
Algorithmica (2023) 85:133–152
https://doi.org/10.1007/s00453-022-01020-z

Parameterized Study of Steiner Tree on Unit Disk Graphs

Sujoy Bhore1 · Paz Carmi2 · Sudeshna Kolay3 ·Meirav Zehavi2

Received: 6 July 2020 / Accepted: 26 July 2022 / Published online: 5 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We study the Steiner Tree problem on unit disk graphs. Given a n vertex unit disk
graph G, a subset R ⊆ V (G) of t vertices and a positive integer k, the objective is to
decide if there exists a tree T in G that spans over all vertices of R and uses at most k
vertices from V \ R. The vertices of R are referred to as terminals and the vertices of
V (G) \ R as Steiner vertices. First, we show that the problem is NP-hard. Next, we
prove that the Steiner Tree problem on unit disk graphs can be solved in nO(

√
t+k)

time.We also show that the Steiner Tree problem on unit disk graphs parameterized
by k has an FPT algorithm with running time 2O(k)nO(1). In fact, the algorithms are
designed for a more general class of graphs, called clique-grid graphs Fomin (Discret.
Comput. Geometry 62(4):879–911, 2019). We mention that the algorithmic results
can be made to work for Steiner Tree problem on disk graphs with bounded aspect
ratio. Finally, we prove that Steiner Tree problem on disk graphs parameterized by
k, is W[1]-hard.

Keywords Unit Disk Graphs · FPT · Subexponential exact algorithms ·
NP-Hardness · W-Hardness

A preliminary version of this work has appeared in the proceedings of 17th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT) 2020.

B Sujoy Bhore
sujoy.bhore@gmail.com

Paz Carmi
carmip@cs.bgu.ac.il

Sudeshna Kolay
skolay@cse.iitkgp.ac.in

Meirav Zehavi
meiravze@bgu.ac.il

1 Indian Institute of Science Education and Research, Bhopal, India

2 Ben-Gurion University of the Negev, Beersheba, Israel

3 Indian Institute of Technology, Kharagpur, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01020-z&domain=pdf
https://orcid.org/0000-0003-0104-1659
https://orcid.org/0000-0003-0154-5013
https://orcid.org/0000-0002-2975-4856
https://orcid.org/0000-0002-3636-5322

134 Algorithmica (2023) 85:133–152

1 Introduction

Given a graph G with a weight function w : E(G) → R
+ and a subset R ⊆ V (G)

of vertices, a Steiner tree is an acyclic subgraph of G spanning all vertices of R. The
vertices of R are usually referred to as terminals and the vertices of V (G)\R as Steiner
vertices. The Minimum Steiner Tree problem is to find a Steiner tree T such the
total weight of E(T) is minimized. In the Steiner Tree problem, given a graph G,
a subset R ⊆ V (G) of vertices and a positive integer k, the objective is to determine
if there exists a Steiner tree T in G for the terminal set R such that the number of
Steiner vertices in T is at most k. The Steiner Tree problem is one of Karp’s classic
NP-complete problems [1]; moreover, that makes the optimization problem NP-hard.

A special case of the Minimum Steiner Tree problem is the Metric Steiner

Tree problem. Given a complete graph G = (V , E), each vertex corresponds to a
point in a metric space, and for each edge e ∈ E the weight w(e) corresponds to the
distances in the space. In other words, the edge weights satisfy the triangle inequality.
It is well known that, given an instance of the non-metric Steiner tree problem, it is
possible to transform it in polynomial time into an equivalent instance of theMetric

Steiner Tree problem. Moreover, this transformation preserves the approximation
factor [2]. The Euclidean Steiner Tree problem or Geometric Steiner Tree

problem takes as input n points in the plane. The objective is to connect them by lines
of minimum total length in such a way that any two points may be interconnected
by line segments either directly or via other points and line segments. The Minimum

Steiner Tree problem is NP-hard even in Euclidean or Rectilinear metrics [3].
Arora [4] showed that the Euclidean Steiner Tree and Rectilinear Steiner

Tree problems can be efficiently approximated arbitrarily close to the optimal. Several
approximation schemes have been proposed over the years on Minimum Steiner

Tree for graphs with arbitrary weights [5–8]. Although the Euclidean version admits
a PTAS, it is known that theMetric Steiner Tree problem is APX-complete. There
is a polynomial-time algorithm that approximates the minimum Steiner tree to within
a factor of ln(4)+ε ≈ 1.386 [9]; however, approximating within a factor 96

95 ≈ 1.0105
is NP-hard [10].

The decision version, Steiner Tree is well-studied in parameterized complexity.
A well-studied parameter for the Steiner Tree is the number of terminals t = |R|.
It is known that the Steiner Tree is FPT for this parameter due to the classical result
of Dreyfus and Wagner [11]. Fuchs et al. [12] and Nederlof [13] gave alternative
algorithms for Steiner Tree parameterized by t with running times that are not
comparable with the Dreyfus and Wagner algorithm. On the other hand, Steiner
Tree parameterized by the number of Steiner vertices k is W[2]-hard [14]. Hence, the
focus has been on designing parameterized algorithms for graph subclasses like planar
graphs [15], d-degenerate graphs [16], etc. In [17], Dcořák et al. designed an efficient
parameterized approximation scheme (EPAS) for the Steiner Tree parameterized
by k.1

1 For any ε > 0 computes a (1 + ε) approximation in time f (p, ε) × nO(1) for a computable function f
independent of n.

123

Algorithmica (2023) 85:133–152 135

In this paper, we study the Steiner Tree problem on unit disk graphs when the
parameter is the number of Steiner vertices k. Unit disk graphs are the geometric
intersection graphs of unit circles in the plane. That is, given n unit circles in the
plane, we have a graph G where each vertex corresponds to a circle such that there
is an edge between two vertices when the corresponding circles intersect. Unit disk
graphs have been widely studied in computational geometry and graph algorithms due
to their usefulness in many real-world problems, e.g., optimal facility location [18],
wireless and sensor networks; see [19, 20]. These led to the study ofmanyNP-complete
problems on unit disk graphs; see [21, 22].

There are some works on variants ofMinimum Steiner Tree on unit disk graphs
in the approximation paradigm. Li et al. [23] studied node-weighted Steiner trees
on unit disk graphs, and presented a PTAS when the given set of vertices is c-local.
Moreover, they used this to solve the node-weighted connected dominating set problem
in unit disk graphs and obtained a (5+ ε)-approximation algorithm. In [24], Biniaz et
al. studied the Full Steiner Tree

2 problem on unit disk graphs. They presented a
20-approximation algorithm for this problem, and forλ-precise graphs gave a (10+ 1

λ
)-

approximation algorithmwhereλ is the length of the longest edge.Although there have
been a plethora of work on variants of theMinimum Steiner Tree problem on unit
disk graphs in approximation algorithms, hardly anything is known in parameterized
complexity for the decision version. In this regard, we refer to the work of Marx et
al. [25] who investigated the parameterized complexity of the Minimum Steiner

Tree problem on planar graphs, where the number of terminals (t) is regarded as
the parameter. They have designed an nO(

√
t)-time exact algorithm, and showed that

this problem on planar graphs cannot be solved in time 2o(t) · nO(1), assuming ETH.
However, these results do not directly apply on unit disk graphs as unit disk graphs
can contain very large cliques, but, then planar graphs contains arbitrarily large stars.
Recently, Berg et al. [26] showed that the Steiner Tree problem can be solved in

2O(n1−
1
d) time on intersection graphs of d-dimensional similarly-sized fat objects, for

some d ∈ Z+.
More often than not, the geometric intersection graph families such as unit disk

graphs, unit square intersection graphs, rectangle intersection graphs, provide addi-
tional geometric structure that helps to generate algorithms. In this paper, our objective
is to understand parameterized tractability landscape of the Steiner Tree problem
on unit disk graphs.
Our Results. First in Sect. 3, we show that Steiner Tree on unit disk graphs is
NP-hard. Then, in Sect. 4, we design a subexponential time algorithm for the Steiner
Tree problem on unit disk graphs parameterized by the number of terminals t and the
number of Steiner vertices k.

Theorem 1 Steiner Tree on unit disk graphs can be solved in nO(
√
t+k) time.

