
Algorithmica (2022) 84:2642–2666
https://doi.org/10.1007/s00453-022-00981-5

Graph Searches and Their End Vertices

Guozhen Rong1 · Yixin Cao1,2 · Jianxin Wang1 · Zhifeng Wang1

Received: 28 December 2020 / Accepted: 28 April 2022 / Published online: 21 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
For a graph search algorithm, the end vertex problem is concerned with which
vertices of a graph can be the last visited by this algorithm. We characterize all max-
imum cardinality searches on chordal graphs and derive from this characterization
a polynomial-time algorithm for the end vertex problem of maximum cardinality
searches on chordal graphs. It is complemented by a proof of NP-completeness of
the same problem on weakly chordal graphs. We also show linear-time algorithms for
deciding end vertices of breadth-first searches on interval graphs and end vertices of
lexicographic depth-first searches on chordal graphs.

Keywords End vertex of a graph search · Maximum cardinality search · Chordal
graph · Weakly chordal graph

1 Introduction

Breadth-first search (bfs) and depth-first search (dfs) are the most fundamental graph
algorithms and the standard opening of a course on this subject. The use of bfs
and dfs can be found, sometimes implicitly, in most graph algorithms. In general, a
graph search algorithm is a systematic exploration of a graph, and its core lies in the
strategy of choosing the next vertex to visit. Mostly greedy, graph search algorithms
are elementary but sometimes have magical powers. For example, dfs has played a

A preliminary version of this paper appears in the Proceedings of the 30th International Symposium on
Algorithms and Computation (ISAAC 2019).
G. Rong, Y. Cao, J. Wang, Z. Wang: Supported by National Natural Science Foundation of China
(61828205, 61672536), Hunan Provincial Key Lab on Bioinformatics, and Hunan Provincial Science and
Technology Program (2018WK4001).
Y. Cao: Supported in part by the Hong Kong Research Grants Council (RGC) under Grant 15201317 and
the National Natural Science Foundation of China (NSFC) under Grant 61972330.

B Yixin Cao
yixin.cao@polyu.edu.hk

1 School of Computer Science and Engineering, Central South University, Changsha, China

2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00981-5&domain=pdf
http://orcid.org/0000-0002-6927-438X

Algorithmica (2022) 84:2642–2666 2643

significant role in Tarjan’s award-winning work, testing planarity [19] and finding
strongly connected components [29].

Two other search algorithms, lexicographic breadth-first search (lbfs) [25] and
maximum cardinality search (mcs) [30], were invented for the purpose of recognizing
chordal graphs, i.e., graphs not containing any induced cycle on four or more vertices.
On a chordal graph, both lbfs and mcs produce perfect elimination orderings (see
definition in the next section), which exist if and only if the graph is chordal. Lbfs
and mcs have other important applications. Lbfs is used in scheduling [26] and is the
base of the recent linear-time algorithm for computing modular decompositions of
graphs [31]. Tarjan and Yannakakis [30] also used mcs in testing acyclic hypergraphs.
Nagamochi and Ibaraki [23] rediscovered mcs and applied it to compute minimum
cuts of a graph and to find forest decompositions; see also [24].

Simon [28] proposed an interesting way of using lbfs. It conducts lbfsmore than
once, and eachnew runuses previous runs to break ties; in particular, except for thefirst,
each run starts from the last vertex of the previous run. This generic approach turns out
to be very useful, e.g., the surprisingly simple and elegant recognition algorithms for
(unit) interval graphs [6, 9, 14, 22]. See the survey of Corneil [8] for more algorithms
using multiple runs of lbfs. Some of these results have a flavor of “ad-hoc” because
we have not fully understood the execution process of lbfs, and this is precisely the
motivation of this line of research.

The outputs of bfs and dfs are usually rooted spanning forests of the graph, while
lbfs and mcs produce orderings of the vertex set. To have a unified view of them,
Corneil et al. [12] focused on ordering the vertices being visited and conducted a
systematic study. Motivated by this study, they proposed the lexicographic version
of dfs, lexicographic depth-first search (ldfs), which has proved to be very useful
[10], and a very general search paradigm, maximal neighborhood search (mns). They
showed that all the aforementioned graph searches can be characterized by variants
of the so-called four-vertex condition. These nice characterizations are however not
sufficient to give us the answer to the ostensibly naïve question: which vertex can
be the last of such an ordering? Corneil et al. [11] called it the end vertex problem
and studied it from combinatorial and algorithmic perspectives. Apart from being a
natural starting point for understanding the graph searches in general, end vertices of
graph searches are of their own interest. Behind the original use of lbfs and mcs, in
the recognition of chordal graphs, is nothing but the properties of their end vertices,
which are always simplicial on a chordal graph [4, 25, 27, 30] (a vertex v is simplicial
if N [v] is a clique). Moreover, the success of multiple-run lbfs crucially hinges on
the end vertices; e.g., an end vertex of a (unit) interval graph can always be assigned
an extreme (i.e., leftmost or rightmost) interval [9, 14]. Important properties and use
of end vertices of other graph searches can be found in [10, 13, 18].

One may find it surprising, but the end vertex problem is NP-hard for all the six
mentioned graph search algorithms [1, 7, 12]. The study has thus been focused on
chordal graphs and their closely related superclasses and subclasses. After all, lbfs
and mcs were invented for recognition of chordal graphs, and their properties on
chordal graphs have been intensively studied. (This renders the stagnation on chordal
graphs a little more disappointing.) Moreover, most applications of lbfs and ldfs are
on related graph classes. The most natural superclass of chordal graphs is arguably

123

2644 Algorithmica (2022) 84:2642–2666

Fig. 1 A summary of the known complexity of the end vertex problem for the six graph search algorithms.
For each graph class, the end vertex problem of graph searches listed to its left can be solved in polynomial
time on this class, while those to the right are NP-hard. The complexity of the bfs end vertex and lbfs end
vertex problems on chordal graphs is still open

the weakly chordal graphs, and two important subclasses are interval graphs and split
graphs.1 It has been known that on weakly chordal graphs, the end vertex problems for
all but mcs are NP-complete, while on chordal graphs, the problem is NP-complete
only for dfs [1, 7, 12]. There are other polynomial-time algorithms for interval graphs
and split graphs, most of which actually run in linear time. We complete the pictures
for, in terms of graph search algorithms,mcs and ldfs, and, in terms of graph classes,
weakly chordal graphs and interval graphs. A summary of known results is given in
Fig. 1.

Blair and Peyton [5] and Galinier et al. [17] have shown that mcs orderings of a
chordal graph are closely related to its maximal cliques. Let G be a chordal graph. An
mcs visits all vertices in a maximal clique of G before proceeding to another, and the
nextmaximal clique is always chosen to have the largest intersectionwith a completely
visited maximal clique. Therefore, for a minimum separator S of G (i.e., a minimum
vertex set such that G − S is not connected), there is an mcs visiting the components
of G − S one by one, with S visited together with the first component. If we turn to
any component C of G − S and consider its closed neighborhood (which contains
C and S), we can make a similar conclusion on the subgraph induced by it. In other
words, this property on minimum separators holds recursively. For an mcs end vertex
z, which is necessarily simplicial, we can find a sequence of increasing separators.
The first is a minimum separator of G and the last comprises all the non-simplicial
vertices in N (z). An mcs ending with z has to “cross” these separators in order, and
for each S of these separators, visit the component of G − S containing z as the last
one. We have thus a full understanding of all mcs orderings of a chordal graph. As it
turns out, our result is easier to be presented in the so-called clique graph of G [5, 17].
It enables us to show that if we run mcs twice, the first starting from some z and the
second using the output of the first run to break ties, then the second run ends with z
if and only if z is an mcs end vertex.

1 A graph is a split graph if its vertex set can be partitioned into a clique and an independent set. Definitions
of weakly chordal graphs and interval graphs are deferred to Sects. 4 and 6, respectively.

123

Algorithmica (2022) 84:2642–2666 2645

Theorem 1.1 Let G be a chordal graph. A vertex z is an mcs end vertex of G if and
only if for any mcs ordering σ of G with σ(z) = 1, the ordering mcs+(G, σ) ends
with z.

As usual, we use n to denote the order of the input graph. Theorem 1.1 readily
implies a simple O(n2)-time algorithm for the mcs end vertex problem on chordal
graphs. We complement this result by showing that the mcs end vertex problem
becomes NP-complete already on weakly chordal graphs; the proof is inspired by
and adapted from Beisegel et al. [1].

Theorem 1.2 The mcs end vertex problem is NP-complete on weakly chordal graphs.

