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Abstract

The METRIC DIMENSION problem asks for a minimum-sized resolving set in a given
(unweighted, undirected) graph G. Here, a set S € V(G) is resolving if no two
distinct vertices of G have the same distance vector to S. The complexity of MET-
RIC DIMENSION in graphs of bounded treewidth remained elusive in the past years.
Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard
under treewidth parameterization. In this work, we strengthen their lower bound to
show that METRIC DIMENSION is NP-hard in graphs of treewidth 24.

Keywords Graph algorithms - constant treewidth - NP-hard

1 Introduction

Let G be an unweighted and undirected graph and let S € V(G). For a vertex v €
V(G), the distance vector from v to S is the assignment S > w — distg (v, w), where
distg denotes the distance in the graph G. The set S is resolving if a distance vector
to S uniquely determines the source vertex; that is, no two vertices of G have the
same distance vector to S. The METRIC DIMENSION problem asks for a resolving set
of minimum possible size; such a set is sometimes called the metric basis of G. The
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decision version of METRIC DIMENSION asks for a resolving set of size not exceeding
a given threshold k.

METRIC DIMENSION has already been introduced in 1970s [8, 13]. Determining its
computational complexity turned out to be quite challenging. It is polynomial-time
solvable on trees [8, 11, 13], outerplanar graphs [3], and chain graphs [6], but NP-
hard for example on planar graphs [3], split graphs [5] or even interval graphs and
permutation graphs [7]. From the parameterized complexity point of view, the FPT
status of the METRIC DIMENSION parameterized by the solution size has been open
for a while and finally resolved in negative by Hartung and Nichterlein [9]. In the
search of a tractable structural parameterization, FPT algorithms has been shown for
parameters: treelength plus maximum degree [1], vertex cover number [9], max leaf
number [4], and modular-width [1].

The above list misses probably the most important graph width measure, namely
treewidth. Determining the complexity of METRIC DIMENSION, parameterized by
treewidth, remained elusive in the last years, and has been asked a few times [1, 3, 4].
Bonnet and Purohit in a paper presented at IPEC 2019 [2] showed that the problem is
W/[1]-hard, even with treewidth parameterization. In this work we strengthened their
result by proving para-NP-hardness of this parameterization.

Theorem 1 METRIC DIMENSION, restricted to graphs of treewidth at most 24, is NP-
hard.

Theorem 1 brings us much closer to closing (unfortunately mostly in negative) the
question of the complexity of METRIC DIMENSION in graphs of bounded treewidth.
The remaining gap is to determine the exact treewidth value where the problem
becomes hard: note that it is open if METRIC DIMENSION is polynomial-time solvable
on graphs of treewidth 2.

The proof of Theorem 1 starts with a construction of a graph with a separation of
order 9 over which a lot of information on a partial solution to METRIC DIMENSION is
transfered. More formally, similarly as Bonnet and Purohit [2], we use the MULTICOL-
ORED RESOLVING SET problem as an auxiliary intermediate problem. In this problem,
the input graph is additionally equipped with an integer k, a tuple of k disjoint vertex
sets X1, X», ..., Xk, and aset P of vertex pairs. The goal is to choose a set S consisting
of exactly one vertex from each set X; so that for every {u, v} € P, the pair {u, v} is
resolved by §, that is, # and v have different distance vectors to S. In our construction,
the sets X; are on one side of the said separation of order 9, while the pairs P are on
the second side. The crux of the construction is to make every distance from a vertex
of the separator to a chosen vertex of S count: despite the fact that the separation has
constant size, S is of unbounded size, giving €2(|S]) distances to work with. Overall,
the above gives a relatively clean reduction giving NP-hardness of MULTICOLORED
RESOLVING SET in graphs of constant treewidth, presented in Sect. 3. This reduction
is the main new insight and technical contribution of this paper.

Then, again similarly as in the work of Bonnet and Purohit [2], it takes a lot of effort
(presented in Sect. 4) to turn the above reduction to MULTICOLORED RESOLVING SET
into a reduction to METRIC DIMENSION. Here, there are two problems. First, one
needs to introduce some gadgets to force the solution to take exactly one vertex from
each set X;. Second, one needs to ensure that the intended solution resolves all vertex
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pairs, not only the ones from P. For both problems, we borrow the tools from Bonnet
and Purohit [2]. In particular, the first problem is resolved by forced set gadgets in a
way very similar to [2]. The second problem is resolved by adding a number of new
connections to the graph and forced vertex gadgets of [2]. Thus, while the toolbox
remains the same as in [2], the application is different as the graph we are working
with is significantly different. The construction is presented in Sections 4.1-4.2.

After applying all the modifications to obtain a METRIC DIMENSION instance, one
needs to check three aspects. First, one needs to ensure that the forced set gadgets work
as intended, forcing the solution to take one vertex from each X;; this check is rather
simple and very similar to the analogous check of [2]. Second, one needs to check
that the introduced forced vertex gadgets, that contain extra vertices from the intended
resolving set (apart from the ones in X;s), do not accidentally resolve any pair from P.
This check is not trivial, but still relatively simple. Note that the mentioned two proper-
ties already ensure one of the implications in the proof of the correctness of the reduc-
tion: if the final METRIC DIMENSION instance is a yes-instance, then the input instance
of the source problem is a yes-instance. These two checks are presented in Sect. 4.3.

Then one needs to check that every pair of vertices is resolved by an intended
solution. Due to the complexity of the construction and the properties of this problem,
this turned out to be long and arduous, spanning more than half of the volume of this
paper (Sect. 5).

Besides, we show that the treewidth of the constructed graph is bounded by a
constant in Sect. 4.4.

2 Preliminaries

In this paper, all graphs are undirected. In a graph G, let V (G) be the set of vertices of
G.Foravertex v € V(G), we denote the open neighborhood and closed neighborhood
of v by Ng(v) and Ng[v] respectively (or just N(v) and N[v] if the graph is clear in
the context). For two vertices u, v € V(G), let P(u, v) be a path from u to v. Since
the graph is undirected, P(u, v) and P (v, u) denote the same path. We denote the
neighbor of  on P (u, v) by N, (u, v) (also the neighbor of v on P (i, v) by Ny (u, v)).
Similarly, if there is a path which is named as, for example, ph (i, j, x) such that u is
one endpoint of ph (i, j, x), we denote the neighbor of # on ph @, j,x)by N,ﬁ' @, j,x).
For simplicity, we abuse the notation in the sense that for a path P, we use P to denote
the path or the vertex set of the path. The meaning should be clear in the context. We
define the length of a path P to be the number of edges on the path and denote it by
| P|. For two vertices u, v € V(G), we define the distance between u and v to be the
length of any shortest path from u to v, denoted by distg (#, v). Note that in this paper
we use dist(u, v) to denote the distance between u and v mostly if the graph is clear
in the context. For a path P of even length with two endpoints « and v, let w be the
vertex on P such that the length of the subpath of P from u to w equals the length
of the subpath of P from w to v. Then we call w the middle vertex of P and denote
it by mid(P). We say that two distinct vertices u, u’ are true twins if N[u] = N[u'].
Since a path decomposition is also a tree decomposition, the treewidth of a graph G
is at most the pathwidth of G. In this paper, for convenience of the proof, we use the
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alternative characterization of pathwidth, i.e. the pathwidth of a graph G equals the
node search number of G minus one [12]. The definition of the node search number
comes from the node search game. We give an informal definition of the node search
game as follows. Imagine that the edges of an undirected graph G are tunnels and
they are contaminated by some gas. We need to put searchers on vertices of G to
clean the gas. The rule is that when both of the two endpoints of an edge are occupied
by searchers, this edge becomes clean. However, if we remove some searchers from
the graph, a cleaned edge can be recontaminated immediately through an unoccupied
endpoint to which a contaminated edge is incident. The node search number of G is
the minimum number of searchers required to clean all edges of G.

3 Reduction from 3-Dimensional Matching to Multicolored Resolving
Set

Bonnet and Purohit introduced k- MULTICOLORED RESOLVING SET as an intermedi-
ate problem in order to show the W[1]-hardness of METRIC DIMENSION parameterized
by treewidth [2].

k- MULTICOLORED RESOLVING SET

Input: An undirected graph G = (V, E), an integer k, a set x = {X1, ..., X}
where X1, ..., Xy aredisjoint subsets of V(G) andaset P = {{x1, y1}, ..., {xn, yn}}
where {x1, y1}, ..., {xn, yn} are vertex pairs of G.

Question: Is there a set of k vertices S such that

1) SN X;| =1foreveryi =1,...,k,and

(i1) for every £ € {1, ..., h}, there exists a vertex v € S such that dist(v,xp)#
dist(v,ye).

We show that this problem is NP-hard on graphs of constant treewidth. We make a
reduction from 3- DIMENSIONAL MATCHING, which is well-known to be NP-hard [10].

3- DIMENSIONAL MATCHING

Input: the universe U = {1, 2,3} x [n] and a set F = {Ay, ..., Ay} of tuples
such that for every j € [m], the tuple A; = {(1,x),(2,y),(3,2)} where
(1,x),2,y),3,2) € U.

n
Question: are there n tuples Aj,, ..., A;, such that hU1 Aj, =U.

Given an instance (U, F) of 3- DIMENSIONAL MATCHING with the universe U =
{1,2,3} x [n] and a set F of m tuples Ay, ..., A, € U, we construct an instance
(G, n, x,P) of n- MULTICOLORED RESOLVING SET as follows. First, we create m

n
vertices sl.l, ..,s/" as X; foreach i € [n]. Let x = {X1,....X,}and X = (J X;.

i=1
Then we create n vertex pairs {u}, vrl}, o {ult, vt} for each r e {1, 2,3} and let
Pr = {{ul, vi}li =1, ..., n}. We create 3 vertices a,, b, ¢, and let W, = {a,, b,, ¢, }
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foreachr € {1,2,3}. Let P = Py UP>, UP3 and W = W; U W, U W3. Finally, let
M = 40(n + 1). For each tuple A; = {(1,x), (2,¥), 3, 2)} (j € [m], x,y,z € [n])

of the given instance and each integer i € [n], we link sj to ay, by, c; with three
paths P(sij,al), P(si], by), P(si], c1) oflengths + le, 5 +5x +1and ¥ 5 —10x
respectively, link s" to az, by, c» with three paths P(s ,ap), P (s b2) P(s co) of

lengths lOy, + S5y + 1 and 5 = lOy respectively, and link s to as, b3, c3
with three paths P(s az), P(s b3) P(s c3) of lengths M 4107, 4 T +5z+1
and — 10z respectively. For every vertex pair (w? vy (p € [n]l,r € {1,2,3}),

we link u? to a,, by, ¢, with three paths P(u?, a,), P(ul, br), Pu?, c,) of lengths
% —10p, % —5p—1and % + 10p respectively, and link v, to a,, b,, ¢, with three
paths P (v, a;), P(vf, by), P(vF, ¢;) of lengths % —10p, & —5p —2and & + 10p
respectively. This finishes the construction. See Fig. 1 for an example.

Lemma1 For an arbitrary vertex pair {u}, vy} € P (r € {1, 2,3}, x € [n]){u}, v}
is resolved by Si (i € [n], j €[m])ifand only if (r,x) € A;.

Proof On one hand, suppose that (r, x) € A;. For an arbitrary i € [n], the three paths
from sij to u} viaa,, b, and ¢, have lengths M, M and M respectively. The three paths
from sij to vy via a,, b, and ¢, have lengths M, M — 1 and M respectively. Note that
there could be other paths from sij to v} or u; that go repeatedly between vertices in X
and vertices in W. However, the lengths of such paths are at least M —20n+M —10n >
M. As a result, the shortest paths from s J to uy} and v} are of lengths M and M — 1
respectively. Thus {u}, v} is resolved by s

On the other hand for an arbitrary tuple A = {1, p1), (2, p2), (3, p3)}, the paths
from the vertex s (i € [n]) tou; (r € {1,2,3}) via a,, b, and ¢, have lengths
M +10(p, —x), M +5(pr —x) and M — 10(p, — x) respectively. The paths from the
vertex sij @@ € [n]) tov! (r € {1,2,3}) viaa,, b, and ¢, have lengths M + 10(p, —
x), M +5(p, —x) — 1 and M — 10(p, — x) respectively. Note that the paths from sij
to u} (or v;) that go repeatedly between the vertices in X and the vertices in W have
lengths at least M —20n + M — 10n > M + 10n. They are not the shortest paths from

sij to u} (or vy). If p, < x, the shortest paths from sij to u} and vy’ both have lengths
M +10(p, — x).If p, > x, the shortest paths from s; to uj‘ and v} both have lengths
M — 10(p, — x). If p, = x, the shortest paths from s to u; and v)C have lengths

M and M — 1 respectively. As a result, if {u}, v}} is resolved by s , then p, = x.
According to the construction, (7, x) € Aj. O

Lemma 2 The constructed instance (G, n, x, P) of n- MULTICOLORED RESOLVING
SET is a yes-instance if and only if the given instance (U, F) of 3- DIMENSIONAL
MATCHING is a yes-instance.

Proof (<) For an arbitrary tuple A; = {(1, x), (2, y), (3,_z)}, according to Lemma 1,
pairs {uf, v{},{u3, vy} and {uj, v3} are all resolved by s/ for every i € [n]. Suppose
that the given instance of 3- DIMENSIONAL MATCHING is a yes-instance, that is, there
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Fig.1 An example of the reduction from 3- DIMENSIONAL MATCHING to n- MULTICOLORED RESOLVING
SET in which U = {1, 2, 3} x [n] and F = {Aq, ..., Ay }. Here we only draw the corresponding paths and

resolved pairs of the tuple A; = {(1, x), (2, y), (3, 2)}
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n .
exists Aj,, ..., Aj, satisfying that |J A, = U. It follows that § = {S}th che[n]}is
h=1

a solution for the constructed instance of n- MULTICOLORED RESOLVING SET.
(=) Let S = {s,ﬁ” : h € [n]} be a solution for the constructed instance of n-
MULTICOLORED RESOLVING SET. For an arbitrary pair {u, v}}, since it is resolved

by some sé’,’/ € §, according to Lemma 1, (r, x) € Aj,. As aresult, {Aj, : h € [n]}

is a solution for the instance of 3- DIMENSIONAL MATCHING. |

It is well-known that the treewidth of a graph is bounded by the size of a minimum
feedback vertex set of the graph. We can easily observe that W is a feedback vertex
set of size 9 for G. It follows that the treewidth of G is at most 10. Then we have the
following lemma.

Lemma 3 k-Multicolored Resolving Set is NP-hard even on graphs of treewidth at
most 10.

4 Reduction from Multicolored Resolving Set to Metric Dimension

In this section, we create in polynomial time an instance (G’, k) of METRIC
DIMENSION, which is equivalent to the instance (G, n, x, P) of n- MULTICOLORED
RESOLVING SET we created in last section. Roughly speaking, the reduction consists
in adding gadgets on base of the constructed instance (G, n, x, P) to solve the fol-
lowing two issues: (1) the solution for METRIC DIMENSION could contain vertices
not in any set of x or more than one vertex from some set of x, which would spoil
the desired reduction; (2) we did not make sure that every pair of distinct vertices are
resolved by the solution in an instance of n- MULTICOLORED RESOLVING SET. We
find that similar strategies to those in [2] can be used to solve these two issues. More
specifically, we solve the first issue by adding forced set gadgets. One such gadget
contains two pairs of vertices such that they are only resolved simultaneously by a
vertex of X; (where it is attached). We solve the second issue by adding forced vertex
gadgets. One such gadget contains a pair of pendant neighboring vertices (true twins),
both of which are also adjacent to an identical vertex. Such construction forces at least
one vertex of the true twins to be chosen in the solution. The chosen vertices (forced
vertices) are designed to resolve the remaining unresolved vertex pairs. Besides, we
need to add a number of extra paths and set appropriate budget k to make sure that the
reduction works as described above.

4.1 Construction of the Forced Set Gadgets

Let (G, n, x, P) be an instance of n- MULTICOLORED RESOLVING SET that we cre-
ated in last section. For every X; € x (i € [n]), we add two pairs of isolated vertices
{ pil, qil} and { pl.z, qiz}. Then we add two vertices rril and JTl-z such that pl.l, qil are adja-
2

L hile n2 2 : 2 : 11 1 2 2
centtor; while p?, g are adjacentto 7. The vertex triples Pir4i 7 and p7, g7, 7;

(i € [n]) form aforced set gadget. Then we create a path P(sl.] , pil) of length 20(n+1)
from s! to p/ and create a path P (s}, p?) of length 20(n + 1) from s/ to p? for each

1
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i € [n], j € [m]. In order to make sure that a vertex can resolve pl.1 , ‘11‘1 and pl.z, qi2

simultaneously if and only if it belongs to X;, we need to create 4 paths of length

20(n + 1) from JTil to Ns/ (sl.j, a,), from TL’il to st (sij, b,), from JTil to Ns/ (sl.j, cr)
:/. 1 1 1

1

and from nil to st (s ,pl.z) respectively for eachi € [n], j € [m] and r € {1, 2, 3}.

For simplicity, we name the four paths as Pl(i, J,ar), P! @, j, by, Pl(i, J,cr) and
P, j, pl.z) respectively. Symmetrically, we need to create 4 paths of length 20(n+ 1)

from nl.z to N (sij, a,), from rrl.z to N (sij, b,), from niz to N (sl.j, ¢;) and from
rriz to N (sij , pil) respectively for each i € [n] and r € {1, 2, 3}. For simplicity, we

name the four paths as P2(i, J,ar), P2(i, Jj, by, P2(i, J,cr)and P2(i, J, pl.])respec-
tively. Let 11" (i, j, r) = {P" (i, j,ay), P"(, j, by), P"(i, j,¢;), P"(i, j, pi™)) for
ieln],jelm]l,re{l,2,3},hef{l,?2}

This completes the construction of the first phase.

4.2 Construction of the Forced Vertex Gadgets

A forced vertex gadget consists of a triangle, namely three vertices such that each
vertex is adjacent to the other two vertices. Two vertices of the triangle are true twins
whose degrees are exactly 2 and we call the other vertex in the triangle the connecting
vertex of the gadget. When we say that we add a forced vertex gadget F to a vertex
v, we mean that we create a forced vertex gadget F' such that v is identified with
the connecting vertex of F. Foreachi € [n], j € [m],r € {1,2,3},h € {1,2}, we
add a forced vertex gadget F"(i, j, a,) to N! (i, j.a.), F'(i, j.by) to NI (i, j. by),
Fh(i, j.c)to NI (i, j.c)and F(i, j, p; ™) to NI (i, j, . pi™") respectively.

In order to make sure that the true twins of F(i, j,by) fori € [n],je[m],re
{1,2,3}, h € {1, 2} do not resolve any vertex pair of P, we create a path P(]Tih, a,)
and a path P(nl.h, ¢r) both of length 10(n + 1) fori € [n],h € {1,2}and r € {1, 2, 3}.

Foreachi € [n], j € [m],r € {1,2,3}, h € {1, 2}, we add a forced vertex gadget
F(nih, ay) to Ng, (nih, a,) and a forced vertex gadget F(nl.h, cr) to N, (nih, c). For
eachi € [n],j € [m],r € {1,2,3}, we add a forced vertex gadget F(sl:’, a,) to
Ng, (s}, ay) and a forced vertex gadget F (s}, ¢,) to Ne, (s, ¢y).

Let mid(P" (i, j, pl.3_h)) be the middle vertex of P"(i, j, p?_h) fori € [n],j €
[m], h € {1,2}. In order to make sure that the true twins of Fh a,j, p?_h) do not
resolve the vertex pair {p?_h, q?_h}, create a path P(qih, mid(P3"(i, j, pf’))) from
g tomid(P3"(i, j, pM)) of length |P37" (i, j, p")I/2+ |P(s], p!)| — 1. Then add
a forced vertex gadget Fmid g, j,h)to mid(P" (i, J, plto’_h)).

Fori € [n],j € [m],r € {1,2,3},h € {1,2}, add a forced vertex gadget
Fe<¢(i, j, h,r) to the vertex x € P"(i, j, a,) such that dist(nl.h, x)=10n+1) + 1.

For each i € [n],r € {1, 2, 3}, create two forced vertex gadgets Fl(ui, v;') and

1 1

F2(ul, v!) for the vertex pair {ul, v’} € P,. Then create an edge from the connecting

vertex of F!(ul, v]) to uj, to v}, to N,i (ar, u}) and to N,; (c,, u}) respectively for

i €[n],r €{l,2,3}. Create an edge from the connecting vertex of F2(u£, vﬁ) to ui,
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to v’, to the vertex x such that x € P(a,, u') and dist(x, u.) = 2, and to the vertex y
such that y € P(c,, ul) and dist(y, ul) = 2. This completes the construction of the
second phase.

Finally, let G’ be the graph constructed by above two phases and set k = 34nm +
19n. This finishes constructing the instance (G’, k) of METRIC DIMENSION. Figure 2
shows a part of G’.

4.3 Soundness of the Reduction

First, we define the vertex sets to be used in the following parts. Recall that X; =
{sil, ., s} Foreveryi € [n],r € {1,2,3}, h € {1, 2}, let

S
Uih = U P(Sl‘js plh)v
jelm)
Hi, = U P(sij, ay) U P(Sl-j, b)) U P(Sij» Cr)s
Jj€lm]
Sh = U P!, a,) U Pl cp),
ref{1,2,3}
Lh = U P(ql, mid(P*~"G, j, p))),
jelm)
R, = U P(ay,ul) U P(ay,v.) U P(by, ul)
ieln]
UP (b, v}) U P(cy,ul) U P(cy, vl), and
MG, j.r) = P, j.ap) U PM G j b U PR joc) U PRGL . p2hy.