The approach to design this subexponential time algorithm is very similar to that
used in [27]. First, we apply a Baker-like shifting strategy to create a family F of
instances (of Exact Steiner Tree, which is a variant of Steiner Tree) such that

2 A full Steiner tree is a Steiner tree which has all the terminal vertices as its leaves.

123

136 Algorithmica (2023) 85:133–152

if the input instance (G, R, t, k) is a yes-instance then there is at least one constructed
instance in F that is a yes-instance of Exact Steiner Tree. On the other hand, if
(G, R, t, k) is a no-instance of Steiner Tree, then no instance ofF is a yes-instance
of Exact Steiner Tree. With the knowledge that the answer is preserved in the
family F , we design a dynamic programming subroutine to solve Exact Steiner

Tree on each of the constructed instances of F .
Next, in Sect. 5, we show that the Steiner Tree on unit disk graphs has an FPT

algorithm when parameterized by k.

Theorem 2 Steiner Tree on unit disk graphs can be solved in 2O(k)nO(1) time.

Here, we show that solving the Steiner Tree problem on an instance (G, R, t, k)
is equivalent to solving the problem on an instance (G ′, R′, t ′, k) where the graph G ′
is obtained by contracting all connected components of G[R]. Although G ′ loses all
geometric properties, we show that the number of terminals in R′ is only dependent
on k. This essentially changes the problem to running the Dreyfus-Wagner algorithm
on (G ′, R′, t ′, k).

Both the results in Theorem 1 and 2 are shown to work for a superclass of graphs,
called clique-grid graphs. We would like to remark that the algorithms can also be
made to work for disk graphs with constant aspect ratio.

Finally, in contrast, in Sect. 6 we prove that the Steiner Tree problem for disk
graphs is W[1]-hard, parameterized by the number Steiner vertices k. The Steiner

Tree problem is known to beW[2]-hard on general graphs [14].However, it is not clear
how to use that reduction for disk graphs. We show a reduction of our problem from
Grid Tiling with ≥ [28], ruling out the possibility of a f (k)no(k) time algorithm for
any function f , assuming ETH. TheGrid Tiling with≥ problem is a generalization
of the better known Grid Tiling problem. Given an integer n, a k × k matrix for
an integer k and a set of pairs Si j ⊆ [n] × [n] of each cell, the objective is to find, for
each 1 ≤ i, j ≤ k, a value si j ∈ Si j such that if si j = (a, b) and si+1, j = (a′, b′) then
a ≥ a′; if si j = (a, b) and si, j+1 = (a′, b′) then b ≥ b′.

Theorem 3 The Steiner Tree problem on disk graphs is W[1]-hard, parameterized
by the number of Steiner vertices k.

2 Preliminaries

The set {1, 2, . . . , n} is denoted as [n]. For a graphG, and a subset V ′ ⊆ V (G),G[V ′]
denotes the subgraph induced on V ′. The Exact Steiner Tree problem takes as
input a graph G, a terminal set R with t terminals and a positive integer k. The aim
is to determine whether there is a Steiner tree T in G for R that has exactly k Steiner
vertices. A Steiner tree with at most k Steiner vertices is called a k-Steiner tree while
one with exactly k Steiner vertices is called an exact k-Steiner tree. Note that if T
is an exact k-Steiner tree then |V (T)| = t + k. When the Steiner Tree or Exact
Steiner Tree problem is restricted to taking input graphs only from a graph class G,
then these variants are referred to as Steiner Tree on G and Exact Steiner Tree

on G, respectively.

123

Algorithmica (2023) 85:133–152 137

Observation 4 A tree T is a k-Steiner tree for an instance (G, R, t, k) if and only if
T is an exact k′-Steiner tree for the instance (G, R, t, k′) of Exact Steiner Tree

for some k′ ≤ k.

Definition 5 [27] A graph G is a clique-grid graph if there is a pair p, p′ ∈ N and a
function f : V (G) → [p] × [p′] such that the following conditions hold:

1. For all (i, j) ∈ [p] × [p′], f −1(i, j) is a clique in G.
2. For all uv ∈ E(G), if f (u) = (i, j) and f (v) = (i ′, j ′) then |i − i ′| ≤ 2 and

| j − j ′| ≤ 2.

Such a function f is called a representation of the graph G.

Unit disk graphs are clique-grid graphs [27]. Next, we define a representation of a
clique-grid graph called a cell graph.

Definition 6 [27] Given a clique-grid graph G with representation f : V (G) →
[p] × [p′], the cell graph cell(G) is defined as follows:

– V (cell(G)) = {vi j |i ∈ [p], j ∈ [p′], f −1(i, j)
= ∅},
– E(cell(G)) = {vi jvi ′ j ′ |(i, j)
= (i ′, j ′), ∃u ∈ f −1(i, j) and ∃v ∈ f −1(i ′, j ′)
such that uv ∈ E(G)}.

For each vertex vi j ∈ V (cell(G)), the pair (i, j) is also called a cell of G and by
definition corresponds to a non-empty clique of G. A vertex v ∈ V (G) is said to
be in the cell (i, j) if f (v) = (i, j). The set of neighbours of a cell C = (i, j)
in a cell C′ = (i ′, j ′)
= C is the vertex subset {v ∈ V (G)| f (v) = (i ′, j ′), ∃u ∈
V (G) such that f (u) = (i, j) and uv ∈ E(G)}.

Let G be a graph. A path decomposition of a graph G is a pair T = (P, β :
V (P) → 2V (G)), where P is a path where every node p ∈ V (P) is assigned
a subset β(p) ⊆ V (G), called a bag, such that the following conditions hold: (i)⋃

p∈V (P) β(p) = V (G), (ii) for every edge xy ∈ E(G) there is a p ∈ V (P) such
that {x, y} ⊆ β(p), and (iii) for any v ∈ V (G) the subgraph of P induced by the
set {p | v ∈ β(p)} is connected. A path decomposition will also be denoted as a
sequence of bags {β(p1), β(p2), . . . , β(pq)} where P = p1 p2 . . . pq . The width of
a path decomposition is maxp∈V (P) |β(p)| − 1. The pathwidth of G is the minimum
width over all path decompositions of G and is denoted by pw(G). Given a path
decomposition of a graph G, we say it is rooted at exactly one of the two degree one
vertices of the underlying path.

Definition 7 [27] A path decomposition T = (P, β) of a clique-grid graph G with
representation f : V (G) → [p]×[p′] is a nice �-clique path decomposition (�-NCPD)
if for the root r of P , β(r) = ∅ and for each v ∈ V (P) the following hold:

1. There are at most � cells {(i1, j1), (i2, j2), . . . , (i�, j�)} such that β(v) =⋃�
p=1 f −1(i p, jp),

2. The node v is one of the following types: (i) Leaf node where β(v) = ∅, (ii) Forget
node where v has exactly one child u and there is a cell (i, j) ∈ [p]×[p′] such that
f −1(i, j) ⊆ β(u) and β(v) = β(u) \ f −1(i, j), (iii) Introduce node where v has
exactly one child u and there is a cell (i, j) ∈ [p]×[p′] such that f −1(i, j) ⊆ β(v)

and β(u) = β(v) \ f −1(i, j),

123

138 Algorithmica (2023) 85:133–152

φ φC1 C2 C4
C1,

C2

C2,

C4

C1, C2 C2, C4

2-CPD

C1 C2 C3 C4

2-NCPD

Fig. 1 An illustration of nice 2-clique path decomposition

See Fig. 1 for an example of an NCPD. A path decomposition for a clique-grid
graph G with representation f where only property 1 of Definition 7 is true for a
positive number � is referred to as an �-CPD.

3 NP-Hardness of Steiner Tree on Unit Disk Graphs

In this section, we consider the Steiner Tree problem on unit disk graphs and prove
that this problem isNP-hard.We show a reduction fromConnected Vertex Cover

in planar graphs with maximum degree 4. The reduction is very similar to that in [29].

Theorem 8 The Steiner Tree problem on unit disk graphs is NP-hard.

Proof We show a reduction from the Connected Vertex Cover in planar graphs
with maximum degree 4 problem, which is known to be NP-hard [3]. Given a planar
graph G with maximum degree 4 and an integer k, the Connected Vertex Cover

problem asks to find if there exists a vertex cover D for G such that the subgraph
induced by D is connected and |D| ≤ k. We adopt the proof of Abu-Affash [29],
where it was shown that the k-Bottleneck Full Steiner Tree problem is NP-
hard. We make this reduction compatible for unit disk graphs. Given a planar graph G
with maximum degree 4 and an integer k, we construct an unit disk graph GC where
V (GC) = C in polynomial time, where V (GC) is divided into two sets of unit disks R
and S, denoted by Steiner and terminals, respectively. Let V (G) = {v1, v2, . . . , vn}
and let E(G) = {e1, e2, . . . , em}. Then, we compute an integer k′ such that G has a
connected vertex cover D of size k if and only if there exists a Steiner Tree with at
most k′ Steiner vertices of GC .