We then turn to ldfs on chordal graphs and bfs on interval graphs. Note that every
ldfs ordering of a graph G is also an mns ordering of G [12]. Hence, every ldfs
end vertex of G is also an mns end vertex of G. Berry et al. [3] have presented a
characterization of mns end vertices of chordal graphs. It is surprising that the very
same characterization is also true for ldfs end vertices. In other words, a simplicial
vertex z of a chordal graphG is an ldfs end vertex if and only if theminimal separators
of G in N (z) are totally ordered by inclusion. Corneil et al. [11] have presented an
elegant algorithm for solving the lbfs end vertex problemon interval graphs.However,
the situation for bfs is more complicated: a bfs end vertex of an interval graph may
not be simplicial. The intuition behind our algorithm is as follows. An interval graph
G can be represented by a clique path K [16]. In each of its two ends, we can find at
least one simplicial vertex; let them be u and w. For any vertex v in G, at least one of
u andw has the largest distance to v. This observation helps us demarcate the range of
the starting vertices, if we want a specific vertex z to be the last. Roughly speaking, if
z is close to the right end ofK, then we can start the search from the left end. However,
z might be “in the middle” of the clique path, which can only happen when G has a
small diameter. In this case, we try both directions.

Theorem 1.3 There are linear-time algorithms for solving the ldfs end vertex problem
on chordal graphs and the bfs end vertex problem on interval graphs.

We have to, nevertheless, leave open the bfs and lbfs end vertex problems on
chordal graphs. Since both problems can be solved in linear time on split graphs, we
conjecture that they can also be solved in polynomial time on chordal graphs. It is
extremely rare that a problem is hard on chordal graphs but easy on split graphs.

Before concluding this section, let us have a quick remark on the end vertex prob-
lems on general graphs. By enumerating all possible orderings, a trivial algorithm can
find all end vertices of any graph search algorithm in n! ·nO(1) time. On the other hand,
with the only exception of bfs, the reductions used in proving NP-hardness of the end
vertex problems are linear reductions from sat or 3-sat. As a result, these problems
cannot be solved in subexponential time unless the exponential time hypothesis fails
[20]. A natural question is thus which of them can be solved in 2O(n) time. If we
put them under closer scrutiny, we will see that these graph searches are somewhat
different. When selecting the next vertex,mcs only needs to knowwhich vertices have
been visited, while the order of visiting them is immaterial. In contrast, the other graph
searches are not oblivious and need to keep track of the whole visiting history. There-

123

2646 Algorithmica (2022) 84:2642–2666

fore, it is straightforward to use dynamic programming to solve the mcs end vertex
problem in 2n · nO(1) time. Kratsch et al. [21] have shown that a similar approach
actually works for the bfs and dfs end vertex problems. Also studied are the end
vertex problems on bipartite graphs; see [32] for the latest results.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and edge
set of a graphG are denoted by, respectively, V (G) and E(G), and we use n = |V (G)|
and m = |E(G)| to denote their cardinalities. For a subset X ⊆ V (G), we denote by
G[X] the subgraph of G induced by X , and by G − X the subgraph G[V (G)\X].
The two ends of an edge are neighbors of each other, and they are adjacent. The
neighborhood of a vertex v ∈ V (G), denoted by N (v), comprises all the neighbors of
v. The closed neighborhood of v is N [v] = N (v) ∪ {v}. A clique is a set of pairwise
adjacent vertices, and a clique is maximal if it is not a proper subset of any other
clique. A vertex v is simplicial if N [v] is a clique. Two distinct vertices u and v are
true twins if N [u] = N [v], and false twins if N (u) = N (v); note that true twins are
adjacent while false twins are not.

A set S of vertices is a u–v separator if u and v are not in S and there is no u–v path
in G − S, and a u–v separator is minimal if no proper subset of S is a u–v separator.
We say that S is a (minimal) separator if it is a (minimal) u–v separator for some pair
of u and v, and it is aminimum separator of G if it has the smallest cardinality among
all separators of G.

An ordering σ of the vertices of G is a bijection from V (G) → {1, . . . , n}. For
two vertices u and v, we use u <σ v to denote σ(u) < σ(v). The end vertex of σ

is the vertex z with σ(z) = n. When applying a graph search algorithm S to a graph
G, the order of visiting the vertices is called an S-ordering of G. Given a graph G
and a vertex z ∈ V (G), the end vertex problem for a graph search algorithm S is to
determine whether there is an S-ordering of G of which z is the end vertex.

A graph is chordal if it contains no induced cycle on four or more vertices. A
graph is chordal if and only if it can be made empty by removing simplicial vertices
from the remaining graph one by one; the order of the vertices removed is called a
perfect elimination ordering [16]. As shown in Fig. 2, the greedy strategy of mcs is

Fig. 2 The mcs algorithm

123

Algorithmica (2022) 84:2642–2666 2647

to choose an unvisited vertex with the maximum number of visited neighbors. On a
chordal graph G, the last vertex of any mcs is simplicial, and thus the reversal of an
mcs ordering is always a perfect elimination ordering [30].

To avoid unnecessary digressions, all the input graphs in this paper are assumed
to be connected. One can easily lifted all the results to graphs with more than one
component.

3 Maximum Cardinality Search on Chordal Graphs

Another important characterization of chordal graphs is through theirmaximal cliques.
A graph G is chordal if and only if there exists a tree T whose nodes are the maximal
cliques of G such that for each vertex v ∈ V (G), the maximal cliques containing v

induce a subtree of T ; such a tree is called a clique tree of G [15]. A chordal graph
G has at most n maximal cliques [15], and for any pair of adjacent Ki and K j on a
clique tree of G, the intersection Ki ∩ K j is a minimal separator of G.

Out of a chordal graph G, we can define a clique graph C(G) as follows. The
clique graph C(G) has � vertices, where � is the number of maximal cliques of G,
and each vertex of C(G) is labeled by a distinct maximal clique of G. To simplify
the presentation, we will refer to vertices of C(G) as cliques (of G); note that we are
not going to use cliques of the graph C(G) in this paper. There is an edge between
maximal cliques Ki and K j , 1 � i, j � �, if and only if Ki ∩ K j is a minimal x–y
separator for all x ∈ Ki\K j and y ∈ K j\Ki . We label this edge with Ki ∩ K j , and
set its weight to be |Ki ∩ K j |. See Fig. 3 for an example. It is known that a tree on the
maximal cliques G is a clique tree of G if and only if it is a maximum spanning tree of
C(G) [2, 5, 17], i.e., a spanning tree of C(G) with the maximum total edge weights.

Proposition 3.1 [17] Let G be a chordal graph and C(G) the clique graph of G. A
vertex set S ⊆ V (G) is a minimal separator of G if and only if it is the label of some
edge of C(G).

One can use Prim’s algorithm to find amaximum spanning tree ofC(G). (Although
proposed for the purpose of finding a minimum spanning tree, Prim’s algorithm can
be easily modified to find a maximum one.) Starting from an arbitrary clique, it grows
the tree by including one edge and one clique at a time, while the edge is chosen to

Fig. 3 A chordal graph and its clique graph

123

2648 Algorithmica (2022) 84:2642–2666

have the largest weight among those crossing the partial tree that has been built, i.e.,
with one end in the current tree and the other not. In the same spirit of graph search
orderings, we can define a Prim ordering as the order in which maximal cliques of G
are visited by Prim’s algorithm, applied to C(G).

Our first observation is that at any moment, the set of maximal cliques visited
by Prim’s algorithm is the clique graph of the subgraph G induced by those visited
maximal cliques. (This is not always true for a connected induced subgraph of C(G);
e.g., consider the five maximal cliques except {2, 3, 5} in Fig. 3.) Recall that Prim’s
algorithm always maintains a tree of visited cliques, and this tree is a subtree of the
final output. Another simple fact we need for the following proof is that between any
two vertices in a tree, there is a unique path connecting them.

Lemma 3.2 Let G be a connected chordal graph with �maximal cliques. For any Prim
ordering π of C(G) and any t with 1 � t � �, the subgraph C ′ of C(G) induced by
the first t cliques in π is the clique graph of the subgraph of G induced by all vertices
in those cliques.

Proof Without loss of generality, let π = 〈K1, . . . , K�〉, and let U = ⋃t
i=1 Ki . Note

that Prim’s algorithm maintains a subtree of C(G). We use T to denote the clique tree
of G created by the Prim ordering π , and T ′ the subtree of T on the first t cliques in
π .

We argue that for every clique K of G[U], there must be 1 � j � t such that
K ⊆ K j . Suppose for contradiction that K � K j for all j = 1, . . . , t . We can find
Kp such that K ∩ Kp is maximal among {K ∩ K j | 1 � j � t}. There are an
x ∈ K\Kp and a Kq with 1 � q � t such that x ∈ Kq . Since T is a clique tree,
there exists Kr such that K ⊆ Kr . Between any two nodes in a tree there is a unique
path. We consider the common clique K ′ on the three paths of T connecting the three
cliques Kp, Kq , and Kr ; note that K ′ can be Kp or Kq . By the definition of clique
trees, K ′ contains all the vertices in Kp ∩ Kr and all the vertices in Kq ∩ Kr . From
K ⊆ Kr it can be inferred that

K ∩ Kp = K ∩ Kr ∩ Kp ⊆ K ∩ K ′.