For every i € [n], let

vi= |J ul H= ] H, si=J s

he{l,2) re{1,2,3} he{l,2}
L; = U L ; = U nta, j, r).
he(l,2) jelmlre{1.2,3),he(1,2)

Let F be the union of the vertex sets of all forced vertex gadgets, i.e.
F = Ui jeimireq231men.(F ] ar) U F i ¢) U F(x}'.ay) U F(rf cy) U
FIul, o) UF" (i, j,an)UF" G, j, b)) UF G, j, e )UF" G, j, p? ™" UF™4(, j, h)U
Fe<@, j, h,r)).

Next we introduce a lemma about forced set gadgets and this lemma is important
for the correctness of the reduction.

Lemma 4 The following three statements are true for the instance (G', k).
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y v
X
sl \
0
2\
s,
vy

2 2
pi’ 7T,L'/ >

3!

Fig.2 An example showing a part of G’. Triangles represent corresponding forced vertex gadgets. Curves
or lines represent paths. We use different colors, dotted and dashed lines just to avoid the chaos caused by
many crowded curves or lines. For clarity, some forced vertex gadgets do not appear on the figure
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(a) The vertex slj fori € [n], j € [m] resolves both pairs {pil, qil} and {piz, ql.z}.
Moreover, si/ doesnotresolveanyvertexpair{pf’,, qi}f}suchthati/ € [n],h e {1,2}
andi’ #i.

(b) The vertices of any forced vertex gadget do not resolve any vertex pair of
Upl. gy i elnl ke f1,2}).

(c) Anyvertexv € V(G')\ (X; UF) resolves at most one vertex pair of{{pf’, qih} |i e
[n], h € {1,2}}.

Proof By the construction of G', dist(s/, g/') = |P(s}, p!)| +2 =20(n + 1) +2 >
dist(sl.j, pf’) fori € [n],j € [m] and h € {1,2}. Thus any vertex of X; resolves
both pairs { pi],qil} and { pl.z, qiz} for i € [n]. For a vertex pair { pfl,,, qi’f/} such that
i’ # i, there is a shortest path from sij to pf’,/ or qi}f/ going through ¢, and ni}f/ with
some integer ' € {1, 2, 3}. Thus a vertex s € X; resolves exactly two vertex pairs of
{plgfy i elnl he(1,2)).

First we claim that vertices of F do not resolve any vertex pair { pfl,/, ql.}f/} for
i’ € [n],h € {1,2}. For any vertex v € Fh(ui, vi) fori € [n],r € {1,2,3},h €
{1, 2}, there is a shortest path from v to pf’,/ or qih,/ going through a, and ni’}/. Thus
v does not resolve any vertex pair {pl.h,/, ql.h,/} for i’ € [n],h’ € {1, 2}. For any vertex
v e F™MA@i j h)yUFe@i,j, hr)fori €[n],je[m]l,he{l,2},re{l,273}
we can see that dist(v, pf’,,) = dist(v, ql.}f/) with i’ = i. There is a shortest path
from v to pf’,, or qi}E, going through nih, a, and rri}f, with i’ # i. Thus v does not
resolve any vertex pair {pf’/’, qi}f/} for i’ € [n], ' € {1,2}. For any vertex v € F \
Usepn jetmlret 2.3 neq.y F" @l v) U FECG, j, h,r) U F™4(i, j, h)), there is a
shortest path from v to pf‘,/ or qﬁ/ going through thf/ with i’ = i. There is a shortest
path from v to p?,/ or qi}i/ going through ¢, (or a,) and JTl.}f/ with i’ # i. Thus v does
not resolve any pair { pfl,,, ql.}i/ }. As aresult, vertices of F do not resolve any vertex pair
(P, ") fori’ € [nl, ' € {1,2}.

Then we show that any vertex v € V(G’) \ (X; U F) resolves at most one pair of
{Pil ) qil} and {P,‘zs qZZ}

For a vertex v € Ul \ X; fori € [n],h € {1,2}, dist(v, p!) = dist(v, ¢") —
2 < dist(v, g}). dist(v. ¢’ ™") = distv, N (s, ph) + P3G, j.ophl + 1 =
dist(v, p?fh). For a vertex pair {plh,/, qlh,/} such that i’ # i, there is a shortest path
from v to pl.h,/ or qlff/ going through 711./3/. Thus v € Ul.h \ X; fori € [n],h € {1, 2}
resolves exactly one vertex pair of {{pf’, qih} 1ie[n],h e{l,2}}.

Let P(mid(P*~"(, j, p/)), N, (s/, p!) be the subpath of P37h(i, j, pl') from
mid(P . p})) to NGl pl). Let Al = (Ujeq Pmid(P*G . p]),
Nsl__;(sl.j,p?))) \ {mid(P3~"(i, j, p!)) | j € [m]}. For a vertex v € Al fori €
[, h e (1,2}, dist(v, p/) = dist(v,¢") — 2 < dist(v, ¢"). dist(v,¢}™") =
dist(v, Jrffh) + 1 = dist(v, p?fh). For a vertex pair {pf’,/, ql.’i/} such that i’ # i,
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there is a shortest path from v to p;’// or qi}i/ going through nl.}}/. Thus v € Af.l for
i € [n], h € {1, 2} resolves exactly one vertex pair of{{pfl, ql.h} 1i € [n],h e{l,2}}.

For a vertex v € L \ {mid(P"(i, j, p}™) | j € [m]} fori € [n],h € (1,2},
dist(v, ql.h) = dist(v, pf’) —2 < dist(v, pih). There is a shortest path from v to p?fh or
qi3 —h going through nl.3_h. For a vertex pair { pf’,/, ql.}%/} suchthati’ # i, thereis a shortest
path from v to pf’,/ or qi}f, going through n!}l. Thusv € Lf \ {mid(P"(, j, p?_h)) |j €
[m]} fori € [n], h € {1, 2} resolves exactly one vertex pair of{{pf’, qih} i €ln],h e

{1,2}}.
Foravertex v € T1; U S; U H; \ (X; U Ail U A?) for i € [n], there is a shortest

path from v to pf,/ or qi}f, going through nlff/ with i =i’, i’ € {1, 2}. For a vertex pair
{ pl.h,,, qi}f/} such that i’ # i, there is a shortest path from v to pf’,/ or q;}, going through
rrl.}f/. Thus v does not resolve any vertex pair of {{plh, qih} ci€[n],h e{l,2}}.

For a vertex v € R, forr € {1, 2, 3}, there is a shortest path from v to pf‘ or ql.h for
i € [n],h € {1, 2} going through a, and nl.h. Thus v does not resolve any vertex pair
of {{pfl, ql.h} :i € [n], h € {1, 2}}. This completes the proof for the lemma. O

By the properties of true twins, we need to choose exactly one vertex of the true
twins (arbitrarily) of every forced vertex gadget in the resolving set of G’, which we
call a forced vertex. For convenience, we use f(-) to represent the chosen forced vertex
of the corresponding gadget F(-). Then we have the following lemma.

Lemma5 The forced vertices do not resolve any vertex pair {u’, vi} € P forr €
{1,2,3}andi € [n].

Proof We fix arbitrary integers i € [n], j € [m],r € {1,2,3},h € {1, 2}. For the
forced vertex (i, j, a,), dist(f" (i, j, ar), u')) = 24| P(xl', a;)|+|P(ay, ul)| =
2+ |P@), an)| + |Play, vi)| = dist(f"(, j,a,),v0) fori’ € [nl, ' € {1,2,3).
Thus f h (i, j, ar) does not resolve any vertex pair of P. Similarly, the forced vertices
fh(i, Jj. by, fh(i, J,cr) and fh(i, J, p?‘h) do not resolve any vertex pair of P. For
the forced vertex ™4 (i, j, h), dist(f" (i, j, h), ul,) = dist(f"(, j, h), vi) =
\P"G, j, pi~™) /24P (], ap) |+ P(ay, ul))]. Thus £4(i, j, h) does not resolve
any vertex pair of P. For the forced vertex f°““(i, j, h, r), dist(f°““(i, j, h,r), ulr,,) =
dist(f(i, j, h,r),vi) = 100 + 1) + 1 + |P(x!, a,)| + |P(a,, ul)|. Thus
fe€(, j, h, r) does not resolve any vertex pair of P.

We fix arbitrary integers i € [n],j € [m],r € {1,2,3}. For the forced
vertex f(s/,a,), dist(f(s/,a,),ul) = 2+ |P(a,,ul)| = 2 + |P(a,,vl)| =
dist(f(s/, a,), v) for i’ € [n]. For the forced vertex f (s}, ¢,), dist(f(s/, ¢,), ul) =
2+ Py, ul )| =2+ [Plcy, vi)| = dist(f(s], ¢,), vl) for i’ € [n]. Thus f(s/, a,)
and f (sij , ¢r) do not resolve any vertex pair of P,. Similarly, f (nih, ay) and f (nih, cr)
fori € [n],h € {1,2},r € {1, 2, 3} do not resolve any vertex pair of P,. For vertex
pairs of P, with 7’ € {1,2,3} and 7’ # r, dist(f(s,.j, ar),ul) =2+ |P(ay, mH| +
|P(a, TH| + [P(ay, ul)l = 2 + [P(ap, )| + |P(ay, a)] + [Pap, vD)| =
dist(f (s}, a,), vi) fori’ € [n].dist(f (s}, ¢,), ul) = 24P (er, T+ P(ay, w1+
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[Py, u)| =2+ [P(cr. t))] + [P(ar, a)] + [P(ar, o) = dist(f (5], ar), o))
for i’ € [n]. Thus f (s ,ar) and f (s ¢r) do not resolve any vertex pair of P,.

We fix arbltrary integers i € [n],r € {1, 2, 3}. For the forced vertex f (u,, ,)
or f2(ul, v’), obviously it does not resolve the vertex palr {ul, vi}. For a vertex pair
{u'/,v;“} Wlthl € [nlandi’ # i, dist(f! (u,, v ul) =2+ |P(a,,u =1+
|P(ay, u )| = 2+ |P(a,, u )| —14+|P(ay, v, )| = dlst(f (ur, r) ) Foravertex
pair {ur,,vr,} with i’ € [n] and ¥’ € {1,2,3}andr’ # r, dlst(f (u,, ,) u )
2+|P(ay, u£)|_1+|P(7T,‘ s ar)|+|P(7Ti ,ap)|+1P(a, Mr/)| = dlSt(f (urv Ur)v U,/)-
Asaresult, f1(ul, vl) does not resolve any vertex pair of P. For a vertex pair {uil, v;'/}
with i’ € [n] and i’ # i, dist(fz(u,‘,u') u")_2+|P(ar,u‘)|—2+|P(a,,u")| =
2+ |P(ay,u )| —2+|P(a, v, )| = d1st(f2(u,, ,) ) Foravertex pair {u 15 Uy }
with i’ € [n], ¥’ € {1,2,3}andr’ # r, dlst(fz(u v) u ) =24 |P(a,,u ) —
2+ |P(n a;)| + |P(n a)| + |P(a,, u ,)| = dlst(f2(u,, ,) v ,) As a result,
f 2(ur, ,) does not resolve any vertex pair of P. This completes the proof for the
lemma. O

Lemma 6 [Soundness] If G’ has a resolving set of size at most 34nm + 19n, then
(G, n, x,P) is a yes-instance.

Proof Suppose that S is a resolving set for G’ of size at most 34nm + 19n. Let

n
S =SnX. (Recall that X = J {sl.l, .., s7'}.) We claim that S is solution for
i=1
(G, n, x, P). Note that for the true twins {u, u’} of a forced vertex gadget, no vertex
resolves the vertex pair {u, u’} except u (or u’). It follows that S contains 34nm + 18n
forced vertices since there are 34nm + 18n forced vertex gadgets in G'. Since X has
no intersection with the vertex set of all forced vertex gadgets, |‘5A’ | < n.ByLemma4,
we get that |§ N X;| = 1 for each i € [n]. Thus |$’| = n. By Lemma 5 and the
assumption that S is a resolving set for G’, S resolves every palr {ul, v‘} in G’ for

re{l,2,3}andi € [n] ‘We can check that the distance betweens and v’ in G’ (and
the distance between sl. and vr inG') fori € [n],j € [m],i’ € [n],r € {1,2,3}is
the same as that in G. Thus & is a solution for (G,n, x,P). O

4.4 Treewidth Bound of the Graph

Since the completeness proof takes a large amount of space, before proceeding to that,
we first show that G’ is of constant treewidth. In fact, we will prove a slightly stronger
statement that G’ is of constant pathwidth by giving a search strategy with a constant
number of searchers.

Lemma 7 The pathwidth of G’ is at most 24.

Proof Following the characterization of pathwidth by Kirousis and Papadim-
itriou [12], we give a search strategy with 25 searchers. First, we put 9 searchers
on Ure{1,2,3}{ar’ by, ¢, }. The 9 searchers remain there until the end of the whole
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searching process. The searching process consists of two phases. We search the “left”
part of G’ in the first phase and the “right” part of G’ in the second phase.

The first phase of the searching process consists of n rounds. At the beginning of
the i-th round (i € [n]), we put 6 searchers on Uhe{l,Z}{Plhv qih, nih}. Here when we
say that we clean a path, this means that there are already two searchers guarding at the
endpoints (or the neighbor of the endpoints) of this path and we use 3 extra searchers
X, y, z such that x, y move alternately from one end of the path to the other end to
clean the edges of the path. When a searcher, say x arrives at the connecting point of a
forced vertex gadget, we put y, z on the true twins of this forced vertex gadget to clean
the edges of this gadget and then after removing y, z, put y ahead of x to continue the
alternating process unless x reaches the endpoint of this path. Then for each j € [m],
we

e put 5 vertices on N (sl.j).

e put 2 vertices on mid(P" (i, J, p?fh)) for h € {1, 2}.

e use 3 extra searchers to clean the paths P(s. ph) for h e {1,2}, the
paths P(s a,), P(s by), P(s ¢r) for r € {l1,2,3}, the paths Ph(z J,ar),
Ph(i,j,br), P, j, ¢, Ph(z,],pf My for h e {1,2},r € {1,2,3)}, the
paths P(r!',a.), P(nl',c,) for h e {1,2},r € {1,2,3} and the path
P(q!, mid(P3>~"(i, j, p!)) for h € {1, 2} successively (including all forced ver-
tex gadgets attached to the vertices on these paths).

e remove the above 10 searchers that are still on the graph.

At the end of the i-th round, we remove the 6 searchers on (¢ ){ Pl gl 7.
The second phase of the searching process consists of 3 rounds. During the r-th
round (r € {1, 2, 3}), we operate as follows. For each i € [n], we

e put 4 searchers on u v and the connecting pomt of Ft (ur, r) for he{l,2}.

° use2extra searchers to clean the paths P (a,, ul.), P(b,, u}), P(cr, u ) P(a,, vr),
P, ,v ) and P(c,, v ) (including the forced vertex gadgets Fh(u vi) forh €
{1,2} and the 1nc1dent edges of the connecting vertex of F” (ur, vh)).

e remove the above 6 searchers that are still on the graph.

This completes the description of the the search strategy.
As aresult, the node search number of G’ is at most 25. It follows that the pathwidth
of G’ is at most 24. O

5 Completeness of the Reduction

Since the proof of completeness for the reduction from n- MULTICOLORED RESOLV-
ING SETto METRIC DIMENSION takes up a large amount of space, we putitin a separate
section.

For every forced vertex gadget of G’, we choose a vertex from the true twins
arbitrarily as a forced vertex and let the set of all chosen forced vertices be F. In this
section, we show that if (G, n, x, P) has a solution S, then S’ = SU F is a resolving
set of size at most 34nm + 19n for G’. Formally, we will prove the following lemma.
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o e complereness of e v o5t ® K
reduction U 10 16 18 17 19 20
I 13 23 22 21 24
S 12 26 28 29
L 14 25 27
H 11 30
R 15

Lemma 8 (Completeness) If (G, n, x, P) is a yes-instance, then G’ has a resolving
set of size at most 34nm + 19n.

The proof of Lemma 8§ consists of a list of lemmas. Suppose that V(G’) = V; U
Vo U ... U V;. Our general method is to show that for each i € [¢],

(i) every internal vertex pair of V; is resolved by &’
(i) every vertex pair of V;» x V; for each i’ < i is resolved by S'.

Note that when we mention the vertex pairs of V;; x V;, we ignore the vertex pairs
with two identical vertices by default as it’s meaningless in our problem. Let U =
Ui Ui T = Uiep Wis H = Uiepy His S = Uiep Sio L = Ujepy Li and R =
re(1,2,3) Rr. Table 1 shows the indexes of the corresponding lemmas.
First of all, We have the following claim.

Claim 1 Every vertex pair {uil, vi/} in G’ forr € {1,2,3},i’ € [n] is resolved by S'.

Proof Since (G.n,x,P) is a yes-instance, dlst(;(s ul) = distG/(sl.j,ui/),
dlst(;(s ) = dlSt(;/(Sl , v,) fori,i’ € [n],j € [m],r € {1,2,3}, every vertex

pair {ur , vr,} in G’ forr € {1,2,3}and i’ € [n] s resolved by some vertex of S C §'.
|

Lemma 9 shows that every vertex pair with at least one vertex from a forced vertex
gadget is resolved by the solution S’.

Lemma9 For any vertex vy € F, every vertex pair {x, y} € {vy} x V(G') \ {vs}is
resolved by S'.

Proof Without loss of generality, suppose that vy, va, v € F (u v!) for some r €
{1,2,3},i € [n], where v, is the connecting vertex of F! (u vl), v, vp are the true
twins and v; € S’. Then obviously every vertex pair of {v;} x V(G’ )\ {v1}isresolved
by vy. Every vertex pair of {vz} x V(G’) \ {vz} is resolved v1 except the vertex pair
{v2, vc}. Let w s be an arbitrary vertex of S”\ Fl(u! o r) Then there is a shortest path
from w ¢ to v, going through v,. Thus dist(w ¢, v2) = dist(w s, ve) + 1 and {v2, v} is
resolved by w 7. Forany vertexu € V(G)\ F!(ul, v}), dist(vy, u) > dist(vy, ve) = 1.
Then the correctness of the lemma follows. m|
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5.1 Internal Vertex Pairs of the Vertex Sets

In this subsection, we prove Lemmas 10 - 15 in Table 1.

Lemma 10 Every pair of distinct vertices x, y € Uie[n],he{l,Z} Ul.h is resolved by S'.

Proof First, we show that every pair of distinct vertices x, y € (U, ¢(1.2) U fori € [n]
is resolved by S’. We fix arbitrary integers i € [n], j, j/ € [m] and h € {1, 2} such
that j' # j. ;

Suppose that x,x' € P(sl ) D; ) For a Vertex X € P(s D; ) let P(s x) be the
subpathofP(s )froms tox and|P(s ,x)| = €. Since dist(f(i, j', a1), x) =
34+20n+1) — Ex, f (i, j ay) resolves every palr {x x'} such that £, # £,/

Suppose that x € P(s p[) and y € P(sl » D ) such that j/ € [m] and
Jj # Jj. We define £, and £y in a similar way to that of £, in the second paragraph.
dist(f™4(i, j,3—h), x) = 10(n'~|—1)+£x if ¢, > land dist(f™4 (i, j,3—h),x) =
10(n + 1) +2if €, = L dist(f™ (@i, j, 3 —h), y) = min 2+ |P37"G, j, pHl/2 +
PG Py P3G L pII 2+ PGs] L pDIHIPG) L pl)I—£y) = min 2+
30(n+ 1) +£,,50(n 4+ 1) — £,) > 30(n + 1) > dist(f™4(i, j,3 — h), x) and the
equalities hold if and only if x = y = p Thus every pair {x, y} is resolved by
fmGL G 3 = ). ,

Suppose that x € P(sl . D )\{s }andy € P(sl ,pl h)\{sij}.We define £, and £,
in a similar way to that of £, in the second paragraph. Then dist(f" (i, j’, a1), x) = 3+
20(n+1)—€, < 2420(n+1) and dist(f" (i, j ar), y) = min (1+|P"(, j, p?fh)l—i-
Ly, 34 PGl el + PG 7" el + PG, pi ™) = €) = min (142001 + 1) +
£y,3+40(n + 1) — £,) > 2+ 20(n + 1). We see from the two equations that
dist(f" (i, j,ar), x) # dlst(fh(z, j.a1),y) unless £ = £, = 1. We can check that
fha, j, p?_h) resolves the pair {x, y} with £, = £, = 1. Thus every pair {x, y} is
resolved by fha, g, al)orfh(t J, p3 h).

Suppose that x € P(sl ,p,) and y € P(s; /, D ). We define ¢, and £y in a
similar way to that of ¢, in the second paragraph Then dist( f "”d(z j h),x) =
min 2 + [PAG, j, p} /2 + €, 2+ PG, jo p}7DI/2 + 1PGs] L P = €0 =
min (2+10(n+1)+£x, 2+30(n+1) ly) < 2+20(n+1).d1st(f”“d(z, Jj,h),y) =
min ([P, j. p}™I/2HP G pITIHIPGT L pI T =y 24P G 2+
|P(sl.j ,pf)| +4£y) =min 50(n + 1) —£,,2+30(n + 1) +£,) > 2+ 30(n + 1).
Thus every pair {x, y} is resolved by Fmd, joh).

