
Algorithmica (2023) 85:188–215
https://doi.org/10.1007/s00453-022-01017-8

General Lower Bounds and Improved Algorithms for
Infinite–Domain CSPs

Peter Jonsson1 · Victor Lagerkvist1

Received: 16 September 2020 / Accepted: 22 July 2022 / Published online: 11 August 2022
© The Author(s) 2022

Abstract
We study the fine-grained complexity of NP-complete, infinite-domain constraint sat-
isfaction problems (CSPs) parameterised by a set of first-order definable relations
(with equality). Such CSPs are of central importance since they form a subclass of any
infinite-domain CSP parameterised by a set of first-order definable relations over a
relational structure (possibly containing more than just equality). We prove that under
the randomised exponential-time hypothesis it is not possible to find c > 1 such that a
CSP over an arbitrary finite equality language is solvable in O(cn) time (n is the num-
ber of variables). Stronger lower bounds are possible for infinite equality languages
where we rule out the existence of 2o(n log n) time algorithms; a lower boundwhich also
extends to satisfiability modulo theories solving for an arbitrary background theory.
Despite these lower bounds we prove that for each c > 1 there exists an NP-hard
equality CSP solvable in O(cn) time. Lower bounds like these immediately ask for
closelymatching upper bounds, andwe prove that aCSP over a finite equality language
is always solvable in O(cn) time for a fixed c, and manage to extend this algorithm to
the much broader class of CSPs where constraints are formed by first-order formulas
over a unary structure.

Keywords Constraint satisfaction · Infinite domains · Equality languages ·
Fine-grained complexity · Lower bounds

1 Introduction

In this article we study the fine-grained, rather than classical, coarse, complexity
of infinite-domain constraint satisfaction problems. We approach the subject in a

B Victor Lagerkvist
victor.lagerkvist@liu.se

Peter Jonsson
peter.jonsson@liu.se

1 Department of Computer and Information Science, Linköping University, Linköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01017-8&domain=pdf


Algorithmica (2023) 85:188–215 189

systematic manner and obtain powerful lower bounds applicable to all infinite-domain
CSPswhere constraints consists of first-order definable relations over a fixed relational
structure. In the direction of upper bounds we obtain improved, single-exponential
time algorithms for equality CSPs, and the broader class of CSPs over reducts of
unary structures. Some parts of this article have been presented in preliminary form
in a conference publication [20].

1.1 Background

Let Γ denote a (finite or infinite) set of finitary relations over a (finite or infinite) set
D. The input to the constraint satisfaction problem over Γ (CSP(Γ )) is a pair (V ,C)

where V is a set of variables (with domain D) and C is a set of constraints over Γ . A
constraint is an expression R(x1, . . . , xn) where x1, . . . , xn are variables in V and n
equals the arity of the relation R. The problem is to find an assignment f : V → D
that satisfies every constraint in C , i.e. ( f (x1), . . . , f (xn)) ∈ R for every constraint
R(x1, . . . , xn) in C . The set Γ is called the constraint language or the template. The
CSP is computationally hard in the general case; if the variable domains are finite, then
the problem is NP-complete, and otherwise it may be of arbitrarily high complexity
or even undecidable [6].

Depending on the constraint language Γ , it is possible to formulate many natural
problems as CSP(Γ ) problems. This is especially true if we allow templates over
an infinite universe, which increases the expressive power of CSPs and e.g. makes it
possible to formulate a rich amount of problems from artificial intelligence [7, 15]. The
complexity of CSPs have also been the subject of intense theoretical research: for each
constraint language Γ over a finite domain CSP(Γ ) is always either polynomial-time
solvable or is NP-complete [13, 41]. Infinite-domain CSPs are in general undecidable,
but there exists a wealth of results when additional restrictions are imposed. Early
examples include the CSP formulation of Allen’s interval algebra [25], the region
connection calculus [31], CSPs over first-order definable relations with equality [8]
(equality CSPs), and temporal CSPs [9], i.e. CSPs where the constraint language
is first-order definable in the structure (Q;<) whose domain is the set of rational
numbersQ and where< denotes the usual strict order of the rationals. More generally,
it is common to consider first-order reducts of a fixed relational structure A, i.e.,
languages that are first-order definable with equality over A. Equality CSPs then
correspond to CSP(Γ ) when Γ is a first-order reduct of (A; ∅) for some universe
A (an equality language) while temporal CSPs correspond to CSP(Γ ) when Γ is a
first-order reduct of (Q;<). Tomake the intendedmeaning clearer we sometimes treat
equality languages as first-order reducts of (A;=), where = is the equality relation
over the universe A, even though this is strictly speaking not needed since the equality
relation is always allowed in first-order formulas. Equality CSPs have previously
been intensively studied due to their fundamental importance for understanding more
complex CSPs, since any classification of a larger relational structure A necessarily
also needs to include a classification of equality CSPs (an equality language Γ is
a reduct of any countably infinite structure A). Let us also remark that CSPs in this
setting are very similar to reasoning problems occurring in artificial intelligence,where

123



190 Algorithmica (2023) 85:188–215

one fixes a set of “base relations”A, typically binary, and then consider a satisfiability
problem where constraints are taken from e.g. the relation algebra generated byA, or
the set of all disjunctive clauses over A [15]. A recent comparison may also be found
in satisfiability modulo theories (SMT) where a background theory A is fixed, and
where one considers the satisfiability problem of first-order formulas (with equality)
restricted to interpretations agreeing with A [3].

While theoretical CSP research has concentrated on classical complexity, com-
plexity theory itself has partially shifted towards parameterised complexity and
fine-grained complexity, which e.g. encompasses constructing improved exponential-
time algorithms, and proving lower bounds with stronger assumptions than P �= NP. A
popular conjecture for this purpose is the exponential-time hypothesis (ETH). It states
that the 3-SAT problem is not solvable in subexponential time, i.e. it is not solvable
in 2o(n) time, where n is the number of variables. Another popular conjecture is the
strong ETH (SETH) which, roughly, states that the fine-grained complexity of k-SAT
tends to 2n for increasing values of k.

In this article we study the fine-grained complexity of NP-hard infinite-domain
CSPs, with a particular focus on equality CSPs using the number of variables, n, as
the complexity parameter. As remarked, equality CSPs constitute a natural starting
point for questions of fine-grained complexity, since if we cannot even overcome this
obstacle there is little hope of understanding fine-grained complexity questions for
larger classes of CSPs. Assume, for example, that we prove that there exists an equality
language Γ such that CSP(Γ ) is not solvable in O( f (n)) time, for some function f .
Then, regardless of which relational structure A that we choose, we cannot hope to
construct an algorithmwith a running time of O( f (n))which is applicable to CSP(Δ)

for every first-order reductΔ ofA. Under this viewpoint it is therefore crucial to prove
lower bounds for equality CSPs before moving on to construct faster exponential-time
algorithms for broader classes of infinite-domain CSPs.

Thus, among the class of NP-hard equality CSPs, how does the choice of Γ affect
the fine-grained complexity of CSP(Γ )? For example, it is known that CSP(Γ ) is

solvable in O∗(2n·log( 0.792n
ln(n+1) )) time when Γ is an arbitrary equality language [18] (the

O∗ notation is used to suppress polynomial factors). Concerning lower bounds it is
known that no NP-complete equality CSP(Γ ) problem is solvable in subexponential
time without violating the ETH. This follows from Barto & Pinsker [2]: if Γ is an
equality language and CSP(Γ ) is NP-hard, then Γ pp-interprets 3-SAT since Γ is
a first-order reduct of the finitely bounded homogeneous structure (N;=). This fact
combined with Theorem 3.1 in [22] gives the result. Furthermore, if Γ is the full first-
order reduct of (A;=) then there cannot exist an O∗(cn) time algorithm for CSP(Γ )

for any constant c without violating the SETH [18]. Despite bounds like these, there
are still large gaps in our understanding of fine-grained complexity of infinite-domain
CSPs in general, and of equality CSPs in particular. For example, is it possible to find
an equality language Γ such that CSP(Γ ) is NP-complete but solvable in O(cn) time
for a constant c > 1? Is it possible to solve CSP(Γ ) in O(cn) time whenever Γ is
a finite equality language, and in that case, does c depend on Γ or is it possible to
find a uniform value? Furthermore, since no NP-complete equality CSP is solvable in

123



Algorithmica (2023) 85:188–215 191

subexponential time without violating the ETH, does there exist a c > 1 such that no
NP-complete equality CSP is solvable in O(cn) time?

1.2 Our Results

After defining the necessary preliminaries (in Sect. 2) we in Sect. 3 begin to answer
the aforementioned questions by a careful study of lower bounds. First, we prove that
under the randomised ETH for each c > 1 there exists a finite equality language Γc

such that CSP(Γc) is not solvable in O(cn) time. Second, we showcase a striking
difference between finite and infinite languages and prove the existence of an infinite
equality language Γ such that CSP(Γ ) is not solvable in 2o(n log n) time (under the
ETH). In particular this lower bound rules out a uniform O(cn) time algorithm, c >

1, applicable to arbitrary equality CSPs (which previously was only known to hold
under the much stronger SETH). We also manage to lift this lower bound to SMT,
where little is known about the fine-grained complexity, despite being a framework
with a wide range of applications due to the availability of efficient SAT solvers.
We provide the first known lower bound under the ETH and show that regardless
of the background theory it is not possible to solve the resulting SMT in 2o(n log n)

time without violating the ETH. Importantly, this shows that existing algorithms for
SMT running in 2O(n log n) time are close to being optimal (cf. Rodeh & Strichman
[32]). It should also be noted that we are able to prove this as a straightforward
consequence of our general bounds for equalityCSPs, indicating yet another advantage
of studying fine-grained complexity in this setting. Third, we prove that for each
constant c > 1 there exists an NP-complete equality CSP which is solvable in O(cn)
time, and thus rule out the existence of an “easiest NP-complete equality CSP”. Such
CSPs are known to exist for finite-domain CSPs [22] so we see a clear dividing line
between finite and infinite-domain CSPs. We also provide an algebraic explanation
of the lack of such an “easiest CSP problem”, based on a connection between fine-
grained complexity of CSPs and algebraic invariants called partial polymorphisms.
Since partial polymorphisms recently have become an important tool for studying fine-
grained complexity of CSPs and related problems [21–23, 26, 27] it therefore appears
important to chart any differences to the finite-domain case. In short, an “easiest NP-
complete CSP” would have a maximally large set of partial polymorphisms, and we
prove that such a maximal set cannot exist for the set of all equality relations. The
proof also generalises to other classes of languages, e.g., temporal languages, and can,
interestingly, be proven independently of any complexity theoretical assumptions.