For the same reason, K ∩ Kq ⊆ K ∩ K ′. Thus, we have K ∩ Kp ⊂ K ∩ K ′ because
x ∈ K ∩ Kq ⊆ K ∩ K ′ but x /∈ Kp. Since K ′ is on the path of T ′ connecting Kp and
Kq , it is one of K1, . . . , Kt (note that since T ′ is a subtree of T , the path connecting
Kp and Kq in T ′ is also the unique path connecting them in T). We have thus a
contradiction: K ∩ Kp is not maximal among {K ∩ K j | 1 � j � t}.

It remains to show that the edges of the clique subgraphofG[U] are precisely E(C ′).
First, suppose that Ki K j is an edge in C ′. For any x ∈ Ki\K j and y ∈ K j\Ki , the
set Ki ∩ K j is an x–y separator in G, and hence also an x–y separator in G[U]. This
separator is obviously minimal because Ki , K j ⊆ U and every vertex in Ki ∩ K j is
a common neighbor of x and y. By definition, Ki K j is an edge of the clique graph of
G[U]. For the other direction, let Ki K j be an edge of the clique graph of G[U]. We
have seen that T ′ is a clique tree of G[U], and thus there is a path P in T ′ connecting
Ki and K j . It suffices to prove that one of the separators on the path P is Ki ∩ K j ,
which means that Ki ∩ K j is a minimal x–y separator for x ∈ Ki\K j and y ∈ K j\Ki

123

Algorithmica (2022) 84:2642–2666 2649

in G[U]. Accordingly, Ki K j is an edge of C ′. By the definition of clique trees, the
label of every edge on P contains Ki ∩ K j . Suppose for contradiction that the label
of every edge on P is a proper superset of Ki ∩ K j . For each edge on P , we can pick
a common vertex of its two ends that is not in Ki ∩ K j . Note that any consecutive two
of these chosen vertices are either equal or adjacent, and thus they form an x–y path
with x and y in G[U] − Ki ∩ K j . We have thus a contradiction to that Ki ∩ K j is an
x–y separator in G[U]. This concludes the proof. ��

Let π be an ordering of the maximal cliques of G. We say that an ordering σ of
V (G) is generated by π if Ku <π Kv implies u <σ v, where Ku and Kv are the first
maximal cliques in π containing u and v, respectively. If π = 〈K1, K2, . . . , K�〉 and
ci = |Ki\⋃i−1

j=1 K j | for 1 � i � �, then σ can be represented as

σ−1(1), . . . , σ−1(c1)︸ ︷︷ ︸
K1

, σ−1(c1 + 1), . . . , σ−1(c1 + c2)︸ ︷︷ ︸
K2\K1

, . . . , σ−1(n − c� + 1), . . . , σ−1(n)
︸ ︷︷ ︸

K�\⋃�−1
j=1 K j

.

The following has been essentially observed by Blair and Peyton [5], who however
only stated one direction explicitly. For the sake of completeness, we give a proof
here.

Lemma 3.3 Let G be a chordal graph. An ordering σ of V (G) is an mcs ordering of
G if and only if it is generated by some Prim ordering π of C(G).

Proof The only if direction has been proved by Blair and Peyton [5, Lemma 4.8 and
Theorem 4.10]. Here we show the if direction. Suppose that σ is generated by π .
We may renumber the vertices in G such that σ = 〈v1, v2, . . ., vn〉, and renumber
the maximal cliques such that π = 〈K1, K2, . . ., K�〉. Let K ′

i = Ki\ ⋃i−1
j=1 K j for

1 � i � �; note that {K ′
1, K

′
2, . . ., K

′
�} is a partition of V (G). We show by induction

that for each 1 � i � n, there is an mcs ordering of G of which the first i vertices
are v1, . . . , vi ; in other words, among vertices vi , . . ., vn , vertex vi has the maximum
number of neighbors in the first i − 1 vertices. It is vacuously true for i = 1. Now
suppose that it is true for vp, we show that it is also true for vp+1.

When vp+1 ∈ K ′
1 = K1, it is adjacent to all previous vertices and we are done.

In the rest vp+1 ∈ K ′
t for some t > 1. Let A = ⋃t−1

j=1 K j ; note that vp+1 /∈ A. For
any q > p, let Gq denote the subgraph of G induced by v1, v2, . . . , vp, and vq . By
the induction hypothesis, 〈v1, v2, . . . , vp, vq〉 is an mcs ordering of Gq . Since Gq is
chordal, vq is simplicial in it. Therefore, N (vq)∩ A is a clique. By Lemma 3.2, there is
a j with 1 � j < t such that N (vq)∩ A ⊆ K j . For each q > p, there is somemaximal
clique K of G that contains (N (vq) ∩ A) ∪ {vq}. It cannot be one of K1, . . ., Kt−1
because vq /∈ A. Since 〈K1, . . . , K�〉 is a Prim ordering of C(G), when Kt is visited,
the edge that was chosen by Prim’s algorithm is an edge of a clique tree, and hence
has label Kt ∩ A = N (vp+1) ∩ A. Therefore, we have |N (vp+1) ∩ A| � |N (vq) ∩ A|
for all q > p. Noting that vp+1 is adjacent to all other vertices in Kt , we can conclude
that vp+1 has the maximum number of neighbors in {v1, . . . , vp}. This completes the
proof. ��

123

2650 Algorithmica (2022) 84:2642–2666

Fig. 4 On the top is a chordal graph G on 18 vertices, and below the clique graph of G, where
all the omitted edge weights are 2. There are 10 maximal cliques K1 = {v1, v2, v3, v4}, K2 =
{v2, . . . , v6}, K3 = {v5, v6, v7}, K4 = {v5, v6, v8}, K5 = {v5, v6, v9, v10}, K6 = {v9, v10, v11}, K7 =
{v11, v12, v13}, K8 = {v12, . . . , v15}, K9 = {v13, v16, v17}, K10 = {v13, v15, v18}. There are 7 simplicial
vertices v1, v7, v8, v14, v16, v17, v18, of which v14 and v18 are not mcs end vertices

By Lemma 3.3, mcs orderings of a chordal graph G can be fully characterized by
Prim orderings of its clique graph C(G). In particular, the mcs end vertices are the
private vertices of the cliques last visited by Prim’s algorithm. Note that a vertex v is
simplicial if and only if it belongs to precisely one maximal clique, namely, N [v], and
a set of true twins can be visited in any order.

Corollary 3.4 Let z be a simplicial vertex in a chordal graph G. There exists an mcs
ordering of G ending with z if and only if there exists a Prim ordering of C(G) ending
with N [z].

Let S be a separator ofG.We abuse notation to useC(G)−S to denote the subgraph
of C(G) obtained by deleting all edges whose labels are subsets of S, including S
itself. In Fig. 4, for example, C(G) − {v5, v6} does not have edges among K2, . . .,
K5, while edges K7K8, K7K9, K8K9, and K9K10 are removed in C(G) − {v12, v13}.
The component of C(G)− S containing N [z] is called the z-component of C(G)− S.
It is worth mentioning that C(G) − S does not have a natural correspondence to any
subgraph of G.

Proposition 3.5 Let S be a separator of a chordal graph G.

(i) For any vertex v ∈ V (G)\S, the maximal cliques containing v remain connected
in C(G) − S.

(ii) For any two distinct vertices u, v ∈ V (G)\S, the maximal cliques containing u
are not connected to the maximal cliques containing v in C(G) − S if and only if
S is a u–v separator.

123

Algorithmica (2022) 84:2642–2666 2651

Proof By definition, the maximal cliques containing v are connected in any clique
tree of G. Since a clique tree of G is a subgraph of C(G), these cliques also induce
a connected subgraph in C(G). For any edge in this subgraph, its label contains v,
hence the label is not a subset of S. Therefore, these cliques induce the same connected
subgraph in C(G) − S as in C(G).

For the second assertion, we can observe that both sides are trivially false when
uv ∈ E(G). Thus, we may assume that uv /∈ E(G). Suppose for the contradiction
to the if direction that there is a path K0, . . . , Kp in C(G) − S such that u ∈ K0
and v ∈ Kp while u, v /∈ Ki for 0 < i < p. For each 1 � i � p, we can find
a vertex xi ∈ (Ki−1 ∩ Ki)\S. (These p vertices may or may not be distinct.) Then
ux1, xpv ∈ E(G), while xi and xi+1 are either the same or adjacent for all 1 � i < p.
We have thus a u–v path in G avoiding S, which contradicts that S is a u–v separator.