Finally we show that every pair of distinct vertices {x,y} € Upc1.2) Ul x
Unerr.2) Ul.}f/ with i,i’ € [n] and i # i’ is resolved by S&’. We fix arbi-
trary integers i,i’ € [n],j,j € [m] and h,h’ € {1,2} such that i # i’
Let x € P(siJ,pf) and y € P(sij,,pf’,/). We define £, and £y in a similar
way to that of £, in the second paragraph. Then as we show in last paragraph,
dist(f™4 (G, j, h),x) = min (2 + IO(n + 1) + 4,2 +30n + 1) — &) <
242000 + D). dist(f"G, . b, s ) = minep2n( + PG p I +

PG, el + 1P (e, s chst(f’"’do, j ), y) = min dist(f™4G, j, h),s)) +
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002+ PR,y p 712 + PG enl + PG el + 1PG)L iDL — &) >
14300 + 1) > dist(f™(i, j, h), x). Thus every pair {x,y} is resolved by
f™d (G, j, k). This completes the proof for the lemma. O

Lemma 11 Every pair of distinct vertices x,y € Uie[n],re{1,2,3} H; , is resolved by
S
Proof First we show that every vertex pair of H; , x Hy , suchthati’,i € [n]andr €
{1, 2,3} isresolved by S’. We fix arbitrary integers i € [n], j € [m]andr € {I, 2, 3}.

Given two distinct vertices xi, x» € P(s- a,), we can verify that f (nl.l,ar)
resolves the pair {x1, x»}. Similarly, two dlstlnct vertices xl, x2 € P(s cr) are dis-
tlngulshed by f(n cr). Suppose thatx € P(sl ,ar) \ {s },ye P(sl , by )\{s }and
z € P(s cr)\{s } Let P(s LX), P(s y) and P(s 7) be the subpath of P(sl ,ay),
P(s/, b,) and P(s/,c,) respectively. Let |P(s{',x)| = £y, |P(s],y)| = ¢, and
|P(s/, 2)| = ¢,. Similarly, for a vertex y' € P(s/, b,), we define |P(s/, y)| = .
Since dist(f™4(i, j, 1), y) = 2+|P(, j, p})I/2+ £y and dist(f™4(, j, 1), ') =
2 + |PY, j, pl.z)l/2 + £y, two distinct vertices y and y’ are distinguished by
G, . dist(f(r),a), x) = 2 + |P(sj,a,)| — L. dist(f (7}, a), b)) =
min 2 + [PGs7 L an| + [P(s) b)) = 242001 + 1) + 10 + 200 +1) +5.
dist(f(nil,a,), y) = min (2+|P(sij,a,)|+€y,dist(f(rr ar), b )+|P(s by)|—1£y).
For a vertex pair {x, y} such that dist(f(rril,a,),y) = 2+ |P(si sap)| + Ly,
obviously the pair is resolved by f (J'rl.l,a,). For a vertex pair {x, y} such that
dist(f (), ar), y) = dist(f(x}, ar), b)) + |P(sij,br)| — Ly, dist(f (]}, ar), y) =
40m + 1) + 17 > dist(f(nil,ar),x). Thus every pair {x, y} is resolved by
f (nl.l,ar). Similarly, every pair {y, z} is resolved by f (nil, ¢y). For a vertex pair
{x, z}, dist(f(rrl ,6r),2) = 2+ IP(s' )| — L, < 20(n 4+ 1) if z # ¢ and
dlst(f(n, ,Cr), Cr) = 2. dlst(f(rrl ,Cr),X) = mm (2+|P(s cr)|+HLy, |P(7rl.1, )|+
|P(7Tl ,an)| + |P(Sz ,ap)| —L4y) =2+ |P(s )| > dlSt(f(]Tl-l, ¢r), 7). Thus every
pair {x, z} is resolved by f (nl ,Cr).

Let i’ € [n], j' € [m] be integers such that i’ # i or ] # j. Suppose that
x € P(sl ,dy) \ {a;}, y € P(sl ,br) \ {b } and z € P(sl ,cr) \ {cr} Suppose
that x’ € P(si, va) \ {ar}, v € P(si,,br) \ {b;} and 7' € P(si,,cr) \ {c/}.
We define £, £y, £;, £y, £y and £, in a similar way to that of £, in the second
paragraph. For a pair {x, x'}, s1nce dlSt(f(JT a),x) =2+ |P(s‘ ay)| — £, and
dlst(f(nl ,an),x) = 2+|P(s J ,ar)| — 0y, f(nl , a,) resolves every pair {x x"} such
that |P(sl ,ar)| —ly £ |P(s ) ,ar)|—£ Smcedlst(f(sl ,dy), X) = |P(sl ,ay)|—
and dlst(f(s ar) xX)=2+ |P(s " ,a,)| — Ly f(sl , ar) resolves every pair {x, x }
such that |P(9l ,ap)| — 4y = |P(s, ,a;)| — £,. As a result, every pair {x, x'}
is resolved by f (nil,a,) or f (sl a,). Similarly, every pair {z, 7'} is resolved by
f(rrl.l, cy) or f(sij, ¢y). For a pair {y, y'}, there are two cases. Case 1: i = i’ and
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Jo# st G y) =24+ PG p,)|/2+e dist(f™4(i, j, 1),y') =
min 2+ PG, j. pD)I/2 + | PG5, br)|+|P<s,,br>|—z I+1P Y, j. p)I2+
|PL(i’, j ,br)|+£y/—1)1fy ;ési, andd1st(f””d(t,1, 1),s i,) =2430(n+1).Ifa
pair {y, y'} satisfies that dist( (i, j, 1), y') = 2+|P'(, J, pl-2)|/2+|P(sij, b))+
|P(si/;/, b;)|—1£,/, obviously f™d (i, i, 1) resolves this pair. Thus if a pair {y, y'} is not
resolved by f™i4(i, j, 1), then we have dist(f™4 (i, j, 1), y) = 2+ 10(n+1)+ £, =
dist( ™4, j, 1), y) =30(n+ 1) + £y, ie £y — £y = 20(n + 1) —z For this
pair, dist(f™4’, j’, 1), y) 2+ 10(n + 1) +e, < dist(f™4 i, j', 1), y) =

min (2 + 10(n + 1) + |P(s % ,b )|+ |P(s b)) — £y, 30(n + 1) + £y). Thus in this
case, every pair {y, y} is resolved by f””d(t j,1)or fMd@’ 1. CaseZ i ;éz
dist(f™4@i, j, 1), y) = 2+ |P'(. j, p3>|/2+ey dist(f™4 (i, j, 1), s)) =
|PYG. j. p?)|/2+min, 6{123}(|P(7Tl ,Cr)|+|P(Squ)|) dist(f™4 @i, j, 1), y)—
min 2+ PG, j, p)I/2+|P(s], b)|+|P(sJ,,b)|— y,dlst(f”“d(l j.D.s) H+
Ly). Ifa pair {y, y} satisfies that dlst(f””d(z i, D, y) =24+ P, j, p,2)|/2 +
|P(s by)| + |P(s by)| — £, obviously f™d (i, j 1) resolves this pair. Thus if a
pair {y, y'} is not resolved by f™4(i, j, 1), then we have dist(f"4@, j, 1), y) =
2410 + 1) + £, = dist(f™4@, j, 1), y) = dist(f™4(, j, 1),s{;’) + Ly, ie.
£y — £y = dist(r}, s{}’) — 1. For this pair, dist(f™4(’, j', 1), y’) =2+10(1+1) +
Ly < dist(f™4@’, j’, 1), y) = min 2 + 10(n + 1) + |P(s b)) + |P(s by)| —
Ly, dist( ™', j', 1), sJ) + Zy). Thus in this case, every pair {y, y'} is resolved
by f™4@, j, 1) or f”“d(z ,j', 1). Tt follows that every pair {y, y’} is resolved
by f™4(i, j, 1) or f™4(’, j', 1). For a pair {x,y'}, there are two cases. Case 1:
|P(s' ay)| > 20(n+ 1) +10- 1 = mingefm) | P (s, ar)|. Then dlSt(f(]Tl ,a,) ) =
min (2+|P(s/ ,ar)|+Zy ,2420(n+1)4+10-14+20(n+1)+5- 1+1+|P(s, , b)) —
Ly) = dlSt(f(Sl ,ay),y") and dlSt(f(JTt ,ar),x) = 2+ |P(st a)| — by =
dist(f(sl'.i, a,), x) +2. In this case, {x, y} is resolved by f(nl.l, a,) or f(s[.j, a,). Case
2:|P(s{,a)| =20(n+1)+10-1 = minpepm) | P(s”, ar)|. Thendist(f (s}, a,), x) <
20n + 1) + 10 < dist(f(sij,a,), y’). Thus in this case, {x,y’} is resolved by
f(sij, a,). It follows that every pair {x, y’} is resolved by f(nil, a,) or f(sl.j, a,). For
a pair {x, 7'}, dist(f (%}, a,), x) = 2 + |P(s‘ a) — € = dist(f(s],a,), x) + 2,
and dlst(f(nl ,a,),7) = min2 + |P(s,,a,)| + £, |P(7T ar)| + |P(nl ,Cr)|
+ |P(s,,c,)| — £y < dlSt(f(Sl ,a;),7) = min (2 + |P(s/,a,)| + £,,2 +
|P(71 a)| + |P(7T c)l + |P(s,,cr)| — £,). Tt follows that every pair {x, 7'}
is resolved by f (nl ,ar) or f (sl ,ay). For a pair {y, 7'}, there are two cases.
Case 1: |P(s,,cr)| + |P(s,,b ) > 20(n + 1) — 10n + 20(n + 1) + 5n +
1 = mingepm] (|P(s/, )l + |P(s/,b ). Then dist(f(nl ,Cr),y) = min (2 +
|P(sl ser)|+4y,3+40(n + 1) — 5n + |P(s b)) —1ty) = dlst(f(s,,cr) y) and
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dist(f(r), c,), ) = 2+ |P(s), el — € = dist(f (s, , ), 2') + 2. Tn this case,
{y, 7'} is resolved by f(rr!,c,) or f(s},c,). Case 2: |P(s), c))| + |P(s), by)| =
20(n+1)— 10n+20(n+1)+5n+1. Then dist(f (s} , ¢,), y) > 2420(n+1)—10n >
dist(f(si];,,c,),z/). It follows that every pair {y, 7’} is resolved by f(rrl.l,c,) or
f (si/;/, ¢r). This completes the proof to show that every vertex pair of H; , x H;s,
such thati’,i € [n] and r € {1, 2, 3} is resolved by S’.

Next we show that every vertex pair of H; , X H;,» such thati,i’ € [n], r,r’ €
{1,2,3} and r # r’ is resolved by S’. We fix arbitrary integers i, i’ € [n], j, j' € [m]
and r, r’ € {1,2, 3} such that r # r’. Suppose that x € P(s ar) y € P(s b;),
z € P(s ¢), x' € P(s,,a,/) y € P(s,,b ) and 7 € P(s/,cr/) We define
Ly, Ly, Ly, Ly, £y and E/ in a similar way to that of £, in the second para-
graph. For a vertex pair {x, x'}, there are two cases. Case 1: i = i’ and j = j".

Then dist(f (7!, ar),x) = 2+ |P(s],a))| — €, dist(f (7}, a;), x') = min 2 +
P(s) s anl+e, |PG) adl+I PGl ap) |+ P (5], an)| = o). dist(£ (!, @), x) =
|P(s a,)| — ¢y when x # a, and dlst(f(sl ,ay),ay) = 1. dlst(f(sl ,a), x') =
min (|P(sl a)| + €,,2 + |P(rrl a;)| + |P(7r a,/)| + |P(s a,’)| — £,). Thus
for the vertex pair {x, x’} which is not resolved by f (s a,) i.e.dist(f (sl ,dy), X) =

dist(f(sl'./,ar),x/) =2+|P(ni1,a,)|+|P(ni1,ar/)|+|P(sl a,)| — £, it satisfies that
dist(f (!, a,), x) > dist(f(s/, a,), x) and dist(f (x), a,), x') < dist(f(s!, a,), x').
Thus in this case, every pair every pair {x, x’} is resolved by f (sl.j ,ap)or f (yrl.l, ar).
Case 2: i # i or j # J. dist(f(s{,a,),x) = |P(s],a,)| — £, when x # q,
and dist(f(s ay),ay) = 1. dlst(f(s a)),x’) = min 2 + |P(sj;/,a,)| + Ll 2 +
|P(7r a.)| + |P(7t ,ap)| + |P(s ! ,a,/)| — £,). For the vertex pair {x, x'} which is
not resolved by f(si ,ay),ie., d1st(f(sl. ,a;),X) = dlst(f(sl. ,a,), x'), it satisfies that
dist(f (!, ar), x) > dist(f(sij, ar), x) and dist(f (r}, a,), x) < dist(f(sij, ay), x).
Thus in this case, every pair every pair {x, x'} is resolved by f (sl.j ,ap)or f (711.1 ,ay).
It follows that every pair {x, x'} is resolved by f (Sij ,ap) or f (ni] , a,). For a vertex
pair {z, z/ } similarly it is resolved by f (s[j , c,) or f (Hil , ¢r). For a vertex pair {y, y'},
let {ur , v/} be the vertex pair resolved by s/ 57, i.e. |P(sl.j, by)| = 20(n + 1) +5i, + 1.
Then dlst(f (u vr’) y) =40m+1)+1-14, = dlst(fz(u, , vr) y) when
y # s . We observe that there is a shortest path from f” (u, , vﬁ’) (h € {1,2}) to

y’ which either goes through one vertex of {a,, ¢,}, then goes through sij;,, finally
reaches y’ or goes through one vertex of {a,, ¢,}, then goes through some vertex
s];,” (i"” € [n], j” € [m]), then goes through b,/, finally reaches y’. Thus we get
that dist( f! (ur ) vr’) y) = dlst(fz(u vi“), y') + 1. Thus every vertex pair {y, y'}
such that y # s is resolved by £y, v/) or fz(ui’, vi’). For a pair {sl'.j, y'}, obvi-
ously dlSt(fm”l(l, 7. D.s; ) < dlst(f”“d(i, J, 1), y). Tt follows that every vertex
pair {y, y'} is resolved by fl(u?, Ui’), f2(u£’, vi’) or f™d(i, j 1). For a vertex
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pair {x, y'}, there are two cases. Case 1:i # i’ or j # j'. dist(f(w!, a,),x) =2 +
|P(sl.j, ay)|—4,. dist(f(nl.l, ar), by) = 24ming e (1P (s7, a;) [+ P (sf, byr)]). Then
dist(f (x}, a,), y') = min Q+|P (s} , ap)|+Ly, dist(f (r}, a,), by)+|P(s) , byl —
Cy). dist(f(s],a), x) = [P(s],a)| = £ < dist(f(x],a,), %) if x # a and
dist(f(si], a;),ay) = 2. dist(f(sl.j, a),y) = dist(f(nil, a,), y'). Thus in this case,
every pair {x, y'} is resolved by f (7}, a,) or f(sij, ay).Case2:i =i and j = j'.
dist(f (s/, a,),y') = min (P (s, a) | +€y, dist(f(x), a,), b+ P(s) b —L,0).
If dlst(f(sl ,a.),y) = |P(s. ar)| + £y, then {x,y’} is obviously resolved by
f ( a,) Otherwise, for a vertex pair {x, y'} which is not resolved by f (s ay),
dlst(f(sl ,dy), X) = dlst(f(st ,ay),y) = dlst(f(nl ,ay),y) < dlst(f(nl ,dy), X).
Thus in this case, every pair {x, y’} is resolved by f (nl ,ap) or f (sl , a,). It follows
that every pair {x, y'} is resolved by f(x!, a,) or f(sij, a,). For a vertex pair {y, 7'},
similarly we can show that every pair {y, z'} is resolved by f (nl ,cr)or f (s ' ¢r). For
a vertex palr {x, 7'}, there are two cases. Casel:i #i'orj # j. dlSt(f(?Tl ,ay), X) =

2+ |P(sl sap)| — 4y > dlSt(f(S sar), x)if x # ar dlst(f(n, ,ar),z) = min (2 +
IP(S/,ar)IJrﬁ |P(n}. ap)|+| P} acr’)|+|P(S/vCr’)|_ 2)- dlst(f(sl . ar), 7)) =
min (2 + IP(S /' a)] +.2+ |P(r!, a) + PG} e + IP(S/ o) —4Ly) =
dlst(f(n, ,a;), 7). Thus in this case, every pair {x 7'} is resolved by f(rr a,) or
f( 7,ar). Case 2: 0 = i"and j = j'. dlst(f(sl ,a,),7) = min (|P(Sz ,an)| +
£r,2 + IP(JT,-I,ar)I + |P(r} )] + IP(S/ so)l = &) If dlst(f(sl sar), 7)) =

|P(sij, a;)| + €, Then {x, 7'} (x # a,) is obviously resolved by f(si , a,). Other-
wise, for a vertex pair {x, z'} which is not resolved by f(sl.j, a,), dist(f(nil, a,), x) >
dist(f(sl.j, a,), x) = dist(f(sij, ar),z') > dist(f (z!, ar), z'). Thus every pair {x, 7'}
is resolved by f (JTl»l ,ap)or f (sij , ar). It follows that every pair {x, 7'} is resolved by
f (nl.l ,ay)or f (sl.j , ar). This completes the proof for the lemma. O

Lemma 12 Every pair of distinct vertices x,y € Uie[n],he{1,2} Slh is resolved by S'.

Proof Let x € P(nih, a,) for arbitrary integers i € [n],h € {1,2},r € {1,2,3}.
Letx' € P (ni’f/, a,) for arbitrary integers i’ € [n], K’ € {1,2}. We fix an arbitrary
integer j € [m]. Let P(x, a,) be the subpath of P(nih, a;) and £, = |P(x, a,)|. Let
P(x’, a,) be the subpath of P(ni}f/, a;)and £, = |P(x’, a,)|. For a vertex pair {x, x'},
dist(f(sl.j, ar),x) =244, and dist(f(sij, a,), x') =2+ £,,. Then every vertex pair
{x,x’} such that £, # £, is resolved by f(sl'./, a,). Since dist(f(nl.h, ay),x) = Ly
if x # a, and dist(f (), a,),x") = 24+ €y ifi # i’ or h # I, every vertex
pair {x, x'} such that £, = ¢, is resolved by f (nl.h, ay). It follows that every vertex
pair {x, x’} is resolved by f (yrih, ay) or f (Si/ ,ar). Lety € P(nl.h, ¢) for arbitrary
integers i € [n],h € {1,2},r € {1,2,3}. Lety' € P(nl.}f,,cr) for arbitrary integers
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i" en),h €{1,2}. Similarly, we can show that every vertex pair {y, v’} is resolved
by f(n,'hv cr) or f(s,'j’ Cr).

Let x; € P(nih,ar) for arbitrary integers i € [n],h € {1,2},r € {1, 2,3}. Let
Xy € P(Trl.}f/,ar/) for arbitrary integers i’ € [n], K’ € {1,2},r € {1, 2,3}. We fix an
arbitrary integer j € [m]. We define £,, and £, in a similar way to that of £, in the first
paragraph. For a vertex pair {x, xo} such that r # r/, dist(f(sl.], ar),x1) =2+ 4Ly,
and dist(f (s}, a,), x2) =2+ |P(x}t, a))| + | P(], ap)| — zxz =24+2001+1) —
Ly, > dist(f(si],ar),xl) unless x; = TL’ih,xz = JTI.}f/ and 71 #* JT, . The vertex
pair {nih, 71’.}5/} is obviously resolved by f"(i, j, a,). Thus every vertex pair {x;, x2}
such that r # r’ is resolved by f(si],ar) or fh(i, j.ar). Let y; € P(rrih,cr) for
arbitrary integers i € [n],h € {1,2},r € {1,2,3}. Let y» € P(ni}f,, ¢,r) for arbitrary
integers i’ € [n],h’ € {1,2},r" € {1,2,3} such that r # r’. We define ¢,, and
Ly, in a similar way to that of £, in last paragraph. Similarly, we can show that
every vertex pair {y1, y2} such that r # r’ is resolved by f(sl ,cr) or f'(, j,a).
For a pa1r {x1, 21}, d1st(f(sl ,ar),x1) = 2+ £y, and dlst(f(sl ,ar),y2) = 2 +
|P(nl., ,ar)| + |P(rrl., o) =Ly, =24+20(n+1) — £y, > dist(f(sij, a,), x1) unless
x| = rrih, Vo = rrl.]?/ and rrih #* niIZl. The vertex pair {rrl.h, ni}f/} is obviously resolved by
fh(i, Jj.ar). Thus every vertex pair {x1, y»} is resolved by f(si], a,) or fh @i, j,ap).
This completes the proof for the lemma. O

Lemma 13 Every pair of distinct verticesx, y € U nlhe(l,2), jeiml re(l,2,3) G, j,r)
is resolved by S'.

Proof Let x1,xy € ph (@, j,ar) be two distinct vertices for arbitrary integers i €
[n],j € [m]l,h € {1,2},r € {1,2,3}. Let j' € [m] be an integer such that j # j’.
Obviously the pair {x1, x»} is resolved by f”(i, j’,a,). Similarly, the vertex pair
{y1, y2} for two distinct vertices y1, y» € Ph(i, J, by), the vertex pair {z1, zo} for two
distinct vertices z1, z2 € Ph (i, j, cr), and the vertex pair {w;, wy} for two distinct
vertices wy, wy € P (i, j, p?_h) are resolved by f"(i, j, a,).