As as an intermediate step we build a rectangular grid graph G ′. First, we embed G
on a rectangular grid, with distance at least 8 between adjacent vertices. Each vertex
vi ∈ V (G) corresponds to a grid vertex, and each edge e = viv j ∈ E(G) corresponds
to a rectilinear path comprised of some horizontal and vertical grid segments with
endpoints corresponding to vi and v j . Let V (G ′) = {v′

1, . . . , v
′
n} be the grid points

corresponding to the vertices of V (G), and let E(G ′) = {pe1, . . . , pem } be the set of
paths corresponding to the edges of E(G)Moreover, these paths are pairwise disjoint;
see Fig. 2b. This embedding can be done in O(n) time and the size of the grid is at

123

Algorithmica (2023) 85:133–152 139

(a)

ei

(b)

pei

(c)

pei

v′
i v′

j
vjvi

Fig. 2 (a) A planar graph G of maximum degree 4, (b) the intermediate rectilinear embedding G′ of G,
(c) the unit disk graph GC ; the black disks are corresponding to the grid vertices of G′, the red disks are
Steiner disks and the blue disks are the terminal disks (Color figure online)

most n−2 by n−2; see [30]. Next, we construct an unit disk graph GC from G ′. First,
we replace each grid vertex v′

i ∈ V (G ′) by an unit disk. Let C = {c1, . . . , cn} be the
set of unit disks centered at the grid points corresponding to the vertices of V (G ′).
For the sake of explanation we call these disks grid point disks. At this point, the unit
disk graph is not connected due to the edge length which we have taken between any
two adjacent vertices in the grid graph. In fact this length ensures that there are no
undesirable paths other than the ones in G. Next, we place two sets of disks on each
path pei ∈ E(G ′). Let |pei | be the total length of the grid segments of pei . We place
two Steiner disks on pei , such that each one of them is adjacent to a grid point disk
corresponding to pei and the distance between their centers is exactly 2. Next, we
place |pei | − 6/2 many terminals disks on pei such that the distance between any two
adjacent centers is exactly 2. See Fig. 2c for detailed explanation. Let s(ei) be the
set of Steiner disks and t(ei) be the set of terminal disks placed to pei . The terminal
set R = ⋃

ei∈E(G ′)
t(ei); the Steiner set S = C ∪ ⋃

ei∈E(G ′)
s(ei). V (GC) = R ∪ S and

GC is the intersection graph induced by V (GC). Finally, we set k′ = m + 2k − 1.
Observe that, for any path pei , the terminal set t(ei) itself form a Steiner tree without
any Steiner disks. However, in order to make that tree connected we need at least one
of Steiner disks from s(ei). This completes the construction.

In the forward direction, suppose G has a connected vertex cover D of size at most
k. We construct a Steiner tree of R in the following manner. For each edge ei , we
simply take the terminal path induced by t(ei). Now, let TS be any spanning tree of
the subgraph of G induced by D, containing |D| − 1 edges. The existence of such
a spanning tree is ensured since D is a connected vertex cover of G. For each edge
e = viv j ∈ TS we connect the corresponding disks ci , c j by two Steiner red disks
adjacent to them. Then, for each edge e = viv j ∈ G \ TS we select one endpoint that
is in D (say vi) and connect ci to the tree by its adjacent disk. The constructed tree is a
Steiner tree of R consisting |D| + 2(|D| − 1)+ (m − (|D| − 1)) which is m + 2k − 1.

Conversely, let there exists a Steiner tree T of R with at most k′ Steiner disks.
Let D ⊆ C be the set of vertices that appear in T , and let T ′ be the subtree of T

123

140 Algorithmica (2023) 85:133–152

spanning over D. For each subset t(ei) ⊆ R, let Tei be the subtree of Tei spanning
the vertices in t(ei). By the above construction, Tei does not require any Steiner disk.
Moreover, it is easy to see that in any valid solution Tei must be connected to at least
one endpoint of D. This implies that the set of vertices in G corresponding to the
vertices in D is a connected vertex cover of G. Moreover a tree Tei which also a
subtree of T is connected to D via two Steiner disks of s(ei). Therefore, TS contains
|D| + 2(|D| − 1) + (m − (|D| − 1)) many Steiner disks. We started with the tree T
with at most k′ = m + 2k − 1 many Steiner disks. This completes the proof. ��

4 Subexponential Time Exact Algorithm for Steiner Tree on Unit
Disk Graphs

In this section, we prove Theorem 1 by designing a subexponential time algorithm for
the Steiner Tree problem on unit disk graphs parameterized by t + k, where t is
the number of terminals and k is an upper bound on the number of Steiner vertices. In
fact, our aim for this section is to design a subexponential time algorithm for Steiner
Tree on clique-grid graphs and as unit disk graphs are clique-grid graphs [27], this
would imply the algorithm proposed in Theorem 1.

Lemma 9 The Steiner Tree problem on clique-grid graphs can be solved in
nO(

√
t+k) time.

For the rest of the section, we concentrate on proving Lemma 9. Informally, we
first apply a Baker-like shifting strategy to create a family F of instances of Exact
Steiner Tree that preserves the answer for the input instance (G, R, t, k) of Steiner
Tree: if (G, R, t, k) is a yes-instance then there is at least one constructed instance in
F that is a yes-instance of Exact Steiner Tree; if (G, R, t, k) is a no-instance of
Steiner Tree then all instances of F are no-instances of Exact Steiner Tree. As
a second step, we design a dynamic programming subroutine to solveExact Steiner

Tree on each of the constructed instances ofF , which is enough to solve the Steiner
Tree problem on (G, R, t, k).

Before we describe the subexponential time algorithm, we state some properties of
Steiner trees in clique-grid graphs.

Observation 10 Consider a k-Steiner tree T for a clique-grid graph G with represen-
tation f , such that the set {uv ∈ E(T)| f (u)
= f (v)} is minimised over all k-Steiner
trees for G. Let C = (i, j) be a cell of G. Then there are at most 24 edges with one
endpoint in C and the other endpoint in another cell.

Proof We claim that in the k-Steiner tree where the set {uv ∈ E(T)| f (u)
= f (v)} is
minimised, there can be at most one neighbour of C in each cell C′
= C. Suppose that
C′ is a cell that contains at least two neighbours of C. Let two such neighbours be u′, v′.
Note that u′v′ is an edge in E(G). Let u, v (may be the same) be the neighbours of
u, v, respectively in C. Note that uv is an edge in E(G). Thus adding the edge u′v′ and
removing the edge uu′ results in a connected graph containing all the terminals. The
spanning tree of this connected graph has strictly less number of edges with endpoints
in different cells, which is a contradiction to the choice of T .

123

Algorithmica (2023) 85:133–152 141

By the definition of clique-grid graphs, |i − i ′|, | j − j ′| ≤ 2. Thus, when we fix
a cell C there are at most 24 cells that can have neighbours of vertices in C. Putting
everything together, for the k-Steiner tree T where the set {uv ∈ E(T)| f (u)
= f (v)}
is minimised, |{v| f (v)
= (i, j), ∃u such that f (u) = (i, j), uv ∈ E(G)}| ≤ 24. ��
Observation 11 Suppose there is a k-Steiner tree for a clique-grid graph G, and
let T be a k-Steiner tree where the set {uv ∈ E(T)| f (u)
= f (v)} is minimised.
Moreover, amongst k-Steiner trees where {uv ∈ E(T)| f (u)
= f (v)} is minimised, T
has minimum number of Steiner points. Then, in T the number of Steiner vertices per
cell is at most 24.