In light of these lower bounds, what is the best possible exponential-time algorithm
for equality CSPs that we could hope for? We tackle this question in Sect. 4 and
construct an O∗(cn) time algorithm for CSP(Γ ) whenever Γ is a finite equality lan-
guage, where c is a constant depending only on the arities of relations in Γ . Note that
while the constant c likely can be improved, we have already established (under the
randomised ETH) that it is not possible to find a uniform value. Similarly, it appears
difficult to extend the algorithm to non-trivial classes of infinite equality languages
since we have already proved that there is an infinite equality language that cannot be
solved in 2o(n log n) time under the ETH. Here, it is also interesting to note that certain

123



192 Algorithmica (2023) 85:188–215

classes of infinite-domain CSPs do not admit an O(cn) algorithm even if the template
is finite. For instance, there is a finite temporal language whose CSP (under the ran-
domised ETH) cannot be solved in 2o(n log n) time [19]. Could it even be the case that
finite equality CSPs are the only reasonable class of infinite-domain CSPs solvable in
single-exponential time, and that every non-trivial structure results in CSPs of higher
complexity? This, however, is not the case, and we do manage to construct an O∗(cn)
time algorithm applicable to a much richer and broader class of problems, namely
CSPs over reducts of unary structures. More precisely, say that Γ is a unary structure
(US) language if Γ is a first-order reduct of a structure (A;U1, . . . ,Uk) where each
Ui is unary. Such CSPs are a subclass of first-order definable structures with atoms
and have attracted recent attention from the automata theory community [11, 12, 24].
They have also been studied by the CSP community and the complexity has been
fully classified [5, 10]. The algorithm works by partitioning the domains of the unary
relationsU1, . . . ,Uk in such a way that we create a finite “pseudo-universe” U where
each element gives an implicit description of a finite equality language. This makes it
possible to enumerate the elements of U and in each iteration test the satisfiability of
the corresponding equality CSP instance.

These results paint a peculiar picture of the fine-grained complexity of equality
CSPs (and all classes of infinite-domain CSPs over first-order reducts of relational
structures). On the one hand, equality CSPs are incredibly hard to solve (no uniform
O(cn) time algorithm for finite languages under the randomised ETH, and no 2o(n log n)

time algorithm for infinite languages), but on the other hand one for any c > 1, say, c =
1.00001, can find an NP-hard equality CSP solvable in O(cn) time. These conflicting
messages indicate that a complete understandingoffine-grained complexity of equality
CSPs is well out of reach, but we have simultaneously unravelled several interesting
research directions. We discuss some of these in Sect. 5.

2 Preliminaries

A relational structure is a tuple (A; σ, I ) where A is a set typically called a domain,
or a universe, σ is a relational signature, and I is a function from σ to the set of all
relations over A which assigns each relation symbol a corresponding relation over A.
For simplicity, we will typically write a relational structure as (A; R1, . . . , Rk) where
each Ri is a relation over A, and will not make a sharp distinction between relations
and their corresponding signatures. A set of relations Γ over A is a first-order reduct
of a relational structure A = (A; R1, . . . , Rk) if each R ∈ Γ is the set of models of
a σ -formula (with equality) interpreted in (A; R1, . . . , Rk). Alternatively, one may
view Γ as a set of relations where each relation has a first-order definition (without
parameters) in A. In symbols, we write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) if R is the set
of models of the first-order formula ϕ(x1, . . . , xn) with respect to the free variables
x1, . . . , xn .

123



Algorithmica (2023) 85:188–215 193

2.1 The Constraint Satisfaction Problem

Let Γ be a set of finitary relations over some set A of values, occasionally called a
constraint language. The constraint satisfaction problem over Γ (CSP(Γ )) is defined
as follows.

Instance:AsetV of variables and a setC of constraints of the form R(x1, . . . , xk),
where k is the arity of R, x1, . . . , xk ∈ V and R ∈ Γ .
Question: Is there a function f : V → A such that ( f (x1), . . . , f (xk)) ∈ R for
every R(x1, . . . , xk) ∈ C?

Concerning representation, we take a simple approach and only consider the case
when Γ is a first-order reduct of a relational structure, and represent each relation
R ∈ Γ by a first-order formula. However, the exact representation is only important
if Γ is infinite, since any reasonable representation can be chosen and precomputed
if Γ is finite.

2.2 Primitive Positive Definitions and Interpretations

Let Γ be a constraint language over a domain A. A k-ary relation R is said to have a
primitive positive definition (pp-definition) over Γ if

R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧ Rm(xm)

where each Ri ∈ Γ ∪ {EqA} and each xi is a tuple of variables over x1, . . . , xk ,
y1, . . . , yk′ matching the arity of Ri . Here, and in the sequel, EqA is the equality
relation {(a, a) | a ∈ A)} over A. Thus, R is definable by a first-order formula
consisting only of existential quantification and conjunction over positive atoms from
Γ and equality constraints. If Γ is a constraint language we let 〈Γ 〉 be the smallest set
of relations containingΓ closed under pp-definitions. Pp-definitions are typically only
useful for comparing similar languages over the same domain, but can be generalised
as follows.

Definition 1 Let A and B be two domains and letΓ andΔ be two constraint languages
over A and B, respectively. A primitive positive interpretation (pp-interpretation) of
Δ over Γ consists of:

1. a d-ary relation F ⊆ Ad ,
2. and a surjective function f : F → B

such that F, f −1(EqB) ∈ 〈Γ 〉 and f −1(R) ∈ 〈Γ 〉 for every k-ary R ∈ Δ, where
f −1(R) denotes the (k · d)-ary relation

{(x11 , . . . , xd1 , . . . , x1k , . . . , x
d
k ) ∈ Ak·d | ( f (x11 , . . . , x

d
1 ), . . . , f (x1k , . . . , x

d
k )) ∈ R}.

Hence, pp-interpretations are generalisations of pp-definitions, and can be used to
obtain polynomial-time reductions between CSPs.

123



194 Algorithmica (2023) 85:188–215

Theorem 1 (cf. Theorem 3.1.4 in Bodirsky [4]) If Γ and Δ are finite constraint
languages and there exists a pp-interpretation of Δ over Γ , then CSP(Δ) is
polynomial-time reducible to CSP(Γ ).

We invite the reader to verify that a standard reduction from the 3-coloring problem
(formulable as a CSP over the inequality relation over a ternary domain) to 3-SAT
(formulable as aBooleanCSP) can be expressed as a pp-interpretation of the 3-coloring
relation over 3-SAT.

2.3 Equality Languages

We say that Γ is an equality language if each R ∈ Γ admits a first-order definition
over a relational structure (A; ∅), i.e. the empty structure. Recall here that the equality
relation is always accessible in first-order logic. Without loss of generality we hence-
forth assume that A = N, write Eq (or= in infix notation) for the equality relation over
N, and R�= or �= (in infix notation) for the inequality relation {(x, y) ∈ N2 | x �= y}
over N. Via these conventions an equality language can also be viewed as a set of first-
order definable relations over (N;=), and we typically prefer this notation over (A; ∅)

since the intended meaning is clearer. The computational problem we consider is then
CSP(Γ ) when Γ is an equality language. This problem is easily seen to belong to NP
for any finite language, and its classical complexity has been completely classified [8].

Theorem 2 Let Γ be an equality language. Then either

1. CSP(Γ ) is polynomial-time solvable or
2. there exists a finiteΔ ⊆ Γ such that CSP(Δ) is NP-complete sinceΔ pp-interprets

every finite-domain relation.

Example 1 Let S = {(x, x, y), (x, y, y) | x, y ∈ N, x �= y}, and observe that
S(x, y, z) ≡ (x = y ∧ y �= z) ∨ (x �= y ∧ y = z). Thus, {S} is an equality lan-
guage, and it is known that {S} pp-interprets a language Δ where CSP(Δ) is NP-hard,
which implies that CSP({S}) is NP-hard, too. For tractability, if we take {Eq,R�=} then
CSP({Eq,R�=}) is well-known to be polynomial-time solvable. This can be proven via
Theorem 2, however, CSP({Eq,R�=}) can also be solved by elementary propagation
methods.

2.4 Fine-Grained Complexity and the Exponential–Time Hypothesis

Assume that CSP(Γ ) is NP-complete. How fast can we solve CSP(Γ ), and is it pos-
sible to prove stronger lower bounds than an expected superpolynomial running time
(under P �= NP)? Such questions, especially when the complexity parameter is the
number of variables |V | or the number of constraints |C |, fall under the umbrella of
fine-grained complexity. To prove non-trivial lower bounds for NP-complete problems
we typically need stronger assumptions than P �= NP. Say that CSP(Γ ) is solvable in
subexponential time if CSP(Γ ) is solvable in O(2ε|V |) for each ε > 0. The conjec-
ture that 3-SAT is not solvable in subexponential time is called the exponential-time

123



Algorithmica (2023) 85:188–215 195

hypothesis (ETH). There exists several stronger variants of the ETH. First, an algo-
rithm A is said to be a 2c·|V |-randomised algorithm if its running time is bounded by
2c·|V | · poly(||I ||) and its error probability is at most 1/3 (||I || is the number of bits
required to represent a CSP instance I ). For k, d ≥ 1 we then define

ck = inf{c | ∃ a deterministic 2c·|V | algorithm for k − SAT}

and

cd,k = inf{c | ∃ a 2c·|V |-randomised algorithm for CSP(Γd,k)},

where Γd,k is the set of all relations over the set {0, . . . , d − 1} of arity at most
k. The randomised exponential-time hypothesis (r-ETH) is then the conjecture that
c2,3 > 0, i.e., that 3-SAT is not solvable in subexponential time even with randomised
algorithms, and the strong exponential-time hypothesis (SETH) is the conjecture that
the limit of the sequence c3, c4, . . . is equal to 1.