Letx € P"(i,j,a.),y € P"(i,j,b,),z € P"(, j,c,) and w € P"(i, j, p3 h)
for arbitrary integers i € [n],j € [m],h € {1,2},r € {1,2,3}. Let x’ €
PY (', ' an),y € PG, j/ by), 2 € PP, j ep) and w' € PP, ', p3)
for arbitrary integers i’ € [n],j/ € [m],h € {1,2},r € {1,2,3}. We define
by = dist(x,nih). In a similar way, we define £y, £;, €y, £y, £y, £y, £yy. For a
pair {x, y}, dist(f" (i, j,c,), x) = 2 + £y and dist(f"(, j,c,;), y) = 2 + £y. Thus
fh(i, J» ¢r) resolves every pair {x, y} such that £, # £,. Since dist(fh(i, Jj.ar),x) =
6 if x # ml, dist(f"G, j,a), 7" = 2 and dist(f"G, j,c).y) = 2 +
Ly, i@, j,ay) resolves every pair {x,y} such that £, = £y. Thus every pair
{x, y} is resolved by fh(i, j,ay) or fh(i, J,cr). In a similar way, we can show
that two distinct vertices from [ jetmlre(1,2,3) 1", j,r) are distinguished by
S’. For a pair {x,y’} with i = i’ and h # K, dist(f"(, ] ), x) = 2+
6 < dist(f"G, j,e),y) = min 2 + |[P(x", a)| + |P(x a0 + €,2 +
|P(l G, j', b)) + |P(l G, j', b)) — €y). Thus every pair {x,y'} with i = i’
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and h # h' is resolved by f"(i, j, c,). Similarly we can show that every vertex pair
of Ujepmyreqi2.3) ", j,r) x Ujetmlren 23 13", j, r) is resolved by S/.. For
a pair {x, '} with i # i', dist(f" (i, j, ¢,), %) = 2+ Lo dist(f" (G, jo ), 5)) =
minge(1,2,3}(2 + |P(x]', ca)l + |P(s}, , ca)]). Thus dist(f" (i, j, ¢;), y') = min (2 +
[Pl anl+ Pl ap)l + €y, dist(f" G, jo e)ssh) + 1+ PG, /bl =€),
We can see that dist(f" (i, j, ¢,), x) < dist(f"(i, j, c/), y') unless &x = 20(n + 1)
and ¢, = 0.1f £, =20(n +1)and £,y =0, dist(f" (G, j,ar),y) =24+20(n + 1) >
dist(f(i, j,ar), x) = 20(n + 1). Thus every pair {x, y'} with i # i’ is resolved
by f"(,j.c,) or f(i,j, a;). Similarly we can show that every vertex pair of
Uje[m],re{1,2,3} "G, j, r) x Uj’e[m],r’e{1,2,3} " (', j’, r') with i # i’ is resolved
by &’. This completes the proof for the lemma. O

Lemma 14 Every pair of distinct vertices x,y € Uie[n],he{1,2} Ll}.l is resolved by S'.

Proof First we show that every vertex pair of Lf.’ X Lf.' is resolved by S’ for
i € [n],h € {1,2}. We fix arbitrary integers i € [n], j € [m] and h € {l1,2}.
For a vertex x € P(q!, mid(P>~"(i, j, p!)), let P(g!',x) be the subpath of
P(ql, mid(P3>~"(i, j, p!))) from g" to x and let |P(q", x)| = ¢,. For two dis-
tinct vertices x1,x2 € P(ql', mid(P37"G, j, pM)), dist(f™(i, j,3 — h),x1) =
1+ |P(q!, mid(P3>~"(i, j, p!)| — €y, = 30(n + 1) — £y, and dist(f™(i, j,3 —
h),x3) = 30(n + 1) — £,. Thus f™id (i, j. 3 — h) resolves every pair {xy, x3}. Let
x € P(q!, mid(P37"(, j, p")) and x' € P(g", mid(P3~"(i, j’, p))) with some
integer j' # j.dist(f"(i, j,a1),x) = 3 + £, and dist(f"(i, j,a1),x") = 3+ L.
Thus f”(i, j, ar) resolves every pair {x, x"} such that £, # £,. For a pair {x, x"} such
that £, = £y, dist(f™4(, j,3 — h),x) = 30(n + 1) — £, and dist(f™4@, j,3 —
h), x') = min (1 + |P(g', mid(P>~" @, j, p)DI + €, 1+ |PPG, j, pI/2 +
|P31G, s piI/2 + IP(gfs mid(P>" (G, ', pi)] = €)= min B30 + 1) +
0y, 50(n + 1) — £,). Thus dist(f™4(i, j,3 — h), x) # dist(f™4@, j,3 — h), x)
and f™4 (i, j, 3 — h) resolves this pair. It follows that every pair {x, x’} is resolved
by f™4G, j,3—h)or f1, j,a).

Next we show that every vertex pair of Lf.’ X Lf’_h is resolved by &’ for
i € [n],h € {1,2}. We fix arbitrary integers i € [n], j € [m] and h € {1, 2}.
Let x € P(g!, mid(P37"(i, j, p!))) and y € P(g} ™", mid(P" G, j, p;™"))). We
define £, and £, in a similar way to that of £, in last paragraph. For a pair {x, y},
dist(f™(i, j,3—h), x) = 30(n+1) — £ and dist(f™“ (i, j,3—h), y) = min (2+
|P371G, j, pI/24+y, 34 1P(g] ™" mid(PR G, j, p=M)I+IPP71G, j, phl/2+
|P"(i, j, p™")|/2 — £y). For a pair {x, y} which is not resolved by f"(i, j,3—h),
there are two cases. Case 1: dist(f™4(i, j,3—h), y) = 2+|P37"(, j, pMl/2+¢, =
2+ 10n+1)+¢, <2+50n+1) — £, when £, < 20(n + 1). We have
dist(f™4(, j,3 — h),x) = 30(n + 1) — £, = dist(f™9@, j,3 — h),y) =
24+10(n+1)+4£y,ie £y +£y =20(n+1) —2. Case 2: dist(f™4 @, j,3—h),y) =
2+ 50(n + 1) — £, when £, > 20(n + 1). We have dist(f™4 @, j,3 —h),x) =
30(n + 1) — £, = dist(f™4@, j,3—h),y) =2+50(n + 1) — Ly, ie by — L, =
20(n + 1) + 2. dist(f37"(, j,a1),y) = 3+ &y dist(f*7 "G, j,a1),x) = 3 +
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|P(? ™", a))|+ P (!, ar)| + €, when £, < 10(n+1) and dist(f3~" (i, j, a1), x) =
2+ P37, j, pMI/2 + 1P (gl mid(P37" (i, j, p")))| — £x when £, > 10(n + 1).
For a pair {x, y} which is not resolved by f3_h (i, j,ay), there are two cases. Case
1 dist(f37"G, j,a1), y) = dist(f37"(, j,a1),x) when £, < 10(n + 1), ie.
€y — €y = 3420(n + 1). Case 2: dist(f>"(i, j,ar),y) = dist(f3>"(, j, a1), x)
when £, > 10(n + 1), i.e. £y, + £, = 40(n + 1) — 2. Thus we see that if a pair
{x, y} is not resolved by f™4(i, j,3 — h), then it is resolved by f37"(i, j, ar). It
follows that every pair {x, y} is resolved by f™9(i, j,3 — h) and f37"(i, j, a1).
Let x’ € P(qih,mid(P3_h(i,j/, pf))) with some integer j/ € [m] and j' # j.
Then dist( f™4(i, j',3 —h), x’) = 30(n + 1) — £, and dist(f™4 (i, j', 3 —h), y) =
2+|P371G, j', phI/2+€, = 24+10(n+1)+¢,.Forapair {x', y} whichis notresolved
by f™(i, j', 3—h),itsatisfies that 30(n+1)— €, = 2+10(n+1)+Ly,i.e. £ +Ly =
20(n + 1) — 2. Similar to vertex x, for vertex x’, dist(f37"(, j,a1),x") = 3 +
|P (™" a) |+ P (!, ay)|+€, when £, < 10(n+1) and dist(£>~" G, j, a1), x') =
2+|P37hG, j7, phI/2+ 1P (gl mid(P3" (i, j, p")))| — €, when £ > 10(n+1).
Thus for a pair {x’, y} which is not resolved by f3~"(i, j, ay), there are two cases.
Case 1: dist(f37"(i, j, a1), y) = dist(f>7"(, j,a1), x") when £ < 10(n + 1), i.e.
€y — €y =3+20(n + 1). Case 2: dist(f37"(i, j,a1), y) = dist(f37"(i, j, a1), x)
when £, > 10(n +1),1i.e. £, + £, = 40(n + 1) — 2. Thus we see that if a pair {x', y}
is not resolved by f’"id(i, J', 3 — h), then it is resolved by f3’h(i, j,ap). It follows
that every pair {x’, y} is resolved by f™¢(i, j',3 — h) and f37"@, j, ay).

Finally we show that every vertex pair of Lf’ X Lf’,/ is resolved by S’ for
i,i’ € [n]l,h,h € {1,2} and i # i’. We fix arbitrary integers i,i’ € [n], j, j €
[ml,h,h' € {1,2} such that i # i’. Let x € P(g", mid(P>~"(, j, p!))) and
y € P(ql.ff/, mid(P3~1 (i, j', pf,/))). We define £, and ¢, in a similar way to that of
£, in the first paragraph. For a pair {x, y}, dist(fmid(i, J,3—h),x) =30(n+1)— ¥,
and dist(f" (@i, j,3 — h),y) = min 2 + |[P3G, j, pMI/2 + [P ™", a))| +
PG apl + €y, 1+ P0G, j, p1/2 + 1P@ " apl + P an| +
[P L PO+ IPGgl mid(P G piD] = 4) = 1430 + 1) >
dist(f™4(i, j,3—h), x). It follows that every pair {x, y} is resolved by f™9 (i, j,3—
h). This completes the proof for the lemma. O

Lemma 15 Every pair of distinct vertices x,y € Ure{1,2,3} R, is resolved by S'.

Proof Let’s fix an arbitrary integer r € {1, 2, 3}.

First, we show that every pair of distinct vertices of [ J; (,,;(P(a;. ul)U P(ay, vl))
is resolved by &'. Let’s fix an arbitrary integer i € [n]. Let x, € P(ay, ui). Let
P(a,, x,) be the subpath of P(a,, ui) from a, to x, and let £,, = [P(a,, x,)|.
Since dist( f (nll, ar),x,) = 2+ £, obviously two distinct vertices of P (a,, ui)
are distinguished by f (7111, a,). Let x, € P(a,, vﬁ). Let P(a,, x,) be the subpath of
P(a,, V) froma, to x, andlet €y, = | P(a,, x)|. Since dist(f (7r{, ar), xy) = 244y,
obviously two distinct vertices of P (ay, vﬁ) are distinguished by f (7111, a,). For
the pair {x,,x,}, if €y, # £, , then it is resolved by f (nll,ar). Otherwise, if
by, = Ly, < |P(ay,ub)], then dist(f'(ui,v)), x,) = 1+ [P(ay,ul)| — €y, <
dist(f1(ul, v), xy) = 2 4 |P(ay, vi)| — £y,. By Claim 1, the vertex pair {ul, v’}
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is resolved by &’. Thus every pair {x,., x,} is resolved by S’. Let x € P(a,, ul) and
x,, € P(ay, v'/) for some integer i’ € [n] such that i’ # i. We define ¢,; andl,s
in a similar way to that of Exu and {y,. For a pair {x,, x } dist(f! (ur, v ) Xy) =
L+ [|P(ay, ul)| —Ly, < dlst(f (u v) X )— 1+|P(ar,u NEZP ' . Thus every pair
{xy, xu} is resolved by f (u,, r) Similarly, we can show that every pair {x,, x,},
{xy, x}} is resolved by 1l (ur, vr)

Then we show that every pair of distinct vertices of ;¢ (P (¢, ul) U P(c,, v)))
is resolved by S’. Let’s fix arbitrary integers i,i’ € [n] such that i # i’. Let
Zu € P(cr,ul), zy € Pcy,vl), 2, € P(c,,ul) and 2, € P(c,,vl). We define
Ly Lz, £y and £y in a similar way to that of £, and £, in last paragraph.
Since dist( f (rrll, ¢r),2u) = 2+ £, obviously two distinct vertices of P(c,, ui)
are distinguished by f(nll, ¢r). Since dist(f(nll, ¢r), 2y) = 2+ 4, two distinct ver-
tices of P(c,, vﬁ) are distinguished by f(rrll, ¢r). For a pair {z,, z,}, if £;, # £,
then it is resolved by f(nll,cr). Otherwise, if Ezu = {; < |P(cr,ui)|, then
dist(f! (u}, v)), ) = 1+ P (e, up)| =L, < dist(f (ul, v]), 20) = 24| P(cr, v))|—
£;,. Thus every pair {z,, z,} is resolved by S’. For a pair {z,,, zu} if £, # Ly,
then it is resolved by f(r!, ¢,). Otherwise if ¢;, = ¢, , then dist(f'(ul,vl), 7)) =
min (1 4 |P(c,, ub)| + €, 1+ [Par, ub)| + |Pay, ul)| + | P(e,, ul)| = £y —2)
if [P ul)| — €y > 2. dist(f (ul, v]),2)) = 1+ |P(ay, ul)| + |P(ay, ul)| +
|P(crul )| —¢ 4 if | P(cr, ul)| — €y < 2.Tfdist(f ! (ul, vl), 2)) = L+ P(c, ul)|+
EZ;, then {z,, z},} is resolved by f (u,, ,) Otherwise, if dlst(f (ur, ,) 7)) =
1+ |P(a,, ur)| +|P(a,, ur )| +|P(cr, u,)| —EZ;, suppose that there is a pair {z,,, z,}
which is not resolved by f 1(ui, vi). We get that i = 2(n + 1), a contradiction.
If dist(f ', v), 2) = 1+ PGy up)| + |P(ar,ul)] + |P(croup)| = £ =2,
suppose that there is a pair {z,, z,,} which is not resolved by Flad Lovl). We get that
20i = 40(n+1)—2,acontradictlon Thus every pair {z,, z,,} is resolved by 1! (ur, v,)
or f (nll, ¢,). Similarly, we can show that every pair {z,, z,} and {z,, z},} is resolved
by fl @), v)or f(xf, cr).

Next we show that every pair of distinct vertices of Uie[n] (P(by,ul)y U P(by,v.))
is resolved by &’. Let’s fix an arbitrary integer i, i’ € [n] such that i’ # i Let y, €
P(by,ul), y, € P(by,vl), y, € P(by,ul) and y/, € P(b,,vl). We define ¢,
£y,, ¢y and £y in a similar way to that of £, and £y, in the second paragraph. Since
(G,n, x,P)is aYES instance, by Claim 1, thepalr{ur, ,}1s resolved by some vertex
of S, say s;. Since dlSt(Sn, Yy) = |P(s,7, b)) +4Ly, =20n+1)+5i +1+4£,,, every
vertex pair of P (b,, ui) is resolved by sg. Since dist(s,;, Vo) = |P(s,”, b))+ £y, =
20(n + 1) + 5i + 1 + ¢y, every vertex pair of P(b,, v;') is resolved by s;. For a
pair {y,, yp}, if Eyu # Ly, then it is resolved by s;. For a pair {y,, y,} such that
ly, _zyl dist(f1 (i, vi), yu) = 2+ |P(br, ul)| — Ly, = 1420(n+1)=5i —£,, >
dlst(f (u,, v, ) =2+ |P(br, v — E}v = 20(n + 1) — 5i — ¢,,. Thus every
pair {y,, y,} is resolved by s or f! (ur, v.). For a pair {y,, y,} such that y, # b,
and yu £ b,, dist(f! (u,, r) yu) =14+20mn+1) -5 — £y, <20(n+ 1) —5i.
dist(f ul, vi), y,) = min 2 + [Py, v)| + £y, 1 + [P(ar, ub)| + | P(ar, ul)] +
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| P (b, u'/)| —{Ly) > 20(n + 1) — S5i. Thus every pair {y,, y,,} such that y, # b,
and y), # by is resolved by f (ur, ,) Similarly, every pair {y,, y,} and {y,, y,} is
resolved by f!(ul, vi).

Then we show that every pair of distinct vertices of R, is resolved by &'. Let’s
fix arbitrary integers i,i’ € [n] such that i’ # i. Let x, € P(ar,ul),x, €
P(a,,v.), y, € P(by,ul),y, € P(by,v'),z, € P(c,ul) and z, € P(c,,vl). Let
X, € P(ar,uf),x € P(ar,v',) v, € P(br,u'/) v, € P(br,v'/) 7, € P(c,,u"/)
and z; € P(c,, vl ) We define Exu,Exu,Eyu,Eyu,EZM,EzU,ZX/ EX/,E . Ay 4 2/ and
£y in a similar way to that of ¢y, and ¢, in the second paragraph For a pair
{*us Yuls drst(f(nl,a,) Xy) = 2+€xu < dlSt(f(ﬂlvar) Yu) =2+ |P(ar»u )+
|P (b, u.)| — . Thus every pair {x,, y,} is resolved by f (711 ,ar). Similarly,
every pair {xu, yv} {xy, yv} and {x,, y,} are resolved by f (nl,ar) For a pair
{xu> Zu}s dlSt(f(JT] Lap), Xy) =2+ 4Ly, dlSt(f(n1 ,ar), Zy) = min (2+ |P(ar7 er)| +
|P(cr )] — £, — 2, 1P(} an)| + |P(x] . el + e if [P(croul)| = €, > 2.
dist(f(n},ar) 2) = 24 [P )] + |PCrul)] — €, if | Pleyub)] —ezu <
2. It follows that dist( f(nll,ar),xu) = 2+ 4, < dist( f(nf,a,),zu). Thus
every pair {x,, z,} is resolved by f(nll, ay). Similarly, every pair {x,, zy}, {xv, Zv}
and {x,, z,} are resolved by f(rrll, a,). For a pair {vus zuls dist(f(nll, )y Zu) =
2+ 4, dlst(f(nl,cr) b)) = mmje[m](|P(cr,s1)| + |P(s1,b )) = 35n + 41.
dist(f (i, ¢,), yu) = min 24 |P(cy, ul)|+|P by, ul)| — £y, dist(f (], cr). by) +
Ly,) > dlst(f(nl,cr) Zy). Thus every pair {y,, z,} is resolved by f(nl,ar)
Similarly, every pair {yu,zv} {yv,zu} and {y,, z,} are resolved by f(nl,c,)
For a pair {Xuvyu} dlst(f (ul, vi), x,,) = 1+ |Pay,ul)| — £, if x, # u,
and dist(f! (u,,vr) ur) = 2. dist(f! (ur,vr) y,) = min (1 + |P(a,, ul)| +
|P@r, ul)| + |P(brul)| — £y,2 + |P<br,v;')| + ly) > dist(f(ul, v, x,).
Thus every pair {x,, y.} is resolved by f!(ul,vl). Similarly, every pair {xus vy,
{xw, yobs v,y b {3, 25} {xu,z b {x0, 23} and {x,, 2} are resolved by f!(ul, v}).
For a pair {yu,z }, dist(f! (ur,v) Yu) = 2+ IP(br,u )N — by, if y, # by
and dist(f' !, vl), y,) = 1+ |P(b,,ub)| if y, = b,. dist(f i, vi), z)) =
min(1+|P(a,,u5)|+|P(ar,u;’)|+|P(c,,u§’)| —2— Ly L+ |P(cy ub)| + €y if
|P(cr, ul)| — €y > 2. dist(f (ul, v}), z,) = min (1 + [P (ay, ul)| + |P(ay, ul)| +
|P(cr,ul)| = €, 1+ |P(cr, ub)| + €) if [P(cy,ul)| — €y < 2. It follows that
dist(f! (u,, ,) z ) >20(n+1) > dlst(f (u,, ,) Yu)- Thus every pair {y,, z,,} is
resolvedby f ()., v ) Similarly, every pair {y,, z,,}, {yv, z},} and {y, z|,} are resolved
by f! (ur, vl). As aresult, every pair of distinct vertices of R, is resolved by S’.