Proof For the sake of contradiction, let C = (i, j) be a cell such that | f −1(i, j) ∩
V (T)| ≥ 24 + 1. Then by Observation 10, there is at least one Steiner vertex v ∈
f −1(i, j)∩V (T) such that it does not have any neighbours in T \ f −1(i, j). Consider
the subgraph T \ {v}. Since the vertices of f −1(i, j) induce a clique, T \ {v} is still a
connected subgraph that contains all the terminals and strictly less number of Steiner
vertices. Thus, a spanning tree of this connected subgraph contradicts the choice of
T . ��

Consider a k-Steiner tree T for an instance (G, R, t, k) of Steiner Tree where
{uv ∈ E(T)| f (u)
= f (v)} is minimised and then the number of Steiner vertices is
minimised. ByObservation 4, T is an exact k′-Steiner tree for the instance (G, R, t, k′)
of Exact Steiner Tree for some k′ ≤ k. Next, we define a good family of instances
that preserve the answer for (G, R, t, k) of Steiner Tree.

Definition 12 For an instance (G, R, t, k) of Steiner Tree on clique-grid graphs
where G has representation f , a good family of instances F has the following prop-
erties:

1. For each instance (H , R, t, k′) in the family, the input graph H is an induced
subgraph of G that contains all vertices in R and k′ ≤ k. Note that H is also a
clique-grid graph where f |V (H) is a representation.

2. (G, R, t, k) is a yes-instance of Steiner Tree if and only if there exists an instance
(H , R, t, k′) ∈ F which is a yes-instance of Exact Steiner Tree.

3. For any instance (H , R, t, k′) ∈ F , H has a 7
√
t + k-NCPD.

We show that given an instance (G, R, t, k) ofSteiner Tree on clique-grid graphs,
a good family of instances can be enumerated in subexponential time.

Lemma 13 Given an instance (G, R, t, k) for Steiner Tree on clique-grid graphs
with G represented by f , a good family of instances F can be computed in nO(

√
t+k)

time.

Proof Let T be a k-Steiner tree for G. In particular, T is an exact k′-Steiner tree for
some k′ ≤ k andV (T) = t+k′ ≤ t+k. First,we employ aBaker-like technique similar
to [27] (please refer to Fig. 3). Note that if G has n vertices and has representation
f : V (G) → [p]× [p′], then p, p′ ≤ n. Thus, f represents G on the n×n grid. First
we define a column of the n×n grid. For any j ∈ [n] the set of cells {(i, j)|i ∈ [n]} is

123

142 Algorithmica (2023) 85:133–152

Fig. 3 An illustration of grid labelling. The blue disks are terminals, and the red and black disks are chosen
Steiner vertices and not-chosen non-terminal vertices, respectively (Color figure online)

called a column. There are n columns for the n × n grid. We partition the n columns
of the n × n grid with n/2 blocks of two consecutive columns and label them from
the set of labels [√t + k]. Formally, each set of consecutive columns {2i − 1, 2i},
where i ∈ [n/2] is labelled with i mod

√
t + k. Thus, all the two consecutive columns

{2i − 1, 2i} are labelled with i mod
√
t + k.

Recall that an exact k′-Steiner tree T has at most t + k vertices. Applying the
pigeonhole principle, there is a label � ∈ {1, 2, . . . ,√t + k} such that the number
of vertices from V (T) which are in columns labelled � is at most

√
t + k. As we do

not know this k′-Steiner tree T , we guess the Steiner vertices of V (T) which are in
the columns labelled �. The number of potential guesses is bounded by nO(

√
t+k).

Suppose Y ′ is the set of guessed Steiner vertices of V (T) which are in the columns
labelled by �. Then we delete all the non-terminal vertices in columns labelled �,
except the vertices of Y ′ . Let S be the set of deleted non-terminal vertices. Let YR

be the set of terminal vertices that are in columns labelled by �. Let Y = Y ′ ∪ YR .
Notice that by choice of label �, |Y | ≤ √

t + k. By Property 2 of clique-grid graphs,
G \ (S ∪Y) is a disjoint union of clique-grid graphs each of which is represented by a
function with at most 2

√
t + k columns. Formally, G1 = G[⋃2(�−1)

j=1 f −1(∗, j)] and
Gi+1 = G[⋃min{i ·2�+2

√
t+k,n}

j=i ·2�+1 f −1(∗, j)] for each i ∈ {1, . . . , n/
√
t + k}. Each Gi

is a clique-grid graph with representation fi : V (Gi) → [n] × [2√t + k] defined as,
fi (u) = (r , j), when f (u) = (r , (i − 1)2�+ j). Thus, by Property 2 of Definition 5,
G \ (S ∪ Y) = G1 � . . . � Gn/

√
t+k .

claim 14 The graph G \ S has a 7
√
t + k-NCPD.

Proof Suppose we are able to show that for each i ∈ {1, . . . , n/
√
t + k} Gi has a

6
√
t + k-CPD. This results in a 6

√
t + k-CPD for G \ (S∪Y) = G1 � . . .�Gn/

√
t+k .

Finally, note that |Y | ≤ √
t + k and therefore the vertices of Y can belong to at most√

t + k cells. We add Y to all the bags in the 6
√
t + k-CPD for G \ (S ∪ Y) to obtain

a 7
√
t + k-CPD for G \ S. We convert the 7

√
t + k-CPD of G \ S into a NCPD using

the known algorithm of [31]. Note that this results in a 7
√
t + k-NCPD.

123

Algorithmica (2023) 85:133–152 143

What is left to show is that for eachGi there is a 6
√
t + k-CPD. First, for eachGi , we

give a path decomposition with the following sequence of bags: {X1, X2, . . . , Xn−2}.
This is done by defining each Xi = f −1(i, ∗) ∪ f −1(i + 1, ∗) ∪ f −1(i + 2, ∗). It is
easy to check that this is a path decomposition of Gi . Note that since Gi has at most
2
√
t + k columns, the number of cells contained in each X j , j ∈ [n − 1] is at most

6
√
t + k. ��
Finally, notice that from the definition of the constructed instances keeping in mind

potential k-Steiner trees, (G, R, t, k) is a yes-instance of Steiner Tree if and only
if there is an instance (H , R, t, k′) ∈ F such that it is a yes-instance of Exact
Steiner Tree. Thus, accounting for guessing a label � ∈ [√t + k] and the set Y of
Steiner vertices and terminal vertices of a potential solution Steiner tree that belong
to columns labelled �, we obtain a good family of nO(

√
t+k) instances for the given

instance (G, R, t, k). ��
For the ease of our algorithm design, we make a slight modification of the NCPD

for a constructed instance (H , R, t, k′) ∈ F : Upon fixing the label � and a set Y of
terminal vertices and potential Steiner vertices in the columns labelled by �, we add
the set Y in all the bags of the resulting NCPD for G \ S. Therefore, no bag is empty
after this modification. In particular the first and the last bags of the modified path
decomposition contain only the set Y . Also notice that as |Y | ≤ √

t + k, the new path
decomposition of H is still an O(

√
t + k)-CPD. We call this new path decomposition

of H a modified NCPD. Now, we are ready to prove Lemma 9

Proof of Lemma 9 As a first step of the algorithm, by Lemma 13 in nO(
√
t+k) time we

compute a good family of instances F for the given instance (G, R, t, k) of Steiner
Tree on clique-grid graphs. From Definition 12(2), (G, R, t, k) is a yes-instance of
Steiner Tree if and only if there is an instance (H , R, t, k′) ∈ F that is a yes-
instance of Exact Steiner Tree. Deriving from Definition 12(3), Lemma 13 and
the construction of a modified NCPD, for each instance (H , R, t, k′) ∈ F , there is
a modified O(

√
t + k)-NCPD for H , due to a guessed label � and a guessed set Y

of non-terminal vertices from columns labelled by � such that the following hold: (i)
|Y | ≤ √

t + k, (ii) if (H , R, t, k′) is a yes-instance then there is an exact k′-Steiner
tree T such that all vertices of Y are Steiner vertices in T . Let the modified NCPD
using the set Y have the sequence of bags {X1, X2, . . . , Xq}. Recall that the definition
of the modified NCPD ensures that X1 = Xq = Y .

In the next step, our algorithm for Steiner Tree considers every instance
(H , R, t, k′) ∈ F and checks if it is a yes-instance of Exact Steiner Tree. By
Definition 12(2), this is sufficient to determine if (G, R, t, k) is a yes-instance of
Steiner Tree.

