ deg(v)

− d.

Target Set Selection can be solved in

– O∗ (1.99001n) if for every v ∈ V (G) we have thr(v) ≤ 	 deg(v)
3
;

– O∗ ((2 − εt)
n) if for every v ∈ V (G) we have thr(v) ≤ t .

We also prove the following lower bound.
Target Set Selection parameterized by � is W[1]-hard even if

– thr(v) = 2 for every v ∈ V (G).

2 Preliminaries

2.1 Notation and Problem Definition

We use the standard graph notation. We consider only simple graphs, i.e. undirected
graphs without loops and multiple edges. By V (G) we denote the set of vertices
of G and by E(G) we denote the set of its edges. We let n = |V (G)|. By N (v)

we denote the set of neighbours of the vertex v ∈ V (G), and N [v] = N (v) ∪ {v}.
Δ(G) = maxv∈V (G) deg(v) denotes the maximum degree of G. By G[F] we denote
the subgraph of G induced by a set F of its vertices. Define by degF (v) the degree of
v in the subgraph G[F].

By X1 � X2 � . . . � Xm we denote the disjoint union of sets X1, X2, . . . , Xm ,
i.e. X1 � X2 � . . . � Xm = X1 ∪ X2 ∪ . . . ∪ Xm with the additional restriction that
Xi ∩ X j = ∅ for any distinct i, j .

For a graph G, threshold function thr and X ⊆ V (G) we put S0(X) = X and for
every i > 0 we define Si (X) = Si−1(X)∪ {v ∈ V (G) : |N (v)∩Si−1(X)| ≥ thr(v)}.
We say that v becomes activated in the i th round, if v ∈ Si (X) \ Si−1(X), i.e. v is
not activated in the (i − 1)th round and is activated in the i th round. By activation
process yielded by X we mean the sequence S0(X),S1(X), . . . ,Si (X), . . . ,Sn(X).

Note that Sn(X) = Sn+1(X) as Si (X) ⊆ Si+1(X) and n rounds is always enough
for the activation process to converge. By S(X) we denote the set of vertices that

123

388 Algorithmica (2023) 85:384–405

eventually become activated, and we say that X activates S(X) in (G, thr). Thus,
S(X) = Sn(X).

We recall the definition of Target Set Selection.

Target Set Selection

Input: A graph G with thresholds thr : V (G) → N ∪ {0}, integers
k, �.

Question: Is there a set X ⊆ V (G) such that |X | ≤ k and |S(X)| ≥ �?

We call a solution X of Target Set Selection a target set of (G, thr).
By Perfect Target Set Selection we understand a special case of Target

Set Selection with � = n. We call X a perfect target set of (G, thr), if it activates
all vertices of G, i.e. S(X) = V (G).

Most of the algorithms described in this paper are recursive algorithms that employ
the branching technique. Such algorithms are described by reduction rules, that are
used to simplify a problem instance, and branching rules, that are used to solve an
instance by solving smaller instances recursively. If a branching rule branches an
instance of size n into r instances of size n−t1, n−t2, . . . , n−tr , we call (t1, t2, . . . , tr)
a branching vector of this branching rule. By a branching factor of a branching rule we
understand a constant c that is a solution of a linear reccurence corresponding to some
branching vector of this rule; such constants are used to upper-bound the running time
of an algorithm following the rulewith cn . Note that a branching rulemayhavemultiple
corresponding branching vectors and multiple corresponding branching factors. By
the worst branching factor of a branching rule (or multiple branching rules, if they
are applied within the same algorithm) we understand the largest among its branching
factors. We refer to [22] for a more detailed explanation of these aspects.

In our work we also use the following well-known result.

Lemma 1 ([4]) For any positive integer n and any α such that 0 < α ≤ 1
2 , we have

�αn�∑
i=0

(n
i

) ≤ 2H(α)n, where H(α) = −α log2(α) − (1 − α) log2(1 − α).

2.2 Minimal Partial Vertex Covers

Definition 1 Let G be a graph. We call a subset S ⊆ V (G) of its vertices a T -partial
vertex cover of G for some T ⊆ E(G), if the set of edges covered by vertices in S is
exactly T , i.e. T = {uv : {u, v} ∩ S �= ∅, uv ∈ E(G)}.

We call a T -partial vertex cover S of G aminimal partial vertex cover of G if there
is no T -partial vertex cover S′ ofG with S′

� S. Equivalently, there is no vertex v ∈ S
so that S \ {v} is a T -partial vertex cover of G.

The following theorem bounds the number of minimal partial vertex covers in
graphs of bounded degree. We note that somewhat similar results were proven by
Björklund et al. [9].

Theorem 1 For any positive integer t , there exists a constant ωt < 1 and an algorithm
that, given an n-vertex graph G with Δ(G) < t as input, outputs all minimal partial
vertex covers of G in O∗ (2ωt n) time.

123

Algorithmica (2023) 85:384–405 389

Fig. 1 Algorithm enumerating all minimal partial vertex covers of a graph

Proof We present a recursive branching algorithm that lists all minimal partial vertex
covers of G. The algorithm pseudocode is presented in Fig. 1. As input, the algorithm
takes three sets F, A, Z such that F � A � Z = V (G). The purpose of the algorithm
is to enumerate all minimal partial vertex covers that contain A as a subset and do not
intersect with Z . So the algorithm outputs all minimal partial vertex covers S of G
satisfying S∩(A�Z) = A. It is easy to see that thenminimal_pvcs(G, V (G),∅,∅)

enumerates all minimal partial vertex covers of G.
The algorithm uses only the following branching rule. If there is a vertex v ∈ F

such that N (v) ⊆ F then consider 2|N [v]| − 1 branches. In each branch, take some
R � N [v] and run minimal_pvcs(G, F \ N [v], A � R, Z � (N [v] \ R)). In other
words, we branch on which vertices in N [v] belong to a minimal partial vertex cover
and which do not. Note that if S is a minimal partial vertex cover then it cannot contain
N [v], since otherwise S \ {v} is its proper subset and covers the same set of edges.
Hence, this branching rule is safe. Since Δ(G) < t , the worst branching factor is

(2t − 1)
1
t .

If the branching rule cannot be applied then we apply brute-force on all possible
variants of the intersection of the minimal partial vertex cover S and the set F . So we
consider all 2|F | variants of S ∩ F , and filter out variants that do not correspond to a
minimal partial vertex cover. Minimality of a partial vertex cover can be checked in
polynomial time, so filtering out adds only a polynomial factor.

Note that we run brute-force only if every vertex in F has at least one neighbour
in A � Z , in other words, A � Z is a dominating set of G. Since Δ(G) < t , any
dominating set of G consists of at least n

t vertices. Hence, |F | ≤ (t−1)n
t . This leads to

the following upper bound on the running time of the algorithm:

((
2t − 1

) 1
t

) n
t · 2 (t−1)n

t · nO(1).

Hence, we can put ωt = 1
t2
log

(
2t − 1

) + t−1
t < 1. ��

123

390 Algorithmica (2023) 85:384–405

3 Algorithms for Bounded Thresholds

3.1 Algorithm for Thresholds Bounded by a Fixed Constant

In this subsection we prove the following theorem.

Theorem 2 Let t be a fixed constant. For Target Set Selectionwith all thresholds
bounded by t there is aO∗ ((2 − εt)

n)-time algorithm, where εt is a positive constant
that depends only on t.