We now consider the only if direction. Let u = x0, x1, . . . , xp = v be any u–v path
in G. Let T be a clique tree of C(G). Recall that T is also a (maximum) spanning tree
of C(G). For each 0 � i � p, the maximal cliques containing xi induce a subtree of
T , in which each edge contains xi . While for each 1 � j � p, there is a maximal
clique containing both x j−1 and x j , thus the maximal cliques containing a vertex in
{x0, x1, . . . , xp} also induce a subtree T ′ of T . Note that T ′ is the union of all subtrees
induced by the maximal cliques containing xi . We can find a path in T ′, which is also a
path in C(G), whose one end contains u and the other contains v. Obviously, for each
edge on this path, its label contains one of xi , 0 < i < p. Since the maximal cliques
containing u are not connected to the maximal cliques containing v in C(G) − S, the
label of at least one edge on this path is a subset of S. By the first assertion, at least
one of x1, . . . xp−1 is in S. In other words, every u–v path intersects S. Therefore, S
is a u–v separator. This concludes the proof. ��

Let e be a minimum-weight edge of C(G). By Proposition 3.1, the label of e is
a minimum separator of G. We say that e is a critical edge for the maximal clique
K if one end of e is in the same component as K after all minimum-weight edges,
including e, are removed from C(G). In other words, there is a path connecting K and
e on which every edge has weight greater than e. In Fig. 4, for example, K6K7 is a
critical edge for all cliques but K9, while K8K9 and K10K9 are critical edges for K8
and K10 respectively.

Proposition 3.6 Let z be a simplicial vertex of a connected chordal graph G. If all the
critical edges for N [z] have the same label S, then all the cliques in the z-component
of C(G) − S

(i) appear consecutively in any Prim ordering of C(G); and
(ii) can be visited last by Prim’s algorithm.

Moreover, the cliques not in the z-component ofC(G)−S induce a connected subgraph
of C(G).

Proof SinceG is connected,C(G) is connected as well. Let Z denote the z-component
of C(G) − S. We first argue that the weight of every edge in Z is strictly greater than
|S|. By definition, no edge has a smaller weight than |S|. Suppose that there is an edge
Ki K j in Z such that the weight of Ki K j is |S|. We can find a path from N [z] to Ki

123

2652 Algorithmica (2022) 84:2642–2666

or K j in the component. Without loss of generality, we can assume that the weights
of other edges on this path are strictly greater than |S|. Let Ki be the end of Ki K j

closer to N [z] on this path, and let S′ = Ki ∩ K j . Note that S′ = S but |S′| = |S|. By
definition, S′ is a u-v separator for any pair of vertices u ∈ Ki\K j and v ∈ K j\Ki .
By Proposition 3.5(ii), Ki and K j are not connected in C(G) − S′. Hence, Ki and
K j are not connected after all minimum-weight edges are removed from C(G). But
then Ki K j is a critical edge for N [z] with label S′, which is different from S, hence a
contradicton.

Let π be any Prim ordering of C(G). We consider the first maximal clique K in Z
visited by π . Note that |S| is the minimum among the weights of all edges in C(G),
and the weight of any edge between Z and other components of C(G)− S is precisely
|S|. No matter how many maximal cliques outside of Z have been visited, when K is
going to be visited, the weight of every edge between a visited clique and an unvisited
clique is precisely |S|. Since every edge in Z has weight strictly greater than |S|, after
visiting K , we have to visit all the cliques in Z before visiting one outside of Z . This
concludes assertion (i).

By the definition ofC(G), in each component ofC(G)−S, there is amaximal clique
containing S. We argue that there is an edge in C(G) with label S between any two
components ofC(G)− S. Let Kp and Kq be two maximal cliques containing S in two
different components ofC(G)−S. Clearly, Kp and Kq are not connected inC(G)−S.
By Proposition 3.5(ii), S is a u-v separator for all u ∈ Kp\Kq , v ∈ Kq\Kp. Since
every vertexw ∈ S is adjacent to both u and v, the set S is a minimal u-v separator. As
a result, KpKq is an edge with label S in C(G). Therefore, the cliques not in Z induce
a connected subgraph of C(G). For assertion (ii), we can start the Prim’s algorithm
from a clique not in Z , and then finish all the cliques outside of Z before visiting an
edge crossing Z , which has the minimum weight among all edges. ��

Whether a simplicial vertex z can be an mcs end vertex turns out to be closely
related to the critical edges for N [z]. We first present a necessary condition for mcs
end vertices. For example, this condition can be used to exclude v14 and v18 in Fig. 4.
We leave it to the reader to verify that v14 and v18 cannot be mcs end vertices of the
graph.

Lemma 3.7 Let z be a simplicial vertex of a connected chordal graph G. If N [z] is
the end clique of a Prim ordering of C(G), then all critical edges for N [z] have the
same label.

Proof Suppose for contradiction that there are two critical edges e1 and e2 for N [z]
with different labels. For i = 1, 2, let Si be the label of ei , and let Ci denote the set
of components of C(G) − Si not containing N [z]. We argue that for any component
U1 ∈ C1 and any component U2 ∈ C2, it holds that U1 and U2 have no common
maximal clique and there is no edge between U1 and U2 in C(G).

For i = 1, 2, by the definition of critical edges, there is a path Pi from N [z] to a
clique incident to ei within the z-component; let Ki denote the other end of the path.
Note that Ki is one end of ei , and the other end is in some component of Ci , which
may not beUi . To makeUi be a component inC(G)− Si , at least one edge containing
Si is deleted, of which one end is inUi . Therefore, there must be some clique K ′

i inUi

123

Algorithmica (2022) 84:2642–2666 2653

containing Si . Note that Ki ∩ K ′
i = Si because K ′

i and Ki are in different components
of C(G) − Si . Hence, Ki K ′

i is also a critical edge with label Si for N [z]. Appending
the edge K2K ′

2 to P1 we obtain a path from N [z] to K ′
2 in C(G) − S1, and hence

K ′
2 and N [z] are connected in C(G) − S1. Likewise, K ′

1 and N [z] are connected in
C(G) − S2.

Since S1 = S2 and they have the same cardinality, we can find v2 ∈ S2\S1 ⊂ K ′
2.

By Proposition 3.5, S1 is not a z–v2 separator. Thus, no maximal clique inU1 contains
v2. It follows that U1 remains connected in C(G) − S2 (note that S2 is a minimum
separator). For the same reason, U2 remains connected in C(G) − S1. Recall that
K ′
2 and N [z] are connected in C(G) − S1, and U1 is a component of C(G) − S1 not

containing N [z]. Thus, all maximal cliques ofU2 are in the z-component ofC(G)−S1,
and henceU1 andU2 have no commonmaximal clique. If there exists an edge between
U1 and U2, then this edge remains in at least one of C(G) − S1 and C(G) − S2: it
cannot have both labels S1 and S2. But then U1 and U2 are connected in C(G) − S1
or C(G) − S2, neither of which is possible.

We can thus conclude that components in C1 ∪ C2 are disjoint and there is no edge
between them.

Let π be a Prim ordering of C(G) ending with N [z]. Assume without loss of
generality that the first visited clique in C1 ∪ C2 is from U1 ∈ C1, then we show that
N [z] is visited before all componentsU2 ∈ C2. Since there is no edge betweenU1 and
U2, before visitingU2, it must visit a clique K from the z-component ofC(G)−S1. By
the same argument as above, there is a path from K to N [z] onwhich no edge is critical:
otherwise we have an edge between a component of C(G) − S1 and a component of
C(G) − S for some other critical edge with label S. After visiting K , however, π

will not visit any edge of label S2 before finishing the z-component. Therefore, N [z]
cannot be the end clique, a contradiction. ��

In other words, if z is an mcs end vertex, then there is a unique minimum separator
of G that is “the closest to z” in a sense. Although this condition itself is not sufficient,
it can be extended to a sufficient condition for mcs end vertices as follows. To decide
whether a simplicial vertex z is anmcs end vertex, we can find the minimum separator
S in Proposition 3.6 and focus on how the z-component of C(G) − S is explored. We
have to start from a maximal clique not in it, and after that visit all maximal cliques in
other components of C(G) − S before the z-component C ′. In this juncture we may
view C ′ as a clique graph of an induced subgraph of G and find all critical edges for
N [z] in C ′. They also need to have the same label; suppose it is S′, which is strictly
greater than S. One more subtle point is that we need to make sure that when S is
crossed, it can reach a maximal clique that is not in the z-component of C ′ − S′. In
Fig. 4, if we delete vertices v16 and v17, (hence K9,) then K6K7 is the only critical
edge for K8. The condition of Lemma 3.7 is vacuously satisfied, but v14 is still not an
mcs end vertex. (Now v18 is.)