For the rest of the proof we design a dynamic programming subroutine algorithmA
for Exact Steiner Tree that takes as input an instance (H , R, t, k′) ∈ F and uses
its modified O(

√
t + k)-NCPD to determine whether it is a yes-instance of Exact

Steiner Tree. Suppose (G, R, t, k) is a yes-instance and consider a k-Steiner tree T
for (G, R, t, k) where {uv ∈ E(T)| f (u)
= f (v)} is minimised and then the number
of Steiner vertices in T is minimised. Using Observation 4, this is an exact k′-Steiner
tree of G for some k′ ≤ k. By the construction in Lemma 13 note that there is an

123

144 Algorithmica (2023) 85:133–152

instance (H , R, t, k′) ∈ F such that T is an exact k′-Steiner tree for (H , R, t, k′).
The aim of the dynamic programming algorithm is to correctly determine that this
particular instance (H , R, t, k′) is a yes-instance. The algorithmA is designed in such
a manner that for such a yes-instance (H , R, t, k′) the tree T will be the potential
solution Steiner tree that behaves as a certificate of correctness.

The states of the dynamic programming algorithm store information required to
represent the partial solution Steiner tree, which is the potential solution Steiner tree
restricted to the graph seen so far. The states are of the form A[�, Q,Q = Q1 �
Q2 . . . � Qb,P = P1 � . . . Pb, k′′] where:

– � ∈ [q] denotes the index of the bag X� of the modified NCPD of H .
– Q ⊆ X� \ R is a set of at most 24 ·7 non-terminal vertices. For each cell C = (i, j)
that belongs to X�, |Q ∩ f −1(i, j)| ≤ 24.

– Q = Q1 � Q2 . . . � Qb is a partition of Q with the property that for each cell
C = (i, j), Q ∩ f −1(i, j) is contained completely in exactly one part of Q.

– The partition P is over the vertex set Q ∪ (R ∩ X�). Q ∩ Pi = Qi . Also for each
cell C in X�, C ∩ (Q ∪ R) is completely contained in exactly one part of P .

– The value k′′ represents the total number of Steiner vertices used so far in this
partial solution Steiner tree. |Q| ≤ k′′ holds.

Essentially, let T be an exact k′-Steiner tree for (H , R, t, k′) if it is a yes-instance.
For � ∈ [q], let T �

ptl represent the partial solution Steiner tree when T is restricted to

H [⋃�
j=1 X j]. The partition P represents the intersection of a component of T �

ptl with

X�. The set Q is the set of Steiner vertices of T �
ptl in the bag X� andQ is the partition

of Q with respect to the components of T �
ptl . The number k′′ denotes the total number

of Steiner vertices in T �
ptl .

In order to show the correctness of A we need to maintain the following invariant
throughout the algorithm: (LHS) A[�, Q,Q = Q1 � Q2, . . . Qb,P = P1 � P2 �
Pb, k′] = 1 if and only if (RHS) there is a forest T ′ as a subgraph of H [⋃�

j=1] with
b connected components D1, . . . , Db: Di ∩ X� = Pi , (Di \ R) ∩ X� = Qi , the total
number of non-terminal points in T ′ is k′′, for each cell C the number of nonterminal
vertices in C ∩ T ′ is at most 24, and R ∩ (

⋃�
j=1 X j) ⊆ V (T ′).

Suppose the algorithm invariant is true. This means that if A[q,Y ,Y ,Y , k′] = 1
then there is an exact k′-Steiner tree for (H , R, t, k′). On the other hand, suppose
(G, R, t, k) is a yes-instance and has a k-Steiner tree T where {uv ∈ E(T)| f (u)
=
f (v)} is minimised and then the number of Steiner vertices in T is minimised. By
Observation 11, the number of Steiner vertices of T in each cell of G is bounded by
24. By Observation 4 and the construction in Lemma 13 note that there is a subset Y
and an instance (H , R, t, k′) ∈ mathcalF such that T is an exact k′-Steiner tree for
(H , R, t, k′) and Y ⊆ V (T). Suppose the invariant of the algorithm is true. Thismeans
that if (G, R, t, k) is a yes-instance of Steiner Tree then there is a (H , R, t, k′) for
which A[q,Y ,Y ,Y , k′] = 1.

Thus, proving the correctness of the algorithmA amounts to proving the correctness
of the invariant of A. We prove the correctness of the invariant by induction on �. If
� = 1 then X� must be a leaf bag. By definition of the modified NCPD, the bag
contains Y .

123

Algorithmica (2023) 85:133–152 145

A[1, Q,Q,P, k′′] = 1 if Q = Y , Q is the partition of Y into the connected
components in H [Y], P = Q, k′′ = |Y |. In all other cases, A[1, Q,Q,P, k′′] = 0.

First, suppose A[1, Q,Q,P, k′′] = 1. Then as X1 does not contain any terminal
vertices, (RHS) trivially is true for the cases when A[1, Q,Q,P, k′′] = 1. On the
other hand, suppose (RHS) is true for � = 1. Again considering the cases when
A[1, Q,Q,P, k′′] = 1, (LHS) holds. So the invariant holds when � = 1.

Now, we assume that � > 1. Our induction hypothesis is that the invariant of the
algorithm is true for all 1 ≤ �′ < �. We show that the invariant is true for �. There can
be two cases:
Case 1: X� is a forget bag with exactly one child X�−1 : Let C be the cell being
forgotten in X�. Consider A[�, Q,Q = Q1, . . . Qb,P = P1 . . . Pb, k′′].

Let Q′ ⊆ X�−1 \ R such that Q ⊆ Q′ and Q′ \ Q consists of a set of at most 24
non-terminal vertices from C. Let P ′ = P ′

1 . . . P ′
b be a partition of (Q′ ∪ R) ∩ X�−1)

such for each cell C′ in X�−1, C′ ∩ (Q′ ∪ R) is completely contained in exactly one
part. Also, Pi = P ′

i \ C. Moreover, consider the part P ′
i such that C ∩ (Q′ ∪ R) ⊆ P ′

i :
P ′
i \(C∩(Q′ ∪R))
= ∅. LetQ′ be the partition of Q′ such that Q′ ∩P ′

i = Q′
i . IfA[�−

1, Q′,Q′,P ′, k′′] = 1 then A[�, Q,Q,P, k′′] = 1. Otherwise, A[�, Q,P, k′′] = 0.
Suppose (LHS) of the invariant is true forA[�, Q,Q,P, k′′]:A[�, Q,Q,P, k′′] =

1. By definition, there is a A[� − 1, Q′,Q′,P ′, k′′] = 1 for a Q′,Q′,P ′ as described
above. By induction hypothesis, (RHS) corresponding toA[�−1, Q′,Q′,P ′, k′′] = 1
holds. Thus, there is a witness forest T ′ in H [⋃�−1

j=1 X j] = H [⋃�
j=1] (By definition

of a forget bag). By definition of Q,Q,P , T ′ is also a witness forest in H [⋃�
j=1 X j]

and therefore (RHS) is true for A[�, Q,Q,P, k′′].
On the other hand, suppose (RHS) is true for A[�, Q,Q,P, k′′]. Then there is a

witness forest T ′ in H [⋃�
j=1 X j] = H [⋃�−1

j=1]. Moreover, T ′ has b connected compo-
nents D1, . . . , Db: Di∩X� = Pi , (Di \R)∩X� = Qi , the total number of non-terminal
points in T ′ is k′′ and R∩(

⋃�
j=1 X j) ⊆ V (T ′). Let Di∩X�−1 = P ′

i , (Di \R)∩X�−1 =
Q′

i , Q
′ = ⋃b

j=1 Q
′
i . Note that the total number of non-terminal points in T ′ is k′′ and

by definition of a forget node it is still true that R∩(
⋃�−1

j=1 X j) ⊆ V (T ′). By induction
hypothesis, (LHS) is true forA[�−1, Q′,Q′,P ′, k′′] andA[�−1, Q′,Q′,P ′, k′′] = 1.
By the description above, this implies that A[�, Q,Q,P, k′′] = 1. Therefore, (LHS)
is true for A[�, Q,Q,P, k′′].
Case 2: X� is an introduce bag with exactly one child X�−1. Let C be the cell being
introduced in X�. Consider A[�, Q,Q = Q1, . . . Qb,P = P1 . . . Pb, k′′]. Without
loss of generality, let Pb contain all the vertices in C ∩ (Q ∪ R).