Our algorithm consists of three main stages. In the first stage we apply some simple
reduction and branching rules. If the instance becomes small enough we then apply
the brute-force algorithm and solve the problem. Otherwise, we move to the second
stage of the algorithm. In the second stage we perform branching rules that help us
describe the activation process. After that we move to the third stage in which we run
a special dynamic program that finally solves the problem for each branch. Let us start
the description of the algorithm.

3.1.1 Stage I

In the first stage our algorithm applies some branching rules. In each branch we
maintain a partition of V (G) into three parts A, Z , F . These parts have the following
meaning: A is the set of vertices that are known to be in our target set, Z — the set
of vertices that are known to be not in the target set, F — the set of all other vertices
(i.e. vertices about that we do not know any information so far). At the beginning, we
have A = Z = ∅ and F = V (G).

We start the first stage with exhaustive application of Reduction rule 1 and Branch-
ing rule 1.

Reduction rule 1 If there is any vertex v ∈ S(A), but v /∈ A � Z, then assign v to Z.

Reduction rule 1 is safe as there is no need to put a vertex in a target set if it will
become activated eventually under the influence of its neighbours.

Branching rule 1 If there is a vertex v ∈ F such that degF (v) ≥ thr(v) then arbitrarily
choose a subset T ⊆ N (v) ∩ F such that |T | = thr(v) and branch on the following
branches:

1. For each subset of vertices S ⊆ T ∪ {v} of size less than thr(v) consider a branch
in which we put S into A and we put the other vertices of T ∪ {v} \ S into Z;

2. Additionally consider the branch in which we assign all vertices from T to A and
v is assigned to Z.

It is enough to consider only above-mentioned branches.All other possible branches
assign at least thr(v) vertices from T ∪ {v} to A, and we always can replace such
branches with the branch assigning T to A, since it leads to the activation of all
vertices in T ∪ {v} and adds at most the same number of vertices into a target set.
Branching rule 1 considers 2thr(v)+1−thr(v)−1 options for thr(v)+1 vertices, thus its

branching factor is at most (2t+1 − t − 1)
1

t+1 (here and below t = maxv∈V (G) thr(v)).

123

Algorithmica (2023) 85:384–405 391

Branching rule 2 If |F | ≤ γ n, where γ is a constant to be chosen later, then simply
apply brute-force on how vertices in F should be assigned to A and Z.

If Branching rule 2 is applied in all branches then the running time of the whole

algorithm is at most 2γ n(2t+1 − t − 1)
(1−γ)n
t+1 and we do not need to use Stage II and

Stage III, as the problem is already solved in this case.

3.1.2 Stage II

After the exhaustive application of Reduction rule 1 and Branching rule 1 and Branch-
ing rule 2, in each branch we either know the answer or we have the following
properties:

1. Δ(G[F]) < t ;
2. |F | > γ n;
3. S(A) ⊆ A � Z .

Now, in order to solve the problem it is left to identify the vertices of a target set
that belong to F . It is too expensive to consider all 2|F | subsets of F as F is too big.
Instead of this direct approach (brute-force on all subsets of F) we consider several
subbranches. In each such branchwe almost completely describe the activation process
of the graph. For each branch, knowing this information about the activation process,
we find an appropriate target set by solving a special dynamic program in Stage III.

Let X be an answer (a target set). X can be expressed as X = A� B where B ⊆ F .
At the beginning of the activation process only vertices in S0(X) = X = A � B are
activated, after the first round vertices in S1(A � B) are activated, and so on. It is
clear that S(A� B) = Sn(A� B). Unfortunately, we cannot compute the sequence of
Si (A� B) as we do not know B. Instead we compute a sequence P0, P1, . . . , Pn = P
such that Pi \ B = Si (X) \ B and Pi ⊆ Pi+1 for any i .

First of all, using Theorem 1 we list all minimal partial vertex covers of the graph
G[F]. For each minimal partial vertex cover C we create a branch that indicates that
C ⊆ B and, moreover, C covers exactly the same edges in G[F] as B does. In other
words, any edge in G[F] has at least one endpoint in B if and only if it has at least
one endpoint in C . Note that such C exists for any B. One can obtain C by removing
vertices from B one by one while it covers the same edges as B. When no vertex can
be removed, then, by definition, the remaining vertices form a minimal partial vertex
cover.

Put P0 = A � C . It is correct since S0(X) \ B = A = P0 \ B. We now show how
to find Pi+1 having found Pi . Recall that to do such transition from Si (X) to Si+1(X)

it is enough to find vertices with the number of neighbours in Si (X) being at least
the threshold value of that vertex. As for Pi and Pi+1, it is sufficient to check that the
number of activated neighbours has reached the threshold only for vertices that are
not in B. Thus any transition from Pi to Pi+1 can be done by using a procedure that,
given Pi and any vertex v /∈ Pi , checks whether v becomes activated in the (i + 1)th

round or not, under the assumption that v /∈ B.
Given Pi it is not always possible to find a unique Pi+1 as we do not know B. That

is why in such cases we create several subbranches that indicate potential values of
Pi+1.

123

392 Algorithmica (2023) 85:384–405

Fig. 2 Procedure determining whether a vertex becomes activated in the current round. Note that “branch”
here is close in sense to the concept of non-deterministic branches. Instead of branching, we would like
to say that our algorithm makes a non-deterministic guess. However, our algorithm is deterministic, so it
has to create separate branches for every guess possible. Later in Stage III these guesses are checked for
consistency

Let us now show how to, for each vertex v /∈ Pi , figure out whether v is in Pi+1
(see pseudocode in Fig. 2). Since we know Pi and know that Pi ⊆ Pi+1, we assume
that v /∈ Pi .

If |N (v)∩ Pi | ≥ thr(v) then we simply include v in Pi+1. We claim that this check
is enough for v ∈ F .

Claim Ifv ∈ F\B, thenv becomes activated in the i th round if andonly if |N (v)∩Pi | ≥
thr(v).

Proof We show that by proving that Si (X) ∩ N (v) = Pi ∩ N (v) for every v ∈ F \ B.
Note that Si (X) \ B = Pi \ B by definition of Pi . So it is enough to prove that
Si (X)∩N (v)∩B = Pi ∩N (v)∩B, which is equivalent to N (v)∩B = Pi ∩N (v)∩B,
as B ⊆ Si (X). Since v /∈ B, then any uv ∈ E(G[F]) is covered by B if and only
if u ∈ B. C covers the same edges in G[F] as B does, and also v /∈ C , hence
C ∩ N (v) = B ∩ N (v). Thus, since C ⊆ P0 ⊆ Pi , we get Pi ∩ B ∩ N (v) =
Pi ∩ C ∩ N (v) = C ∩ N (v) = B ∩ N (v). ��

If v ∈ B, the decision for v does notmatter. Thus if v ∈ F and |N (v)∩Pi | < thr(v),
we may simply not include v in Pi+1.

If v ∈ Z , at this point, we cannot compute the number of activated neighbours
of v exactly as we do not know what neighbours of v are in B. Note that we do not
need the exact number of such neighbours if we know that this value is at least thr(v).
Thus we branch into thr(v) + 1 subbranches (see Fig. 2) corresponding to the value
of min{|N (v) ∩ B|, thr(v)}, from now on we denote this value as dg(v).

On the other hand, we know all activated neighbours of v that are in V (G) \ F
since Si (X) ∩ (V (G) \ F) = Pi ∩ (V (G) \ F), as B ⊆ F . Let this number be
m = |N (v)∩(Pi \F)|. So the number of activated neighbours of v is at leastm+dg(v).