3 Lower Bounds on the Complexity of Equality Constraints

In this section we investigate lower bounds for equality CSPs. As remarked in Sect. 1,
such lower bounds are valuable since if it is possible to prove that, for an equality
language Γ , CSP(Γ ) is not solvable in O( f (|V |)) time (for some function f ) then,
for some arbitrary relational structure A, there exists a Δ such that CSP(Δ) is not
solvable in O( f (|V |)) time and Δ is a first-order reduct of A. Let us recapitulate two
known lower bounds.

Theorem 3 Let Γ be an equality language.

1. If CSP(Γ ) is NP-hard then it is not solvable in subexponential time unless the
ETH is false (Theorem 3.1 in [22]), and

2. If Γ is the full first-order reduct of (N;=) then CSP(Γ ) is not solvable in O(c|V |)
time for any c > 1 unless the SETH is false (Theorem 19 in [18]).

3.1 Finite Versus Infinite Equality Languages

Webegin by proving that for every c > 1 there exists a finite equality languageΓc such
that CSP(Γc) is not solvable in O(2c|V |) time without contradicting the r-ETH. This
result is a substantial strengthening of Theorem 3(2). We first require the following
result [39, Theorem 1].

Theorem 4 If r-ETH holds, then there exists a universal constant α > 0 such that
α · log(d) ≤ cd,2 for all d ≥ 3,

Theorem 5 For every c > 1, there exists a finite equality language Γc such that
CSP(Γc) cannot be solved in O(2c·|V |) (randomised) time unless the r-ETH is false.

123



196 Algorithmica (2023) 85:188–215

Proof For 1 ≤ a, b ≤ d define

Rd,a,b(c1, . . . , cd , x, y) ≡
d∨

i=1

x = ci ∧
d∨

i=1

y = ci ∧ (x �= ca ∨ y �= cb) .

For arbitrary d then define the finite equality language

Θd = {�=} ∪ {Rd,a,b | 1 ≤ a, b ≤ d}.

Wepresent a polynomial-time reduction fromCSP(Γd,2) to CSP(Θd) only introducing
a constant number of fresh variables. Let (V ,C)be an instance ofCSP(Γd,2). Introduce
d fresh variables c1, . . . , cd together with constraints {ci �= c j | 1 ≤ i < j ≤ d}.
For each R(x, y) ∈ C , add the constraints Rd,a,b(c1, . . . , cd , x, y) for every 1 ≤
a, b ≤ d such that (a, b) /∈ R. The resulting instance (V ∪ {c1, . . . , cd},C ′) can
be constructed in polynomial time, and is clearly satisfiable if and only if (V ,C)

is satisfiable. Furthermore, d is fixed so only a constant number of variables are
introduced. By Theorem 4, CSP(Θd) cannot be solved in 2(cd,2−ε)·|V | time for any
ε > 0 unless r-ETH is false, and the result follows by choosing d such that cd,2 ≥ c.
We know that α · log(d) ≤ cd,2 so it is sufficient to choose a d such that α · log(d) ≥ c,
e.g. d = 2� c

α
�. ��

Thus, assuming the r-ETH, there cannot exist an algorithm solving CSP(Γ ) in
O(c|V |) time for every finite equality language Γ . This can be strengthened even
further for infinite equality languages, and we will show the existence of Γ such that
CSP(Γ ) is not solvable in O(2o(|V | log |V |)) time without contradicting the ETH. In
contrast, the second statement of Theorem 3 is only valid under the much stronger
SETH, and only if Γ consists of all first-order definable relations over (N;=). For this
lower bound we provide a reduction from the k×k Independent Set problem: given
a graph G over the vertex set {1, . . . , k} × {1, . . . , k} (where k is part of the input), is
there an independent set of size k in G with exactly one element from each row? One
may view this problem as a variant of the standard Independent Set problem where
the vertices are the elements of a k × k table and one wants to find an independent set
that contain exactly one element from each row. The following lower bound is known
under the ETH [29].

Theorem 6 k × k Independent Set is not solvable in 2o(k log k) time unless the ETH
is false.

For n ≥ 1 define Rn(y, x1, . . . , xn) ≡ y = x1 ∨ y = x2 ∨ · · · ∨ y = xn , and
let R(x, y, z, w) ≡ x �= y ∨ z �= w. Let Γinf be the infinite equality language
{�=, R, R1, R2, . . .}.
Theorem 7 CSP(Γinf) cannot be solved in 2o(|V | log |V |) time unless the ETH is false.

Proof To prove the result, we present a polynomial-time reduction from k × k Inde-
pendent Set to CSP(Γinf) such that the resulting CSP(Γinf) instance only contains
2k variables. Let G = (V , E) denote an arbitrary graph where V = {1, . . . , k} ×

123



Algorithmica (2023) 85:188–215 197

{1, . . . , k}. We then begin by introducing k variables a1, . . . , ak together with the con-
straints ai �= a j , 1 ≤ i < j ≤ k. Second, for each row 1 ≤ i ≤ k in G, introduce a
variable xi and the constraint Rk(xi , a1, . . . , ak). This constraint ensures that xi equals
one of the variables a1, . . . , ak . Third, for each edge e = ((a, b), (c, d)) ∈ E , intro-
duce the constraint R(xa, ab, xc, ad). This constraint guarantees that both endpoints
of an edge are not put into the independent set simultaneously. ��

Hence, we cannot even hope to solve CSP(Γ ) in O(c|V |) time for any c when Γ

is allowed to be infinite. Furthermore, since an equality CSP is always solvable in
2O(|V | log |V |) time [18], the bound in Theorem 7 is asymptotically tight.

Thus, the distinction between finite and infinite languages seems to be rather impor-
tant in the context of equality CSPs, but if one considers slightly richer structures than
(N;=) then significantly stronger bounds can be obtained also for finite languages. Let
≺ ⊆ D2 denote a binary relation over a set D and let� denote its conversewhere x � y
holds if and only if y ≺ x holds. We say that ≺ is an acyclic order if there does not
exist any finite subset {d1, . . . , dk} ⊆ D such that d1 ≺ d2 ≺ · · · ≺ dk−1 ≺ dk ≺ d1.
Acyclic orders are irreflexive (i.e. they do not contain any element d such that d ≺ d)
by definition. We say that ≺ is a strict partial order if it is irreflexive and for arbitrary
d, d ′, d ′′ ∈ D: d ≺ d ′ and d ′ ≺ d ′′ imply d ≺ d ′′ (transitivity). Note that these two
properties also ensure that ≺ is antisymmetric, i.e. if d ≺ d ′, then d ′ ≺ d does not
hold. We say that ≺ is a strict total order if ≺ is a strict partial order and it is a connex
relation, i.e. for arbitrary distinct d, d ′ ∈ D, either d ≺ d ′ or d ′ ≺ d holds. Finally,
we say that≺ contains unbounded total orders if for every k ∈ N, there exists a subset
L ⊆ D such that |L| ≥ k and ≺ is a strict total order on L .

Example 2 The less-than relation < over Q is an acyclic order containing unbounded
total orders. For the latter property, simply observe that < is a strict total order
{1, . . . , k}. However, there exists a wealth of examples of acyclic orders containing
unbounded total orders in the artificial intelligence literature, especially in combina-
tionwith qualitative reasoning problems, e.g., temporal and spatial reasoning problems
such as Allen’s interval algebra and the region connection calculus. For many addi-
tional examples of this kind, see e.g. the survey by Dylla et al [15].

The following result is a significant strengthening of Theorem 11 in [19].

Theorem 8 Let ≺ ⊆ D2 be an acyclic order that contains unbounded total orders.
Then, there exists a constraint language Γ such that

1. Γ is finite,
2. Γ is first-order definable in (D;≺) (even with quantifier-free definitions), and
3. CSP(Γ ) is not solvable in 2o(n log n) time unless the ETH is false.

Proof Let Γ = {≺, R, S} where
– R(x, y) ≡ x ≺ y ∨ y ≺ x and
– S(x, a, b, y, c, d) ≡ x ≺ a ∨ b ≺ x ∨ y ≺ c ∨ d ≺ y.

Clearly,Γ is finite and (quantifier-free) first-order definable in (D;≺). Assume that
CSP(Γ ) can be solved in 2o(n log n) time.We showhow to polynomial-time reduce k×k

123



198 Algorithmica (2023) 85:188–215

Independent Set to CSP(Γ ) in a way such that only O(k) variables are used. Hence,
k × k Independent Set can be solved in 2o(k log k) time and this contradicts the ETH
via Theorem 6.

Let G = (V , E) be an arbitrary instance of k × k Independent Set. Introduce
2k + 1 fresh variables y1, . . . , yk, t1, . . . , tk+1. The idea behind these variables is that
yi , 1 ≤ i ≤ k, points out the vertex in row i that is to be included in the independent
set. This is done with the aid of variables t1, . . . , tk+1. Informally speaking, if yi “lies
between” t j and t j+1, then we will put the j th vertex on row i into the independent
set. Now, let V1 = {y1, . . . , yk, t1, . . . , tk+1} and

C1 = {ti ≺ t j | 1 ≤ i < j ≤ k}.

Since ≺ is a acyclic order that contains unbounded total orders, we know that
I1 = (V1,C1) is satisfiable.

In every solution s to I1, it holds that s(ti ) ≺ s(t j ) when 1 ≤ i < j ≤ k + 1.
Constrain each yi , 1 ≤ i ≤ k, as follows:

– t1 ≺ yi ,
– R(yi , t j ) for 2 ≤ j ≤ k, and
– yi ≺ tk+1.

Let C2 denote the corresponding set of constraints and let I2 = (V1,C1 ∪ C2). It
is easy to verify that in every solution s to I2 and for each 1 ≤ j ≤ k, the variable y j ,
satisfies s(ti ) ≺ s(y j ) ≺ s(ti+1) for exactly one 1 ≤ i ≤ d. We will interpret this as
“the i th vertex on row j is chosen for inclusion in the independent set”. Note that a
solution always exists to I2 since ≺ is a acyclic order that contains unbounded total
orders.

For each edge {(xa, xb), (xc, xd)} in E , we introduce the following constraint

S(ya, tb, tb+1, yc, td , td+1).