By definition of a state, |C ∩ Q| ≤ 24. Let St = C ∩ Q and Q′ = Q \ St . Let
P ′ = P ′

1 � P ′
2 . . . � P ′

b � . . . P ′
d be a partition of Q′ ∪ (R ∩ X�−1) such that for

j < b, Pj = P ′
j , and Pb = C ∩ (Q ∪ R) ∪ ⋃d

j=b P
′
j . Moreover, C ∩ (Q ∪ R) has a

neighbour in each P ′
j , b ≤ j ≤ d. LetQ′ be the partition of Q′ such that Q′∩P ′

i = Q′
i .

Let k∗ = k′′ − |St |. If A[� − 1, Q′,Q′,P ′, k∗] = 1 then A[�, Q,Q,P, k′′] = 1.
Otherwise, A[�, Q,P, k′′] = 0.

Suppose (LHS) of the invariant is true forA[�, Q,Q,P, k′′]:A[�, Q,Q,P, k′′] =
1. By definition, there is a A[� − 1, Q′,Q′,P ′, k∗] = 1 for a Q′,Q′,P ′ as described
above. By induction hypothesis, (RHS) corresponding toA[�−1, Q′,Q′,P ′, k∗] = 1

123

146 Algorithmica (2023) 85:133–152

holds. Thus, there is a witness forest T ′ in H [⋃�−1
j=1 X j]. By definition of Q,Q,P ,

H [V (T ′) ∪ (C ∩ (Q ∪ R))] is a connected graph. Consider a spanning tree of this
connected graph. By definition of k∗, this spanning tree has all vertices of R and
exactly k′′ non-terminal vertices. Therefore, this spanning tree is a witness forest in
H [⋃�

j=1 X j] and therefore (RHS) is true for A[�, Q,Q,P, k′′].
On the other hand, suppose (RHS) is true forA[�, Q,Q,P, k′′]. Then there is a wit-

ness forest T ′ in H [⋃�
j=1 X j].Moreover, T ′ hasb connected components D1, . . . , Db:

Di ∩ X� = Pi , (Di \ R) ∩ X� = Qi , the total number of non-terminal points in T ′ is
k′′ and R∩ (

⋃�
j=1 X j) ⊆ V (T ′). Without loss of generality, let Db contain T ′ ∩C. Let

D′
1, D

′
2, . . . D

′
b, . . . , D

′
d be the connected components ofT ′ restricted to H [⋃�−1

j=1 X j].
Let D′

i ∩ X�−1 = P ′
i , (D′

i \ R) ∩ X�−1 = Q′
i , Q

′ = ⋃d
j=1 Q

′
i . Note that the total

number of non-terminal points in T ′ is k∗ = k′′−|St | and by definition of an introduce
node it is true that R ∩ (

⋃�−1
j=1 X j) ⊆ V (T ′) ∩ (

⋃�−1
j=1 X j). By induction hypothesis,

(LHS) is true for A[� − 1, Q′,Q′,P ′, k∗] and A[� − 1, Q′,Q′,P ′, k∗] = 1. By the
description above, this implies that A[�, Q,Q,P, k′′] = 1. Therefore, (LHS) is true
for A[�, Q,Q,P, k′′].

Finally, we analyse the time complexity of the algorithm. First, the good family
F is computed in nO(

√
t+k) time as per Lemma 13, and the number of instances in

the good family F is nO(
√
t+k). For one such instance (H , R, t, k′) the possible states

for the algorithm A are of the form [�, Q,Q,P, k′′]. By definition, � ≤ n, k′′ ≤ k′
and Q = O(

√
t + k). Again, by definition P is upper bounded by the number of

partitions of cells contained in a bag of the modified NCPD of (H , R, t, k′). Thus, the
number of possibilities of P is

√
t + k

O(
√
t+k)

. Also by definition, Q is fixed once
Q and P are fixed. Therefore, the number of possible states is nO(

√
t+k). From the

description of A, the computation of A[�, Q,Q,P, k′′] may look up the solution for
nO(

√
t+k) instances of the formA[�− 1, Q′,Q′,P ′, k∗] and therefore takes nO(

√
t+k)

time. Thus, the total time for the dynamic programming is O(n
√
t+k). ��

5 FPT Algorithm for Steiner Tree on Unit Disk Graphs

In this section, we prove Theorem 2. We consider the Steiner Tree problem on unit
disk graphs and design an FPT algorithm parameterized by k, which is an upper bound
on the number of Steiner vertices in the solution Steiner tree. Our algorithm is based
on the idea that for an instance (G, R, t, k), in order to determine the existence of a
Steiner tree we can first find spanning trees for all components of G[R] and extend
these spanning trees to a required k-Steiner tree.

In fact, we prove our results for the superclass of clique-grid graphs. For an instance
(G, R, t, k) of Steiner Tree on clique-grid graphs, where G has n vertices and
R ⊆ V (G) is the set of terminals we prove the following result in this rest of this
section.

Lemma 15 Steiner Tree on clique-grid graphs has an FPT algorithm with running
time 2O(k)nO(1).

123

Algorithmica (2023) 85:133–152 147

First, we prove some properties of Steiner trees for unit disk graphs. Consider the
induced subgraph G[R]. Let C1,C2, . . . ,Cq be the connected components in G[R].
For each Ci , i ∈ [q], let Ti be a spanning tree of Ci .

Observation 16 Let G be a clique-grid graph with the terminal set R. Let C1,C2, . . . ,

Cq be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning
tree for each Ci . For any k, let T ′ be a k-Steiner tree for G. Then there is a k-Steiner
tree T such that for each i ∈ [q] Ti is a subtree of T . Moreover, q ≤ 24k.

Proof Consider the k-Steiner tree T and let S = V (T) \ R be the set of Steiner
vertices of T . Note that in G[R ∪ S], T is a spanning tree and therefore G[R ∪ S] is a
connected graph. Similarly, for each i ∈ [q], Ti is a subgraph ofG[R∪S]. Consider the
subgraph H = T ′ ∪ ⋃

i∈[q] Ti . As T ′ is a spanning tree, T ′ ∪ ⋃
i∈[q] Ti is a connected

graph. We consider an arbitrary ordering O of the edges in E(H) \ (
⋃

i∈[q] E(Ti)).
In this order we iteratively throw away an edge e j ∈ E(H) \ (

⋃
i∈[q] E(Ti)) if the

resulting graph remains connected upon throwing e j away. Let H ′ be the graph at
the end of considering all the edges in the order O. We prove that H ′ must be a
tree. Suppose for the sake of contradiction, there is a cycle C as a subgraph of H ′.
As for each i ∈ [q], Ti is a tree and for each i
= i ′ ∈ [q], V (Ti) ∩ V (Ti ′) = ∅,
there must be an edge from E(H) \ (

⋃
i∈[q] E(Ti)) in E(C). Consider the edge e ∈

(E(H)\ (
⋃

i∈[q] E(Ti)))∩E(C)with the largest index according toO. This edge was
throwable as C \ {e} ensured any connectivity due to e. Thus, there can be no cycle
in H ′ and it is a spanning tree of V (H). This implies that T = H ′ is a k-Steiner tree
for G, S being the set of at most k Steiner vertices, such that for each i ∈ [q], Ti is a
subtree of T .

Finally, we show that if a k-Steiner tree T exists then q ≤ 24k. Let f be a represen-
tation of the clique-grid graph G. Note that for any cell (a, b) f −1(a, b) is a clique,
Therefore, there can be at most one component Ci intersecting with a cell (a, b). By
property (2) of Definition 5, there are at most 24 cells that can have neighbours of
any vertex in (a, b). Thus, for any Steiner vertex, there can be at most 24 components
of G[R] it can have neighbours in. Putting everything together, if there are at most
k Steiner vertices that are used to connect the q connected components of G[R] and
each Steiner vertex can have neighbours in at most 24 components, then it must be
that q ≤ 24k. ��

Henceforth, we wish to find a solution k-Steiner tree T such that for each i ∈ [q],
Ti is a subtree of T .

Definition 17 LetG be a clique-grid graphwith the terminal set R. LetC1,C2, . . . ,Cq

be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning
tree for each Ci . Let G∗ be the following graph: V (G∗) = V (G \ R) ∪ R∗ where
R∗ = {ci |i ∈ [q]}, E(G∗) = {v1v2|v1, v2 ∈ V (G) \ R} ∪ {vci |v ∈ V (G) \ R, ∃u ∈
Ci s.t vu ∈ E(G)}.G∗ is called the component contracted graph ofG and {ci |i ∈ [q]}
is the set of terminals for G∗ (See Fig. 4).