123

Algorithmica (2023) 85:384–405 393

Also there may be some activated neighbours of v in N (v) ∩ Pi ∩ F . However, we
cannot simply add |N (v) ∩ Pi ∩ F | to m + dg(v) since vertices in Pi ∩ B will be
computed twice. So we are actually interested in the value of |(N (v) ∩ Pi ∩ F) \ B|.
That is why for vertices from N (v) ∩ Pi ∩ F we simply branch on whether they are
in B or not. After that we compare m + dg(v) + |(N (v) ∩ Pi ∩ F) \ B| with thr(v)

and figure out whether v becomes activated in the current round or not.
Note that once we branch on the value of min{|N (v) ∩ B|, thr(v)}, or on whether

v ∈ B or not for some v, we will not branch on the same value or make a decision
for the same vertex again as it makes no sense. Once fixed, the decision should not
change along the whole branch and all of its subbranches, otherwise the information
about B would just become inconsistent.

Let us now bound the number of branches created. There are three types of branch-
ings in the second stage:

1. Branching on the value of the minimal partial vertex cover C . By Theorem 1, there
are at most O∗ (

2ωt |F |) such branches.
2. Branching on the value of dg(v) = min{|N (v)∩ B|, thr(v)} with v ∈ Z . There are

at most (t + 1)|Z | such possibilities since t ≥ min{|N (v) ∩ B|, thr(v)} ≥ 0.
3. Branching on whether vertex u is in B or not. We perform this branching only for

vertices in the set N (v) ∩ Pi ∩ F with v ∈ Z only when its size is strictly smaller
than thr(v) ≤ t . Hence we perform a branching of this type on at most (t − 1)|Z |
vertices.

Hence, the total number of the branches created in Stage II is at most

2ωt |F | · (t + 1)|Z | · 2(t−1)|Z | · nO(1).

3.1.3 Stage III

Now, for each branch our goal is to find the smallest set X which activates at least
� vertices and agrees with all information obtained on a computational path to this
particular branch. That is,

– A ⊆ X , Z ∩ X = ∅ (branchings made in Stage I);
– C ⊆ X (branching of the first type in Stage II);
– information about min{|N (v) ∩ B|, thr(v)} (second type branchings in Stage II);
– additional information whether certain vertices belong to X or not (third type
branchings in Stage II).

From now on we assume that we are considering some particular branching leaf.
Let A′ be the set of vertices that are known to be in X for a given branch and Z ′
be the set of vertices known to be not in X (note that A ⊆ A′ and Z ⊆ Z ′). Let
Z = {v1, v2, . . . , vz} and F ′ = V (G) \ A′ \ Z ′ = {u1, u2, . . . , u f ′ }. So actually it is
left to find B ′ ⊆ F ′ (in these new terms, B = (A′ \ A) � B ′) such that |A′ � B ′| ≤ k,
|P ∪ A′ ∪ B ′| ≥ � and for each i ∈ {1, 2, . . . , z} the value min{thr(vi), |N (vi) ∩ B|}
equals dg(vi). This is true since the information obtained during branching completely
determines the value of P .

123

394 Algorithmica (2023) 85:384–405

In order to solve the obtained problemwe employ dynamic programming.We create
a table T S of size f ′×�×(t+1)z . For all B ′

1 such that |(B ′
1∪P)∩{u1, u2, . . . , ui }| = p

and min{thr(v j), |N (v j)∩((A′ \ A)�B ′
1)|} = d j , in the field T S(i, p, d1, d2, . . . , dz)

we store any set B ′
2 of minimum size such that A′ � B ′

1 � B ′
2 is a potential solution,

i.e. |S(A′ � B ′
1 � B ′

2)| = |(P ∪ B ′
1 ∪ B ′

2)| = |P ∩ (V (G) \ F ′)| + p + |B ′
2| ≥

� and for every j we have min{thr(v j), |N (v j) ∩ ((A′ \ A) � B ′
1 � B ′

2)|} =
min{thr(v j), |N (v j) ∩ B ′

2| + d j } = dg(v j). Note that the choice of B ′
2 depends only

on the values i, p, d1, d2, . . . , dz , but not on the value of B ′
1 directly. In other words,

T S(i, p, d1, d2, . . . , dz) stores one of the optimal ways of how the remaining f ′ − i
vertices in F ′ should be chosen into B ′ if the first i vertices in F ′ were chosen corre-
spondingly to the values of p and d j .

Note that for some fields in the T S table there may be no appropriate value of B ′
2

(there is no appropriate solution). In such cases, we put the corresponding element
to be equal to V (G). It is a legitimate operation since we are solving a minimization
problem. Note that the desired value of B ′ will be stored as

T S(0, 0,min{|N (v1) ∩ (A′ \ A)|, thr(v1)}, . . . ,min{|N (vz) ∩ (A′ \ A)|, thr(vz)}).

We assign T S(f ′, p, dg(v1), dg(v2), . . . dg(vz)) = ∅ for every p such that
p + |P ∩ (V (G) \ F ′)| ≥ �. We do this since values p, dg(v1), dg(v2), . . . dg(vz)
indicate that A′ � B ′

1 is already a solution. In all other fields of type T S(f ′, ·, · · · , ·)
we put the value of V (G). We now show how to evaluate values T S(i, p, d1,
d2, . . . , dz) for any i ≥ 0 smaller than f ′. We can evaluate any T S(i, ·, ·, . . . , ·)
in polynomial time if we have all values T S(i + 1, ·, ·, . . . , ·) evaluated. For
each j ∈ {1, 2, . . . , z}, let di+1

j = min
{
thr(v j), d j + |N (v j) ∩ {ui+1}|

}
. In

order to compute T S(i, p, d1, d2, . . . , dz), we need to decide whether ui+1 is in
a target set or not. If ui+1 is taken into B ′ then d j becomes equal to di+1

j
for each j , if it is not, none of d j should change. Hence, T S(i, p, 〈d j 〉) =
min

[
T S(i + 1, p + 1, 〈di+1

j 〉) ∪ {ui+1}, T S(i + 1, p + |P ∩ {ui+1}|, 〈d j 〉)
]
.

Since 0 ≤ d j ≤ dg(v j) for any j , the T S table has O∗ (
(t + 1)|Z |) fields. Each

field of the table is evaluated in polynomial time. So the desired B ′ is found (hence,
the solution is found) in O∗ (

(t + 1)|Z |) time for any branch fixed in Stage II. Stages
II and III together run in 2ωt |F | · (t + 1)|Z | · 2(t−1)|Z | · (t + 1)|Z | · nO(1) time for any
fixed subbranch of Stage I.

Actually, the (t + 1)2|Z | multiplier in the upper bound can be improved. Recall that
it corresponds to the number of possible variants of dg(v j) and the number of possible
variants of d j . However, note that d j ≤ dg(v j). So after each of dg(v j) is fixed in
Stage II, for d j there is only dg(v j) + 1 options in Stage III. Hence, each of the pairs
(d j , dg(v j)) can be presented only in

(t+2
2

)
variants. This gives an improvement of

the (t + 1)2|Z | multiplier to a
(t+2

2

)|Z |
multiplier. So, the upper bound on the running

time in Stages II and III becomes O∗
(
2ωt |F | · (t+2

2

)|Z | · 2(t−1)|Z |
)
.