With the given interpretations of ya, tb, yc, td , this constraint implies that we cannot
simultaneously choose vertex b on row a and vertex d on row c for inclusion in the
independent set. Let C3 denote the resulting set of constraints and let I3 = (V1,C1 ∪
C2 ∪C3). Given the explanations above, it is easy to verify that I3 is satisfiable if and
only if G is a yes-instance. We conclude the proof by noting that I3 can be computed
in polynomial time and contains O(k) variables. ��

3.2 Satisfiability Modulo Theories

Wewill now consider a problemwhich is related to equality CSPs, for which we rather
effortlessly can obtain lower bounds by reducing fromCSP(Γinf ). Satisfiabilitymodulo
theories (SMT) is a decision problem for logical formulas with respect to a given
background theory. The logical formulas are expressed in classical first-order logic
with equality. However, it is quite common to not use the full power of this framework;
for instance, a frequent restriction is to require that the formulas are quantifier-free (and
we will use this fragment ourselves below). An accessible introducion to SMT can be

123



Algorithmica (2023) 85:188–215 199

found in the survey by Barrett et al. [1]. Let SMT(T ) be the problem of determining
whether a first-order formula (with respect to a background theory T ) is satisfiable,
and let SMT �∀(T ) be the subproblem where universal quantifiers are not allowed. We
can then readily prove a matching lower bound valid for any background theory T .

Theorem 9 SMT �∀(∅) cannot be solved in 2o(|V | log |V |) time unless the ETH is false.

Proof We present a polynomial-time reduction from CSP(Γinf) which does not intro-
duce any fresh variables. Let (V ,C) be an instance of CSP(Γinf), where V =
{x1, . . . , xk} and C = {c1, . . . , cp}. Define F to be the formula ∃x1 . . . ∃xk : F1 ∧
· · · ∧ Fp where

– Fi = (¬(x = y)) if ci = x �= y,
– Fi = (y = x1 ∨ y = x2 ∨ . . . ∨ y = xn) if ci = Rn(y, x1, . . . , xn), and
– Fi = (¬(x = y) ∨ ¬(z = w)) if ci = S(x, y, z, w).

It is obvious that F is true if and only if (V ,C) has a solution, that F can easily
be constructed in polynomial time, and that F contains as many variables as there are
variables in V . The result then follows from Theorem 7. ��

SMT�∀(∅) is often referred to as equality logic and this problem is important in,
for instance, hardware verification [14]. In fact, a slightly more expressive logic
known as the logic of equality with uninterpreted functions (EUF) is extensively
used in hardware verification. There are several known algorithms that solve EUF
in O(|V |!) = 2O(|V | log |V |) time — see, for instance, the discussion in Sect. 12 in the
article by Rodeh & Strichman [32]. We conclude, with the aid of Theorem 9, that such
algorithms are close to optimal.

To present another optimality result in SMT, we consider the well-known unit
two variable per inequality (UTVPI) class of constraints, i.e., SMT�∀(UTVPI) where
UTVPI for each integer b and coefficients c1, c2 ∈ {−1, 1} contains the relation
{(x, y) ∈ Z2 | c1 · x + c2 · y ≥ b}. The UTVPI class has many applications in, for
instance, abstract interpretation, spatial databases, and theorem proving (cf. Schutt
and Stuckey [37] and the references therein). It is known [38] that SMT �∀(UTVPI) can
be solved in 2O(|V | log d) time where d = 2|V |(bmax+1)+1 and bmax is the maximum
over the absolute values of constant terms in the constraints. Using Theorem 9 we can
prove that this algorithm is close to optimal.

Theorem 10 SMT �∀(UTVPI) cannot be solved in 2o(|V | log d) time unless the ETH is
false.

Proof Assume there is an algorithm A that solves SMT�∀(UTVPI) in 2o(|V | log d) time.
The formulas constructed inTheorem9are SMT �∀(UTVPI) formulas (degenerate ones,
though, since they do not contain UTVPI constraints). Thus, bmax for this class X of
formulas is 0, implying that A can solve SMT �∀(UTVPI) restricted to X in 2o(n log n)

time, contradicting Theorem 9. ��
Difference logic is an interesting fragment of SMT �∀(UTVPI)where only constraints

of the form x − y ≥ b are allowed. Difference logic has found applications in, for
example, verification of timed automata [30] and analysis of dynamic fault trees [40].
The lower bound in Theorem 10 naturally holds also in this restricted case.

123



200 Algorithmica (2023) 85:188–215

3.3 No Easiest NP-Hard Infinite–Domain CSP

Our lower bounds suggest that equality CSPs are rather different from finite-domain
CSPs when viewed under the lens of fine-grained complexity. In this section we prove
yet another differentiating factor. For each finite A it is known that there exists a
constraint language ΓA with domain A such that CSP(ΓA) is NP-complete, and if an
NP-complete CSP(Δ)1 over A is solvable in O(c|V |) time, then CSP(ΓA) is solvable
in O(c|V |) time, too [22]. More generally, if G is a set of constraint languages over A,
we say that CSP(Γ ) for some Γ ∈ G is the easiest CSP problem in G if CSP(Γ ) is
solvable in O∗(c|V |) time whenever CSP(Δ) for Δ ∈ G is solvable in O∗(c|V |) time.

Contrary to the finite-domain case we will prove that there does not exist an easiest
NP-complete equality CSP, unless the ETH is false. In order to prove this, we show
that for every c > 1 there exists an equality language Γc such that CSP(Γc) is NP-
complete but solvable in O∗(c|V |) time. First, recall from Example 1 that the ternary
relation S = {(x, x, y), (x, y, y) | x, y ∈ N, x �= y} has an NP-complete CSP. We
will show how S can be extended with additional arguments in order to decrease the
time complexity of the resulting CSP. If v = (v1, . . . , vk) and w = (w1, . . . , wk)

are two k-ary tuples of variables, x is a variable, and R is a binary relation, then we
write R(x, v) for

∧
1≤i≤k R(x, vi ), R(v,w) for

∧
1≤i, j≤k R(vi , w j ), and R(v) for∧

1≤i, j≤k,i �= j R(vi , v j ).
For arbitrary k ≥ 1 now define

Sk1 (x, y, z, v,w) ≡
∧

s∈{x,y,z},t∈{v,w}
R�=(s, t) ∧ R�=(v,w),

Sk2 (x, y, z, v,w) ≡ x = y ∧ y �= z ∧ Eq(v) ∧ R�=(w),

Sk3 (x, y, z, v,w) ≡ x �= y ∧ y = z ∧ R�=(v) ∧ Eq(w), and

Sk(x, y, z, v,w) ≡ Sk1 (x, y, z, v,w) ∧
(
Sk2 (x, y, z, v,w) ∨ Sk3 (x, y, z, v,w)

)

where v = (v1, . . . , vk) and w = (w1, . . . , wk) are two distinct k-ary tuples of
variables.

The general idea behind the relation Sk is that we want to take an existing relation
S yielding an NP-hard CSP and add a number of variables, depending on the given
parameter k, so that these variables depend on the original variables from S but cannot
be identifiedwith each other. The latter point is important since it allows us to construct
a branching algorithm with a sufficiently good branching factor.

It is straightforward to verify that the problem CSP({Sk}) is NP-complete with the
aid of Theorem 1 since S ∈ 〈{Sk}〉.Wewill now prove that the fine-grained complexity
of CSP({Sk}) decreases with increasing k, in the following sense.

Theorem 11 Let c > 1. Then there exists k such that CSP({Sk}) is solvable in O∗(c|V |)
time.

Proof We will present an algorithm Y for CSP({Sk}) which runs in O∗(2 n
k ) time. The

claim then follows from choosing a sufficiently large k ≥ 1
log c . Thus, choose k ≥ 1

1 For technical reasons Δ contains all unary relations over A.

123



Algorithmica (2023) 85:188–215 201

Fig. 1 Algorithm for the Proof of Theorem 11

and let (V ,C) be an instance of CSP({Sk}), where |V | = n. Say that a set of inequality
constraints L is consistent if L , viewed as an instance of CSP({R�=}), is satisfiable,
and inconsistent otherwise. The consistency of a set of inequality constraints can be
determined in polynomial time since CSP({R�=}) is in P (from Example 1). Consider
the algorithm Y in Fig. 1. The set L is used to keep track of inequality constraints
induced by the constraints in the instance.

For correctness, the algorithm branches on a constraint Sk(x, y, z, v,w) ∈ C ,
and either identifies x with y, or y with z; in the process, it identifies variables and
introduces inequality constraints according to the definition of Sk . Furthermore, the
algorithm answers ‘yes’ if and only if it for each constraint Sk(x, y, z, v,w) ∈ C is
possible to identify x with y, or y with z, in a non-contradictory way, and answers
‘no’, otherwise. Concerning time complexity, note first that all variables in v and w
are distinct, once step (7) is reached. This follows from the tests undertaken in step 4
wherewe systematically verify that {w1, . . . , wk} and {v1, . . . , vk} are disjoint and that
|{w1, . . . , wk}| = |{v1, . . . , vk}| = k. Furthermore, if (7)(b) or (7)(c) is reached then
|{x, y, z}| = 3, as otherwise the current instance is unsatisfiable (|{x, y, z}| = 1) or no
branching was required (|{x, y, z}| = 2). Thus, in each branch in step 7 we eliminate k
variables via variable identification, which implies that the time complexity is bounded
by the recurrence T (n) = 2T (n−k)+poly(||I ||). Thus, algorithmY has total running
time O∗(2 n

k ), and therefore it solves CSP({Sk}) in O∗(cn) time for a sufficiently large
k. ��

123



202 Algorithmica (2023) 85:188–215

We immediately obtain the following corollary.

Corollary 1 Let A = (A; R1, . . . , Rk) be a relational structure over a countably infi-
nite A. Assume that a first-order reduct Γ of A is NP-complete if and only if Γ

pp-interprets 3-SAT. Let G = {Γ | Γ is a first-order reduct of A and CSP(Γ ) is
NP-complete}. If G has an easiest CSP, then the ETH is false.