Repeating this step recursively, we should obtain a sequence of separators with
increasing cardinalities. Note that we only need to keep track of how these separators
are crossed, while the ordering in each layer is irrelevant. This observation leads us
to the following characterization, which subsumes Theorem 14 of Beisegel et al. [1].
For example, the sequence of critical edges for N [v1] in Fig. 4 are K6K7, K2K5,

123

2654 Algorithmica (2022) 84:2642–2666

and K1K2, which correspond to minimal separators {v11}, {v5, v6}, and {v2, v3, v4},
respectively.

Theorem 3.8 Let z be a simplicial vertex of a connected chordal graph G. The clique
N [z] is a Prim end clique if and only if there is a sequence of edges e1, e2, . . ., ek in
C(G), where the label of ei is Si , on a path ending with N [z] such that

(i) S1 is the label of all critical edges for N [z] and Sk is the set of non-simplicial
vertices in N [z]; and

(ii) for 1 � i < k, in the z-component of C(G) − Si , all the critical edges for N [z]
have the same label, which is Si+1.

Moreover, every clique not in the z-component of C(G) − S1 can be the start clique.

Proof We first show the if direction. We may denote the two ends of ei by Ki and K ′
i ,

where K ′
i is in the z-component of C(G)− Si . (It is possible that K ′

i = Ki+1 for some
1 � i < k.) For each 1 � i � k, we visit all the other components of C(G) − Si
before using the edge Ki K ′

i to enter the z-component, visiting K ′
i . This is possible

because of Proposition 3.6. The resulting ordering is a Prim ordering of C(G) that
ends with N [z].

Now consider the only if direction, for which we construct the stated path by
induction:wefind the edges e1, e2, . . ., ek in order, and show that for each1 � i � k, the
first i edges can be extended to a path that ends with N [z] and satisfies both conditions.
The first edge e1 can be any critical edge for N [z], and it is on a path ending with N [z]
because C(G) is connected. Now suppose that the first i edges, namely, e1, . . ., ei ,
have been selected, then we find ei+1 as follows. For each 1 � j � i , let Z j denote the
z-component of Z j−1− S j , where Z0 = C(G). If we run Prim’s algorithm from N [z],
then by Proposition 3.6, cliques in Zi are the first visited. Therefore, by Lemma 3.2,
we can consider Zi as the clique graph of a graph by itself. By Lemma 3.7, all the
critical edges for N [z] in Zi have the same label. Let Si+1 be this label, and let Zi+1
be the z-component of Zi − Si+1. We argue that there must be a maximal clique K in
Zi − Zi+1 containing Si ; otherwise, the first component visited in Zi − Si+1 would be
the z-component, and then N [z] cannot be the last visited clique. By Proposition 3.5(i),
K and Ki has no common vertex except Si . It is easy to see that K ∩ Ki = Si is a
minimal x-y separator for all x ∈ Ki\K and y ∈ K\Ki . By the definition of clique
graph, KKi is an edge of Zi−1, and hence also an edge of C(G). We can use edge
KKi to replace ei = Ki K ′

i—note that they have the same label—and choose any edge
between K and N [z] with label Si+1 as ei+1. This concludes the inductive step and
the proof. ��

Theorem 3.8 can be directly translated into an algorithm to decide Prim end cliques,
implying a polynomial-time algorithm for the mcs end vertex problem on chordal
graphs. This algorithm has a high time complexity because the size of C(G) is not
linear on G. We show a very simple algorithm below, which itself best reveals the
spirit of graph searches. As long as we cross the separators in the order specified
in Theorem 3.8, and make sure we finish other components before visiting the z-
component, then it is the Prim ordering we need. On the other hand, a run of Prim’s
algorithm starting from N [z]will cross the separators in the reversed order, and before

123

Algorithmica (2022) 84:2642–2666 2655

Fig. 5 The mcs+ algorithm

crossing the i th separator Si , it has to exhaust thewhole z-componentC(G)−Si .Weare
now ready to describe the mcs+ algorithm in Fig. 5 and use it to prove Theorem 1.1.2

The only difference lies in step 2.2: when there are more than one vertex of the largest
number of visited neighbors, we use the ordering σ to break ties. Therefore, anymcs+
ordering is also an mcs ordering. Note that mcs+ is deterministic: mcs+(G, σ) is
unique for any graph G and any mcs ordering σ of G.

Proof of Theorem 1.1 The if direction is correct because the ordering produced by
mcs+ is an mcs ordering, and hence we focus on the only if direction.

Suppose that z is anmcs end vertex ofG, and let σ be anmcs ordering ofG starting
from z. We argue that σ+ = mcs+(G, σ) visits z at the very end.

Let S1, . . ., Sk be the sequence of separators specified in Theorem 3.8. For i =
1, . . . , k, let Vi be the set of vertices from the same component ofG−Si as z, and letCi

be the z-component ofC(G)−Si .We also useC0 to denoteC(G), and let V0 = V (G).
Note that |S1| < |S2| < · · · < |Sk |, and Ci−1 contains Ci for i = 1, . . . , k. The i th
z-component Ci is an induced subgraph of C(G) by Lemma 3.5, and the weight of
every edge in Ci is strictly greater than |Si | by Proposition 3.6.

Thus, any Prim ordering of C(G) starting from N [z] visits the cliques in Ci+1
before the others in Ci .

By Lemma 3.2, Ci is the clique graph of G[Vi ∪ Si]; hence, K ⊆ Vi ∪ Si for every
K inCi . By Lemma 3.3, σ visits the vertices in Vi ∪ Si before (Vi−1∪ Si−1)\(Vi ∪ Si),
and the vertices in V (G)\(V1 ∪ S1) are visited in the end.

By definition,σ+ starts from the last visited vertex ofσ , which is inV (G)\(V1∪S1).
We show by contradiction that for i = 1, . . . , k, vertices in V (G)\Vi are visited before
vertices in Vi in σ+, i.e.,

σ+ = V0\V1, V1\V2, . . . , Vk−1\Vk, Vk, (1)

2 The algorithm mcs+ is defined in the same spirit of lbfs+, and it has not been explicitly mentioned in
literature because no application of this algorithm has been discovered.

123

2656 Algorithmica (2022) 84:2642–2666

while ordering of vertices in each set does not concern us. Suppose for contradiction
that (1) does not hold. Let v be the first vertex in σ+ that violates (1); suppose that
v ∈ Vi and it is visited before some vertex in Vi−1\Vi . By Lemmas 3.2 and 3.3, for
at least one maximal clique in Ci−1, all the vertices have been visited before v. Thus,
before vertices in Vi−1 have been full visited, at least one unvisited vertex x in Vi−1
has |Si | visited neighbors. On the other hand, at the moment of visiting, all the visited
neighbors of v are in Si . Hence, the label of v cannot be greater than that of x . But
since v <σ x , the mcs+(G, σ) should visit x instead of v, a contradiction.

Note that Ck consists of the only clique N [z] and Vk comprises true twins of z.
Since σ(z) = 1, it has to be the last visited vertex of Vk , hence also the last of the
whole graph. This concludes the proof of the correctness. ��

The mcs+ algorithm is named in a similar fashion to the famous algorithm lbfs+
[8]. Unlike lbfs+, however, it is not immediately clear how to carrymcs+ out in linear
time.

Corollary 3.9 The mcs end vertex problem can be solved in O(n2) time on chordal
graphs.

Proof Weapplymcs from z to produce anmcs orderingσ , and then applymcs+(G, σ)

to produce another ordering σ+. We return yes if and only if the last vertex of σ+ is
z. The correctness follows from Theorem 1.1. For the running time, note that the only
difference between the algorithm and the original mcs algorithm is step 2.2. We need
to compare the σ -numbers of vertices in D. It needs to be done n times, and each time
takes O(n) time, and hence the extra time is O(n2). Together with the time for mcs
itself, the total running time is O(n2 + m) = O(n2). ��

Let us briefly sketch a linear-time algorithm for the mcs end vertex problem. We
refrain from a formal presentation because it needs the details of the implementation
of mcs, which will blur the focus of this paper. Since the algorithm mcs+ will not stop
at z if z is not an end-vertex, it suffices to show that it stops at z when z is an mcs end
vertex. The observation is that we do not need to strictly follow the mcs+. Instead,
it suffices to ensure that the vertices in Vi are the last selected when crossing Si for
all i = 1, . . . , k. The standard implementation of mcs is by partition refinement, and
to make the correct selection in step 2.2, we need to keep vertices in each part in the
reversed order of σ . This is challenging for mcs+ because we may need to merge
two parts during the process, and it is not clear how to maintain the order in time
proportional to the number of neighbors of the current vertex.3 By assumption, z is
an mcs end vertex, and thus the separators and vertex sets are defined as above. In the
execution of the first mcs, we can mark the vertices in V1, . . ., Vk as follows. After
finishing N (z), we mark all the neighbors of the next selected vertex as Vk , whose
label is |Sk |. (We do not know the value of k at this moment, so we can mark the set
and rename it after all the markings are done.) Starting from i = k and inductively,
when the maximum label is decreased (which happens if and only if we cross Si−1)
we mark all the visited vertices that are not a neighbor of the next vertex as Vi . In the

3 This is not a problem for lbfs+, because it never merges two parts.

123

Algorithmica (2022) 84:2642–2666 2657

execution of mcs+, note that for i = 1, . . . , k, the labels of vertices in Vi ∩ N (Si)
increase simultaneously. Thus, they are always in the same part of the partition before
the first of them is visited. In case that this part is merged with another part, it suffice
to make sure that these vertices are at the end of the part.