123

Algorithmica (2023) 85:384–405 395

We rewrite this upper bound in terms of n and |F |. Since |Z | ≤ n − |F |, the upper
bound is

2ωt |F | ·
(
t + 2

2

)n−|F |
· 2(t−1)(n−|F |) · nO(1).

Now we are ready to choose γ . We set the value of γ so that the computation
in each branch created at the end of stage I takes at most O∗ (2γ n) time. Note that
the upper bound on the running time required for stages II and III increases while
the value of |F | decreases. So we can find γ as the solution of equation 2γ n =
2ωtγ n · (t+2

2

)(1−γ)n · 2(t−1)(1−γ)n . Hence, γ = (t−1)+log2 (
t+2
2)

(t−ωt)+log2 (
t+2
2)

< 1, as ωt < 1. So

the overall running time is

2γ n(2t+1 − t − 1)
(1−γ)n
t+1 · nO(1),

which is O∗ ((2 − εt)
n) for some εt > 0 since γ < 1.

3.2 Two Algorithms for Constant Thresholds in the Perfect Case

Here, we present two algorithms for special cases of Perfect Target Set Selec-

tion with thresholds being at most 2 or being at most 3. These algorithms use an idea
that cannot be used in the general case of Target Set Selection, so the running
times of these algorithms are significantly faster than the running time of the algorithm
from the previous subsection.

Theorem 3 Perfect Target Set Selectionwith thresholds being at most two can
be solved in O∗ (1.90345n) time.

Proof To make the proof simpler, we firstly prove the following useful lemma.

Lemma 2 There is a polynomial-time algorithm that, given an integer constant t ≥ 2
and a graph with thresholds (G, thr), where thr(v) ≤ t for every v ∈ V (G), outputs a
graph with thresholds (G ′, thr′), such that thr′ ≡ t and |V (G ′)| = |V (G)|+ t ·(t+1).
Moreover, (G, thr) has a perfect target set of size k if and only if (G ′, thr′) has a perfect
target set of size k + t2.

Proof We prove the lemma by providing a construction of graph G ′. In this con-
struction, G ′ is obtained by introducing several new vertices and edges to G. It is as
follows.

For each integer i ∈ [t], introduce a vertex si and t vertices �i,1, �i,2, . . . , �i,t to
G, then for each j ∈ [t] introduce an edge between si and �i, j . Suchwise for each i a
star graph with t leaves is introduced, with si being the center vertex of the star graph.
Finally, for each vertex of the initial graph v ∈ V (G) introduce an edge between v

and si for each i ∈ [t − thr(v)], that is, connect v with the centers of the first t − thr(v)

introduced star gadgets. Recall that in G ′ we consider thresholds all-equal to t ≥ 2.

123

396 Algorithmica (2023) 85:384–405

Let now show that if (G ′, thr′) has a perfect target set of size k′, then (G, thr) has
a perfect target set of size at most k′ − t2. Observe that any �i, j should be presented
in every perfect target set of G ′, since it has only one (that is, less than t) neighbour
vertex. Thus, any perfect target set of G ′ contains all t2 leaves of the star gadgets. For
any fixed i , the initial activation of all �i, j activates si in the first round. Hence, each
star gadget provides a vertex that is always activated. Since each vertex v ∈ V (G) is
connected to exactly t − thr(v) vertices si in G ′, after activation of all si v requires
thr(v) more vertices to become activated, that is the same as it does in (G, thr). Thus,
if we remove the newly-introduced vertices from a perfect target set of (G ′, thr′), we
obtain a perfect target set of (G, thr). So if the perfect target set of (G ′, thr′) has size
k′, we obtain a perfect target set of (G, thr) of size at most k′ − t2.

In the other direction, if (G, thr) has a perfect target set of size k, then (G ′, thr′)
has a perfect target set of size k + t2. One can obtain a perfect target set of (G ′, thr′)
from a perfect target set of (G, thr) by adding all vertices �i, j to it. ��

Lemma 2 allows us to reduce the case when all thresholds are bounded by two to
the case when they are equal to 2, introducing only a constant number of vertices.

Let (G, thr) be a graph with thresholds, where all thresholds equal two. For this
case, we present an algorithm with O∗ (1.90345n) running time that finds a perfect
target set of (G, thr) of minimum possible size.

We set γ = 0.655984. The algorithm consists of two parts. In the first part, the
algorithm applies brute-force on all possible subsets X ⊆ V (G) of size at most
(1 − γ)n, in ascending order of their size. If the algorithm finds X that is a perfect
target set, i.e.S(X) = V (G), then it outputs the set and stops. Otherwise, the algorithm
runs its second part.

The second part of the algorithm is a recursive branching algorithm that maintains
sets A, Z , F similarly to the algorithm inSect. 3.1. The branching algorithmconsists of
two reduction and two branching rules. Here, we reuse Reduction rule 1 andBranching
rule 1 from the previous subsection. Additionally, we introduce the following rules.

Reduction rule 2 If there is a vertex v ∈ F with degG(v) < 2, assign v to A.

Reduction rule 2 is safe since such vertex cannot be activated other than being put
in a target set.

Branching rule 3 If there are two vertices u, v ∈ F with uv ∈ E(G) and degG(u) =
degG(v) = 2, then consider three branches:

– u ∈ Z, v ∈ A;
– u ∈ A, v ∈ Z;
– u, v ∈ A.

Branching rule 3 is safe since if none of u, v is in a target set, none of them will
eventually have two activated neighbours and thus the set cannot be completed to a
perfect target set.

If none of the rules can be applied, the algorithm applies brute-force on all 2|F |
possibilities of how vertices in F should be assigned to A and Z . This finishes the
description of the second part and the whole algorithm. We now give an upper bound
on its running time.

123

Algorithmica (2023) 85:384–405 397

ByLemma1, the first part of the algorithm runs inO∗ (
2H(1−γ)n

) = O∗ (1.90345n)
time. If the algorithm does not stop in this part, then any perfect target set ofG consists
of at least (1 − γ)n vertices and the second part is performed.

Branching rules 1 and 3 give branching vectors (3, 3, 3, 3, 3) (five variants are con-
sidered for three vertices) and (2, 2, 2) (three variants are considered for two vertices)
respectively, and the second vector gives greater branching factor equal to

√
3.

Observe that if branching rules 1, 3 and Reduction rules 1, 2 cannot be applied, then
A � Z is in fact a perfect target set of G. Indeed, in that case G[F] consists only of
isolated vertices and isolated edges, as if there was a vertex v ∈ F with degF (v) ≥ 2,
then branching rule 1 would be applied. Note that if some vertex v ∈ F is isolated in
G[F], then it has at least deg(v) ≥ thr(v) = 2 neighbours in A� Z , hence it becomes
activated in the first round. Consider an isolated edge uv ∈ G[F]. Note that u and
v cannot simultaneously have degree two in G, since branching rule 3 excludes this
case. It means that either u or v has degree at least three and thus has at least two
neighbours in A � Z . Hence, it becomes activated in the first round. Since the other
vertex has at least one neighbour in A � Z , at the end of the first round it will have
at least two activated neighbours. Thus, it becomes activated no later than the second
round.

We conclude that if we need to apply brute-force on 2|F | variants, then A � Z is a
perfect target set of G. Hence, |A � Z | ≥ (1 − γ)n and |F | ≤ γ n. It follows that the

second part running time is at most
√
3
(1−γ)n

2γ n · nO(1) = O∗ (1.90345n). So, the

running time of the whole algorithm is max{2H(1−γ)n ·nO(1),
√
3
(1−γ)n

2γ n ·nO(1)} =
O∗ (1.90345n). ��
Theorem 4 Perfect Target Set Selection with thresholds being at most three
can be solved in O∗ (1.98577n) time.