Note that G∗ may no longer be a clique-grid graph. From the definition of a com-
ponent contracted graph and Observation 16, we have the following observation.

123

148 Algorithmica (2023) 85:133–152

(a) (b)

Fig. 4 An illustration of the component contraction; (a) red disks are Steiners and blue disks are terminals;
(b) red vertices are Steiner vertices and blue vertices are contracted terminal components (Color figure
online)

Observation 18 Let G be a clique-grid graph with the terminal set R. Let C1,C2, . . . ,

Cq be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning
tree for each Ci . Let G∗ be the component contracted graph of G using the Ti ’s.
Then (G, R, t, k) is a yes-instance of Steiner Tree if and only if q ≤ 24k and
(G∗, R∗, q, k) is a yes-instance of Steiner Tree.

Now we are ready to design our FPT algorithm for Steiner Tree on clique-grid
graphs parameterized by k and complete the proof of Lemma 15.

Proof of Lemma 15 Let (G, R, t, k) be an input instance of
n-vertex clique-grid graphs. Let C1,C2, . . . ,Cq be the connected components of

G[R], and for each i ∈ [q] let Ti be a spanning tree for each Ci . Let G∗ be the
component contracted graph of G using the Ti ’s. Let R∗ = {ci |i ∈ [q]} be the
terminal set of G∗. By, Observation 16, if G is a yes-instance then it must be that
q ≤ 24k. If this is not the case, then we immediately output no.

From now on, we are in the case q ≤ 24k. By Observation 18, it is enough to
determinewhether (G∗, R∗, q, k) is a yes-instance of Steiner Tree. As noted earlier,
G∗ may no longer be a clique-grid graph.

We run the Dreyfus-Wagner algorithm [11] which returns a minimum edge-
weighted Steiner tree connecting R∗ in G∗. Since G∗ is unweighted, the returned
solution Steiner tree T has the minimum number of edges. Note that since G∗ is
unweighted, a Steiner tree for R∗ minimizes the number of Steiner vertices if and
only if it has minimum number of edges. The total number of Steiner vertices in T is
|V (T)| − |R∗|. If |V (T)| − |R∗| ≤ k, then our algorithm returns that (G∗, R∗, q, k)
is a yes-instance of Steiner Tree, and otherwise it returns no.

The construction of G∗ is done in polynomial time. Since q ≤ 24k, the Dreyfus-
Wagner algorithm runs in 2O(k)nO(1). Thus, our algorithm also has running time
2O(k)nO(1). ��

6 W[1]-Hardness for Steiner Tree on Disk Graphs

In this section, we consider the Steiner Tree problem on disk graphs and prove that
this problem is W[1]-hard parameterized by the number Steiner vertices k.

123

Algorithmica (2023) 85:133–152 149

Theorem 3. The Steiner Tree problem on disk graphs is W[1]-hard, parameter-
ized by the number of Steiner vertices k.

Proof WeproveTheorem3by giving a parameterized reduction from theGrid Tiling

with ≥ problem which is known to be W[1]-hard3 [28]. In the Grid Tiling with ≥
problem, we are given an integer n, a k × k matrix for an integer k and a set of pairs
Si j ⊆ [n] × [n] of each cell. The objective is to find, for each 1 ≤ i, j ≤ k, a value
si j ∈ Si j such that if si j = (a, b) and si+1, j = (a′, b′) then a ≥ a′; if si j = (a, b) and
si, j+1 = (a′, b′) then b ≥ b′.

Let I = (n, k,S) be an instance of the Grid Tiling with ≥. We construct a set
of disks D, that is divided into three sets of disks D1, D2, D3; D = D1 � D2 � D3.
Each disk in D1, D2, D3 is of radius 1, δ and κ , respectively. We will define the value
of δ and κ shortly. The construction of the set D = D1 � D2 � D3 will ensure that
D contains a Steiner Tree with k2 Steiner vertices if and only if I is a yes instance
of Grid Tiling with ≥. Let ε = 1/n10, and δ = ε/4. Here, we point out that
the value of κ, ε are independent of each other. First, we move the cells away from
each other, such that the horizontal (resp. vertical) distance between the left columns
(resp. top rows) any two consecutive cell is 2 + ε. Let 100δ be the side of length
of each cell. Then, we introduce diagonal chains of terminal disks into D3 of radius
κ = √

2(2 + ε − 100δ)/1000 to connect the cells diagonally; see Fig. 5a. For every
1 ≤ x, y ≤ k, and every (a, b) ∈ S(x, y) ⊆ [n] × [n], we introduce into D1 a disk
of radius 1 centered at (2x + εx + εa, 2y + εy + εb). Let D[x, y] ⊆ D1 be the
set of disks introduced for a fixed x and y, and notice that they mutually intersect
each other. Next, for 1 ≤ x, y ≤ k, we introduce into D2, disks of radius δ between
consecutive cells of coordinate (2x + 1 + εx + εa, 2y + εy) (placed horizontally);
and (2x + εx, 2y + 1 + εy + εb) (placed vertically). For every cell S[x, y], we
denote the top, bottom, left, right cluster of terminal disks of radius δ from D2 by
L[x, y], R[x, y], T [x, y], B[x, y], respectively. Moreover, for each cell S[x, y], we
introduce a disk of radius δ at a coordinate that is completely inside the rectangle
bounding the centres of disks in D[x, y]. This is to enforce that at least one disk is
chosen form each D[x, y]. See Figure 5b for an illustration.

We proceed with the following observation. Consider a disk p that is centered at
(2x + εx + εa, 2y + εy + εb) for some (a, b) ∈ [n] × [n]. Now, consider a disk q
from R[x, y] centered at (2x + 1 + εx + εa, 2y + εy). The distance between their
centers are

√
1 + ε2b2. We need to show that this is less than (1 + ε/4). This is true

because 1+ ε2b2 is less than (1+ ε/4) as the value of b goes to n, ε = 1/n10 and the
value of n is large. Hence, q is covered by the disk p from S[x, y] centered at (a, b).
Next, consider a disk q ′ from R[x, y] centered at (2x + 1+ εx + ε(a + 1), 2y + εy).
The distance between their centers are

√
(1 + ε)2 + ε2b2. We show that this value is

bigger than (1 + ε/4). This means (1 + ε)2 + ε2b2 is bigger than (1 + ε/4)2. As the
value of b goes to n, it is not hard to see the left side is bigger since ε = 1/n10 and the
value of n is large. Therefore, q ′ is not covered by the disk p from S[x, y] centered at
(a, b). The same calculation holds for L[x, y], T [x, y] and B[x, y].
3 k × k Grid Tiling with ≥ problem is W[1]-hard, assuming ETH, cannot be solved in f (k)no(k) for
any function f .

123

150 Algorithmica (2023) 85:133–152

(a) (b)

Fig. 5 (a) The schematic diagram of the cells, after adjusting the distance between adjacent cells which is
2+ε. The red disks inside each cells, are the coordinates where the center of the Steiner disk of radius 1 will
be placed. The diagonal chains consisting of terminal disks of radius κ , are connecting the cells diagonally.
(b) The small black dots inside each cell are extra terminals of radius δ. Consider a cell S[x, y]. The shaded
grey disks are the potential disks and the shaded red disk is chosen in the solution from D[x, y] (Color
figure online)

In the forward direction, let the pairs s[x, y] ∈ S[x, y] form a solution for instance
I , and let s[x, y] = (a[x, y], b[x, y]). For every 1 ≤ x, y ≤ k, we select the disk
d[x, y] from D1 of radius 1 centered at (2x + εx + εa[x, y], 2y+ εy+ εb[x, y]). We
have seen in the previous paragraph that this disk cover any disk from R[x, y] of center
with (2x+1+εx+εa[x, y], 2y+εy) but does not covers disks with coordinate (2x+
1+ εx + ε(a[x, y]+ 1), 2y + εy). Similarly, this holds for L[x, y], T [x, y], B[x, y].
s[x, y]’s forms a solution of I , then we have a[x, y] ≥ a[x + 1, y]. Therefore, the
disks d[x, y] and d[x + 1, y] will cover all disks from R[x, y]. Similarly, we have
b[x, y] ≥ b[x, y + 1] which implies that d[x, y] and d[x, y + 1] will cover T [x, y]
and form a component them. Now, the diagonals chains consisting of terminal disks
of radius κ , we have taken to join the cells (see Fig. 5a) ensures that all cells are
connected. Moreover, we have shown that if s[x, y]’s form a solution of instance
I , then all terminals in L[x, y], R[x, y], T [x, y], B[x, y] (for any 1 ≤ x, y ≤ k) are
covered. Therefore, this will form a connected Steiner tree with k2 many Steiner disks.