Proof For each c > 1 there exists a constraint language Γc ∈ G such that CSP(Γc)

is NP-complete and solvable in O∗(c|V |) time (Theorem 11). If G has an easiest NP-
complete problem CSP(Γ ) then (1) CSP(Γ ) pp-interprets 3-SAT, and (2) CSP(Γ ) is
solvable in O∗(c|V |) time for each c > 1. Thus, CSP(Γ ) is solvable in subexponential
time, but this violates the ETH by Theorem 3.1 in [22]. ��

Observe that the class of relational structures considered in Corollary 1 includes the
NP-hard cases of the CSP dichotomy conjecture over finitely bounded homogeneous
structures [2]. It is worth noting that after the Feder-Vardi conjecture on finite-domain
CSPs was settled (independently) by Bulatov [13] and Zhuk [41], a large part of the
complexity-oriented CSP work has concentrated on homogeneous infinite-domain
CSPs.

3.4 Algebra and Fine-Grained Complexity of Equality CSPs

Our lower bounds suggest a large difference in fine-grained complexity between equal-
ity CSPs and finite-domain CSPs. In this section we take a different viewpoint and
investigate this difference through the lens of universal algebra and partial clone the-
ory, with the aim of achieving an algebraic explanation of the results obtained in the
previous section. We will see a correspondence to the non-existence of certain rela-
tions known as weak bases. Via the results from Sect. 3.3 we are first able to give a
straightforward proof conditional to the ETH (Theorem 1) which we then strengthen
to an unconditional proof (Theorem 14) but which requires more elaborate arguments.

3.4.1 Algebraic Background

The basic setting on the functional side is to consider partial functions over a uni-
verse A. We view a partial function as a mapping of the form f : X → A for a set
X ⊆ Ak called the domain of f , and denoted by domain( f ) = X . Then a partial
function f of arity k is said to be a partial polymorphism of an n-ary relation R
over A if f (t1, . . . , tk) ∈ R for each sequence of tuples t1, . . . , tk ∈ R such that
(t1[i], . . . , tk[i]) ∈ domain( f ) for each 1 ≤ i ≤ n. If f is total, i.e., f is always
defined, then f is simply called a polymorphism. If we let pPol(R) be the set of all
partial polymorphisms of a relation R, and pPol(Γ ) = ⋂

R∈Γ pPol(R) be the set of all
partial polymorphisms of the set of relations Γ , the resulting sets of partial functions
are called strong partial clones. Similarly, we write Pol(Γ ) for the set of all polymor-
phisms of Γ , and the resulting sets of functions are known as clones. If F is a set of
(total or partial) functions then we write Inv(F) to denote the set of relations invariant
under each function in F .

123



Algorithmica (2023) 85:188–215 203

Let us also briefly mention some properties of strong partial clones. In this context
the term strong means that if f ∈ pPol(Γ ) then f|X ∈ pPol(Γ ) for each restriction
of f on the domain X ⊆ domain( f ), i.e., domain( f|X ) = X and f (x) = f|X (x) for
each x ∈ X . More generally, if X � domain( f ) then we let f|X be the restriction
of f to the set domain( f ) ∩ X . Then strong partial clones of the form pPol(Γ ) are
precisely the local strong partial clones over A [34], meaning that f ∈ pPol(Γ ) for
a k-ary (partial) function f if f|X ∈ pPol(Γ ) for each finite X ⊆ Ak . On the rela-
tional side strong partial clones pPol(Γ ) correspond to sets of relations closed under
pp-definitions without existential quantification, quantifier-free pp-definitions (qfpp-
definitions). We write 〈Γ 〉� for the smallest set of relations containing Γ which is
closed under qfpp-definitions. For ω-categorical structures we then have the follow-
ing useful correspondence between Inv(·) and pPol(·). The theorem follows almost
directly from Romov [33], but for completeness we include a proof sketch where the
ω-categorical case differs.

Theorem 12 Let Γ and Δ be two ω-categorical sets of relations over a domain A.
Then (1) Inv(pPol(Γ )) = 〈Γ 〉� and (2) Γ ⊆ 〈Δ〉� if and only if pPol(Δ) ⊆ pPol(Γ ).

Proof Since Γ is ω-categorical there for each n ≥ 1 only exists a finite number of
first-order definable relations of arity n (see, e.g., Theorem 6.3.1 in Hodges [17]). The
first claim then follows from Proposition 2 in Romov [33] since infinite intersections
of relations and direct limits of relations can always be expressed via qfpp-definitions
over a finite number of relations from Γ . The second claim then readily follows by
standard arguments. ��

There is a similar connection between Pol(·) and 〈·〉 which we omit since it is not
directly useful for our purposes (see, e.g., the introductory textbook by Lau [28]).
Theorem 12 then implies that partial polymorphisms determine the fine-grained com-
plexity of CSPs in the following sense, as originally proved by Jonsson et al. for
Boolean CSPs [21].

Theorem 13 Let Γ and Δ be two finite ω-categorical languages. If pPol(Δ) ⊆
pPol(Γ ) then there exists a polynomial-time many-one reduction f from CSP(Γ )

to CSP(Δ) such that f ((V ,C)) = (V ′,C ′), |V ′| ≤ |V |, for each instance (V ,C) of
CSP(Γ ).

The lattice of strong partial clones is uncountable in the Boolean domain [16] and
it is to a large extent unexplored. Quite naturally, even less is known for arbitrary
finite domains or infinite domains. However, we can simplify the task of analysing
strong partial clones by restricting our attention to strong partial clones pPol(Γ )where
Pol(Γ ) = C for a fixed clone C . It is then of particular interest to determine whether
the set of strong partial clones of this form, sometimes called an interval, has a largest
element.

Definition 2 LetC be a clone over a finite or countably infinite domain A. If there exists
a set of relations Γw over A such that Pol(Γw) = C and pPol(Γw) = ⋃{pPol(Δ) |
Pol(Δ) = C} then we say that Γw is a weak base of Inv(C).

123



204 Algorithmica (2023) 85:188–215

Thus, pPol(Γw) is the largest element in {pPol(Δ) | Pol(Δ) = C}, which on
the relational side means that Γw ⊆ 〈Δ〉� for every set of relations Δ such that
Pol(Δ) = C . Hence, Γw is minimally expressive with respect to qfpp-definitions
among the generating sets of Inv(C), which explains the name “weak base”. If A is
finite and C can be generated by a finite set of functions over A, then it is known that
Inv(C) has a weak base [36]. For infinite domains the situation differs, and weak bases
do not necessarily exist. For both negative and positive examples, see Romov [35].

Might it then be possible that 〈Γ 〉 admits a weak base whenever Γ is an equality
language? And which implications would that have if CSP(Γ ) is NP-complete? Let E
be the set of all first-order definable relations over (N;=). Now, recall the definition
of the relation S from Example 1. It is then known that S ∈ 〈Γ 〉 (and thus, CSP(Γ )

is NP-complete) for an equality language Γ if and only if 〈Γ 〉 = E [8]. Thus, we are
interested in determining whether E has a weak base, and we may now observe that
the existence of a weak base would have far-reaching implications.

Proposition 1 If E has a weak base then the ETH is false.

Proof Assume that E has a weak base Γw. Assume first that Γw is infinite. It is then
known that there exists a finite set Δ ⊆ Γw such that 〈Γw〉 = 〈Δ〉, implying also that
〈Γw〉� = 〈Γ 〉� (see, e.g., the second condition of Theorem 7.4.2 in Bodirsky [4].

Thus, assume that Γw is finite. But then Theorem 13 together with the relations
constructed in Theorem 11 implies that CSP(Γw) is solvable in O(c|V |) time for every
c > 1. However, then Theorem 3 implies that 3-SAT is solvable in subexponential
time, thus contradicting the ETH. ��

3.4.2 The Non-Existence of a Weak Base

Due to Proposition 1 we strongly suspect that E does not have a weak base, but we
will see that one can unconditionally prove that E does not have a weak base. In
fact, we will prove a fairly general condition which determines the non-existence of a
weak base, which is particularly poignant in the relationship of NP-hard CSPs. For a
universe A, let RA�= = {(x, y) ∈ A2 | x �= y} be the inequality relation over A.

Lemma 1 Let Γ be a finite, ω-categorical set of relations over an infinite domain A.
If RA�= ∈ 〈Γ 〉 then 〈Γ 〉 does not admit a weak base.
Proof Let f be an arbitrary k-ary function over A. Our goal is to show that there for
every finite X ⊂ domain( f ) = Ak exists an equality constraint language Γ such that
〈Γ 〉 = E and such that f|X preserves Γ . If 〈Γ 〉 admits a weak base Γw then, clearly,
fX ∈ pPol(Γw) for every finite X ⊂ Ak , which implies that f ∈ pPol(Γw) for every
function f (since pPol(Γw) is local). This contradicts the assumption that RA�= ∈ 〈Γ 〉
since RA�=, for example, is not preserved by any constant function over D.

Hence, let X ⊂ Ak be finite. Let N = {d1, . . . , dk | (d1, . . . , dk) ∈ X} be the set of
values occuring in tuples in X , and let |N | = n. Let Γ = {R1, . . . , Rl} and define the
relation R to be the Cartesian product of all relations in Γ , i.e., R = R1 × . . . × Rl .
Let m be the arity of the relation R. Clearly, 〈{R}〉 = 〈Γ 〉, since Γ can pp-define R

123



Algorithmica (2023) 85:188–215 205

via a conjunction, and R can pp-define each relation in Γ by projecting away every
other argument. Define the (m + n + 1)-ary relation Rn such that

Rn(x1, . . . , xm, y1, . . . , yn, yn+1) ≡
R(x1, . . . , xm) ∧

∧

i, j∈{1,...,n+1},i �= j

RA�=(yi , y j ).