Proof Here, we adapt the algorithm working for thresholds equal to two to the case
when all thresholds equal three. Again, we then use Lemma 2 to complete the proof.

Let γ = 0.839533. At first, algorithm applies brute-force over all subsets of size at
most (1 − 2

3γ)n and stops if it finds a perfect target set among them. If the algorithm
has not found a perfect target set on this step thenwe run a special branching algorithm.

Aswith thresholds equal to twoweuseBranching rules 1, 3 andReduction rules 1, 2.
The only difference is that now in reduction rule 2 and in branching rule 3 we use
constant 3 instead of 2. We also introduce a new branching rule for this algorithm.

Branching rule 4 Let v ∈ F, u, w ∈ N (v) ∩ F and degG(v) = 4, degG(u) =
degG(w) = 3. Consider all branches that split u, v, w between A and Z and assign
at least one vertex to A.

The rule is correct as we omit only one branch that put all three vertices u, v, w into
Z . Note that if none of the vertices u, v, w is activated initially then none of them will
become activated. Hence, this branch cannot generate any perfect target set.

We apply the above-stated rules exhaustively.When none of the rules can be applied
we simply apply brute-force on all possible subsets of F . That is the whole algorithm.
Now, it is left to bound the running time of the algorithm.

123

398 Algorithmica (2023) 85:384–405

The first part runs inO∗
(
2H(1− 2

3 γ)n
)

= O∗ (1.98577n) time. If the algorithm does

not stop after the first part then any perfect target set of G contains at least (1− 2
3γ)n

vertices. Branching rules 1, 3, 4 give the following branching factors respectively: 12
1
4

(since 12 options are considered for 4 vertices), 3
1
2 (3 options for 2 vertices) and 7

1
3

(7 options for 3 vertices). The greatest branching factor among them is 7
1
3 .

Now, we bound the size of F after exhaustive application of all rules.

Lemma 3 After the exhaustive application of all rules F consists of atmostγ n vertices.

Proof Consider values of A, Z , F when none of the rules can be applied. In this case
we have that Δ(G[F]) < 3.

Note that our graph does not contain perfect target sets of size at most (1 − 2
3γ)n.

Otherwise algorithm would have finished working on the first step when it was brute-
forcing over all subsets of size at most (1 − 2

3γ)n. Now, we start constructing a
new perfect target set P based on the structure of A, F, Z . Then, from the fact that
|P| > (1 − 2

3γ)n, we obtain that |F | ≤ γ n.
First of all, put A� Z into the new perfect target set P . Let us show that the degrees

of vertices in the set F ′ = F \ S(A � Z) can only be three or four. If v ∈ F and
degG(v) ≥ 5, then v has at most two neighbours in F . Hence, it has at least three
neighbours in A � Z and so v is in S(A � Z).

Since Δ(G[F]) < 3, it follows that Δ(G[F ′]) < 3 as well. Hence, any vertex
v ∈ F ′ with degG(v) = 4 requires one more activated neighbour to become activated.
Also, G[F ′] consists only of isolated paths and cycles. Consider any isolated path in
G[F ′]. Observe that any of its endpoints cannot have degree four inG, since otherwise
it would have at least three neighbours in S(A � Z) and would be activated. Hence,
all endpoints of all isolated paths are vertices of degree three. Note that any endpoint
has exactly two neighbours in S(A � Z). Since branching rule 2 cannot be applied,
any two endpoints cannot be adjacent. Thus any isolated path in G[F ′] consists of at
least three vertices.

It means that the vertices that require two more activated neighbours to become
activated are vertices of degree three that are not endpoints in any isolated path in
G[F ′]. Note that if u, v ∈ F ′ with degG(u) = degG(v) = 3, and u, v lie in the same
isolated path or cycle Q in G[F ′], then there is at least two vertices of degree four in
Q between u and v, since otherwise one of branching rules 3 or 4 can be applied.
Thus in any isolated path or cycle Q in G[F ′] the number of vertices that require at
least two activated neighbours to become activated constitute at most one-third of the
length of Q. We put all such vertices in the set P . There may be isolated paths or
cycles left in G[F ′] from which we have not put any vertex into P . For each such path
or cycle we choose an arbitrary vertex from it and put it into P . Note that from each
isolated path or cycle in G[F ′] we put no more than one-third of its vertices into P .
Construction of P is finished.

From each isolated cycle or path we picked at least one vertex into P . The vertices
that left require only one additional activated neighbour to become activated, in case
of initially activated set A� Z . Hence, P activates the whole graph. The size of P is at
most |A�Z |+ 1

3 |F ′| ≤ n−|F |+ 1
3 |F | = n− 2

3 |F |. Itmeans that n− 2
3 |F | ≥ (1− 2

3γ)n.
Hence, we proved |F | ≤ γ n. ��

123

Algorithmica (2023) 85:384–405 399

Using this lemma, we can bound the running time of the second part. The largest

branching factor in the rules is 7
1
3 . Hence, the running time is at most 7

1
3 (1−γ)n2γ n ·

nO(1) = O∗ (1.98577n). Combining it with the running time of the first part we get
that the overall running time is O∗ (1.98577n). ��

3.3 Algorithm for Thresholds Bounded by One-Third of Degrees

Here, we prove the following.

Theorem 5 Let G be a connected graph with at least three vertices. Assume that
thr(v) ≤ 	 deg(v)

3
 for every v ∈ V (G). Then there is a perfect target set of (G, thr) of
size at most 0.45|V (G)|.
Proof We prove this fact by induction on the number of vertices n in G.

IfG is connected and |V (G)| = 3 then any single vertex inG forms a perfect target
set. This is true since Δ(G) ≤ 2 and thus the threshold value of any vertex of G does
not exceed 1.

From now onG is a connected graph on n vertices with n > 3. Let n1 be the number
of vertices in G of degree one and n≥2 be the number of vertices in G of degree at
least two, n1 + n≥2 = n.

If n1 > n≥2, then there exist vertices v, u1, u2 ∈ V (G) such that vu1, vu2 ∈ E(G),
deg(u1) = deg(u2) = 1. Let ρ(G, thr) be the size of minimum perfect target set
of (G, thr). Then ρ(G, thr) ≤ 1 + ρ(G ′, thr′), where G ′ = G \ v and thr′(u) =
thr(u) − |N (u) ∩ {v}| for every u ∈ V (G ′). Note that thr′(u) ≤ 	 degG′ (u)

3
.
LetG ′ consist of k connected componentsC1,C2, . . . ,Ck , where k ≥ 3, sinceC1 =

{u1},C2 = {u2}.We assume that |Ci | ≤ |Ci+1| for every i ∈ {1, 2, . . . , k−1}.Wehave

thatρ(G ′, thr′) =
k∑

i=1
ρ(G ′[Ci], thr′). Observe that if |Ci | ≤ 2, thenρ(G ′[Ci], thr′) =

0. Indeed, if Ci = {u}, then thr′(u) ≤ degG ′(u) = 0, and u becomes activated in the
first round. If Ci = {u, w}, then either uv ∈ E(G) or vw ∈ E(G), without loss of
generality, say that uv ∈ E(G). Also, degG(u), degG(w) ≤ 2, thus thr(u) and thr(w)

are not greater than one. Since uv ∈ E(G), we have that thr′(u) = thr(u) − 1 ≤ 0.
Thus u becomes activated in the first round and as thr′(w) ≤ thr(w) ≤ 1, then w

becomes activated no later than the second round. If |Ci | ≥ 3, then, by induction,
ρ(G ′[Ci], thr′) ≤ 0.45|Ci |.