4 Maximum Cardinality Search onWeakly Chordal Graphs

The complement G of a graph G is defined on the same vertex set as G and two
distinct vertices of G are adjacent if and only if they are not adjacent in G. A graph
G is weakly chordal if neither G nor its complement contains an induced cycle on
five or more vertices. Since the complement of an induced cycle on five vertices is
also an induced cycle on five vertices, and the complement of each induced cycle on
six or more vertices contains an induced cycle on four vertices, all chordal graphs
are weakly chordal. To prove the NP-completeness of the mcs end vertex problem on
weakly chordal graphs, we use a reduction from the 3-satisfiability problem (3-sat),
in which each clause comprises precisely three literals.

Given an instance I of 3-sat with p variables and q clauses, we construct a graph
G as follows (see Fig. 6 for an example). Let the variables and clauses of I be denoted
by x1, x2, . . ., xp and c1, c2, . . ., cq , respectively. For each literal, (including those that
do not occur in any clause,) we introduce a vertex; let L denote this set of 2p literal
vertices. For each literal vertex, we add edges between it and other vertices in L , with
the only exception of its negation. We also introduce a set C of q clause vertices, each
for a different clause; they form an independent set. For each � ∈ L and c ∈ C , we add
an edge �c if the literal � does not occur in the clause c. Therefore, each clause vertex
has 2p − 3 neighbors in L . Finally, we add seven extra vertices a1, a2, u1, u2, b, y, z
and edges a1a2, u1u2, yz, {b, z} × L and {a2, u1, u2, y} × (L ∪ C).

Proposition 4.1 The graph G constructed above is a weakly chordal graph.

Proof We need to show that neitherG norG contains an induced cycle on five or more
vertices.

We proceed as follows: we identify a vertex v ∈ V (G) such that G contains an
induced cycle on five or more vertices if and only if G−{v} contains an induced cycle
on five or more vertices, and then consider G − {v}.

The following properties are straightforward:

(i) A vertex on any induced cycle on five or more vertices has at least two neighbors.
(ii) A simplicial vertex is not on any induced cycle on five or more vertices.
(iii) An induced cycle on five or more vertices cannot contain a pair of true twins or

false twins, and when it contains one of them, this vertex can be replaced by the
other.

(iv) If a vertex is on an induced cycle on five or more vertices, then it has at least two
non-neighbors, and there is at least one edge among these non-neighbors.

We can reduce G to G − {a1} because a1 has a single neighbor and (i); then to
G−{a1, u2} because u1 and u2 are true twins and (iii); to G−{a1, u1, u2} because u1

123

2658 Algorithmica (2022) 84:2642–2666

Fig. 6 Construction for NP-completeness proof of the mcs end vertex problem on weakly chordal
graphs. The 3- sat instance has four variables and three clauses, (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x4),
(x2 ∨ x3 ∨ x4), i.e., p = 4 and q = 3. The 2p literal vertices are shown in the small gray box, and
the q clause vertices are in the big box. In the boxes, two vertices are nonadjacent if there is a dashed
line between them, and adjacent otherwise. Vertices b and z are adjacent to all literal vertices, while
vertices a2, u1, u2, and y are adjacent to all literal vertices and all clause vertices. The mcs ordering
〈a1, a2, x1, x2, x3, x4, b, x1, x2, x3, x4, u1, u2, y, c1, c2, c3, z〉 of G corresponds to the satisfying assign-
ment in which all variables but x2 are set to be true

and a2 are false twins in G−{a1, u2} and (iii); to G−{a1, u1, u2, y} because the only
two remaining non-neighbors of y, namely, a2 and b, are not adjacent to each other
and (iv); to G − {a1, u1, u2, y, a2} for the same reason; to G − {a1, u1, u2, y, a2, b}
because z and b are false twins in G − {a1, u1, u2, y, a2} and (iii); and finally to
G − {a1, u1, u2, y, a2, b, z} because the only non-neighbors of z, namely, C , are
independent and (iv); The remaining graph is G[L ∪ C]. Suppose that there is an
induced cycle H on five or more vertices. It must intersect both L and C , since each
vertex in L has only one non-neighbor in it, and since C is independent. Let v ∈ C be
a vertex on this cycle. Its two neighbors on H have to be from L; and since they are
nonadjacent to each other, they have to be x and x̄ for some variable x . Since both x
and x̄ are adjacent to all other vertices in L , the other � 2 vertices on H have to be
from C . But this is impossible because C is independent.

Now we consider G. It can be reduced to G − {a1} because a1 has only one
non-neighbor and (iv); then to G − {a1, u2} because u1 and u2 are false twins and
(iii); to G − {a1, u1, u2} because u1 and a2 are true twins in G − {a1, u2} and (iii);
to G − {a1, u1, u2, y} because y is simplicial in G − {a1, u1, u2} and (ii); to G −
{a1, u1, u2, y, b} because z and b are true twins in G − {a1, u1, u2, y} and (iii); to
G − {a1, u1, u2, y, b, a2} because a2 has only one neighbor in G − {a1, u1, u2, y, b}

123

Algorithmica (2022) 84:2642–2666 2659

and (i); and finally to G − {a1, u1, u2, y, a2, b, z} because z is simplicial in G −
{a1, u1, u2, y, b, a2} and (ii). The remaining graph is G[L ∪C]. Suppose that there is
an induced cycle H on five or more vertices. Since C is a clique, H contains at most
two vertices from C . In other words, at least three vertices on H are from L , but this
is impossible because each vertex in L has only one neighbor in L .

We can thus conclude that G is a weakly chordal graph. ��
We are now ready to prove the NP-completeness of the MCS end vertex problem

on weakly chordal graphs.

Proof of Theorem 1.2 It is clear that the mcs end vertex problem is in NP, and we now
show that it is NP-hard on weakly chordal graphs. Let I be an instance of 3-sat, and
let G be the graph constructed from I. We show that z is an mcs end vertex of G if
and only if I has a satisfying assignment.

For the if direction, suppose that I is satisfiable, and we give an mcs ordering σ of
G as follows. Let us fix a satisfying assignment of I, and let T be the set of variables
that are set to be true. The starting vertex is a1, which is followed by a2; visited after
them are {x | x ∈ T } ∪ {x̄ | x /∈ T }, i.e., the literal vertices corresponding to true
literals, in any order. After these p + 2 vertices, each of y, z, u1, u2, b, and each of
the unvisited literal vertices has p visited neighbors. On the other hand, each clause
vertex has at most p visited neighbors: each clause contains a true literal, and hence
each clause vertex has at least one non-neighbor in the visited literal vertices.

We set σ(b) = p + 3. Since b is adjacent only to literal vertices, the next vertex is
one of them. On the other hand, since the vertices in L\T form a clique, they have to
be visited between p + 4 and 2p + 3, i.e., before the others.

The remaining vertices are u1, u2, y, z, and the clause vertices. Each of u1, u2, y,
and z has 2p visited neighbors, while each clause vertex has only 2p − 2, because
each clause is nonadjacent to three literal vertices. Let u1, u2, and y be visited next.
After that, all the remaining vertices (z and all clause vertices) have the same number
of visited neighbors, 2p + 1. There is no edge among these vertices, so they can be
visited in any order. We have thus obtained an mcs ordering of G ending with z.

We now prove the only if direction. Suppose that σ is an mcs ordering of G with
σ(z) = n. Since N (z) = N (b) ∪ {y}, visiting y before b would force z to be visited
before b; therefore, b <σ y <σ z. Likewise, N (b) = L ⊂ L ∪C ⊂ N (y) and b <σ y
demand

b <σ c for all c ∈ C . (�)

Since a1 has a single neighbor, {σ(a1), σ (a2)} = {1, 2}; otherwise, σ must end with
a1. The third vertex of σ has to be from N (a2), i.e., L ∪ C . It cannot be from C
because of (�). Therefore, X = {� | 3 � σ(�) � p + 2} ⊂ L: as for each variable,
one literal vertex has more visited neighbors than b, z, y, u1, u2, and clause vertices
cannot be visited before b. There cannot be any variable x such that both x, x̄ ∈ X ,
because x x̄ /∈ E(G). We claim that assigning a variable x to be true if and only if
x ∈ X is a satisfying assignment for I. Suppose for contradiction that some clause
c is not satisfied by this assignment. By the construction of G, the clause vertex c is
adjacent to all vertices of X . After visiting the first p + 2 vertices, c has p + 1 visited

123

2660 Algorithmica (2022) 84:2642–2666

Fig. 7 The ldfs algorithm

neighbors, ({a2} ∪ X ,) while any other unvisited vertex in V (G)\C has at most p
visited neighbors. But then σ(c) = p+3, contradicting (�). Therefore, all clauses are
satisfied, and this completes the proof. ��

5 Lexicographic Depth-First Search on Chordal Graphs

Berry et al. [3, Characterization 8.1] gave a full characterization of mns end vertices
on chordal graphs: a vertex z of a chordal graph G is an mns end vertex of G if and
only if it is simplicial and the minimal separators of G in N (z) are totally ordered by
inclusion. Since ldfs, described in Fig. 7, is a special case of mns, its end vertices
also have this property. We show that this condition is also sufficient for a vertex to
be an ldfs end vertex.