Finally, we show that every vertex pair of R, x R, withr’ € {1,2,3}andr’ # r is
resolved by S’. Let’s fix arbitrary integers i, i’ € [n]andr’ € {1, 2, 3} such thatr’ # r.
Let x, € P(a,,ul),x, € P(a,,v.),y, € P(by,ul),y, € P(by,vl), 2, € P(cr,ul)
and z, € P(cy, V). Letx, € P(ay,ub), x, € Play,v),y, € P(by,ub),y) €
P(by '), 2, € Plcy,ul) and 2, € P(cy,vl). We define £y, £y, £y,, Ly,
Loy loys by Ly Ly £y, £y and £ in a similar way to that of £y, and £y, in the
second paragraph. For a pair {x,, x,,}, dist(f(sll, ar),xy) =244y, <20n+1) <
dist(f(s{.ar), x)) =2+ |P(w{,ar)| + |P(x},ay)| + Ly . Thus every pair {x,, x} }
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is resolved by f (sll,ar). Similarly, every pair {x,, x,}, {xy, x,} and {x,,x)} are
resolved by f(s{, a,). For a pair {x,, z,,}, dist(f (s}, a,), x4) = 2+ £y, < 20(n + 1).
dist(f(s{. a,),z,) = min 2+ |P(x{, a,)| + | P, c;)| + £z, 2+ | P(x, ar)| +
|P(r),a)| + Py ul)| = 2 + |P(cyub)| =€) i [P(cyr ul)| — €y > 2.
dist(f(s{. a,),z},) = min 2+ |P(x{, a,)| + |P({, c;)| + £z, 2+ | P(w{, ar)| +
|P(),a)| + [P, ul)] + |P(cyr,ul)| — £y) if [P(cpr,ul)] — € < 2.1t fol-
lows that dist(f (sll,ar),z;) > 20(n + 1). Thus every pair {x,,z)} is resolved
by f(s!, a,). Similarly, every pair {xu, z,}, {xv,2,} and {x,, 2]} are resolved
by f(s;,a;). For a pair {x,,y,} such that y, # by, dist(f(nll,a,),xu) =
2 4+ 4y, < 20(n + 1). dist(f(nll,ar),b,/) = 2+ minje[m](|P(s{,ar)| +
|P(s{, b)) dist(f (], a,), y,) = min (dist(f (], a),by) + £z, P! ar)| +
|P(n),a)| + [Py, ul)| + [Py ul)| — £y) > 20(n + 1). Thus every
pair {x,, y,} such that y/, # b, is resolved by f(w{,a,). Similarly, every pair
{xv,yu} such that y, # b, every pair {x,,y,} and {xu,yv} are resolved by
f(nl,a,) For a pair {yy, y,} such that Yu #F by, dist(f! (ur, ,) yu) = 2+
|P(br,uy)| — £y, < 20(n + 1). dlSt(f (u},., U) b,) = min (2 + |P(br,v )| +
minjepui(1P (57 bl + 1P(s]. D, 1+ 1P(ar, vD)] + minjepu(1P(s]  an)] +
|P(s by)))). dist(f! (u,, ,) y,,) = min (dist( f! (u,, ,) by )+Ly, 1+|P(a,,v,)|+
|P(711,a,)|+|P(7t1,arr)|+|P(ar/,ur,)|+|P(br/,ur,)|—€ /) > 20(n+1). Thus every
pair {y,, y,} such that y, # b, is resolved by f! (u,, r) Similarly, every pair {yu, v}
such that y, # by, every pair {yy, yi} and {yy, y,} are resolved by f (u}., v}.). For
a pair {yu,z 1, dlst(f (u,,v) yu) < 20(n + 1). dlst(f (u,,v) 4 "y = mm(l
|P(ar, ul)| + |P({, a)| + |P({,c;)| + £z, 1 + [Pay, ub)| + |P(x].a)| +
|P(l ap)| + [Py, ul)| + |Plcy ul)| — £ — 2) if |P(cyr ul)| — £ > 2.
dist(f ! (ul, v}), z) = min (1 + |P(a,, ul)| + |P(n{, a)| + |P(x], co)| 4+ €y, 1 +
|P(ar, up)| + |P(},a)| + [P}, am)| + |P(ap, ul)| + |P(cy, ul)| — £) if
|P(cyr,ul)] — £y < 2.1t follows that dist(f'(ul,v}),z,) > 30(n + 1). Thus
every pair {y,, z,, } is resolved by f (ur, ,) Similarly, every pair {yu, 2% {w, 2}
and {yy, 2, }are resolved by 11 (ur, ,) Forapalr {zu,z }, dist( ! (ur, r) Zy) =
1+ |P(cr,ur)| L, if z, # u} and dlst(f (u v) zy) = 21if z, = u}.. Thus
dist(f!(u’, v;'), Zu) g 30(n + 1) < dist(f!(ul, v'), z/,) and every pair {zu, Zl}is
resolvedby f (ul., vl.). Similarly, every pair {z,, z),}, {zv, z,,} and {z,, z},} are resolved
by f! (u,, r) As aresult, every vertex pair of R, x R, withr’ € {1,2,3}andr’ # r
is resolved by &’. This completes the proof for the lemma. O

5.2 Vertex Pairs Between Distinct Vertex Sets

In this subsection, we prove Lemmas 16 - 30 in Table 1.

Lemma 16 Every pair {x, y} € | Ui x Ujep O is resolved by S'.

i€[n]

Proof First, we show that every pair {x, y} € Ul.h X Uje[m],re{1,2,3} l'[h(i, j,r) for
i € [n],h € {1,2} is resolved by S’. We fix arbitrary integers i € [n], j, j' € [m],
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h e {1,2} and r € {1,2,3}. Suppose that x € P(sj,plﬁ) and y € P"(i,j, a).
For a vertex x € P(sl.j, pf’), let P(x, pf) be the subpath of P(sl.j, pf) from x
to pf and |P(x,pf’)| = (.. For a vertex y € P"(i, ) a), let P(y,nih) be
the subpath of P, ', a,) from y to nih and |P(y,nih)| = {y. Let j* € [m]
be an integer such that j* # j and j* # j’. Then dist(f"(i, j*, a,),x) =
3 4 £, and dist(f" (i, j*,a),y) = 2 + Ly. Thus every pair {x, y} is resolved by
fh(i,j*,a,) unless £y, — £, = 1. For the pair {x, y} such that £, — £, = 1,
there are two cases. Case 1: j = j'. Since dist(f"(, j’, a,), x) = 3+ 4, if
x # sl , dist(fha, ', a,),sf) = 20(n + 1) + 1 and dist(f" (i, j', a;), y) = €y if
y # n dlSt(fh(l j',a), TT; ) 2, every pair {x, y} such that £, — £, = 1is
resolved by G, j', a). Case 2: j # j'. Since dist(fh(i,j’,a,),x) = 3+ 4,
dist(f"(i, j',ay), y) = £y if y # =" and dist(f"(i, j’, a;), 7]") = 2, every pair
{x,y} such that ¢, — £, = 1 is resolved by i, j', ay). It follows that every
pair {x, y} is resolved by fh(i Jj*. ar) or fh(i J',ay). Similarly, we can show
that every vertex pair of P(sl ,pl) x P, J' b, P(sl ,pl) x P, j',c) and
P(s], pi) x P, j' ,pi ") are resolved by S'.

Next we show that every pair {x, y} € Ul.h X Uje[m],re{1,2,3} 13", j, r) for
i €[n],h € {l,2}isresolved by S’. We fix arbitrary integersi € [n], j, j' € [m],h €
{1,2}andr € {1,2,3}. Suppose thatx € P(s/, p")\{s/}andy € P3~"(i, j', a,). We
define £, and £, in a similar way to that of £ in the first paragraph. There are two cases.
Case 1: j = j. dist(f37"G, j' ar), y) = €, if y # 7!, dist(f"(G, j',ap), 7]) =
2. dist(f37"G, j',ay), x) = min (|P37"G, j,a) + 1 + |P(sif,pf)| — 0,3+
I[P ™", e) |+ P (e, )| +€x) = min (40(n + 1)+ 1 — €, 20(n+1) +3+£,) >
20(n + 1) + 1 > dist(f>7"@, j’,a,), y). Thus in this case, every pair {x, y} is
resolved by f37"(i, j’, a,). Case 2: j # j'. dist(f37"(i, j',ar),y) = £y if y ;é ml,
dist(f" i, j',ap), 7}y = 2. dist(f37"G, /' a), x) = min 3 + |PGs{, p; | +
IPGs], Pl = €03 + [P(r) 7", )l + IP(cr, )] + &) = min (40(n + 1) +
3—40,20n+ 1) +3+4£,) =200+ 1)+ 3 > dist(f>7"@, j’,a,), y). Thus
in this case, every pair {x, y} is resolved by f37"@, j',a,). It follows that every
pair {x, y} is resolved by f3~ h(z J',ar). Slmllarly, we can show that every vertex
palrofP(sl,pl) x P37, j, b, P(sl,p ) x P37h(, j' ¢,) and P(s], pi) x
P37h(, j', pt) are resolved by S'.

Fmally we show that every pair {x, y} € Ul X UjE (m]re(1,2,3) Hh/(i/, j,r) for
i,i’ € [n],h,h € {1,2} such thati # i’ is resolved by S’. We fix arbitrary integers
i,i" €[nl, j,j € Iml h,h" € {1,2} and r € {1, 2,3} such that i # i’. Suppose
that x € P(sl » Pj ) and y € pr a,j, ar) We define £, and £, in a similar way
to that of £, in the first paragraph. Let j* € [m] be an 1nteger such that j* # j'.
Then dist(f"' (i', j*, ay), ) = 2 + €. dist(f" (', j*, a,), s]) = min,c (1,232 +
PGl el +IP(s], e dist(F7 (', j*, @), x) = min (st 1, Lar),s])+
|P(s], al)] = £,3 + PG ol + PGl el + €0 > 242000 + 1) =
dist(f" (i’, j*,a,), y). Thus every pair {x, y} is resolved by f" (i, j*, a,). Simi-
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larly, we can show that every vertex pair of P(sij, pf’) x P G, j', b, P(sij, pf’) X

PM @', i, ¢) and P(sij, plh) x PH (i, . p?,_h/) are resolved by FY@’, j*, a). This
completes the proof for the lemma. O

Lemma 17 Every pair {x, y} € U;epny Ui % U, Li is resolved by S'.

Proof First, we show thatevery pair {x, y} € P(sij, pf’)xP(qih, mid(P3_h @i, j, pf’)))
fori € [n],j € [m] and h € {1,2} is resolved by &’. We fix arbitrary inte-
gers i € [n],j € [m] and h € {1,2}. Suppose that x € P(sij,pf) and
y € P(gl, mid(P37h(, j, pI))). For a vertex x € P(s/, pl), let P(x, pl') be
the subpath of P(sij, pf’) from x to pf’ and |P(x, pfl)| = /{,. For a vertex y €
P (g, mid(P3~"(, j, p!)),let P(y, ¢!") be the subpath of P (¢!, mid(P3~"(i, j, p!)))
from y to ¢ and |P(y,q/)| = ¢y. Then dist(f"(i, j,a1),x) = 3 + £
dist(f"(i, j,a1),y) = 3 + £y. Thus every pair {x, y} is resolved by (i, j,a1)
unless £, = £,. Suppose that S’ N X; = {sij*}. For the pair {x, y} such that £, = £,
there are two cases. Case 1: j* = j. Then dist(sij*,x) = |P(sij,pf‘)| — Uy =
20(n + 1) — €. dist(sij*, y) =min (|P(s{, p| +2+€,, 1+ P3G, j, phI/2 +
|P(qf' mid(P>~ (i, j. p!)))] = €y) = min 202 + 1) + 2+ £y, 40(n + 1) — £y) #
20(n + 1) — £,. Thus in this case every pair {x, y} such that by = £y 1s resolved
by s/ . Case 2: j* # j. dist(s/ .s/) = minye(123(PGs] el + |P(s} el =
20(n + 1) — 10A* 4+ 20(n + 1) — 10A for some A, A* € [n]. Then d1st(s ,X) =
m1n(|P(sl iy 42y, d1st(s , j)~|—|P(sl Ny )|—€x) m1n(20(n—|—1)—|—€x, 60(n+
1) — 10A — 100* — £,). dlst(s ,y) min (|P(sl ,pl ) +2+ Ly, [P(s] *, ;- )| +
L+ P3G, j, pPI/2 + |P(q]', mid(P>7" (i, j, p/))| — £,) = min 20(n + 1) +
2+4£y,60(n + 1) — £y). Thus every pair {x, y} such that £, = £, is resolved by sij*.
As a result, every pair {x, y} is resolved by fh @, j,ay)or slj*

Next we show that every pair {x, y} € P(s/, p!) x P(q", mid(P3"(, j’, pt)))
fori € [n], j,j € [m]and h € {1,2} such that j # j’ is resolved by S’. We fix
arbitrary integers i € [n], j, j/ € [m] and h € {1,2} such that j # j’. Suppose
that x € P(s/, p") and y € P(g!', mid(P3~"(i, j', pl'))). We define €, and €, in a
similar way to that of £, and £y in the first paragraph. dist(f™4 @, j',3 —h),y) =
1+[P (g, mid(P37" G, j', ph))|—€y = 30(n+1)—Ly.dist(f™ 4G, j', 3—h), x) =
min (1 + P3G, phI/2 + PG pIl = 1+ €02 + [PY7hGL 7, pll/2 +
1PGL L pM I+ IPG] L pl)I =€) = min 3001+ 1)+ £,, 2+ 50(2+ 1) —€,). Thus
every pair {x, y} is resolved by f’”id(i, j',3 — h) unless £, = £y, =0, i.e. except
the pair { pf’, ql.h}. According to Lemma 4, { pf’, ql.h} is resolved by &’. Thus every pair
{x, y} is resolved by S'.

Then we show thateverypalr {x,y} e P(sl  Pi Yy x P(q3 h ,mid(P"(i, j’, p?*h)))
for i € [n],j,j’ € [m] and h € {1,2} is resolved by S’. We fix arbitrary
integers i € [n],j,j € [m] and h € {1,2}. Suppose that x € P(sl ,pl)
and y € P(q?fh,mid(Ph(z, j ,pi3 h))). We define £, and ¢, in a similar way
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to that of ¢, and ¢, in the first paragraph. Let j* e [m] be an integer such
that j* # j. Then dist(f>7"(, j*, a1),y) = 3 + £&y. dist(f>7"(, j*, a1),x) =
min (1 + [P37"G, j.ap| + [P(s]. ph)] = .3 + [P} 7" )| + [Pl a)| +
£) = min (40(n + 1) + 1 — £,,20(n + 1) + 3 + £,) > 20(n + 1) + 2 if
x # s/ and dist(f37"(, j* a1),s)) = 3 4 20(2 + 1). Thus any pair {x, y}
such that £y, < 20(n + 1) — 1 is resolved by f3~"(i, j*, a;). For the pair {x, y}
such that 20(n + 1) — 1 < €, < 30(n + 1) — 1, dist(f™(, j', h),y) = 1 +
|P(g ", mid(P" (i, j', pP™™))) 1~y = 30(n+1)—€, < 10(n+1)+1.1f j' = j,then
dist(f™ (i, j', h), x) = min Q+|P"G, j, pi~M/2+ €, 24P G, j, pi7"I/2+
|P(sl',pl)|—z )y =min 2+ 10(n4+1)+ £y, 2+30(n+1) —€,) > 10(n+ 1) +2.If
j’ % j, thendist(f™4(, j', h), x) =2+ | P, j, p3 M2+ > 10(n+1)+2
As aresult, every pair {x, y} is resolved by f3 h(l Jj*, al)or i, i h).
Fmallyweshowthateverypalr{x y}e P(s: , PP (gl ,m1d(P3 "G p))
for i,i’ € [n],j,j € [m] and hh' € {1 2} such that i # i’ is resolved by
S’. We fix arbitrary integers i,i’ € [n], j, j/ € [m] and h, K’ € {1, 2} such that

i # i’. Suppose that x € P(s/, p!) and y € P(g!, mid(P3~"' (i, j', pI))). We
define £, and £, in a similar way to that of £, and £, in the ﬁrst paragraph. Then
dist(f" (i, j,a1), x) = 3+ £y if x # s/ and dlst(fh(z jrar),s)) =2+20( +1).
dist(f" (i, j.a1).y) = min 3+ |P(xl', a)| + |P(x} . ap| + €. 2+ |P(xl, )| +
|PGry " a4+ P3G pIDI/2 + |P(gl mid(P3= G, j', plo))| — €y) =
min (3420(n+ 1)+ £y, 1+60(n+1) —£€,) > 3+20(n+1) > dist(f"(, j, a1), x).
Thus every pair {x, y} is resolved by f"(i, j, a;). This completes the proof for the
lemma. o

Lemma 18 Every pair {x, y} € U;cn) Ui X Ujeqn) Si is resolved by S'.

Proof We show that every pair {x, y} € P(sl Pl x (P(n, yap) U P(n, , ¢r)) for
i,i’ € [n], J € [m],h € {l1,2}and r € {1,2,3}is resolved by S’. We ﬁx arbitrary
1ntegers i,i’ € [n],j € [m] h,h € {1,2) and r € {1 2, 3}. Suppose that x €
P(s; ,pl) and Y € P(n, ,a,). For a vertex x € P(sl ,pl) let P(x, p; ) be the
subpath of P(si » D; ) from x to pl. and [P (x, p; )| = {,.Foravertex y € P(JTI., ,ay),
let P(y, ni’}/) be the subpath of P(nl.lfl, a,) from y to nl.}f, and | P (y, ni}f/)l = {y. Then
dist(f(sij, ar),y) = 2+|P(7rl.’3,, ar)|—€y.Supp0sethatIP(sij, ay)| =20(n+1)+10p
for some p € [n]. dist(f(s/, ), x) = min 3 + |P(x}', a)| + €0, |P(s], a)| +
|P(s pi ") —¢y) = min (3+10(n+1)+£x,40(n+1)+10p ly) > 3+10(n+1) >
dist(f (sl ,ar),y). Thus every pair {x v} is resolved by f (s a,). Similarly, we can
show that every vertex pair of P(sl. ,pl.) X P(nl., ,cp) fori,i’ € [n],j € [m],h €
{1,2} and r € {1, 2,3} is resolved by f(sij, ¢r). This completes the proof for the
lemma. m|

Lemma 19 Every pair {x, y} € | Ui x U;epn) Hi is resolved by S'.

ie[n]
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Proof First we show that every pair {x, y} € P(sij, pf’) X (P(sij, a) U P(sl.j, ¢;)) for
i €[n],jelmlhe{l,2)andr € {1, 2,3} is resolved by S’. We fix arbitrary inte-
gersi € [n],j € [m],h € {1,2} and r € {1 2,3} Suppose that x € P(s;/,plh)
and y € P(s ar) For a vertex x € P(sl , P,) let P(s ,X) be the subpath of
P(s] 7, D; ) froms to x and |P(s x)| =/{,. Foravertex yE P(s a,), let P(sl ,Y)
be the subpath of P(s a,) from s to y and |P(sl V| = ¢y Let |P(s, ,an)| =
20(n + 1) + 10A for somek € [n]. Then dlst(f(sl ,ar), x) =min 3+ |P(7rl ,ar)| +
|P(sl ' i M —t,, |P(sl ,ar)l-i-ﬁx) min 3+30(n+1)—£,,20(n+ 1)+ 101+ £,).
dlSt(f(Sl ,ap),y) = |P(Sz sar)| =Ly, =20(n + 1) + 104 — £, dist(f(nih, ar),x) =
min (1 + |P()', a)| + 1P (s), pP)| = €0, 2+ 1P (s, a,)| + €,) = min (1 4 30(2 +
1) —€,,2+20(n + 1) + 10A + £,). dist(f(nih, ar),y) =2+ IP(sij,a,)| -ty =
2+420(n+1)+10A—£y. For the pair {x, y} whichis notresolved by f(sl.j, a,),itsatisfies
thatdist(f (s}, a,), x) = dist(f (s}, a,), y) = 3+|P (!, a,)|+|P(s!, pl)|—L.. Thus
dist(f (!, a,), x) < dist(f (s, a,), x) = dist(f (57, a,), y) < dist(f (2], a,), y). It
follows that every pair {x, y} is resolved by f (sl.j ,ap) or f (n[h, ay). Similarly, we
can show that every vertex pair of P(sl.j , plh) X P(sl.j , ¢r) 1s resolved by f (sl.j ,Cr) Or
fel e

Next we show that every vertex pair of P(sl.j, pl.h) X P(s,.j, by) fori € [n],j €
[m],h € {1,2} and r € {1,2, 3} is resolved by S’. We fix arbitrary integers i €
[n],j € [ml,h € {1,2} and r € {1,2,3). Suppose that x € P(s/, p!) \ {s/} and
y € P(sij, br)\{sij}. We define £, and £ in a similar way to that of £, and £, in the first
paragraph. Thendist(f™(i, j, 3—h), x) = |P37"(i, j, pM)|/2+€, = 10(n+1)+¢,
and dist(f™4(i, j,3—h),y) =2+ P3G, j, pMI/2+ €, =2+ 10(n + 1) + £,.
For the vertex pair {x, y} which is not resolved by f’”id(i, J:3—h),ie by =2+,
dist(f™4(i, j, h),x) = 2 + |P"G, j, p3_h)|/2 b =2410n+ 1)+ £, >
dist(f™ 4G, j,h),y) = 2+ PG, j, p 2+ 8 = 1000+ 1) +2 4+ ¢, =
10(n+1)+¢,. Thus every pair {x, y}is resolvedby fW”d(l J, 3 h) or f””d(l j, h).

Then we show that every pair {x, y} € P(sl ) D ) X (P(s ’ ,ar) U P(s " ,c,)) for
i,i’ € [nl,j,j € [ml,h € {1,2} and r € {1, 23}suchthatz #iorj #£j
is resolved by &’. We fix arbitrary integers i,i’ € [n], j, j/ € [m],h € {1,2} and
r € {1,2,3} such that i # i’ or j # j'. Suppose that x € P(si],pf') and y €

P(sl.];/, ay). We define £, and ¢, in a similar way to that of £, and £, in the first
paragraph. Let |P(s. ay)| =20(n + 1) + 10A and | P (s; ;/, ar)l =20(n + 1) + 101’
for some A, A’ € [n]. Then dlst(f(s YL ay), x) = dlSt(f(?T ,ar), x) = min (3 +
|P(xl'.an)] + 1PGs]. pl - &2+wwam+&a—mm6+mm+n—
£y, 2 + 20(n 4+ 1) + 101 + £5). dlst(f(s, ,ar),y) = dlst(f(n, ,ar),y) —2 =
|P(s " ,ar)l —4£yif y # a, and dlst(f(s/ ,dy), ar) = dlst(f(n/ say),ay) = 2. It

follows that every pair {x, y} is resolved by f (s[, ,ap)or f (nl., , ar). Similarly, we
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can show that every vertex pair of P(sl.j , pf’) X P(si];/, ¢y) is resolved by f (sl.j;/, cy) or
fe ™.