Hence, ρ(G ′, thr′) ≤
k∑

i=m+1
ρ(G ′[Ci], thr′) ≤ 0.45

k∑
i=m+1

|Ci |, where m is such

that |Cm | ≤ 2 and |Cm+1| ≥ 3. Sincem ≥ 2,we haveρ(G ′, thr′) ≤ 0.45(|V (G ′)|−2).
This implies that ρ(G, thr) ≤ 1+ 0.45(|V (G ′)| − 2) = 1+ 0.45(|V (G)| − 1− 2) <

0.45|V (G)|.
To handle the case n1 ≤ n≥2 (equivalent to 2n1 ≤ n) we use a combinatorial model

proposed by Ackerman et al. in [2]. For each permutation σ of vertices V (G) we
construct a perfect target set in the following way. We put vertex v into the perfect
target set if the number of neighbours to the left of v in the permutation σ is less
than thr(v). It is easy to see that after such construction we get a perfect target set

123

400 Algorithmica (2023) 85:384–405

Pσ , as vertices will become activated from the left to the right. If we take a random
permutation σ among all permutations then the probability that a particular vertex v

ends up in Pσ equals thr(v)
deg(v)+1 . Since thr(v) ≤ 	 deg(v)

3
, for a vertex of degree one

the probability is bounded by 1
2 , for a vertex of degree two — by 1

3 , for a vertex of
degree three — by 1

4 , for a vertex of degree four — by 2
5 , etc. Observe that the highest

probability bounds are for vertices of degree one and four, thus the expected value of
the perfect target set size of (G ′, thr′) is bounded by

1

2
n1 + 2

5
n≥2 = 1

2
n1 + 2

5
(n − n1) = 2

5
n + 1

10
n1 ≤ 2

5
n + 1

10
· 1
2
n = 9

20
n.

Hence, there is at least one perfect target set of (G, thr) of size at most 0.45n. ��
Corollary 1 Target Set Selection with thresholds bounded by one-third of degree
rounded up can be solved in O∗ (1.99001n) time.

Proof Let (G, thr) and k, � be an instance of Target Set Selectionwith |V (G)| =
n and thr(v) ≤ 	 deg(v)

3
 for every v ∈ V (G). We are looking for X ⊆ V (G) with
|X | ≤ k and |S(X)| ≥ �.

Consider subgraph G ′ of G consisting of all connected components of G of
size at least three. By Theorem 5, (G ′, thr) has a perfect target set of size at most
0.45|V (G ′)| ≤ 0.45n, hence it is enough to consider such X that |X∩V (G ′)| ≤ 0.45n.
We apply brute-force on all such variants of |X ∩ V (G ′)|. By Lemma 1, it takes
O∗ (

2H(0.45)n
) = O∗ (1.99001n) time.

When |X ∩V (G ′)| is fixed, it is left to consider connected components of G of size
less than three. Note that if we already have |X∩V (G ′)| ≤ k and |S(X∩V (G ′))| ≥ �,
we may set X = X ∩ V (G ′) and stop. Otherwise, we should consider adding vertices
from connected components of size one or two to X . Adding a vertex from a connected
component of size one, i.e. isolated vertex, increases the number of activated vertices
by one, and adding a vertex from a component of size two increases this number by
two. Thus we greedily assign a single vertex from each component of size two to X ,
but no more than k − |X ∩ V (G ′)| in total. If after that the size of X is still less than
k, we assign as many isolated vertices of G to X as we can. Then we finally check
whether |S(X)| ≥ �.

The greedy part of the algorithm runs in polynomial time for each variant of |X ∩
V (G ′)|. Hence, the whole algorithm runs in O∗ (1.99001n) time. ��

4 Algorithm for Bounded Dual Thresholds

Let (G, thr) be a graph with thresholds. By dual threshold of vertex v ∈ V (G) we
understand the value thr(v) = deg(v)− thr(v). In terms of dual thresholds, v becomes
activated if it has at most thr(v) not activated neighbours. For bounded dual thresholds
we prove the following theorem.

Theorem 6 For any non-negative integer d, Perfect Target Set Selection with
dual thresholds bounded by d can be solved in O∗ ((2 − εd)

n) randomized time for
some εd > 0.

123

Algorithmica (2023) 85:384–405 401

Proof In terms of dual thresholds, we can consider the activation process as a ver-
tex deletion process, where activated vertices are deleted from the graph. With this
consideration, activation process goes in the following way. Firstly, the target set is
deleted from the graph. Then, in each consecutive round, a vertex v is deleted from
the remaining graph if it has at most thr(v) neighbours remaining. When the process
converges, vertices in the remaining graph are the vertices that are not activated. Thus
the target set is perfect if and only if the remaining graph is empty.

If thr(v) = d for each v ∈ V (G). Then, a vertex is deleted from the remaining
graph if it has at most d neighbours remaining. By definition of d-degeneracy, a graph
becomes empty after such process if and only if it is d-degenerate. Thus, a target set X
is perfect if and only if G \ X is d-degenerate. Hence, if all dual thresholds are equal
to d, finding a maximum d-degenerate induced subgraph of G is equivalent to finding
a minimum perfect target set of G.

Pilipczuk and Pilipczuk [30] presented an algorithm that solves Maximum

Induced d- Degenerate Subgraph problem in randomized (2− εd)
n · nO(1) time

for some εd > 0 for any fixed d. Hence, instances of Perfect Target Set Selec-

tion where all dual thresholds are equal to d can be solved in the same running time.
Furthermore, one can straight-forwardly show that this algorithm can be adjusted to
work when all dual thresholds are not necessarily equal, but do not exceed d. ��

5 Lower Bounds

5.1 ETH Lower Bound

First of all, we show a 2o(n+m) lower bound for Perfect Target Set Selection,
where m denotes the number of edges in the input graph. We have not found any
source that claims this result. Thus, for completeness, we state it here. The result
follows from the reduction given by Centeno et al. in [11]. They showed a linear
reduction from a special case of 3- SAT, where each variable appears at most three
times, to Perfect Target Set Selection where thresholds are equal to 2 and the
maximum degree of the graph is constant. Note that in their work they refer to the
problem as IRR2- Conversion Set.

Theorem 7 Perfect Target Set Selection cannot be solved in 2o(n+m) time
unless ETH fails, even when thresholds are equal to 2 and the maximum degree of the
graph is constant.

Proof 3- Bounded- 3- SAT is a version of 3- SATwith a restriction that each variable
appears at most three times in a formula. It is a well-known fact that an instance of
3- SAT with n variables and m clauses can be transformed into an instance of 3-

Bounded- 3- SATwithO(m) variables andO(m) clauses, in polynomial time. Then,
according to the Exponential-Time Hypothesis with Sparsification Lemma, it follows
that 3- Bounded- 3- SAT cannot be solved in 2o(n+m) time.