This relation is pp-definable by R sincewe assumed that R can pp-define the inequality
relation RA�= , and since

R(x1, . . . , xm) ≡ ∃y1, . . . , yn+1 : Rn(x1, . . . , xm, y1, . . . , yn, yn+1),

we also have that 〈{R}〉 = 〈{Rn}〉 = 〈Γ 〉. Next, we claim that f|X preserves Rn .
Consider any sequence of tuples t1, . . . , tk ∈ Rn . Due to the definition of Rn we
then have that t[m + i] �= t[m + j] for any distinct i, j ∈ {1, . . . , n + 1}. Hence,
|{t[i] | 1 ≤ i ≤ m + n + 1}| > N , meaning that f (t1, . . . , tk) is undefined, and that
f preserves Rn .
Last, assume there exists Γw such that pPol(Γw) = ⋃

〈Δ〉=〈Γ 〉 pPol(Δ), i.e., that
Γw is a weak base of 〈Γ 〉. Then, by the above construction, f|X ∈ pPol(Γw) for every
finite X since pPol({Rn}) ⊆ pPol(Γw), which then implies that f ∈ pPol(Γw) since
pPol(Γw) is local. Hence, the strong partial clone pPol(Γw) would need to contain all
total functions over A. But then Γw cannot be a weak base of 〈Γ 〉 since the assumption
that RA�= ∈ 〈Γ 〉 = 〈Γw〉 e.g. implies that Γw cannot be preserved by any constant
function over A. ��

This condition is sufficient to establish non-existence of weak bases in the context
of both equality languages and temporal languages.

Theorem 14 E does not have a weak base.

Proof Since E is the set of all first-order definable relations it clearly follows that
R �= ∈ E . But since all equality languages are ω-categorical, and since E = 〈{S}〉, the
result then directly follows from Lemma 1. ��

Observe that Theorem 14 together with Theorem 12 implies that

⋂
{〈Γ 〉� | Γ is an equality constraint language, 〈Γ 〉 = E} = 〈Eq〉�.

To see this, assume otherwise, i.e., that there exists R /∈ 〈Eq〉� such that R ∈ 〈Δ〉�
for Γ such that 〈Γ 〉 = E . This, however, would imply that pPol(Eq) ⊃ pPol(R) ⊇⋃

〈Γ 〉=E pPol(Γ ). This contradicts the Proof of Theorem 14 since it is shown that⋃
〈Γ 〉=E contains all (total and partial) functions. One interpretation of this result is

that equality languages resulting in NP-hard CSPs have rather little in common with
regards to qfpp-definability. For example, wemay conclude that not all such languages
can qfpp-define the inequality relation NeqN.

Last, we will show that the non-existence of weak bases is not solely a property of
equality CSPs, and that an analogous property can be proven also for temporal CSPs,

123



206 Algorithmica (2023) 85:188–215

i.e., CSP(Γ ) where each relation in Γ has a first-order definition in the structure
(Q;<).

This class of CSPs is a strict generalisation of equality CSPs and includes many
natural problems, e.g., the betweenness problem and the cyclic ordering problem.
For many other examples, see Bodirsky & Kára [9]. Let T be the set of all first-
order definable relations over (Q;<). For x1, . . . , xk ∈ Q, we write −−−−−→x1 . . . xk when
x1 < · · · < xk . The following dichotomy holds for temporal CSPs.

Theorem 15 (Bodirsky and Kára [9]) Let Γ ⊆ T be a temporal constraint language.
If there is a primitive positive definition of Betw, Cycl, Sep, T3, −T3, or S in Γ , where

1. Betw = {(x, y, z) ∈ Q3 | −→xyz ∨ −→zyx},
2. Cycl = {(x, y, z) ∈ Q3 | −→xyz ∨ −→yzx ∨ −→zxy},
3. Sep = {(x1, y1, x2, y2) ∈ Q4 | −−−−−→x1x2y1y2 ∨ −−−−−→x1y2y1x2 ∨−−−−−→y1x2x1y2 ∨ −−−−−→y1y2x1x2 ∨−−−−−→x2x1y2y1 ∨ −−−−−→x2y1y2x1 ∨−−−−−→y2x1x2y1 ∨ −−−−−→y2y1x2x1},
4. T3 = {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y}, and
5. −T3 = {(−x,−y,−z) | (x, y, z) ∈ T3},
then CSP(Γ ) is NP-complete. Otherwise, CSP(Γ ) is tractable.

With the help of this classification we can then prove that 〈Γ 〉 cannot admit a weak
base whenever CSP(Γ ) is NP-complete (assuming P �= NP).

Theorem 16 Let Γ ⊆ T be a finite temporal language. If Γ pp-defines Betw, Cycl,
Sep, T3, −T3, or S, then 〈Γ 〉 does not admit a weak base.

Proof We want to apply Lemma 1, and thus need to show that Γ can pp-define the
inequality relation RQ

�= over Q. To prove this it is sufficient to show that Betw, Cycl,
Sep, T3, −T3, and S, can all pp-define the inequality relation, which can be done
with straightforward arguments. For example, RQ

�=(x, y) ≡ ∃z : Betw(x, y, z), and

RQ
�=(x, y) ≡ ∃z : Cycl(x, y, z). The result then directly follows from Lemma 1. ��

4 Upper Bounds for Equality CSPs and Reducts of Unary Structures

The lower bounds established in Sect. 3 suggest that we cannot construct an O(c|V |)
time algorithm (c > 1) which is applicable to arbitrary equality languages. However,
if we fix a finite equality language Γ , this still leaves the possibility of constructing
an O(c|V |) time algorithm for a constant c depending on Γ . In this section we tackle
this problem, and the more general problem of constructing faster exponential-time
algorithms for CSP(Γ ) whenever Γ is a finite unary reduct. We begin in Sect. 4.1 by
constructing an improved algorithm for the case when Γ is a finite equality language,
and in Sect. 4.2 consider the more involved case of reducts of unary structures.

123



Algorithmica (2023) 85:188–215 207

Fig. 2 Algorithm for equality languages

4.1 An Algorithm for Finite Equality Languages

We begin by describing a novel algorithm for CSP(Γ ), where Γ is a finite equality
language with maximum arity α, with a running time of O∗((α(α−1)

2 )|V |). Thus, the
algorithm runs in O∗(c|V |) time for a constant c depending on Γ , which is a sig-
nificant improvement over the algorithm proposed by [18] which solves CSP(Γ ) in

O∗(2|V |·log( 0.792|V |
ln(|V |+1) )) time.

Theorem 17 The CSP of an arbitrary finite equality language Γ can be solved in

O∗
((

α(α−1)
2

)|V |)
time where α = max{ar(R) | R ∈ Γ }.

Proof Consider the algorithm A for instances of CSP(Γ ) presented in Fig. 2.We begin
by proving correctness by induction over |V | = n. If n = 1, then the tests in steps (3)
and (4) provide the correct answer. Assume the algorithm is correct when n > 1. Let
I = (V ,C) be an instance where |V | = n + 1. First, assume that I has an injective
solution. Then it is readily verified that f : V → {1, . . . , |V |} defined as f (xi ) = i for
each xi ∈ V = {x1, . . . , x|V |}, is a solution to I as well (in technical terms this follows
from the well-known fact that the automorphisms of Γ is the full symmetric group
[8]). Hence, the algorithm answers ‘yes’ via step (3). Otherwise I does not have an
injective solution and at least one constraint c = R(xi1 , . . . , xi p ) ∈ C is not satisfied
by the function s. This implies that (at least) two variables in {xi1 , . . . , xi p } must be
assigned the same value. This is systematically tested in step (6), and the correctness
follows from the inductive hypothesis.

Concerning the time complexity, it is bounded from above by the recurrence T (n) =
α(α−1)

2 · T (n − 1) + poly(||I ||) since i p ≤ α for each possible choice of constraint

R(xi1 , . . . , xi p ). Thus, T (n) ∈ O∗((α(α−1)
2 )n), and we get the desired bound on the

time complexity. ��

4.2 An Algorithm for Finite Reducts of Unary Structures

We recall that a structure A = (A;U1,U2, . . . ,Uk) is unary if U1,U2, . . . ,Uk are
unary relations. The classical complexity of the constraint satisfaction problem for
finite first-order reducts of unary structures has been thoroughly analysed by Bodirsky
& Mottet [10] and Bodirsky & Bodor [5]: they prove that such problems are either

123



208 Algorithmica (2023) 85:188–215

polynomial-time solvable or NP-complete. We refer the reader to their articles for
more background information about unary structures and their reducts.

Throughout this section we let Θ = (N;U1, . . . ,Uk), k ≥ 1, be an arbitrary unary
structure where each Ui ⊆ N, and we let Γ = {R1, . . . , Rm} be a finite first-order
reduct of Θ . We can (without loss of generality) focus on structures with a countably
infinite domain since every reduct of a unary structure has the same CSP as a reduct of
a structure on a countably infinite domain. Since Θ admits quantifier-elimination, and
since Γ is finite, we may without loss of generality assume that each Ri is defined via
a DNF formula where an atom consists of either a unary relation fromΘ or an equality
constraint. Let α denote the maximum arity ofΓ , i.e. α = max{ar(R1), . . . , ar(Rm)}.

Our algorithm for CSP(Γ ) is based on the following steps. First, we show that there
for each instance I = (V ,C) of CSP(Γ ) exists a particular set of functions F with
c|V | elements (where c is a constant that only depends on Γ ). These functions can be
viewed as “high-level descriptions” of the solution we are searching for. Second, we
prove that for each f ∈ F , one can construct an instance I f of CSP(Γeq) where Γeq is
a finite equality language that only depends on the choice of Γ . The instances I f are
constructed in such a way that I is satisfiable if and only if I f is satisfiable for some
f ∈ F .
We proceed with a few definitions. For every set S ⊆ N we denote the complement

N \ S of S by S̄. Define U (S), S ⊆ {1, . . . , k}, such that

U (S) =
⋂

i∈S
Ui ∩

⋂

i /∈S
Ūi ,

and let S = {U (S) | S ⊆ {1, . . . , k}}. One may view the set S as a “basis” for
U1, . . . ,Uk in the sense that each Ui is the union of some elements in S. Let

K =
⋃

{U (S) | S ⊆ {1, . . . , k} and U (S) is finite}

and

U = {{e} | e ∈ K } ∪ {U (S) | S ⊆ {1, . . . , k} and U (S) is infinite}.

The set U can be viewed as a refinement of S: it is still a basis for U1, . . . ,Uk but it
contains more elements. The functions in the set F that we briefly discussed earlier
have the set U as their codomain.

Lemma 2 The following statements are true.

1. U is a partitioning of N,
2. U is finite, and
3. for every Ui , 1 ≤ i ≤ k, there exist S1, . . . , Sp ∈ U such that Ui = ⋃p

j=1 S j .