Finally we show that every vertex pair of P(sl.J , pf) X P(si/, ,b,) for i,i’ €
[n],j,j €[m],he{l,2}andr € {1, 2, 3} such thati # i’ or j # j’ is resolved by
S’. We fix arbitrary integers i, i’ € [n], j, j € [m], h € {I,2} and r € {1 2,3}
such that i # i’ or j # j'. Suppose that x € P(s pi) and y € P(s,,b)
We deﬁne £y and £, in a similar way to that of £, and £y in the first paragraph
Let |P(s b))l = 20(n + 1) + 51 + 1 and |P(sij,/,br)| =20n+ 1) +5) +1
and for some A, € [n]. There are two cases. Case 1: i = i’ and j # j
dist(f™d (i, j,3—h),x) = |P37"G, j, p"I/2+ € = 10(n + 1) + £, if x # 57 and
dist(f™ (i, j,3 — h),s}) =2+ 10(n + 1). dist(f™9(, j, 3 — h),y) = min (2 +
P0G, P12+ PGs) 2+ 6.2+ IP3RGL jL pI/2 + | PGs] by +
|P(Si’ b)) —£y) =min 2 4+30(n + 1)+ £,,44+50(n + 1) + 51+ 51 — ¢,) >
2 4+30(n + 1) > dist(f™9(i, j,3 — h), x). Thus in this case, every pair {x, y}
is resolved by f™d(i, j,3 — h). Case 2: i # i'. dist(f™(i, j,3 — h),s),) =
LHIPY G, j, pil/2+mingeq, m}uP(nH er)l+IP(sy - er)l).dist(f" (. j, 3~
h),y) min (dist(f™(, j,3—h), s}, )+ey 24|P371G, j, phI/2+|P(s], b))+
|P(Si’ b)) —2y) =min (1+40(n+1) — 101" +£,,44+50(n + 1) +51+51"—£,) >
30(n—|—'1)+5 > dist(f™ (i, j, 3—h), x). Thus in this case, every pair {x7 y}isresolved
by ™4 (i, j,3 — h). It follows that every pair {x, y} is resolved by ™4 (i, j, 3 —h).
This completes the proof for the lemma. O

Lemma 20 Every pair {x, y} € Ui x U,eq1.2,3) Rr is resolved by S'.

ieln]
Proof First we show that every pair {x, y} € P(sl.j, pf’) X (P(ui/, a) U P(vﬁl, ar))
fori,i’ € [n],j € [m],h € {1,2} and r € {1,2,3} is resolved by S’. We fix
arbitrary integers i, i’ € [n] j € [m],h € {1,2} and r € {1, 2, 3}. Suppose that
X € P(sij,p,) y € P(u ar) For a vertex x € P(s,.j,pih), let P(sij,x) be the
subpath of P(s D; ) from s to x and |P(s ,X)| = €. For a vertex y € P(a,, ui/),
let P(u, y) be the subpath of P(ay,u’) from ul to y and |P(ul,y)| = ;. Let
|P(sij, ay)| =20(n + 1)+ 10A for some A € [n] and |P(u'/ a)| =20(n+1)—10i".

There are two cases. Case 1: A < i’. dist(f! (ur, ,) x) = min (1 + |P(a,, u, )| +
|P(sij, ay)|+Ly, 1+|P(ay,, ui/)H—IP(n ar)l—i—IP(s h)|—€ ) = min (40(n+1)—
10G"—A)+14L,, 50(n+1)+1—10i"—£,). dist(f! (u,, r) y) = 1+Lyify # ul "and
dist(f' !, v, y) = 2ify = u’ . Thusdist(f' (i, v1'), x) = 30(n+1)—10i’+1 >
dist(f1(ul, vi), ). Case 2: A > i’ dist(f' (i, v}), x) = min (1 + |P(c,, ul)| +
|P(s), e + e, 1+ |Pay, ul)| + |P(!, a)| + | P(s!, 7)Y — £,) = min (40(n +
1) = 1000 —i") + 14 £, 50(n + 1) + 1 = 10i" — £,). dist(f' @i, vi), y) = 1+ £,
if y # u! and dist(f'(u’,v),y) = 2 if y = u’. Thus dist(f' !, v), x) >
30(n 4+ 1) — 10" + 1 > dist(f' (!, v!'), y). Thus every pair {x, y} is resolved by
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f (u, , ,) Slrnllarly, we can show that every vertex pair of P(sl » Dj ) X P(v, ,dy)
is resolved by f! (u,, r)

Next we show that every pair {x, y} € P(sij, pf’) X (P(ui/, b,) U P(v;'/, b,)) for

i,i’ € [n],j € [m],h € {1,2} and r € {1,2,3} is resolved by S&’. We fix arbi-
trary mtegers i,i’ e [n], j € [m],h € {1,2} and r € {1,2,3}. Suppose that
x € P(s, »P,) y € P(u ,b;). We define £, and £, in a similar way to that
of £, and £, in the first paragraph. Let |P(s,.j, ay)| = 20(n 4+ 1) + 10A for some
A € [n] and |P(ui/,ar)| = 20(n + 1) — 10i’. There are two cases. Case 1: A < i’.
dist(f i, vi'), x) = min (1 + |P(a,, ul)| + |P(s], a))| + €5, 1 + |P(ar,ui’)| +
PGl a)| + 1P(s], 7)) = €0). chst(fz(ur,v ), x) = dist(f! ), v), ) — 1 =
min (1P (ay. ul)] + | P(s! ap)| + L. [P, )| + Pl an)| + | PG5 )] =€),
dist(f' !, vi), y) = dist(fz(u;, vl), y) = 2 + €. In this case, for a pair {x, y}
Whlchlsnotresolvedbyf (u,, ,) dlst(f2(u,, r) X) = dlst(f (u,, ,) x)—l <
dlst(f (u,,v,) y) = dlst(fz(ur,v,) y). Case 2: A > i’ d1st(f (u,,v,) x) =
min (1+| P (e, ul)|+|P (s} )| +Lx. 1+|P(ay, ul)|+| P () ar)|+|P(sl, |-
Co-dist(F2 ] v, ) = dist(F @) v]). 0= 1 = min (1P (e, )+ PGs]. el +
e | Par, ul )I + Pl a)] + PGl ] — ). dist(flal vy =
dlst(fz(ur, ,) y) = 2—}-( Similar to Casel in this case, forapalr {x, y} which is
not resolved by f!(ul’, v, dist( fz(u ), x) < dist(f2(ul’, vi), y). Thus every
pair {x, y}is resolvedby f! (ur,v ")or f2(ur,v ). Slmllarly, we can show thatevery
vertex pair of P(s D; hy x P(v,,b ) is resolved by 11 (ur , vy )or f2(ur , vy )

Finally we show that every pair {x, y} € P(sl. ,pi) X (P(u, ,cr) U P(vr ,Cr))
fori,i’ € [n],j € [m],h € {1,2} and r € {1,2,3} is resolved by S’. We fix
arbitrary integers i, i’ € [n],j € [m],h € {1,2} and r € {1, 2,3}. Suppose that
X € P(sl ,pl) y e P(u, ,Cr). We deﬁne £y and £ in a similar way to that of £, and
£y in the first paragraph. Let |P(si ,¢cr)| = 20(n + 1) — 10X for some A € [n] and
|P(ui/, ¢;)| = 20(n + 1) + 10i’. Then dist(f(sij, ¢r),x) = min (3 + |P(nl.h, )| +
|P(s), p =€, |P(s), e) | 4€y) = min (34301 +1) — £, 20(n+ 1) — 10A+£,).
dist(f (", ¢,), x) = min (14| P, e)|4+1P(s), p) =0, 24P (s) , e +E) =
min (1 + 3002 + 1) — €,2 + 20(n + 1) — 10A + £y). dist(f (77", ¢;),x) =
min 3 + [P(x!, )| + |P(s), pi)l — €4, 2 + |P(sl.j,cr)| +£,) = min (3 + 30(n +
1) —£0,,2+20(n + 1) — 10 + ¢ ) dist(f(sl',c,) y) = dist(f(nl ,Cr),y) =
dist(f (x> ;). y) = 2+ [P(cr,ul)| —ly = 2+20(n + 1) + 10i’ — ¢,. For
a pair {x, y} which is not resolved by f (s cr), elther f (71[ ,cr) or f (7t ,cr)
resolves it. Thus every pair {x, y} is resolved by f(sl ,Cr), f(yr, , Cr) O f(nl ke
Similarly, we can show that every vertex pair of P(s,.j , pf‘) X P(vﬁ/, ¢y) is resolved by
f (sij sy f (JTl-h, cr)or f (nffh, ¢r). This completes the proof for the lemma. O

Lemma 21 Every pair {x, y} € U;cpn i X Ujepn) Hi is resolved by S'.

@ Springer



3142 Algorithmica (2022) 84:3110-3155

Proof We show that every pair {x, y} € (Ph(z Jj.ar) U PG, j,b)U PG, j,cr)U

PG, j. p ) x (P(s).a) U P(s) . by) U PGs)e)) for ini’ € [nl. j. ' e
[ml,h € {1,2} and r,r" € {1,2, 3} is resolved by S’. We fix arbitrary inte-
gers i,i’ € [n],j,j € [m],h € {1,2} and r,r € {1,2,3}. Suppose that
xi € P, Jj.ar), xa € Ph(, j.br), x3 e P, j,cr) and x4 e P, J, p3 h)
Suppose that y; € P(s,,a,/) Y2 € P(s,,b /) and y3 € P(s,,c,/) For a vertex
x, for po€ {1,2,3,4}, let £, Xy = dlst(rrl , X;). For a vertex y, for v € {I, 2,3},
let &, = dist(s}, y,). Let |P(s/,a,)| = 2002 + 1) + 10x and |P(s} , a)| =

-

20(n + 1) + 101" for some A, A € [n]. There are three cases. Case 1: sl.j = si],
and ' = r. Then dist(f (s, @), x1) = min 2 + |P(xh, a,)| + €y, |P(s), @) +
|Ph(i, j a,)| —1—£y) =min 2+ 10(n + 1) + £y, 40(n + 1) + 10A — 1 — £,).
dist(f (5], @), y1) = |P(s), @) = €, = 20(n + 1) + 101 — &, if y # a, and
dist(f(s;;/,a,/),ar) = 2. dist(f (x? 7", @), x1) = min 2 + |P(x], @) + €y, 1 +
|P(sl.j, a)|+IP G, j,ar)|—ty) = rnin 2+10(n+1)+£y,, 40(n+1)+10A+1—£,)).
dist(f (x> ™" ap), y1) = 24+ |P(s], ar)| — €y, = 20(n + 1) + 10A + 2 — £y,. Let
y € Ph(i, J, ar) be the vertex such that dist(y, Jrl.h) =20(n + 1) — 1. Obviously the
pair {sij, y } is resolved by fh (i, j, ay). For the pair {x1, y;} which is not resolved by
f(sij;/, a,) and y; # le it satisfies that dist(f(sl.j,/, a), x1) = dist(f(sl.j,/, a), y1) =
dist(f(n?fh, a,), x1) < dist(f(nf*h, a,), y1). Thus in this case, every pair {x1, y1}
is resolved by f(sl.j,/,a,/), f(nf_h,a,/) or fh(i,j,a,). Case 2: sij #= sij,/ and
F' = r. Then dist(f (s}, a,), x1) = min 2+ | P(x]", a,)| + €y, 1 + |P(s], ap)] +
|Ph, j, @) = Ly) = min 2 + 1001 + 1) + €. 4001 + 1) + 10% + 1 — &),
dist(f (s] ). ) = IP(s), a) — €y, = 200 + 1) + 101 — £, if yi # ap
and drst(f(s,,ar) a) = 2. drst(f(ng_ a,’),x1) = min (2 + |P(7tl ,an)| +
oy |PGs) )| + |PPG, joam)| + 1 — €;) = min 2 + 100 + 1) + £, 40(n +
1) 4 10A + 1 — £y). dist(f ()", a), y1) = 2+ |P(s,,a,)| £y, = 20(n +
1)+ 100 +2 — £y,. For the pair {x1, y;} which is not resolved by f(sij;/, a,), it
satisfies that dist(f (s} , a,), x1) = dist(f (s} , a,), y1) = dist(f(r7 7", ap), x1) <
dist(f(nf_h, a,’), y1). Thus in this case, every pair {x1, y} is resolved by f(sl.j,,, a,r)
or f(nf_h, a,). Case 3: sl.j # sl'.’;, and r’ # r. Then dist(f(sij;,, a,),x1) = min (2 +
|P(nl.h,ar’)|+€xl,2+|P(sij,a,/)|+l+|Ph(i,j,a,/)l—ﬂxl) =min 2+10(n+1)+
Coy, 4001+ 1) + 104 +3 — £,). dist(f (s, ap), y1) = |P(s]) , )| — £y, = 20(n +
1) 4+ 100 — €y, if y1 # ap and dist(f (s}, , ap), ap) = 2. dist(f(x} 7", @), x1) =
min 2+ [P, a,) |+ e, 2+ |P(s], a) |+ 1+ PG, j, ay)| — £4,) = min 2+
1001 + 1) + £4,4001 + 1) + 10% + 3 = £)). dist(f (x> ™" ap), y1) = 2 +
|P(s 5 ,a,/)| — Kyl =20+ 1)+ 100 +2 — EJ/I For the pair {x1, y1} which is not
resolved by f(s Y, a,), it satisfies that dlst(f(s S, ap), X1) = drst(f(s S, ap), y1) =
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dist(f(nf_h, a), xy) < dist(f(nf_h, a,’), y1). Thus in this case, every pair {x1, y1}
isresolved by f (sij, ,ap)or f (nf_h, a,). It follows that every pair {x1, y;} is resolved
by fh @i, j,ap), f(sl.j,/, a,) or f(n?_h, a,). In a similar way, we can show that every
vertex pair {x2, y1}, {x3, y1} and {x4, y;} are resolved by &’. Also in a similar way, we
can show that every vertex pair {x1, y3}, {x2, ¥3}, {x3, y3} and {x4, y3} are resolved by
fGsh e, f? ™" er) or £, j. ¢p). For a pair {x1, y2}, dist(f" (i, j, ar), x1) =
by, if x1 # 7wl and dist(fG, j,a), 7l = 2. dist(f"G, j,ar),by) = 2 +
|P(nl.h,a,/)| + [P(ay, )| + |P(by, V)| + |P(sl.];/,b,/)| — £y,. There are three
cases. Case 1: i = i’ and j = j'. dist(f"(, j,a,), y2) = min (|P"(i, j,a,)| +
1+ Eyz,dist(fh(i,j,ar),brr) + |P(sl.j,,b,r)| —4£y,) = min(20(n + 1) + 1 +
Ly,,55n + S5A + 71 — £y,) > dist(fh(i J,ar), xl) Thus in this case, every
pair {xi, y»} is resolved by G, j,ay). Case 2: = i and j # j'. Then
dist(f" (@, j, a), y2) = min (2 + |Ph<z, Jibm)l + eyz L dist(f" (i, j,ar), by) +
|P(s), . br)| —€y,) = min 20(n+ 1)+ 14 £y,, 550+ 51+ 71 — £y,) if y2 # s}, and
dist(f(i, j, ar), s") =3420(n+1). Thus dist(f" (i, j, a), y2) = 20(n+1)+2 >
dlSt(fh(l J,ar), x1). Inthis case every pair {x, y»} is resolved by fh(z J, ar) Case
30 # i dist(f'G, j.an),s ) = mlnde{123}(2 + 1P, ca)l + IP(S/,Cd)I)
dist(f" (i, j,ar), y2) = min (dlst(fh(l,],ar),si/) + Ly, dist(f" G, j,ar), by) +
|P(sij, b)) —£y,) > 20m + 1) > dist(f"(i, j,a,), x1). Thus in this case, every
pair {x1, y2} is resolved by f”(i, j,a,). In a similar way, we can show that every

vertex pair {x2, y2}, {x3, y2} and {x4, y»} are resolved by S’. This completes the proof
for the lemma. O

Lemma 22 Every pair {x, y} € ;¢ Tli X Uy Li is resolved by S'.

Proof First we show that every pair {x,y} € (P"(i, j,a,) U P, j, b)) U
Pt j.c,) U PG, j. pi™") x P(gl. mid(P3~"G. j’, p}))) for i € [n].j.] €
[m],h € {1 2} and r € {1,2,3} is resolved by &’. We fix arbitrary integers
i €[nl,j,j €[ml,h e {l1,2)and r € {1,2,3}. Suppose that x; € P"(i, j, a,),
X € Ph(l,j,b ), x3 € P"i,j,c) and x4 € P"(i,j, p;™"). Suppose that
y € P(g", mid(P37"(i, j', p!)). For a vertex x,, for u € {1,2,3,4}, let £,, =
dist(nih, xy). For a vertex y, let £y, = dist(ql.h, y). Then dist( /" (i, j, ay), x1) = Ly, if
x1 # 7l and dist(f (i, j, ar), wl) = 2. dist(f" (i, j, ar), y) = dist(f" (i, j, br), )
= dist(f"(, j,cr), y) = dist(fh(i J, P, y) = 3 + ¢,. For the pair {xi,y}
that is not resolved by f"(i, j, a,), dist(f"(, j, by), y) = dist(f"(, j,a,),y) =
dist(f"(, j,ar), x1) = dlst(fh(l,J,b ), x1)—2 < dist(f"(i, j, by), x1). Thus every
pair {x1, y} is resolved by fh @, j,ar) or fh (@, j, br). In a similar way, we can show
that every vertex pair {x2, y}, {x3, y} and {x4, y} are resolved by S’.

Next we show that every pair {x,y} € P(g’ " mid(P"G, ", pi™")) x
(PG, j.ay) U P'i, j,bs) U PG, j,e,) U PG, j, pi™™) for i € [n], ], €
[m],h € {1,2} and r € {1,2,3} is resolved by &’. We fix arbitrary inte-
gers i € [n],j,j/ € [ml,h € {1,2} and r € {l1,2,3}. Suppose that x; €
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P, j,a), x2 € P"(i,j,by), x3 € P'(i,j,¢c;) x4 € P'(i,j, p}™") and y €
P(qf_h,mid(Ph(i,j’,pg_h))). For a vertex x;, for p € {1,2,3,4}, let £, =
dist(zr", x,,). For a vertex y, let £, = dist(g7 ™", y). Then dist(f" (i, j, ar), x1) = £y,
ifx) # !l anddist(f" (i, j, a,), 7l = 2.dist(f" (i, j, ar), y) = dist(f" i, j, by), y)
= dist(f"(i, j, ¢, y) = min @+ [P"G, j', p;7")1/2 + [P} ™", mid(P" G, j,
P = €y, 2 + [Pt a4+ 1P a) + 1+ €y) = min (1 + 40(n +
1) —£,,3 + 20(n + 1) + ¢£,). For the pair {x;,y} that is not resolved by
frG,jan), dist(f" G jo ), y) = dist(f G, joap), y) = dist(f G, joar), x) =
dist(f @, j, by), x1) — 2 < dist(f"(, j,b,), x1). Thus every pair {x,y} is
resolved by fh(i,j,ar) or fh(i,j,br). In a similar way, we can show that
every vertex pair {xz,y} and {x3, y} are resolved by S’. For the pair {x4, y},
there are two cases. Case 1: j° # j. In this case, the analysis is similar to
that of {x;, y} above and every pair {x4,y} is resolved by fh(i,j, p?‘h) or
G, j,ar). Case 20 j' = j. dist(f"G, j, p;™"), xa) = Ly, if x4 # x!" and
dist(f" (i, j, p; ") 7 = 2. dist(f" G, j, p} ™), y) = min (PG, j7, pi 712 +
|P(g; ", mid(P" G, j, p; ") =&y, 2+ |P(]', )| +1P(r) " ap) |+ 1+ £y) =
min (40(n+1)—1—£y, 3+20(n+1)+£,). For the pair {x4, y} whichis not resolved by
fha, j, p?_h), it satisfies that dist(f" (i, J, p?_h),m) = dist(f"@, J, p?_h), y) =
40(n + 1) — 1 — £y = Ly, ie. dist(f™4G, j, h), xa) = dist(f™(i, j, h), y) and
10(n +1) < £y, <20(n + 1),20(n +1) — 1 < £, < 30(n + 1) — 1. For such
pairs, dist(f¢“(i, j,3 —h,r),x4) =2 +30n+1) — €y, <24+20n+1) <
dist(f¢“(i, j,3—h,r),y) =50(m+1)+1—£,. Thus in this case, every pair {x4, y}
is resolved by £ (i, j, p?~") or f€°°(i, j,3 — h, 7).

Finally we show that every pair {x, y} € (P"(i, j,a,)UP"(i, j, b,))UP"(i, j, c,)U
PG, j, pi™™) x P(q! mid(P3" (', j/, ph)) fori, i’ € [nl, j, j' € [m], h, i €
{1,2} and r € {1,2, 3} such that i # i’ is resolved by S’. We fix arbitrary integers
i,i’ €[nl,j,j €[ml,h,h" €{l1,2}and r € {1, 2,3} such that i # i’. Suppose that
x1 € P"G, j,a;),x2 € P'(i, j,by),x3 € P'(i, j,c;)andxa € P (i, j, p;™"). Sup-
pose that y € P(qi%_h/, mid(Ph/(i/, j', p?,_h/))). For a vertex x,, for u € {1,2, 3,4},
let £, = dist(nih,xu). For a vertex y, let £, = dist(qi%_h/,y). For the pair
{x1, ), dist(f"G, j,ar), x1) = Ly if x1 # 7 and dist(f" @, j, ar), 7l = 2.
dist(f" (i, j. a,), y) = min Q+| P, ap)|+|P (!, ap)|+1+Ly, 24| P (!, a)| +
PG a4+ P3G pi1/2 + PGl mid(P G pEDL = €)) =
min 34+20(n+1)+£,, 1 +60(n+1)—£,) > 3+20(n+1) > dist(f (@, j, ar), x1).
Thus every pair {xi, y} is resolved by f"(i, j, a,). Similarly, we can show that
every pair {x2, v}, {x3, y} and {x4, y} are resolved by f"(i, j,b,), (i, j,c,) and
fha, g, p? ) respectively. This completes the proof for the lemma. O

Lemma 23 Every pair {x, y} € U;epn i X U,epy) Si is resolved by S'.