In Theorem 2 in [11] Centeno et al. have shown how to reduce an instance of
3- Bounded- 3- SAT to an instance of Perfect Target Set Selection with
thresholds equal to two in polynomial time. In this reduction, the number of ver-

123

402 Algorithmica (2023) 85:384–405

tices and edges of a resulting graph remain linear over the length of the initial formula.
In other words, an instance of 3- Bounded- 3- SAT with O(n) variables and O(m)

clauses can be reduced to an instance of PTSS with O(n + m) vertices of constant
maximum degree and thresholds equal to two, in polynomial time. This implies that
such instances of PTSS cannot be solved in 2o(n+m) time. ��

5.2 Parameterization by �

We now look at Target Set Selection from the parameterized point of view.
Bazgan et al. [6] proved that Target Set Selection � is W[1]-hard with respect
to parameter �, when all dual thresholds are equal to 0. This result also follows from
the proof of W[1]-hardness of Cutting � Vertices given by Marx in [26], with a
somewhat different construction. Inspired by his proof, we show that this result holds
even when all thresholds are constant.

Theorem 8 Target Set Selection parameterized by � is W[1]-hard even when all
thresholds are equal to 2.

Proof Let (G, k) be an instance of the Clique problem. In order to provide the reduc-
tion, we construct a graph G ′ in which each vertex corresponds to a vertex or an
edge of graph G i.e. V (G ′) = V (G) � E(G). We add edges in G ′ between vertices
corresponding to v ∈ V (G) and e ∈ E(G) if and only if v and e are incident in G.

Wewill refer to the vertex inG ′ corresponding to an edge e ∈ E(G) as ve ∈ V (G ′).
If a vertex from G ′ corresponds to a vertex u ∈ G we refer to it as vu . Slightly abusing
notation we will refer to the set of vertices in G ′ corresponding to the vertices V (G)

as V and to the set of vertices corresponding to the edges E(G) as E , V � E = V (G ′).
Consider now an instance of Target Set Selection for G ′, with the same k,
� = k + (k

2

)
and all thresholds equal to t = 2.

If G has a clique of size k, then selecting corresponding vertices as a target set of
G ′ leads to activation of the vertices corresponding to the edges of the clique. Hence,
k + (k

2

)
vertices will be activated in total.

Let us now prove that if G ′ has a target set of size at most k activating at least
� = k + (k

2

)
vertices, then G has a clique on k vertices. Let S be such target set of G ′.

Denote by kv = |S ∩ V | the number of vertices in S corresponding to the vertices of
G and by ke = |S ∩ E | the number of vertices in S corresponding to the edges of G,
kv + ke ≤ k.

Now, we show how to convert any target set S of size at most k activating at least
k + (k

2

)
vertices into a target set S′ such that |S′| ≤ k, S′ ⊆ V and S′ activates at least

k + (k
2

)
vertices.

Observe that if there is an edge u1u2 = e ∈ E(G) such that ve ∈ S and vu1 ∈ S
then S′ = (S \ {ve}) ∪ {vu2} also activates at least k + (k

2

)
vertices and the size of S′

is at most k. Thus we can assume that if vu1u2 ∈ S, then vu1 , vu2 /∈ S.
Observe that any initially not activated vertex in E becomes activated only if all two

of its neighbours are activated. It means that any such vertex does not influence the
activation process in future. Hence, since G ′ is bipartite, the activation process always
finishes within two rounds, and no vertex in V becomes activated in the second round.

123

Algorithmica (2023) 85:384–405 403

Let V1 be the set of vertices of V that become activated by S in the first round,
i.e. V1 = (S1(S) \ S0(S)) ∩ V . Note that these vertices are activated directly by ke
vertices in S ∩ E . Let SE,i be the set of vertices in S ∩ E that have exactly i endpoints
in V1. Denote by ke,i the size of SE,i . Then we have ke,0 + ke,1 + ke,2 = ke. Note that
if there is a vertex in S ∩ E with no endpoints in V1 then one can replace it with any
neighbour and size of S will not change and it will activate at least the same number
of vertices in G ′. Thus we can assume that ke,0 = 0.

We show that |V1| ≤ ke,1
2 + ke,2. Indeed, in order to be activated, any vertex from

V1 requires at least two vertices from E to be in the target set. Each vertex from SE,i

contributes to exactly i vertices from V1, and the total number of contributions is
ke,1 + 2ke,2. This number should be at least 2|V1|. Hence, |V1| ≤ ke,1

2 + ke,2.
Consider S′ = S \ E ∪ V1 i.e. we replace all ke vertices from E with all vertices

from V1. Note that |S′| ≤ |S| − ke,1
2 . Vertices from SE,2 become activated in the first

round since all of them have two endpoints in S′. Thus S′ is now a target set of size
not greater than k − ke,1

2 activating at least � − ke,1 vertices in G ′.
Note that any vertex from SE,1 can be activated by adding one more vertex to S′.

Consider set H = N (SE,1)\V1. If |H | ≤ ke,1
2 then consider S1 = H∪S′. S1 compared

to S′ will additionally activate all vertices in SE,1. Note that S1 is a target set S of size
at most k activating at least � vertices.

If |H | >
ke,1
2 then construct S1 from S′ by simply adding ke,1

2 arbitrary vertices from
H . Each of these vertices will additionally activate at least one vertex corresponding
to edge, thus S1 is a target set of size at most k activating at least � vertices.

We have shown how to transform any target set S activating at least k+ (k
2

)
vertices

in G ′ into a target set S1 such that S1 ⊆ V and S1 activates at least the same number of
vertices in G ′. As we have shown earlier, no vertex in E \ S1 influence the activation
process after becoming activated. Then, since S1 ∩ E = ∅, S1 activates only vertices
in E in the first round and the process finishes. Hence, if the instance for G ′ has a
solution, then G has a clique of size k. ��

6 Conclusion

We studied Target Set Selection, that appears to be a very natural and very hard
computational problem. Our main goal was to design an exact exponential algorithm
working faster than O∗ (2n). While for the general case this remains unsolved, we
designed several algorithms that work faster than the brute force in case of bounded
thresholds. Namely, in cases when thresholds are bounded by a fixed constant, or are
constantly-close to vertex degrees (only in the perfect case), or when each threshold
is bounded by one-third of its vertex degree.

The main ultimate question that stays open is whether Target Set Selection

(or at least Perfect Target Set Selection) can be solved in O∗((2 − ε)n) or it
cannot be done under SETH or the Set Cover Conjecture?

Apart from this hard question, some natural special cases also remain unsolved. For
example, can the problem be solved faster than O∗ (2n) when each vertex requires at
least half of its neighbours, i.e. thr(v) = 	α deg(v)
 for α = 0.5, to become activated?

123

404 Algorithmica (2023) 85:384–405

Note that the answer is positivewhenα = 1
3 . Canwe at least push this far forα = 1

3+ε

for arbitrarily small ε > 0?
A minor question is the case of dual thresholds, which was solved faster only for

the perfect case and in randomized time. Can we modify this algorithm to work when
we are looking not for a perfect, but for a general target set? Can we derandomize this
algorithm?

Declarations

Conflict of interest All authors declare no conflicts of interests.

References

1. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness IV:
On completeness for W[P] and PSPACE analogues. Ann. Pure Appl. Logic 73(3), 235–276 (1995).
https://doi.org/10.1016/0168-0072(94)00034-z

2. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection.
Theoret. Comput. Sci. 411(44–46), 4017–4022 (2010). https://doi.org/10.1016/j.tcs.2010.08.021

3. Araújo, R., Sampaio, R., Szwarcfiter, J.: The convexity of induced paths of order three. Electron. Notes
Discrete Math. 44, 109–114 (2013). https://doi.org/10.1016/j.endm.2013.10.017

4. Ash, R.: Information Theory. Dover Books on Mathematics. Dover Publications, Mineola, NY (1990)
5. Balogh, J., Bollobás, B.,Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput.