To see that any ldfs is a dfs, note that the latest visited vertices have the largest
number among all visited vertices. In particular, after visiting v in the i th iteration, if
it has unvisited neighbors, then one of them has the largest label and is to be visited
next. Similar to dfs, ldfs visits a neighbor of the most recent vertex, or backtracks if
all its neighbors have been visited. The difference between dfs and ldfs lies in the
choice when the current vertex has more than one unvisited neighbor. When there are
ties, ldfs chooses a vertex with the lexicographically largest label. The following is
actually a simple property of dfs.

Proposition 5.1 Let X ⊆ V (G) such that G[X] is connected. If an ldfs visits all
vertices in N (X) before the first vertex in X, then it visits vertices in X consecutively.

Proof Let i be the first step a vertex in X is visited. By assumption, all the vertices in
N (X) have been visited at this moment. Thus, if a vertex in V (G)\X is still unvisited
and has a visited neighbor, then its label starts with a number smaller than i . On the
other hand, since G[X] is connected, after step i and before step i + |X | − 1, there
always exists an unvisited vertex x in X that has a visited neighbor in X . The label of
x starts with a number at least i , hence lexicographically larger than the label of any
unvisited vertex in V (G)\X . ��

Assume the first vertex of X is visited in step i . Then all non-empty labels of
unvisited vertices in V (G) − X start with a number smaller than i . After step i , it
holds that there is an unvisited vertex w in X with a visited neighbor in X as long as

123

Algorithmica (2022) 84:2642–2666 2661

there is still an unvisited vertex in X (since G[X] is connected). The label of w starts
with a number � i and, thus, it is lexicographically larger than the label of any vertex
in V (G) − X .

The following is a well-known property of a minimal separator in a chordal graph.

Proposition 5.2 [3] Let G be a connected chordal graph, S a minimal separator of
G, and C a component of G − S. If N (C) = S, then C contains a vertex adjacent to
every vertex in S.

Lemma 5.3 A vertex z of a chordal graph G is an ldfs end vertex if and only if it is
simplicial and the minimal separators of G in N (z) are totally ordered by inclusion.

Proof The only if direction follows from that all ldfs orderings are mns orderings
[12] and the result of Berry et al. [3]. For the if direction, suppose that S1, . . ., Sk
are the minimal separators in N (z) and S1 ⊂ · · · ⊂ Sk . It is easy to see that for all
1 � i � k, each component of G − Si not containing z is a component of G − Sk ;
let C denote these components. We construct an ldfs ordering σ of G ending in z as
follows. It starts by visiting all vertices in S1, followed by components C ∈ C with
N (C) = S1, visited one by one. In the same manner, it deals with S2. . . . Sk in order.
After that the only unvisited vertices are z and its true twins, of which it chooses z
as last. We now verify that this is indeed a valid ldfs ordering. It is clear for S1.
Since vertices in each component C ∈ C are visited after N (C), by Proposition 5.1, it
suffices to show the correctness when it visits a vertex in N (z) and when it visits the
first vertex of a new component C ∈ C. When such a decision is made, the vertex that
has the largest label is a vertex adjacent to all visited vertices in N (z), i.e., the most
recently visited separator. Hence, it is always correct to select a vertex from N (z). By
Proposition 5.2, from each component C ∈ C with N (C) = Si , we can find a vertex
v such that Si ⊆ N (v), and hence v does have the largest label. ��
Lemma 5.4 The ldfs end vertex problem can be solved in O(n +m) time on chordal
graphs.

Proof Note that the characterization of ldfs end vertices on chordal graph in
Lemma 5.4 is the same to the characterization of mns end vertices on chordal graph in
[3, Characterization 8.1]. Hence, in a chordal graph, a vertex is an ldfs end vertex if
and only if it is an mns end vertex. Since the mns end vertex problem can be solved in
linear time on chordal graph [1, Corollary 16], this also holds for the ldfs end vertex
problem on chordal graphs. ��

6 Breadth-First Search on Interval Graphs

Interval graphs are intersection graphs of intervals on the real line. An interval graph
is always chordal, and in particular, it has a clique tree that is a path [16]. Corneil et
al. [11] gave a very simple linear-time algorithm for deciding whether a vertex z is an
lbfs end vertex of an interval graph, which is very similar to our algorithm in Fig. 5.
They conducted an lbfs starting from z, and then another lbfs that uses the first run
to break ties. They proved that z is an lbfs end vertex if and only if it is the last of the

123

2662 Algorithmica (2022) 84:2642–2666

Fig. 8 A bfs starting from z may end with s or w, but a bfs starting from w has to end with u. (Note that a
bfs starting from s may end with z)

Fig. 9 s, v, u, x, w, y, z is a bfs
ordering ending with z

second run. As shown in Fig. 8, however, this algorithm cannot be directly adapted to
the bfs end vertex problem.

If a graph has one and only one universal vertex, then each of the other vertices is
a bfs end vertex, but not the universal vertex itself. If there are two or more universal
vertices, then every vertex can be a bfs end vertex. Therefore, we may focus on graphs
with no universal vertices. Such an interval graph has at least three maximal cliques.

Proposition 6.1 [14] Let G be a connected interval graph, and let K1, . . . , Kp be a
clique path of G. Let u ∈ K1 and w ∈ Kp be two simplicial vertices.

(i) Both u and w are lbfs end vertices.
(ii) For any vertex v ∈ V (G), one of u and w has the largest distance to v.

It is known that a vertex z of an interval graph G can be an lbfs end vertex if and
only if it is simplicial and N [z] can be one of the two ends of a clique path of G [14].
However, a bfs end vertex may satisfy neither of the two conditions. In Fig. 8, for
example, vertex z is not simplicial but can be a bfs end vertex. When z is not in an
end clique, it should be close to one. However, a bfs end vertex might be at distance
two to both u and w, as shown in Fig. 9.

For a fixed clique path K1, . . . , Kp of an interval graph G, we let lp(v) and rp(v)

denote, respectively, the smallest and the largest number i such that v ∈ Ki .4 We
use dist(u, v) to denote the distance between u and v. Dependent on which of the
simplicial vertices in K1 and the simplicial vertices in Kp are visited first, we can
informally assign a direction to a bfs ordering σ of this graph. We say that σ goes
from the left to the right if it visits simplicial vertices in K1 earlier than those in Kp.
As we cannot be sure that there is a bfs ordering ending with z from one direction,
we consider both directions separately. For each of them, we try to find the first vertex
and the second vertex satisfying certain conditions, and show that there exists a bfs
ordering of G ending with z if and only if this pair of vertices exist.

Lemma 6.2 The bfs end vertex problem can be solved in O(n + m) time on interval
graphs.

Proof Let G be an interval graph; we may assume without loss of generality that G
is connected. We use the algorithm of Corneil et al. [14] to build a clique path for G,

4 One may note that {[lp(v),rp(v)] | v ∈ V (G)} gives an interval representation for G.

123

Algorithmica (2022) 84:2642–2666 2663

Fig. 10 Main procedure for bfs end vertex on interval graphs

and take simplicial vertices v1, v2 from the first and last cliques of the clique path.
We call the procedure described in Fig. 10 twice, first with u = v1, w = v2; in the
second call, we reverse the clique path, and use u = v2, w = v1. Suppose that the
procedure is correct, then vertex z is a bfs end vertex if and only if at least one of the
two calls returns yes. In the rest we prove the correctness of the procedure and analyze
its running time.

We start from characterizing the first vertex s of a bfs ordering σ with σ(z) = n
and u <σ w, if one exists. Since u <σ w <σ z, we must have dist(s, u) �
dist(s, w) � dist(s, z). On the other hand, Proposition 6.1 implies dist(s, z) �
max{dist(s, u), dist(s, w)} = dist(s, w). Therefore, a desired bfs ordering σ , if it
exists, must start from a vertex s satisfying

dist(s, z) = dist(s, w) � dist(s, u). (†)

We argue that at least one of the following is true for z:

• on any shortest s–u path, z is adjacent to the second to last vertex but no vertex
before it.