Proof We show that everypair {x, vy} € (PG, j,a) U PG, j,b)U PG, j, c)U
PG, j, piM) x (P!, a,) U Pl c)) for ii" € [nl,j € [mlh.h' €
{1,2} and r,r" € {1,2,3} is resolved by &’. We fix arbitrary integers i,i’ €
[n],j € [m],h,h € {1,2} and r,r’ € {1,2,3)}. Suppose that x; € P"(i, j,a,),
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x2 € Pi,j,by), x3 € PG, j,¢) and x4 € P, j, p;™"). Suppose that
y1 € P(nff/,a,/) and y, € P(nl.}f/, ¢,r). For a vertex x, for u € {1,2,3,4}, let
by, = dist(nih,xu). For a vertex yi, let £y, = dist(a,/, y1). For a vertex y,, let
Ly, = dist(c,s, y2). Let |P(sl-j, a,)| = 20(n + 1) 4+ 10X for some A € [n]. For a pair
(e vl dist(f (57, @), y1) = 24y, dist(f (57, 1), x1) = min Q+|P (), )|+
Ly, |P(sij, a)|—14+| PG, j, a;)|—Ly,;) = min 24+10(n+1)+£,,,40(n+1)4+10A—
1—€,))ifr = and dist(f s/, @), x1) = min Q+|P (", a,) |+ Ly, |P(s], ap)|+
1L+|P"G, j,a)| —ty) = min 2+ 10(n +1) + £, 400 + 1) + 104 + 1 —£y)) =
24+10n+1) > dlSt(f(S a,), y1) if r # r’. It follows that dlst(f(s a,r), x1) >
24+ 10n+1) > dlst(f(sl ,a,/) y1). dlst(f(sl ,apr), X1) = dlst(f(sl ,ar), V1) only
when x| = zr and y; = n LIf i’ # i or k' # h, obviously the pair {zr l./}
is resolved by fh (i, j,a,). Thus every pair {x1, y1} is resolved by f(sl a,) or
"G, j,a,).Inasimilar way, we can show that every vertex pair {x2, y1}, {x3, y1} and
{x4, y1} are resolved by f (sij ,ap)or f h(i, j,ay). Also in a similar way, we can show
that every vertex pair {x1, y2}, {x2, y2}, {x3, y2} and {x4, y»} are resolved by f (sl.j , Cr)
or f h, J, ay). This completes the proof for the lemma. O

Lemma 24 Every pair {x, y} € ;e i X U, (12,3 Rr is resolved by S'.

Proof We show that every pair {x, y} € (PG, J, ar) U Ph, J, br) U P, J, cr) U
Ph(l J» pl )) X (P(u ,,a,/) U P(v ,,a,/) U P(u! ,,c,/) U P(v ,,c,/)) fori,i’ €
[n],j € [m],h € {I, 2} and r,r’ € {1,2,3} is resolved by S’. We fix arbi-
trary integers i,i’ € [n],j € [m],h € {1,2} and r,r" € {1,2,3}. Suppose that
x1 € PG, j,a), x2 € P'Gi,j.by), x3 € P"(i, j,¢;) and x4 € PG, j, p?™).
Suppose that y; € P(ui/,,a,/), Y2 € P(vil,,a,/), 71 € P(ui/,,cr/) and 7o €
P(vr/,cr/). For a vertex x, for p € {1,2,3,4}, let qu = dist(n,.h,xu). For a
vertex y, for v € {1,2}, let £,, = dist(a,, y,). For a vertex z, for n € {1,2},
let £y, = dist(c,, z;). Then |P(ul, a)| = |P(), a)| = 20(n + 1) — 10/’
and |P(ul,, c,)| = |P(',¢x)| = 20(m + 1) + 10/'. For a pair {xy, yi},
dist(f"(i, j,a,), x1) = €y, and dist(f" (i, j, a,), 7]") = 2. dist(f" @, j.ar). y1) =
dist(f" (i, j. by). y1) = dist(f"(, j.c). ) = dist(f"G, j. pi "), y) =

|P(nl.h,a,/)| + 4, = 2+ 10m + 1) + ¢,,. For the pair {xi,y;} that is
not resolved by f"(i,j,a,), dist(f"(, j,a),x1) = dist(f*G, j,a),y1) =
dist(fh(i, Jjybr),y1) = dist(fh(i, J,by), x1) —2. Thus every pair {x1, y1} is resolved
by fh(i, j,ay) or fh(i, J,by). In a similar way, we can show that every vertex
pair {x,, y} for u € {1,2,3,4},v € {1,2} is resolved by S’'. For a pair {x1, 21},
dist(f"(i, j,a;), x1) = £y, and dist(f" (i, j,a,), 7" = 2. dist(f" G, j,a), 21) =
dist(f" (i, j, by). 21) = min Q+|P (]!, ;)| +Lz), 2+ |P (], ap) |+ Play, ul)| +
|P(cyryul)| =2 —Lz)) = min 24 10(n+ 1)+ £z, 50(n+ 1) —€.)) if [P(c,r, ul)| —
by = 2. dist(f*G, joa),z) = dist(fG, j.by),z) = 2+ [P an)] +
|P(ay, ul)| + |P(cyroul)| — €, if |P(cr,ul)| — €, < 2. For the pair {x1,z1}
that is not resolved by f"(i, j, a,), dist(f" (@, j, a,), x1) = dist(f"(, j,a,), z1) =
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dist(f" (i, j, by), z1) = dist(f" (i, j, by), x1) — 2. Thus every pair {x1, z1} is resolved
by f"@, j,a,) or f(i, j,b). In a similar way, we can show that every vertex pair
{xu. zv} for p € {1,2,3,4}, v € {1, 2} is resolved by S’.

Then we show that every pair {x, y} € (Ph(i, j,ar)UPh(i, Js br)UPh(i, Jj,cr)U
Ph(i,j,pf—h)) x (P(ul,, by) U P(v),, b)) fori,i' € [n], j € [m], h € {1,2} and
r,r e {l,2, 3} is resolved by S’. We fix arbitrary integers i,i’ € [n], j € [m], h €
{1,2} and r,7" € {1,2,3}. Suppose that X € P, j.a), x2 € P, ], by),
x3 € P, j,cr) and x4 € Ph(i, J, pl ) Suppose that w; € P(u’,, b,r) and
wy € P(vr,, b,). Foravertex x,, foru € {1,2,3,4},let€,, = dlSt(]Zl- , X,). Foraver-
tex w, forv € {1, 2}, let £,, = dist(b,s, w,). Then let |P(sij, ay)| =20(n+1)+10A
for some A € [n], |P(ul,, byr)| = 20(n + 1) — 5’ — 1 and |P(v],, b/)| = 20(n +
1) — 5i' — 2. For a pair {x1, wi}, dist(f (), v1), wy) = dist(f2(ul,, vi), wy) =
2+ |P(u£l,, b,)| — £y, . For the distance between f”(uil,, v;',,) and x; for n € {1, 2},
there are two cases. Case 1: 1 < i’.dist(fl(ui/,, vi/,), x1) = dist(fz(ui/,, vii), x)+1=
min (1 + | P(ay, ul)| + |P(s), a)| = 1+ PG, j,a)] = o, 14 [P(ay, ul)] +
|P(l, )| + ) if 1 = ¢/ dist(f @, 00, x1) = dist(f2(l, vh), x1) + 1 =
min (1 + | P(ay, ul)| + |P(s), a)| + 1+ PG, j,a)] — €, 1+ |P(ay, ul)]| +
|P(nl.h,a,/)| + £y,) if r # r’. In this case, for the pair {x;, w;} which is not
resolved by f i, vi), dist(f2(u“,, Vi, xn) = dist(fll, vy, x) — 1 <
dist(f' (u’), r) y) = dist(f2(ul), ",),y). Case 2: & > i'. dist(f' (u,, v'), x1) =
dist(f2(ul), v1)), x1)+1 = min (1+|P(c,/,ui’/)|+|P(sl.f,c,,)|+1+|Ph(i,j,a,)|—
Ly, 1+ |P(ay, ui,,)| + |P(nl.h, a;)| + £x,). In this case, for the pair {x;, wi} which
is not resolved by o, dist(fz(u;,, vy, x1) = dist(f @l vl x) — 1 <
dist(fl(u ' Uy ) y) = d1st(f2(u /s r,) y). In a similar way, we can show that every
vertex pair {x,, wy,} for u € {1, 2 3,4}, v € {1, 2} is resolved by §’. This completes
the proof for the lemma. O

'

Lemma 25 Every pair {x, y} € ;¢ Li X Uicpn) Hi is resolved by S'.

Proof First we show that every pair {x,y} € P(ql.h,mid(P3’h(i,j,pfl))) X
(P(s ,ay) U P(s) ) for i,i’ € [n], j,j’ € [ml,h € {1,2) and r € {1,2,3)
is resolved by &’. We fix arbitrary integers i,i’ € [n], j, j/ € [m],h € {1,2} and
r € {1,2,3}. Suppose that x € P(qﬁ,mid(PH(i,j,p{l))) and y € P(sif;’,a,).
For a vertex x € P(ql b mid(P3", j, D; my), let P(ql ,x) be the subpath of
P(q mid(P3"(, j, D; ")) from qh to x and |P(q ,Xx)| = £,. For a vertex y €
P(s ) ,ar) let P(ay, y) be the subpath of P(s, ,ay) from a, to y and |P(a,, y)| =
¢y. Then dist(f(z)', a,),x) = min ((P(x}', @) + 1+ €, 2 + [P ™", a0)| +
|P37hG, . p)1/2 + 1P (gl mid(P37" (i, j, p!))] — £,) = min (102 + 1) + 1 +
€, 50(n + 1) + 1 — £). dist(f(r; ", a,),x) = min 2 + |P(x!,a)] + 1 +
Lo, PG 7" an)| + P30, j, pI/2 + [P (gl mid(P3"G, j, ph))| — €)=
min (10(n+1)+34£y, 50(n+1)—1—L,). dist(f (", ar), y) = dist(f (777", a,), )
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= 2+{,.Forapair {x, y} whichis notresolved by f (nih, a,), there are two cases. Case
Ldist(f (777", ay), x) = dist(f (777", a,), y) = 10+ 1)+ 1+, = 2+, Inthis
case, dist(f (77", @), x) = 1000 + 1) + 3+ € > 2+ €, = dist(f (777", ar), y).
Case 2:dist(f (77", a,), x) = dist(f (7} ", a,), y) = 50(n+1)+1—€; = 2+¢,.In
this case, dist(f (777", a,), x) = 500+ 1) —1—£, < 2+£, = dist(f (7", a,), y).
It follows that every pair {x, y} is resolved by f(nl.h, a,) or f(nf*h, ay). Similarly
we can show that every pair of P(qih, mid(P3_h @, J, pf’))) X P(si];/, ¢,) is resolved
by f(l, c)or f(P7", ¢p).

Then we show that every pair {x, y} € P(ql.h, mid(P3"(, j, plh))) X (P(sij;/, b))\
{sij;,}) fori,i’ € [n],j,j € [m],h € {1 2} and r € {1,2, 3} is resolved by &'.
We fix arbitrary integers i, i’ € [n], j, ] e [m],h € {1, 2} and r € {1, 2, 3}. Sup-
pose that x € P(g!", mid(P3~"(i, j, p!))) and y € P(s,,b )\ {s}) ). We define zx
and £y in a similar way to that of £, and £, in the first paragraph. Suppose that si,
resolves the pair {ui’, vﬁ’} for some i, € [n], i.e. |P(a,, uﬁ’)| =20(n + 1) — 10i,.
Then dlst(f Wl v, x) = dist(f2@y, vr), x) + 1 = min (1 + |P(a,, )+
|P(zl a) + 1 + ex,l + | P(ap, uf)| + P an)) + P3G, j, phI/2 +
|P(g", mid(P3"(, j, p! )))|—z ) =min (243001 + 1) — 10i, + €x, 7001 + 1) —
10i, — £y). dist(f! (ur , U’) y) = dlSt(f2(Mr , U’) y) =2+ |P(b, vl/)l + £y
20(n + 1) — 5i, + £,. Thus for a vertex pa1r {x vy} which is not resolved by
£l v, dist(f @y, ), x) = dist(fl @y, v, y) = chst(fz(ur,vr) » >
dlst(fz(u, , v, x). It follows that every pair {x, y} is resolved by f (uy, v or
f z(ur , v;"). This completes the proof for the lemma. O

Lemma 26 Every pair {x, y} € ;¢ Li X Uicpn) Si is resolved by S'.

Proof We show that every pair {x, y} € P(ql.h, mid(P37"(, j, pf’))) X (P(ni}f/, a)U
P(rl,¢,)) for i,i' € [nl.j € [mlhh' € {1,2} and r € {1,2,3} is
resolved by &’. We fix arbitrary integers i,i" € [n],j € [m],h,h € {1,2}
and r € {1,2,3}. Suppose that x € P(g!, mid(P>"(,j, p)) and y €
P(r!",a,). For a vertex x € P(g!", mid(P3~"@, j, p!))), let P(g!',x) be the
subpath of P (g, mid(P>~"(i, j, p!))) from ¢! to x and |P(q",x)| = ¢,. For
a vertex y € P(nl.}}/,a,), let P(ar,y) be the subpath of P(ni}f/,a,) from a,
to y and |P(a,,y)| = {y. Then dist(f(sl.j,ar),y) =244 < 2+ 10(n +
1. dist(f(s/,a,),x) = min 2 + [P, a)| + 1+ €,2 + [P, a,)| +
|P>7RG, j, pI/2 + 1P (g mid(PP 7", j, p!))| — €) = min (10(n + 1) +3 +
e, 500n + D) +1 —4,) > 34+ 10n+1) > dist(f(sij,a,),x). Thus every
pair {x, y} is resolved by f (sij ,ar). Similarly we can show that every pair of
P(ql.h, mid(P3"(, j, pfl))) X P(ni}f/, cy) is resolved by f(sl.j, ¢r). This completes
the proof for the lemma. O

Lemma 27 Every pair {x, y} € U;cpn) Li X U, ¢q1.0.3) Rr is resolved by S'.
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Proof We show that every pair {x, y} € P(q/', mid(P>~" (i, j, p"))) x (P(u, a,) U
P, a) U P!, b)) U P, b)U P, c,)UPQ ,¢c) fori,i' € [n],j €
[m], h e {1,2} and r € {1,2,3} is resolved by S’. We fix arbitrary inte-
gers i,i'’ € [n],j € [m] h e {l, 2} and r € {l,2, 3} Suppose that x €
P(q], rmd(P3 "G, J, PP, v € Pan), y2 € PQan), 21 € Py, by),
0 € P(v, ,by), w; € P(u, ,Cr), W) € P(vr , ¢r). For a vertex x € P(q; ,m1d(P3 —h
@i.j, p")), let P(g!,x) be the subpath of P(g!, mid(P3~"(i, j, p!))) from g
to x and |P(qih,x)| = {,. For a vertex y; € P(ui/,a,), let P(yl,ui/) be the
subpath of P(ui/,a,) from y; to ui/ and let |P(y1,u£/)| = {y,. For a vertex
y2 € P!, a,), let P(y2,v]) be the subpath of P (v}, a,) from y; to vi and let
|P(y2,v!)| = £,,. For a vertex z; € P(ul,b,), let P(z;,u’) be the subpath of
P(uil,br) from z; to uil and let |P(z1, ui/)| = {;,. For a vertex zp € P(vil,br),
let P(z2,v') be the subpath of P(vi, b,) from z5 to v/ and let |P(z2, v')| = £2,.
For a vertex w € P(ul,c,), let P(wy,u) be the subpath of P(u!, ¢,) from w;
to ul' and let |P(wy,ul)| = £,,. For a vertex wa € Pl ,¢,), let P(wa,v))
be the subpath of P (!, ¢,) from w; to v’ and let |P(wa, v\ )| = £,,. For a pair
o, yi ), dist(F @l v, y1) = 1+ €y, if yr # ul and dist(f @l v, ul) = 2.
dist(f " (ul’, vf), x) = min (14| P(ay, ul) |+ |P(x/', )|+ 1+, 1+| Pay, ul)| +
[P ™", a)|+IP37G, j, p)I/2+IP(g], mid(P3G, j, p)))| =€) = min 2+
30n + 1) — 10i" + £,,70(n + 1) — 10i" — £y) > 1 4+ 20(n + 1) — 10i’" >
dist(fl(ui/, vﬁ/), v1). Thus every pair {x, y;} is resolved by fl(ui/, vﬁ/). Similarly,
every pair {x, y;} is resolved by f'(ul’, v!'). For a pair {x, z1}, dist(f2(u , v'), x) =
dist(f i, vih), x) — 1. dist(f @l vi), z1) = dist(fz(u;’,u;"),m) =24 £,
Thus for a pair {x,z1} that is not resolved by f'(ul, vi), dist(f Yl vy, x) =
dist(f! (u,, r) 71) = dlst(fz(u,, r) z1) > dlst(fz(u,, r) x). It follows that
every pair {x, zl}lsresolvedbyf (u,, ,)or fz(u,, ,) Similarly, every pair {x, z2}
is resolved by f (ur, ,) or fz(ur, ,) For a pair {x, w1}, d1st(f(nl ,Cr), W) =
dlst(f(ni3 by, wy) = dlSt(f(Si ,er), wy) =2+ |P(c, u,)| Ly, =2+20(n+
1)+10i/_£w1 dist(f(n , Cr), X) = min (|P(71 ar)|+1+4+4£y, 24| P(x; 3=h ,ar)|+
[P, j, pI/2 + | P (gl mid(P3- "G p] ") =€) = min (1002 + 1) + 1+
£:,50m + 1) + 1 — £y). dlst(f(ni ,cr),x) = min (2 + |P(7ri ,ar)| + 1 +
Lo |P " a)) + PTG, J, P12 + P (g), mid(P3 G, j, pfI)] = €0 =
min (10(n+1)+3+2,, 50(n+1)—1—£x).dist(f(si], ¢r), X) = min (2+|P(nih, ar)|+
1€, 24| P ()" ap) |+ P30 G, jo pI/2+IP (gl mid(P3" (i, j, ph))—€) =
min (10(n+1) +3+44£4,50(n+ 1)+ 1 — £,). For a pair {x, w;} which is not resolved
by f(sij, ¢,), either f(nl.h, cy) or f(n?fh, c¢r) resolves it. Thus every pair {x, w1} is
resolved by f (sij ,cr)s f (rrih, cr)or f (ni3_h , ¢r). Similarly, we can show that every
pair {x, wy} is resolved by f(sij, cr), f(nih, cp) or f(nl.3_h, ¢r). This completes the
proof for the lemma. O

Lemma 28 Every pair {x, y} € ;¢ Si X Uiepn) Hi is resolved by S'.
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Proof We show that every pair {x, y} € (P(x; ,,a,/) U P(n,, cr)) X (P(s ay) U

( b)UP(s ¢)) fori,i’ € [n],j € [m],h € {1,2} and r,r" € {1,2,3}
is resolved by S We fix arbitrary integers i,i’ € [n],j € [m],h € {1, 2.} and
r,r’ € {1,2,3}. Suppose that x; € P(ni’f,a,r), Xy € P(ni’f,c,/), y1 € P(siJ,a,),
Y2 € P(si],ar) and y3 € P(si],cr). For a vertex x; € P(n!},a,/), let P(rri}f,xl)
be the subpath of P(nl.h,,ar/) from nl.}f to x; and let |P(7rff,x1)| = {,. For a
vertex x, € P(n}f, cr), let P(nlf,xz) be the subpath of P(ni}}, ¢,r) from nlf} to
x2 and let |P(n,,xz)| = Ly, For a vertex y; € P(s ,ar), let P(sl ,y1) be
the subpath of P(s a,), from s to y; and let |P(sl ,y1)| = Ly,. For a vertex
V) € P(s by)\ {s } let P(s y2) be the subpath of P(s b,), from s to yp and
let |P(s )| = éyz For a vertex y3 € P (s cr), let P(s y3) be the subpath of
P( ,Cr), froms to y3 and let |P(sl ,¥3)| = £y, Let |P(s a)| =20(n+ 1)+ 10A
for some A € [n] For a vertex pair {x1, y1}, dlSt(fh(l Jj.ar),x1) = 2 —|— Ly, .
For the distance between f"(i’, j,a,) and y;, there are two cases. Case 1: i’ = i.
Then dist(f" (0", j,a,), y1) = min (IPAG. j.a)] + £y, — 1,2 + [Pl an] +
|P(sl ,a,)| — {y,) = min (20(n + 1)+ £y —1,30(n + 1) + 104 + 2 — £y)) if
yi # s and dist(f"(i', j, a;),s}) = 20(n + 1) + 1. Thus dist(f" (', j, a,), y1) >
2 + 10(n + 1) > dist(f"@’ ,],a,),xl). fhG’, j,ar) does not resolve {xi, yi}
only when x; = a» and y; = a, with r # r’. The pair {a,/, a,} is resolved
by f(rrl./f,ar/). Thus in this case, every pair {xi, y;} is resolved by f"(’, j,a,)
or f(rl ay). Case 2: i’ # i. Then dist(f"(i’, j,a,),s)) = minge(1 23 Q2+
[Pl ca)l + |P (], ca)l). dist(f" (@, j.ar). y1) = min dist(f" (@, j. ar).s]) +
Gy, 24 |P(l an)| 4+ 1P (s} an)| = €y) = 24 10(n + 1) = dist(f" (i’ ,J,ar>,x1).
fG’, j,a,) does not resolve {x1, yi} only when x| = a,» and y; = a, with r # r'..
The pair {a,, a,} is resolved by f(niff, a,). It follows that every pair {xq, y} is
resolved by f hi', j,ay) or f (ni}}, a,7). In a similar way, we can show that every
pair {xz, y1}, {x1, y3} and {x;, y3} are resolved by &'. For a vertex pair {x1, y2},
dist(f"(i’, j, b,), x1) = 2 + Ly,. For the distance between f"(i’, j, b,) and y,, there
are two cases. Case 1: i’ = i. Then dist(f"(i’, j, b,), y2) = min (P, j, b)) +
Ly, —1,24|P (], an)|+|P(a, v)|+| P (b, vf)|+|P(S,~j,br)|.—€yz) >20(n+1) >
dist(f"(i’, j, by), x1). Case 2: i’ # i. Then dist(f"(i', j, by), s!) = minge(1,2,3(2 +
|P (), ca)l + |P(s], ca)D). dist(f* (@', j. br). y2) = min (dist(f" (@, j,br),s)) +
Cy. 2+ |P(n) an)| + |P(ap, v + [P, v])] + |P(s] . b)| — €y,) > 20(n +
1) > d1st(fh(z , J»br), x1). Thus in both cases, every pair {x1, y»} is resolved by

f h (i’, j, b,). In a similar way, we can show that every pair {x2, y»} is resolved by
f h (i’, j, b,). This completes the proof for the lemma. O