19(5–6), 643–692 (2010)
6. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the

spread of influence in networks. J. Discret. Algorithms 27, 54–65 (2014). https://doi.org/10.1016/j.
jda.2014.05.001

7. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target
set selection. Discret. Optim. 8(1), 87–96 (2011). https://doi.org/10.1016/j.disopt.2010.09.007

8. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff,
M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.: Breaking the 2n -barrier for Irredundance: Two
lines of attack. J. Discret. Algorithms 9(3), 214–230 (2011). https://doi.org/10.1016/j.jda.2011.03.002

9. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree
graphs. ACM Trans. Algorithms 8(2), 1–13 (2012). https://doi.org/10.1145/2151171.2151181

10. Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Largest Chordal and Interval Subgraphs Faster
Than 2n . In: Lecture Notes in Computer Science, pp. 193–204. Springer Berlin Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40450-4_17

11. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion
of graphs. Theoret. Comput. Sci. 412(29), 3693–3700 (2011). https://doi.org/10.1016/j.tcs.2011.03.
029

12. Chen, N.: On the Approximability of Influence in Social Networks. SIAM J. Discret. Math. 23(3),
1400–1415 (2009). https://doi.org/10.1137/08073617x

13. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant Thresholds Can Make Target Set
Selection Tractable. Theor. Comput. Syst. 55(1), 61–83 (2013). https://doi.org/10.1007/s00224-013-
9499-3

14. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially Ordered Jobs Faster
than 2n . Algorithmica 68(3), 692–714 (2012). https://doi.org/10.1007/s00453-012-9694-7

15. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-Disjoint Connected Sub-
graphs Problem Faster than 2n . Algorithmica 70(2), 195–207 (2013). https://doi.org/10.1007/s00453-
013-9796-x

16. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated Domination Faster Than O(2n). In: Lecture
Notes in Computer Science, pp. 74–80. Springer Berlin Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13731-0_8

123

https://doi.org/10.1016/0168-0072(94)00034-z
https://doi.org/10.1016/j.tcs.2010.08.021
https://doi.org/10.1016/j.endm.2013.10.017
https://doi.org/10.1016/j.jda.2014.05.001
https://doi.org/10.1016/j.jda.2014.05.001
https://doi.org/10.1016/j.disopt.2010.09.007
https://doi.org/10.1016/j.jda.2011.03.002
https://doi.org/10.1145/2151171.2151181
https://doi.org/10.1007/978-3-642-40450-4_17
https://doi.org/10.1016/j.tcs.2011.03.029
https://doi.org/10.1016/j.tcs.2011.03.029
https://doi.org/10.1137/08073617x
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00453-012-9694-7
https://doi.org/10.1007/s00453-013-9796-x
https://doi.org/10.1007/s00453-013-9796-x
https://doi.org/10.1007/978-3-642-13731-0_8
https://doi.org/10.1007/978-3-642-13731-0_8

Algorithmica (2023) 85:384–405 405

17. Dreyer, P.A., Jr., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models
of the spread of disease and of opinion. Discret. Appl. Math. 157(7), 1615–1627 (2009)

18. Dvořák, P., Knop, D., Toufar, T.: Target Set Selection in Dense Graph Classes. arXiv preprint
arXiv:1610.07530 (2016)

19. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the Minimum Feedback Vertex Set Problem:
Exact and Enumeration Algorithms. Algorithmica 52(2), 293–307 (2007). https://doi.org/10.1007/
s00453-007-9152-0

20. Fomin, F.V.,Grandoni, F.,Kratsch,D.: SolvingConnectedDominatingSet Faster than 2n . Algorithmica
52(2), 153–166 (2007). https://doi.org/10.1007/s00453-007-9145-z

21. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating Minimal Sub-
set Feedback Vertex Sets. Algorithmica 69(1), 216–231 (2012). https://doi.org/10.1007/s00453-012-
9731-6

22. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer-Verlag, Berlin, Heidelberg
(2010)

23. Fomin, F.V., Todinca, I., Villanger, Y.: Exact Algorithm for the Maximum Induced Planar Subgraph
Problem. In: Algorithms – ESA 2011, pp. 287–298. Springer Berlin Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23719-5_25

24. Hartmann, T.A.: Target Set Selection Parameterized by Clique-Width and Maximum Threshold. In:
SOFSEM 2018: Theory and Practice of Computer Science, pp. 137–149. Springer International Pub-
lishing (2017). 1https://doi.org/10.1007/978-3-319-73117-9_10

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In:
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’03. ACM Press (2003). https://doi.org/10.1145/956750.956769

26. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006).
https://doi.org/10.1016/j.tcs.2005.10.007

27. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of Target Set Selection.
Soc. Netw. Anal. Min. 3(2), 233–256 (2012). https://doi.org/10.1007/s13278-012-0067-7

28. Peleg, D.: Size bounds for dynamicmonopolies. Discret. Appl.Math. 86(2–3), 263–273 (1998). https://
doi.org/10.1016/s0166-218x(98)00043-2

29. Pilipczuk, M.: Exact Algorithms for Induced Subgraph Problems. In: Encyclopedia of Algorithms, pp.
1–5. Springer US (2015). https://doi.org/10.1007/978-3-642-27848-8_520-1

30. Pilipczuk, M., Pilipczuk, M.: Finding a Maximum Induced Degenerate Subgraph Faster Than 2n . In:
Parameterized and Exact Computation, pp. 3–12. Springer Berlin Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33293-7_3

31. Razgon, I.: Computing Minimum Directed Feedback Vertex Set in O∗(1.9977n). In: Theoretical
Computer Science, pp. 70–81. World Scientific (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

http://arxiv.org/abs/1610.07530
https://doi.org/10.1007/s00453-007-9152-0
https://doi.org/10.1007/s00453-007-9152-0
https://doi.org/10.1007/s00453-007-9145-z
https://doi.org/10.1007/s00453-012-9731-6
https://doi.org/10.1007/s00453-012-9731-6
https://doi.org/10.1007/978-3-642-23719-5_25
https://doi.org/10.1007/978-3-642-23719-5_25
https://doi.org/10.1007/978-3-319-73117-9_10
https://doi.org/10.1145/956750.956769
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1007/s13278-012-0067-7
https://doi.org/10.1016/s0166-218x(98)00043-2
https://doi.org/10.1016/s0166-218x(98)00043-2
https://doi.org/10.1007/978-3-642-27848-8_520-1
https://doi.org/10.1007/978-3-642-33293-7_3
https://doi.org/10.1007/978-3-642-33293-7_3

	Solving Target Set Selection with Bounded Thresholds Faster than 2n
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation and Problem Definition
	2.2 Minimal Partial Vertex Covers

	3 Algorithms for Bounded Thresholds
	3.1 Algorithm for Thresholds Bounded by a Fixed Constant
	3.1.1 Stage I
	3.1.2 Stage II
	3.1.3 Stage III

	3.2 Two Algorithms for Constant Thresholds in the Perfect Case
	3.3 Algorithm for Thresholds Bounded by One-Third of Degrees

	4 Algorithm for Bounded Dual Thresholds
	5 Lower Bounds
	5.1 ETH Lower Bound
	5.2 Parameterization by l

	6 Conclusion
	References