Proof We first make the following claims concerning the set S.

1. S is a partitioning of N,
2. S is finite, and

123



Algorithmica (2023) 85:188–215 209

3. for every Ui , 1 ≤ i ≤ k, there exist S1, . . . , Sp ∈ S such that Ui = ⋃p
j=1 S j .

We prove each case in turn.

1. Arbitrarily choose p ∈ N. Let S = {i | p ∈ Ui } and note that p ∈ U (S). In
particular, if S = ∅, then U (∅) = ⋂k

i=1 Ūi and p ∈ U (∅). We conclude that
every element in N appears in at least one of the sets U (S). Assume, with the
aim of getting a contradiction, that p ∈ U (S), p ∈ U (S′), and S �= S′ where
S′ ⊆ {1, . . . , k}. It is clear that the only sets among U1, . . . ,Uk, Ū1, . . . , Ūk that
contain p are Ui , i ∈ S, and Ū j , j ∈ {1, . . . , k} \ S. Thus, there is at least one set
in

X = {Ui | i ∈ S′} ∪ {Ū j | j ∈ {1, . . . , k} \ S′}

that does not contain p. We know that U (S′) = ⋂
X so p /∈ U (S′) and this leads

to a contradiction.
2. S contains at most 2k elements.
3. Arbitrarily choose Ui , 1 ≤ i ≤ k. Let T = ⋃{X | X ⊆ Ui , X ∈ S} and note that

T ⊆ Ui . We show thatUi ⊆ T and conclude that there exists a set of elements in S
whose union equalsUi . Arbitrarily choose e ∈ Ui and assume to the contrary that
e /∈ T . There exists exactly one set E ∈ S that contains e since S is a partitioning
of N. We know that E = U (S) for some S ⊆ {1, . . . , k} by the definition of S.
If i ∈ S, then E ⊆ Ui and {e} ⊆ E ⊆ Ui ⊆ T which leads to a contradiction.
Hence, i /∈ S and E = E ∩ Ūi by the definition of U (S). This implies that e /∈ E
since e ∈ Ui and this contradicts the choice of E .

The statements for the setU now become straightforward consequences. The family
of setsU is still a partitioning ofN since we have only “refined” the finite sets of S into
single-element sets. Since S is a finite set,U is finite, too. Finally, everyUi , 1 ≤ i ≤ k,
can be expressed as a union of elements in U since this is possible in S. ��

Let us remark that a partition where every part is either infinite or one-element
(such as U) is called a stabilised partition in the terminology of Bodirsky & Mottet
[10]. We define the algorithm D (see Fig. 3) for instances (V ,C) of CSP(Γ ) and
functions f : V → U. Algorithm D checks whether a given instance (V ,C) has a
solution that respects the function f : we say that a solution g : V → N to (V ,C)

respects f if g(x) ∈ f (x) for all x ∈ V . If a conjunct becomes empty, then we view
it (as usual) as satisfiable and it can be removed. If a disjunction becomes empty,
then it is not satisfiable and the algorithm can immediately report that the instance is
not satisfiable. The algorithm A that appears within D is the algorithm for equality
languages presented in Sect. 4.1. It will only be applied to constraints that are based on
equality relations with arity at most α. We let Γeq denote this set of equality relations.

The language Γeq is finite so algorithm A solves CSP(Γeq) in time O∗
((

α(α−1)
2

)|V |)

by Theorem 17.
Our aim is now to prove that an instance I = (V ,C) of CSP(Γ ) is satisfiable if and

only if there exists a function f : V → U such that D(I , f ) answers ‘yes’. First of
all, we verify that the computation of the instance (V ,C ′′) is an instance of CSP(Γeq),

123



210 Algorithmica (2023) 85:188–215

Fig. 3 Algorithm for reducts of unary structures

implying that the call to algorithm A in step (4) is valid. For this purpose it is sufficient
to show that S ⊆ Ui or S ∩Ui = ∅ for each Ui ∈ {U1, . . . ,Uk} and S ∈ U, since the
filtering in step (1) then guarantees that any constraint involving Ui is replaced by a
constraint over Γeq.

Lemma 3 Arbitrarily choose Ui , 1 ≤ i ≤ k, and a set S ∈ U. Either S ⊆ Ui or
S ∩Ui = ∅.
Proof There exist S1, . . . , Sp ∈ U such that Ui = ⋃p

j=1 S j by the third statement
of Lemma 2. Since U is a partitioning of N (by the first statement of Lemma 2), this
decomposition is unique. If S ∈ {S1, . . . , Sp}, then S ⊆ Ui . Otherwise, S ∩Ui = ∅.

��
We continue the correctness proof by establishing a close connection between

(V ,C) and (V ,C ′′).

Lemma 4 Let (V ,C) be an instance of CSP(Γ ), let f : V → U, and let (V ,C ′′) be
the instance computed in step (3) of the algorithm D((V ,C), f ). Then (V ,C) has a
solution g : V → N that respects f if and only if the instance (V ,C ′′) has such a
solution.

Proof We begin by showing that (V ,C) has a solution g : V → N which respects f if
and only if the instance (V ,C ′) computed in step 1 of the algorithm has such a solution.
Therefore, first assume that (V ,C) has a solution g that respects f . If a formula in
C contains the atom Ui (x) (respectively, ¬Ui (x)) and f (x) ∩ Ui = ∅ (respectively,
f (x) ⊆ Ui ), then we can safely remove the entire conjunction containingUi (x) since
it cannot be satisfied by a solution that respects f (such as g). Furthermore, every
atomUi (x) (respectively,¬Ui (x)) such that f (x) ⊆ Ui (respectively, f (x)∩Ui = ∅)
is vacuously satisifed by any solution that respects f so such atoms can be removed.
We conclude that g is a solution to (V ,C ′).

Second, assume that (V ,C ′) has a solution g : V → N that respects f . First note
that the atoms that are removed in step 1(c) and 1(d) are satisfied by the solution f .
Since g respects f , these atoms are satisfied by g, too. Thus, if we take all constraints
in C ′ and extend them with the conjuncts and atoms that were removed in step 1,
then g is a solution to this set of constraints. Note here that adding back the removed

123



Algorithmica (2023) 85:188–215 211

conjuncts only makes the instance easier in the sense that it is satisfied by a potentially
larger set of variable assignments. Clearly, the new set of constraints equals C and we
conclude that g is a solution to (V ,C).

Now, assume that g : V → N is a solution to (V ,C ′) that respects f . The additional
constraints {x �= y | f (x) �= f (y)} are always satisfied whenwe are only interested in
solutions that respect f—this follows from the fact thatU is a partitioning of N by the
first statement of Lemma 2. The constraints {x = y | f (x) = f (y) = S and |S| = 1}
are always satisfied when the domain of a variable consists of a single element. Thus,
g is a solution to (V ,C ′′).

Last, assume that (V ,C ′′) has a solution g : V → N that respects f . SinceC ′ ⊆ C ′′,
C ′ can be viewed as a relaxation ofC ′′. Consequently, g is a solution to (V ,C ′)which
respects f . ��

Lemma 4 gives us a straightforward way of proving the correctness of algorithm
D.

Lemma 5 Let (V ,C) be an instance of CSP(Γ ), and let f : V → U. Then the algo-
rithm D accepts ((V ,C), f ) if and only if (V ,C) has a solution that respects f .

Proof For the first direction, assume that D accepts the instance ((V ,C), f ). This
implies that there exists a solution g : V → N to the instance (V ,C ′′). Let DS =
{g(x) | f (x) = S, x ∈ V } for every S ∈ U, i.e. DS contains the values that g assigns
to the variables satisfying f (x) = S. We make two observations concerning the sets
DS .

1. DS ∩ DS′ = ∅ whenever S �= S′. This a consequence of the construction of C ′′:
the constraint x �= y is in C ′′ whenever f (x) �= f (y).

2. |DS| ≤ 1 if |S| = 1. Once again, this a consequence of the construction of C ′′:
the constraint x = y is in C ′′ whenever f (x) = f (y) = S and |S| = 1.

These two observations imply that there exist injective functions hS from DS to
S for all S ∈ U (recall that a set in U is either infinite or one-element). The sets in
{DS | S ∈ U} are pairwise disjoint and so are the sets in U. Hence, there exists an
injective function h : N → N such that {h(d) | d ∈ DS} ⊆ S for all S ∈ U. We see
that the function g′ : V → N defined by g′(x) = h(g(x)) is a solution to (V ,C ′′) that
respects f . By Lemma 4, there is a solution to (V ,C) that respects f .

For the other direction, assume that D does not accept the instance ((V ,C), f ). This
implies that there does not exist any solution to the instance (V ,C ′′). By Lemma 4,
there is no solution g : V → N to (V ,C) that respects f . ��

We can now state and prove the main result by combining the results presented in
this section.

Theorem 18 CSP(Γ ) can be solved in O∗((|U| · α(α−1)
2 )|V |) time.

Proof We begin by proving that algorithm D runs in O∗((α(α−1)
2 )|V |) time. Let I =

((V ,C), f ) denote an arbitrary input instance. First of all, each test performed in step
1 can be performed in constant time since the constraint language Γ is fixed and U is

123



212 Algorithmica (2023) 85:188–215

finite: the information needed for verifying if f (x) ∩ Ui = ∅ and f (x) ⊆ Ui can be
precomputed and stored in a finite table. Furthermore, the operations in step 1 do not
increase the arity of the formulas in I , and the formulas added in step 3 all have arity 2.
Thus, the algorithm D runs in O∗(c|V |) time where c = max{2, α(α−1)

2 }. However, if
the arity of the formulas inC are at most 2, then the algorithm runs in polynomial time
since C ′′ only contains formulas of arity at most 2—such a formula is either x = y or
x �= y.