In the reverse direction, let D′ ⊆ D1 be a set of k2 Steiner disks that spans over all
terminals inD2∪D3. This is truewhen for every1 ≤ x, y ≤ k, the setD′ contains a disk
d[x, y] ∈ D[x, y] that is centered at (2x+εx+εa[x, y], 2y+εy+εb[x, y]) for some
(a[x, y], b[x, y]) ∈ [n]×[n]. Indeed, we are required to choose one disk from D[x, y]
due to the reason that there is a terminal disk lying inside the rectangle bounding the
centres of disks in D[x, y]. The claim is that s[x, y] = (a[x, y], b[x, y])’s form a
solution of I . First of all, d[x, y] ∈ D[x, y] implies that s[x, y] ∈ S[x, y]. Consider a
cell S[x, y]. We have observed that it covers disk q from R[x, y] centered at (2x+1+
εx+εa, 2y+εy), but a diskq ′ from R[x, y] centered at (2x+1+εx+ε(a+1), 2y+εy)
is not covered. This is true for L[x, y], T [x, y], B[x, y]. Hence, if all terminals points

123

Algorithmica (2023) 85:133–152 151

from inside S[x, y]’s and L[x, y], R[x, y], T [x, y], B[x, y] are covered by k2 many
Steiner disks, it would imply that a[x, y] ≥ a[x + 1, y] and b[x, y] ≥ b[x, y + 1].
Therefore, s[x, y]’s form the solution for Grid Tiling with ≥ instance I . This
completes the proof. ��

Conclusion In this paper we studied the parameterized complexity of Steiner Tree

on unit disk graphs and disk graphs under the parameterizations of k and t + k. In
future, we wish to explore tight bounds for the algorithms we have obtained and to
probe into kernelization questions under these parameters. It would also be interesting
to consider the minimum weight of a solution k-Steiner tree as a parameter. A variant
of Steiner Tree that usually is easier to study is Full Steiner Tree. However,
in the case of unit disk graphs this problem proved to be very resilient to all our
algorithmic strategies. We wish to explore Full Steiner Tree on unit disk graphs
under natural and structural parameters in future works.

Acknowledgements We are grateful to the anonymous reviewers for their helpful comments.

Funding Research of Sujoy Bhore was supported by the Austrian Science Fund (FWF), grant P 31119.
Research of Paz Carmi was partially supported by the Lynn and William Frankel Center for Computer
Science and by Grant 2016116 from the United States-Israel Binational Science Foundation. Research of
Meirav Zehavi was supported by the Israel Science Foundation (ISF) grant no. 1176/18 and United States
- Israel Binational Science Foundation (BSF) grant no. 2018302.

References

1. Karp, R. M.: Reducibility among combinatorial problems. In Miller, R. E., Thatcher, J. W., Bohlinger,
J. D. editors, Complexity of Computer Computations, pages 85–103, (1972)

2. Vazirani, V.V.: Approximation algorithms. Springer Science & Business Media, (2013)
3. Garey, Michael R., Johnson, David S.: The rectilinear steiner tree problem is np-complete. SIAM J.

Appl. Math. 32(4), 826–834 (1977)
4. Arora, Sanjeev: Polynomial time approximation schemes for euclidean traveling salesman and other

geometric problems. Journal of the ACM (JACM) 45(5), 753–782 (1998)
5. Berman, Piotr, Ramaiyer, Viswanathan: Improved approximations for the steiner tree problem. J.

Algorithms 17(3), 381–408 (1994)
6. Borchers, Al., Ding-Zhu, Du.: Thek-steiner ratio in graphs. SIAM J. Comput. 26(3), 857–869 (1997)
7. Karpinski,Marek, Zelikovsky,Alexander: New approximation algorithms for the steiner tree problems.

J. Comb. Optim. 1(1), 47–65 (1997)
8. Prömel, H.J., Steger, A.: A new approximation algorithm for the steiner tree problemwith performance

ratio 5/3. J. Algorithms 36(1), 89–101 (2000)
9. Chlebikova, Janka,Chlebík,M.: The steiner tree problemongraphs: Inapproximability results. Theoret.

Comput. Sci. 406(3), 207–214 (2008)
10. Berman, P., Karpinski, M., Zelikovsky, A.: 1.25-approximation algorithm for steiner tree problemwith

distances 1 and 2. In Workshop on Algorithms and Data Structures, pages 86–97. Springer, (2009)
11. Dreyfus, Stuart E., Wagner, Robert A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971)
12. Fuchs, Bernhard, Kern, Walter, Mölle, Daniel, Richter, Stefan, Rossmanith, Peter, Wang, Xinhui:

Dynamic programming for minimum Steiner trees. Theory of Comput. Syst. 41(3), 493–500 (2007)
13. Nederlof, Jesper: Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica 65(4),

868–884 (2013)
14. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer Science & Business Media, (2012)
15. Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., ndřej Suchỳ, O.: Parameterized complexity

of directed steiner tree on sparse graphs. In European Symposium on Algorithms, pages 671–682.
Springer, (2013)

123

152 Algorithmica (2023) 85:133–152

16. Suchỳ, Ondřej: Extending the kernel for planar steiner tree to the number of steiner vertices. Algorith-
mica 79(1), 189–210 (2017)

17. Dvořák, P., Emil Feldmann, A., Knop, D.,Masařík, T., Toufar, T., Veselỳ, P.: Parameterized approxima-
tion schemes for steiner trees with small number of steiner vertices. arXiv preprint arXiv:1710.00668,
(2017)

18. Wang, D.W., Kuo, Y.-S.: A study on two geometric location problems. Inf. Process. Lett. 28(6), 281–
286 (1988)

19. Hale, William K.: Frequency assignment: Theory and applications. Proc. IEEE 68(12), 1497–1514
(1980)

20. Kammerlander, Karl: C 900-an advanced mobile radio telephone system with optimum frequency
utilization. IEEE J. Sel. Areas Commun. 2(4), 589–597 (1984)

21. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. In Annals of Discrete Mathematics,
volume 48, pages 165–177. Elsevier, (1991)

22. Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. In Graphs and Combinatorics,
volume 27, pages 399–411. Springer, (2011)

23. Li, X, Xu, X-H., Zou, F., Du, H., Wan, P., Wang, Y., Wu, W.: A ptas for node-weighted steiner tree in
unit disk graphs. In International Conference on Combinatorial Optimization and Applications, pages
36–48. Springer, (2009)

24. Biniaz, Ahmad, Maheshwari, Anil, Smid, Michiel: On full steiner trees in unit disk graphs. Comput.
Geom. 48(6), 453–458 (2015)

25. Marx, D., Pilipczuk, M., Pilipczuk, M.: On subexponential parameterized algorithms for steiner tree
and directed subset tsp on planar graphs. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 474–484. IEEE, (2018)

26. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.: A framework for
eth-tight algorithms and lower bounds in geometric intersection graphs. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 574–586, (2018)

27. Fomin, Fedor V., Lokshtanov, Daniel, Panolan, Fahad, Saurabh, Saket, Zehavi,Meirav: Finding, hitting
and packing cycles in subexponential time on unit disk graphs. Discret. Comput. Geometry 62(4), 879–
911 (2019)

28. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M, Pilipczuk, M., Saurabh,
S.: Parameterized algorithms, volume 4. Springer, (2015)

29. Karim Abu-Affash, A.: The euclidean bottleneck full steiner tree problem. Algorithmica 71(1), 139–
151 (2015)

30. Schnyder, W.: Embedding planar graphs on the grid. In Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms, pages 138–148, (1990)

31. Bodlaender. H.L.: A linear time algorithm for finding tree-decompositions of small treewidth, (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

http://arxiv.org/abs/1710.00668

	Parameterized Study of Steiner Tree on Unit Disk Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 NP-Hardness of Steiner Tree on Unit Disk Graphs
	4 Subexponential Time Exact Algorithm for Steiner Tree on Unit Disk Graphs
	5 FPT Algorithm for Steiner Tree on Unit Disk Graphs
	6 W[1]-Hardness for Steiner Tree on Disk Graphs
	Acknowledgements
	References