Lemma 29 Every pair {x, y} € Si x U, eq1.2.3) Rr is resolved by S'.

ie[n]

Proof We show that every pair {x, y} € (P(nih, a,) U P(rrih, cr)) X (P(uil,, a,) U
P, a,) U Pl by) U P, by) U Pl ) U PV, ¢,)) fori,i’ € [n],h €
{1,2} and r,r" € {1,2,3} is resolved by &'. We fix arbitrary integers i,i’ €
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[nl,j € [ml,h € {1,2} and r,7" € {1,2,3}. Suppose that x; € P(z! a),
x2€ Pl ¢, y1 € P(ul,,ap), y2 € POV, a,), 21 € Py, byr), 20 € P(VE), by),
wy € P(ui’,,cr/), wy € P(vii,crr). For a vertex x; € P(nl.h,a,), let P(nih,xl)
be the subpath of P(nl.h, a,) from nl.h to x1 and let |P(71[.h, x1)| = £y,. For a ver-
tex x; € P (nl.h, cr), let P (n,.h, x7) be the subpath of P(nl.h, ¢,) from 7tl~h to x and
let |P(n,.h,x2)| = {y,. Then dist(f"@i, j,an), x1) = 2 + by <24+100+1)
and dist(f"(i, j,a;),x2) = 24+ £y, < 24 10(n + 1). dist(f" (G, j,a,), a) =
dist(f"(i, j,a;), /) = 24+ 10(n + 1). dist(f" G, j,a,), by) = 2 + |P(x], a)| +
[P(ay, V)| + [P(by,v))| > 2+ 10(n + 1). We see that any shortest path from
fh(i, j,ar) to a vertex of {y1, y2, 21, 22, w1, wa} goes through a,/, b,» or ¢,.. Thus
the distance from fh(i, j,ay) to any vertex of {y1, y2, z1, 22, w1, wa} is at least
2 4 10(n 4 1) and the equality holds only when y; = y» = a,» or w1 = wy = ¢,.
Obviously f (71!’, a,) resolves the pairs {a,, a,7} and {a,, ¢,7} and f (T[ih, c,) resolves
the pairs {c,,a-} and {c,, ¢} with r # r'. As a result, every vertex pair of

Uiepnr S % Uyeqr.2.3) Rr is resolved by f*(i. j.a,), f(x]' ar) or f(x}',c,). This
completes the proof for the lemma. O

Lemma30 Every pair {x, y} € U;epn) Hi X Uyeq1.2.3) Rr is resolved by S

Proof First we show that every pair {x, y} € P(sij, a,) x (P(uil,, a,) U P(vil,, a, )y
Pl b,)U P, by )UP®L, ) UPW, ¢)) fori,i' €[nl, j € [mlandr,r’ €
{1,2, 3} is resolved by S&’. We fix arbitrary integers i,i" € [n], h € {1,2}, j € [m]
and r, 7’ € {1,2,3}. Suppose that x € P(s/, a,), yi € P(ul, a,), y2 € PV’ ap),
71 € P(ui/,,br/), o € P(vil,,br/), w; € P(ui/,,crf), wy € P(v;'/,,cr/). For a ver-
tex x € P(sl.j, ay), let P(x,a,) be the subpath of P(sl-j, a,) from a, to x and let
|P(x,a;)| = £,. For a vertex y; € P(ui,,,ar/), let P(y1, u’r/,) be the subpath of
P(ui/,, a,r) from yj to u‘r/, and let | P (y1, uil,)| = {y,. For a vertex y; € P(vf,, a,), let
P(yz, vi/,) be the subpath of P(v;'//, a,s) from y; to v;; and let | P (y2, v;'/,)| ={,,.Fora
vertex 71 € P(ui/,, b,1), let P(z1, ui/,) be the subpath of P(uil,, b,) from z to u’r/, and
let | P(z1, ui/,)l = {;,. For a vertex z; € P(vi//, b,1), let P(z2, v;'/,) be the subpath of
P(vi/,, b,s) from z5 to v;,, and let | P(z2, vi/,)| = {,. For a vertex w; € P(ui/,, c), let
P(wi, ul) be the subpath of P(ul,, ¢,/) from wy to u’, and let |P(wy, ul,)| = £y,.
For a vertex wy € P(vii, c), let P(wo, vii) be the subpath of P(v;',,, ¢,) from w, to
v') and let | P (w2, vl))| = £y,. Thendist(f(s] , a,), x) = dist(f (z)', a,), x) =2 = ¢,
if x # a, and dist(f(sij, a,),ay) = dist(f(nih, ar), ar) = 2. For a vertex pair {x, y1},
there are two cases. Case 1: ' = r. dist(f(sij, ar),y1) = dist(f(nl-h, ar),y1) =
2+ |P(u.£,,, a,)| — £y,. For a vertex pair {x, y;} that is not resolved by f(sij, a,),
dist(f(s{, a), x) = dist(f(s{, a,), y1) = dist(f (z]', a,), y1) < dist(f (7], ar), x).
Thus in this case, every pair {x, y;} is resolved by f (slti ,ay) or f (nih, a,). Case
20 # o dist(f(s],a), 1) = dist(f (Tt a), ) +2 = 2+ |P()a) +
|P(7rl.h,ar/)| + |P(ui/,,ar/)| — Ly,. For a vertex pair {x, y;} that is not resolved
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by f(s/,a,), dist(f(xl a,),x) > dist(f(s),a,),x) = dist(f(s],a,), 1) >
dist(f(nih, ar), y1). Thus in this case, every pair {x, y;} is resolved by f(sij, a,)
or f(nih,ar). Similarly, every pair {x, y»} is resolved by f(sij,ar) or f(rrih, a,).
For a vertex pair {x, z1}, there are two cases. Case 1: r’ = r. dist(f(sl', a,),z1) =
dlst(f(ﬂ, ,ar),z1) = min (2+ | P (u, /’ar’)|+£1172+|P(u 5 ap)| 4 1Py, ber)| +
|P(u ,,b )| — £;,). For a Vertex pair {x, z1} that is not resolved by f(sl ,ay),
dlst(f(sl ,dy), X) = dlst(f(st ,ar), 71) = dlst(f(nl ,dy), zl) < dlst(f(nl ,dy), X).
Thus in this case, every pair {x, z1} is resolved by f (sl. ,ap) or f (711. ,a,). Case
2. #£ 1. dist(f(nih,a,),br/) = Minge(m(2 + [P(Y, a)| + [P, b)),
Then dist(f(n,h,a,) z1) = min(|P(rrih,ar)| + Pl a)| + |PWL, an)| +
Zl,dlst(f(n ,ay), by )+|P(ur/, b)) —4€z) > 30(n+1) > dist(f(nih,ar),x).Thus
in this case, every pair {x, z1} is resolved by f (nl.h, ay). Similarly, every pair {x, z»} is

'

resolved by f (sl.j ,ap)or f (n,.h, ay). For a vertex pair {x, w1}, there are two cases. Case
L:r' =r. dist(f(sij,ar), wi) = min (2 + |P(u£/, ap)| =24+ Ly, 2+ |P(7rih, ay)| +
|PGl, e+ 1P, cp)| =) if €y > 2.dist(f(s), a,), wi) = 2+ | P, a,)|+
Ly i €y, < 2.dist(f (], @), wi) = min Q+|Pul, a,)| =2+ Ly, |P(x], a)| +
| P(r; ,c,)|—|—|P(u;/, cr)| =Ly, ) if £y, > 2. dist(f(nih,a,), wi) = 2~|—|P(u£/, a)|+
Ly, 1f £y, < 2. It follows that dlst(f(s a;), wy) > dist(f(n a,), w1) For a pair
{x, wi} that is not resolved by f(sl ,ay), dlst(f(rrl ,dr), X) > dlst(f(sl ,dy),X) =
dlst(f(si ,dp), wy) > dlst(f(ni ,ar), wy). Thus in this case, every pair {x, w;} is
resolved by f(sl.j, a,) or f(nl ,ar) Case 2: 1/ # r. dist(f(s' a), wp) = min (2 +
PGl a4 PGl ap) |+ P, ap)| =24 Ly, 2+ Pl a)| + 1Pl e+
|P(u! ,,c,/)|—£wl)1f£wl > 2. dlSt(f(S ar), wy) = 2+|P(7rl ar)|+|P(7rih,a,/)|~|—
|P(ul,, )| + Ly, if £y < 2. dist(f(x],a), w)) = min (P}, a)] +
[P, am) |+ P, @)+, =2, |P(n,-h,ar>|+|P<nh e HIP Gy, €)= )
if €y, > 2. dist(f (!, a,), wi) = [Pl a)| + | Pl a)| + | Pl ap)] + o,
if £y, < 2. It follows that dist(f(sij,ar), wy) > dist(f(nl. ,ar), wy). For a pair
{x, w1} that is not resolved by f(sl.j, a,), dist(f(rrih, a,), x) > dist(f(sij, a,),x) =
dist(f(sij, a), wy) > dist(f(rrih, ar), wy). Thus in this case, every pair {x, w;} is
resolved by f (sil ,ay) or f (rrih,a,). Similarly, every pair {x, ws} is resolved by
£/ an)or f(xl',an).

Then we show that every pair {x, y} € P(slt/, cr) X (P(ui/,, a,) U P(v;'/,, a,) U
Pl by)U P, by ) UP®, ¢, )UPW,, ¢)) fori, i’ €[nl, j € [mlandr,r’ €
{1, 2 3} is resolved by S'. We fix arbltrary 1ntegersz i’ € [n] h e {1,2},j € [m]
and r,r’ € {1,2, 3}. Suppose that x € P(s c), y1 € P(u! ,,a,) Y € P(U ,,a,/)

71 € P(Mi//,br/), 2 € P(vii,br/), w| € P(ur,,cr/), wy € P(vr,,cr/). We define
Ly, Ly by, £y, Ly, £y, and £y, in a similar way to that of £, £, in the first

paragraph. Then dist(f(sl'./,cr),x) = dist(f(nih,c,),x) —2 =4, ifx # ¢ and
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dlst(f(sl ,Cr), Cr) = dlst(f(rrl ,¢r), cr) = 2. For a pair {x, y1}, there are two cases.
Casel:r' =r. dlst(f(sl ,Cr), Y1) = min (2+|P(u, L O =248y, 2+|P(n e+
|P(7rl. ,a,)|+|P(ur sap)|—Ly)if €y, = 2.dlst(f(si ,Cr), V1) = 2+|P(u, s cr) |y,
if €y, < 2.dist(f(@], ¢r), y1) = min 2 + [P, e,)| — 2 4 £y, |P(@], c)| +
|P(l, ap) | FI Pl ap)|—Ly,)if €y, > 2.dist(f (], ¢;), y1) = 24| P (Ul ¢0) |42y,
if £,, < 2. It follows that dist(f(s,.j,c,), y1) > dist(f(nih,c,), y1). For a pair
{x, y1} that is not resolved by f(s/, ¢,), dist(f(x", ¢,), x) > dist(f (s}, c,), x) =
dist(f(sij,c,),yl) > dist(f(nih,cr),yl). Thus in this case, every pair {x, yi}
is resolved by f(s/,¢,) or f(xl, ¢,). Case 2: r' # r. dist(f(s/,¢,),y1) =
dist(f (', ¢), y)+2 = 2+ [P, ¢)) |+ P!, a,) |+ P (il ap)| Ly, . It follows
that dist(f(sl'.i, cr), y1) > dist(f(rrl.h, ¢r), y1). For a pair {x, y;} that is not resolved
by f(sij,cr), dist(f(nl.h,cr),x) > dist(f(sij,cr),x) = dist(f(sij,c,),yl) >
dist(f(nl.h, ¢r), ¥1)- Thus in this case, every pair {x, y;} is resolved by f(sl.j, cy) or
f (nl.h, ¢r). Similarly, every pair {x, y>}isresolved by f (sij ,cr)or f (nih, ¢ ). For a pair
{x, z1}, there are two cases. Case 1 r’ =r.Let sl-j " be a vertex which resolves the pair
{ul, v}, Thean(s cr)|+|P(s , b)) =40(n+1)—5n+1. dist(f(n cr),by) =
2 + |P(sl. ,cr)l + |P(S ,b))] = 40(n + 1) — 5n + 3. d1st(f(nl ,Cr),21) =
min (2 + |P(u£/, )l + 4y, d1st(f(nl. ,cr), by) + |P(ur b)) —4;) >20(n+1) >
dist(f(nih, ¢r), x). Thus in this case, every pair {x, z1} is resolved by f(rcih, cr).
Case 2: ' # r. dist(f(nih,c,),b,/) = Mingepm)(2 + [P (57, ¢)| + |P(s , b))
Then dist(f(rrl.h,cr),zl) = min (|P(7'r’.h,c,)| + |P(7T ,ap)| + |P(ur/,a,r)| +
EZl,dist(f(nih, cr), b,/)+|P(ui/,, b)) —4;) > 20(n+1) > dlSt(f(n’i , ¢r), x). Thus
in this case, every pair {x, z1} is resolved by f (nih, ¢r). Similarly, every pair {x, z2}
is resolved by f(n ¢,). For a pair {x, w1}, there are two cases. Case 1: r' = r.
dlSt(f(Sl ,Cr), W) = dlSt(f(T[l ,cr) wy) =2+ IP(ur,, )| =Ly, Foravertex pair
{x, w1} that is not resolved by f(sl ,Cr), dlst(f(sl ,Cr), X) = dlst(f(sl ,Cr), W) =
dlst(f(nl ,Cr), W) < dlSt(f(T[l ,¢r),x). Thus in this case, every pair {x, w;}
is resolved by f(s/,c,) or f(x! c,). Case 2: ' # r. dist(f(x, c,), wy) =
min (|P (]!, ¢,)| + [Pl ;)| + Pl cp)| = Luy., [Pl e)| + Pl a0 +
|P(ul), ap)|+0u, —2) i £y, > 2.dist(f (]!, ¢,). wi) = |P(xl', cp)[+|P (), )|+
|P(ul), a,)| + €y, if €y < 2. Thus dist(f(zl,c)),w)) = 20(n + 1) >
dist(f(n,.h, ¢r), x). Similarly, every pair {x, w3} is resolved by f(s,j, c;) or f(nl.h, cr).
Finally we show that every pair {x, y} € P(s b,) x (P(ur,, a,) U P(vi/,, a,) U
P! /,,b DAY P(v'/,,b R, P(u./,,cr/) U P(v';,c,/)) for i,i’ € [n], j € [m] and
r,r/ e {1,2,3} is resolved by S'. We ﬁx arbitrary 1ntegers i,i' € [n] h €
{1,2},j € [mland r,r" € {1, 2, 3}. Suppose that x € P(s by), y1 € P(ur,,a,/)
y2 € P, a0, z1 € P(ul,by), 2o € P, by), wi € Pul,cp), wy €
P(v;:, ¢;). We define £y, £y, £y,, £, £z, £y, and £y, in a similar way to that of
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Ly, £y, in the first paragraph. For a pair {x, y1}, there are two cases. Case 1: r = 1/,
dist(f(nih,ar),x) = min 2 + IP(s sar)| + |P(s b))l —£e,2 + |Play, ul)| +
|P(br, ul)|+2;) >20(n+1). dist(f(nl. ,ar), y1) = |P(ay, ur)| — Ly, <20(n+1).
Thus in this case, every pair {x, y;} is resolved by f (rrl.h,ar). Similarly, every
pair {x, y2} is resolved by f(n ay). Case 2: r # r. dist(fl(uil,, v;',,),yl) =
I+ &y, if yi # ul, and dist(f! i, vy, uly = 2. dist(f i, vl x) =
min (dist( f! (u /Y r,),sj) + IP(s by)| —Zx,dist(fl(u /s r,) by) 4+ £y) > 20(n +
1) > dlst(f (u
71 (u /s /) Similarly, every pair {x, yz} is resolved by f 1(uil,, vii). For a pair
{x, z1}, there are two cases. Suppose that P(s by) = 20(n + 1) + 51 + 1 for
some % € [n]. Case 1: r = r. dist(f™“(i, j,h),x) = |PG, j, p?7")1/2 +
2 + IP(s b)) — £y = 30(n + 1) + 50 4+ 3 — . dist(f™4@, j, h),z1) =
min QH PG j. p} )/ 2H PG bl P (b ) ey A+ PR G . pf /24
|P(7Tl. ,ar)|+|P(ar,ur)|+EZ,) =min 50(n+ 1) +51+2—5i' — Z],4O(n+1)+
1 —10i" 4 £,,). dist(f¢(i, j, h, ), x) = |P"(, j, ar)|/2+l+|P(s b)) — 4ty =
dist(f™(i, j, h), x) = 1 dist(f(, j, h,r), z1) = min (1 + |Ph(l,],ar)|/2

|P(s], bl + 1Py, ul)| = £y, 2+ PG, j, a2+ | P(a]' an)| + | Par, uf)] +
£;)) = min (50(n + 1) + 51 + 1 = 5i" — £;,,40(n + 1) + 2 — 10i’ + ¢,). For
a vertex pair {x, z;} that is not resolved by f™9(i, j, h), d1st(f’"id(z joh.x) =

dist(fmid(i Johz) = 1+ PG, j, pi /2 + 1P, an)l + |P(ar, ul)] +
L > dist(fec<(i, j, h,r), x). If dist(f¢¢(i, j, h,r),z1) = 1 + |P"G, j,a)|/2 +
|P(s b )|+|P(b,,u )| £, ,thenobviously f¢““(i, j, h, r) resolves this pair. Other-
wise, dist( £ (i, j, h, 1), z1) = 40(n+1)+2—10i'+€;, > dist(f™4(, j, h), z1) >
dist(f°““(i, j, h, r), x). It follows that every pair {x, z1} is resolved by Fmid (i, i h)
or f¢€(,j,h,r). Similarly, every palr {x Z2} is resolved by F™d, j h) or
fe<(, j,h,r). Case 2: r # r'. d1st(f (ur/, r/) 21) =244, < 20(n + 1).
dist( f! (“w ,) x) = min (dist(f! (u ,) s])—HP(sl by | L, dist(f! (u /s r,)
by)+£y) > 20(n+ 1) > dist(f! (u ,),zl).Thus in this case, every pair {x, 71} is
resolved by f! (ur,, r,). Similarly, every pair {x, z3} is resolved by fl(ui/,, vil,).Fora

,), v1). Thus in this case, every pair {x, y;} is resolved by

rH

r/y

r/?

pair {x, wy}, there are two cases. Case 1: r = r’. dist(f(rrl.h, ¢r), by) = mingepm (2 +
[P(s{, cr)| +|P(sf, b)) =3 +40(n + 1) — 5n > 30(n + 1). dist(f(rrl.h, cr),x) =
min 2+|P(s!, ¢,) |+ P (s, b — Ly, dist(f (], ¢,), by)+£0). dist(f (57, ¢r), x) =
min (|P(sij, )|+ IP(sl.j, by)| — Ly, dist(f(nl.h, )y by) + L) dist(f (], ), wy) =
dist(f(sl',c,) wy) = 24 |Plcy, ;//)| y, = 24200+ 1) + 10i" — £y, <
30(n + 1). For a pair {x, w;} thatls not resolved by f(yr, ,Cr), dlst(f(ﬂl ,Cr), X) =

dlst(f(ﬂ 2Cr),wr) =24 |P(s]. el + IP(S b)) — £ = dist(f(s{, c), wi) >
dist(f(sl ,Cr), X) = |P(s c)| + |P(s b,)| — £,. Thus in this case every pair
{x, w1} is resolved by f(;rl , Cr) or f(sl ,cr) Case2:r #r'. dlst(f (u /s '/,), wi) =
1+ &, if w # u, and dlst(f i, v, uly = 2 dist(f! (ul), ;’i) x) =
min (dlst(f (u /s r,) s )+ |P(s by)| —Zx,d1st(f (u s r/) b))+ Ly) > 30(n +
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1) > dist(fl(ui//, vi/,), wi). Thus in this case, every pair {x, w;} is resolved by
1 i/ il . . . . 1 il i’ .
f(u,,, v.,). Similarly, every pair {x, w} is resolved by f"(u},, v},). This completes

the proof for the lemma. O

With Lemmas 9 - 30, we show that every pair of distinct vertices of G’ is resolved
by some vertex of S’. It follows that Lemma 8 is true and this proves the completeness
of the reduction.

Finally, with Lemmas 2, 6, 8 and 7 in hand, we can prove the correctness of Theo-
rem 1.

6 Conclusion

In this paper, we show that METRIC DIMENSION is NP-hard on graphs of treewidth at
most 24. One of the key points in bounding the treewidth of G’ is to maintain a vertex
separation of constant size. In the first step of our construction, we need 9 vertices to
be the vertex separation and convey the choice of the vertices in each color class X;
(i € [n]). It seems hard to show NP-hardness of this problem on graphs of treewidth
bounded by a constant ¢ < 9 using the techniques in this paper, so we mention this
open problem again: is METRIC DIMENSION polynomial-time solvable on graphs of
treewidth 2 or series-parallel graphs [1]? Another direction is about the parameterized
complexity of METRIC DIMENSION. We ask the following two questions. Is METRIC
DIMENSION FPT parameterized by the size of the resolving set on constant treewidth
graph? Is METRIC DIMENSION FPT parameterized by both the size of the resolving set
and the treewidth of the input graph?
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