We continue by proving themain result. Let I = (V ,C) denote an arbitrary instance
of CSP(Γ ). Let F denote the set of functions from V to U and note that |F | = |U||V |
is finite since U is a finite set by the second statement of Lemma 2. If (V ,C) has a
solution g, then there exists an f ∈ F such that g respects f since U is a partitioning
of N by the first statement of Lemma 2. We can thus check the satisfiability of I by
applying the algorithm D (which is correct by Lemma 5) to the set of input instances
{((V ,C), f ) | f ∈ F}. The time complexity is consequently O∗((|U| · α(α−1)

2 )|V |). ��

5 Concluding Remarks

We have studied the fine-grained complexity of infinite-domain equality CSPs, and
have proven that this class of problems differ from finite-domain CSPs in almost every
way conceivable. Despite the disarray of this complexity landscape, it is possible to
outline several concrete future research directions. First, since we know that all finite
equality languages can be solved in O(c|V |) time and that there exists infinite equality
languages not solvable in O(c|V |) time for any c > 1, is it possible to prove a complete
dichotomy separating the equality language CSPs that are solvable in O(c|V |) time
from those that are not?

More generally, one may ask the following question: which infinite-domain CSPs
are solvable in O(c|V |) time? This is naturally a question that is too broad so it needs
to be narrowed down. An interesting starting point is the class of temporal CSPs, i.e.,
CSPs over first-order reducts of (Q;<). Temporal languages are well-behaved from
a model theoretic viewpoint (they are ω-categorical), admit a dichotomy between
P and NP-complete, and are always solvable in O∗(2|V | log |V |) time, so one would
expect similarities between equality CSPs and temporal CSPs when it comes to fine-
grained complexity. Thus, which temporal CSPs are solvable in O(c|V |) time? Despite
the aforementioned similarities there are still large differences to equality CSPs. For
example, there exists a finite first-order reduct Γ of (Q;<) such that CSP(Γ ) is not
solvable in 2o(|V | log |V |) time without violating the r-ETH [19].

Last, we have seen that the class of NP-complete equality CSPs does not admit
an “easiest problem” unless the ETH is violated, contrary to satisfiability problems
[21] and finite-domain CSPs [22]. This discrepancy stems from the constructions
in Sect. 3.3 where we proved that one can construct NP-hard equality CSPs with
arbitrarily lowfine-grained complexity. Furthermore,we gave an algebraic explanation
of this difference, namely the non-existence of a weak base for the set of all equality
relations. Here, it is important to stress that whether a set of relations admits a weak
base or not is a purely algebraic property and it can be formulated entirely without
mentioning either CSPs or complexity theory. Interestingly, we first gave a conditional

123



Algorithmica (2023) 85:188–215 213

proof under the ETH (Proposition 1), and later strengthened this to an unconditional
proof (Theorem 14). Furthermore, the conditional proof turned out to be simpler and
more straightforward than the algebraic proof. To the best of our knowledge, proofs of
algebraic properties under the ETH are exceedingly rare, if not non-existent, and this
raises the question on whether this is an isolated incidence, or a fragment of a larger
phenomena.

Acknowledgements The authors are partially supported by the Swedish Research Council (VR) under
Grants 2017-04112, 2019-03690, and 2021-04371.

Funding Open access funding provided by Linköping University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelli-
gence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)

2. Barto, L., Pinsker, M.: The algebraic dichotomy conjecture for infinite domain constraint satisfaction
problems. In: Proceedings of 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS-2016) (2016)

3. Biere, A., Heule,M., vanMaaren, H.,Walsh, T. (eds.): Handbook of Satisfiability, Frontiers inArtificial
Intelligence and Applications, vol. 185. IOS Press (2009)

4. Bodirsky, M.: Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press,
Cambridge (2021)

5. Bodirsky, M., Bodor, B.: Canonical polymorphisms of Ramsey structures and the unique interpolation
property. In: Proceedings of 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS-2021), pp. 1–13 (2021)

6. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Proceedings of
35th International Colloquium on Automata, Languages and Programming (ICALP-2008), pp. 184–
196 (2008)

7. Bodirsky, M., Jonsson, P.: A model-theoretic view on qualitative constraint reasoning. J. Artificial
Intelligence Res. 58, 339–385 (2017)

8. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. Theory Comput. Syst. 43(2),
136–158 (2008)

9. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. J. ACM 57(2),
9:1-9:41 (2010)

10. Bodirsky, M., Mottet, A.: A dichotomy for first-order reducts of unary structures. Logical Methods in
Computer Science 14(2) (2018)

11. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods in Computer
Science 10(3) (2014)

12. Bojańczyk, M., Klin, B., Lasota, S., Toruńczyk, S.: Turing machines with atoms. In: Proceedings of
28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-2013), pp. 183–192 (2013)

13. Bulatov, A.: A dichotomy theorem for nonuniform CSPs. In: Proceedings of 58th Annual Symposium
on Foundations of Computer Science (FOCS-2017) (2017)

123

http://creativecommons.org/licenses/by/4.0/


214 Algorithmica (2023) 85:188–215

14. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control. In: Proceedings of
6th International Conference on Computer Aided Verification (CAV-1994), pp. 68–80 (1994)

15. Dylla, F., Lee, J.H., Mossakowski, T., Schneider, T., Delden, A.V., Ven, J.V.D., Wolter, D.: A survey
of qualitative spatial and temporal calculi: Algebraic and computational properties. ACM Comput.
Surveys 50(1), 7:1-7:39 (2017)

16. Freivald, R.V.: A completeness criterion for partial functions of logic and many-valued logic algebras.
Sov. Phys. Doklady 11, 288 (1966)

17. Hodges, W.: A Shorter Model Theory. Cambridge University Press, New York (1997)
18. Jonsson, P., Lagerkvist,V.:An initial studyof time complexity in infinite-domain constraint satisfaction.

Artificial Intelligence 245, 115–133 (2017)
19. Jonsson, P., Lagerkvist, V.: Why are CSPs based on partition schemes computationally hard? In:

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS-2018), pp.
43:1–43:15 (2018)

20. Jonsson, P., Lagerkvist, V.: Lower bounds and faster algorithms for equality constraints. In: Proceedings
of 29th International Joint Conference on Artificial Intelligence (IJCAI-2020), pp. 1784–1790 (2020)

21. Jonsson, P., Lagerkvist, V., Nordh, G., Zanuttini, B.: Strong partial clones and the time complexity of
SAT problems. J. Comput. Syst. Sci. 84, 52–78 (2017)

22. Jonsson, P., Lagerkvist, V., Roy, B.: Fine-grained time complexity of constraint satisfaction problems.
ACM Trans. Comput. Theory 13(1), 2:1-2:32 (2021)

23. Jonsson, P., Lagerkvist, V., Schmidt, J., Uppman, H.: The exponential-time hypothesis and the relative
complexity of optimization and logical reasoning problems. Theor. Comput. Sci. 892, 1–24 (2021)

24. Klin, B., Lasota, S., Ochremiak, J., Toruńczyk, S.: Turing machines with atoms, constraint satisfaction
problems, and descriptive complexity. In: Proceedings of the JointMeeting of theTwenty-ThirdEACSL
Annual Conference onComputer Science Logic and the Twenty-NinthAnnualACM/IEEESymposium
on Logic in Computer Science (CSL-LICS-2014), pp. 58:1–58:10 (2014)

25. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras
of Allen’s interval algebra. J. ACM 50(5), 591–640 (2003)

26. Lagerkvist, V.: Precise upper and lower bounds for the monotone constraint satisfaction problem.
In: Proceedings of the Mathematical Foundations of Computer Science (MFCS-2015), pp. 357–368
(2015)

27. Lagerkvist, V.,Wahlström,M.: Sparsification of SAT and CSP problems via tractable extensions. ACM
Trans. Comput. Theory 12(2), 13:1-13:29 (2020)

28. Lau, D.: Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory.
Springer, New York (2006)

29. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. SIAM J.
Comput. 47(3), 675–702 (2018)

30. Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of timed automata
via satisfiability checking. In: Proceedings of 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT-2002), pp. 225–244 (2002)

31. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment
of the region connection calculus. Artificial Intelligence 108(1–2), 69–123 (1999)

32. Rodeh, Y., Strichman, O.: Building small equality graphs for deciding equality logic with uninterpreted
functions. Inf. Comput. 204(1), 26–59 (2006)

33. Romov, B.: The algebras of partial functions and their invariants. Cybernetics 17(2), 157–167 (1981)
34. Romov, B.A.: Extendable local partial clones. Discrete Math. 308(17), 3744–3760 (2008)
35. Romov, B.A.: Endpoints of associated intervals for local clones on an infinite set. Algebra Universalis

79(4), 82 (2018)
36. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou,

N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. Lecture Notes in Computer Science,
vol. 5250, pp. 229–254. Springer, Berlin (2008)

37. Schutt, A., Stuckey, P.J.: Incremental satisfiability and implication for UTVPI constraints. INFORMS
J. Comput. 22(4), 514–527 (2010)

38. Seshia, S.A., Subramani, K., Bryant, R.E.: On solving Boolean combinations of UTVPI constraints.
J. Satisfiability Boolean Model. Comput. 3(1–2), 67–90 (2007)

39. Traxler, P.: The time complexity of constraint satisfaction. In: Proceedings of 3rd International Work-
shop on Parameterized and Exact Computation (IWPEC-2008), pp. 190–201 (2008)

123



Algorithmica (2023) 85:188–215 215

40. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model checking techniques. IEEE
Trans. Industrial Inform. 14(1), 370–379 (2018)

41. Zhuk, D.: A proof of the CSP dichotomy conjecture. J. ACM 67(5), 30:1-30:78 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	General Lower Bounds and Improved Algorithms for Infinite–Domain CSPs
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Preliminaries
	2.1 The Constraint Satisfaction Problem
	2.2 Primitive Positive Definitions and Interpretations
	2.3 Equality Languages
	2.4 Fine-Grained Complexity and the Exponential–Time Hypothesis

	3 Lower Bounds on the Complexity of Equality Constraints
	3.1 Finite Versus Infinite Equality Languages
	3.2 Satisfiability Modulo Theories
	3.3 No Easiest NP-Hard Infinite–Domain CSP
	3.4 Algebra and Fine-Grained Complexity of Equality CSPs
	3.4.1 Algebraic Background
	3.4.2 The Non-Existence of a Weak Base


	4 Upper Bounds for Equality CSPs and Reducts of Unary Structures
	4.1 An Algorithm for Finite Equality Languages
	4.2 An Algorithm for Finite Reducts of Unary Structures

	5 Concluding Remarks
	Acknowledgements
	References