• on any shortest s–w path, z is adjacent to the second to last vertex but no vertex
before it.

Let Pu be any shortest s–u path and Pw any shortest s–w path. Since they together
form a u–w path that visits all the maximal cliques of G, vertex z is adjacent to at
least one of these two paths. If z is adjacent to a vertex on Pu , then it has to be one of
the last two; otherwise dist(s, z) < dist(s, u). Since u is simplicial, z is adjacent to its
neighbor on the path if zu ∈ E(G). Therefore, z is always adjacent to the second to
last vertex on this path. The same argument applies if z is adjacent to Pw.

The correctness of step 1 follows from Proposition 6.1. For step 2, note that if v = z
is a universal vertex, then 〈v, u, w, . . . , z〉 is such a bfs ordering. Steps 3 and 4 are
justified by (†). When the algorithm reaches step 5, X is not empty, and hence s is well

123

2664 Algorithmica (2022) 84:2642–2666

defined. Let q = dist(s, z) = dist(s, w). Note that q � 2 because s is not universal.
Hence, z, w /∈ N (s).

We show the correctness of step 6 by contradiction. Suppose that rp(z) < lp(s)
but there exists a bfs ordering σ with σ(z) = n and u <σ w. Let s′ be the first vertex
of σ . Since s′ ∈ X , the selection of s implies lp(s) � lp(s′). Then rp(u) = 1 �
rp(z) < lp(s) � lp(s′), therefore, dist(s′, u) � 2. In this case, on any shortest
s′–u path, z is adjacent to the second to last vertex but no vertex before it. Hence,
dist(s′, z) = dist(s′, u) = dist(s′, w); let it be q ′. Since u <σ w, there must be some
neighbor u′′ of u at distance q ′−1 to s′ visited before all neighbors ofw. The vertex u′′
cannot be universal, hence it is not adjacent tow. But u′′ is adjacent to z, which implies
z <σ w, a contradiction. Therefore, step 6 is correct, which means rp(s) < lp(z)
because s and z are not adjacent. Let s = w0, w1, . . . , wq−1, wq = w be a shortest
s–w path. Note that wq−1 ∈ N (z).

For step 7, it suffices to give the following bfs ordering, which starts with s = u.
Of all vertices at distance i to s, 1 � i � q, the first visited vertex is wi . As w1 ∈
K1 and wq−1 ∈ Kp, every vertex of the graph is adjacent to at least one vertex in
{w1, . . . , wq−1}. Therefore, it can be inferred that all vertices at distance q to s are
adjacent to wq−1. Since wq−1 is the first visited vertex at level q − 1, vertices at
distance q to s can be visited in any order. Therefore, we can have a bfs ordering σ

of G with u <σ w and σ(z) = n .
We now consider step 8, for which we show that there exists a bfs ordering σ with

σ(s) = 1, σ(v) = 2, σ(z) = n, and u <σ w. Note that dist(w1, z) = dist(w1, w) =
q − 1. By the selection of v in step 8, we know that lp(v) < lp(s) and dist(v, u) =
dist(s, u)−1 � q −1. It must hold that v = w1; otherwise step 5 should have chosen
v. For 1 � i � q − 1, vertex wi is always visited in the earliest possible time; in
particular, σ(w1) = 3. Since v is on a shortest s–u path, u is a descendant of v in
the bfs tree generated by σ . On the other hand, since both dist(v, z) and dist(v,w)

are greater than dist(v, u), either vertices z and w are not descendants of v, or they
are at a lower level than u. In either case, we have u <σ w. When wq is visited, all
the unvisited vertices are at distance q to s and adjacent to wq−1. Thus, we can have
σ(z) = n.

We are now at the last step. Note that the algorithm can reach here only when
dist(s, z) = dist(s, w) = dist(s, u): the condition of step 8must be true if dist(s, u) <

q. Suppose for contradiction that there exists a bfs ordering σ with σ(z) = n and
u <σ w but no vertex satisfies the condition in step 8. Let s′ be the starting vertex of
σ . Since s′ ∈ X and by the selection of s, we have lp(s′) � lp(s), which implies
dist(s′, u) � dist(s, u). Note that s′ is adjacent to any s–w path, and hence its distance
to w is at most q + 1. In summary,

q = dist(s, u) � dist(s′, u) � dist(s′, w) � q + 1.

Let Y denote all vertices at distance q−1 to u, and let Z denote all vertices at distance
q − 1 to w. Note that Y is disjoint from Z : a vertex v ∈ Y ∩ Z would be adjacent to s,
and would have the same distance to u, w, and z, but then it contradicts the selection
of s because lp(v) < lp(s). Since no vertex in Y satisfies the condition of step 8,
dist(v, z) = dist(v, u) for all v ∈ Y ∩ N (s).

123

Algorithmica (2022) 84:2642–2666 2665

If dist(s′, u) = dist(s′, z) = dist(s′, w) = q, then to have u <σ w, one vertex in
Y ∩ N (s) must be visited before all vertices of Z . But this would force z to be visited
before w, because z is at distance q − 1 to all vertices in Y ∩ N (s). Thus, it must hold
that dist(s′, w) = q + 1. If dist(s′, u) = q, then at least one vertex v ∈ Y is adjacent
to s′; it is in N (s) because lp(s) � lp(s′). But then dist(s′, z) � 1 + dist(v, z) =
1 + q − 1 = q < dist(s′, w). Therefore, dist(s′, u) = q + 1 as well. Each vertex in
Y ∪ Z has distance at least two to s′. Of vertices at distance two to s′, one vertex in
Y ∩ N (s) must be visited before Z , but then we have the same contradiction as in the
first case of this paragraph. Therefore, step 9 is also correct and this concludes the
proof of correctness.

We now analyze the running time of the algorithm. Steps 1 and 2 can be easily
checked in O(n + m) time. For step 3, it suffices to calculate the distances between
z, w, u and all other vertices; this can be done by making three bfs starting from z, w,
and u, respectively. Steps 4–7 can be done in O(n) time. Step 8 can be checked in
O(n) time: we have already calculated the distance between z and any v. Therefore,
the total running time is O(n + m). ��

Lemmas 5.4 and 6.2 conclude Theorem 1.3.

Acknowledgements Y.C. would like to thank Jing Huang for bringing the end vertex problems to his
attention.

References

1. Beisegel, J., Denkert, C., Köhler, E., Krnc, M., Pivac, N., Scheffler, R., Strehler, M.: On the end-
vertex problem of graph searches. Discrete Math. Theor. Comput. Sci. 21(1), (2019). https://doi.org/
10.23638/DMTCS-21-1-13

2. Bernstein, P.A., Goodman, N.: Power of natural semijoins. SIAM J. Comput. 10(4), 751–771 (1981).
https://doi.org/10.1137/0210059

3. Berry, A., Blair, J.R.S., Bordat, J.P., Simonet, G.: Graph extremities defined by search algorithms.
Algorithms 3(2), 100–124 (2010). https://doi.org/10.3390/a3020100

4. Berry, A.: Separability generalizes Dirac’s theorem. Discrete Appl. Math. 84(1–3), 43–53 (1998).
https://doi.org/10.1016/S0166-218X(98)00005-5

5. Blair, J.R.S., Peyton, B.W.: An introduction to chordal graphs and clique trees. In: George, J.A., Gilbert,
J.R., Liu, J.W.-H. (eds.) Graph Theory and Sparse Matrix Computation, Volume 56 of IMA, pp. 1–29.
Springer, Berlin (1993)

6. Cao, Y.: Recognizing (unit) interval graphs by zigzag graph searches. In: Le Viet, H., King, V. (eds)
Proceedings of the 4th SIAM Symposium on Simplicity in Algorithms (SOSA), pp. 92–106. SIAM
(2021). https://doi.org/10.1137/1.9781611976496.11

7. Charbit, P., Habib,M.,Mamcarz, A.: Influence of the tie-break rule on the end-vertex problem.Discrete
Math. Theor. Comput. Sci. 16(2), 57–72 (2014). https://doi.org/10.46298/dmtcs.2081

8. Corneil, D.G.: Lexicographic breadth first search: a survey. In: Volume 3353 of LNCS, pp. 1–19.
Springer (2004). https://doi.org/10.1007/978-3-540-30559-0_1

9. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete
Appl. Math. 138(3), 371–379 (2004). https://doi.org/10.1016/j.dam.2003.07.001

10. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the minimum path cover
problem on cocomparability graphs. SIAMJ. Comput. 42(3), 792–807 (2013). https://doi.org/10.1137/
11083856X

11. Corneil, D.G., Köhler, E., Lanlignel, J.-M.: On end-vertices of lexicographic breadth first searches.
Discrete Appl. Math. 158(5), 434–443 (2010). https://doi.org/10.1016/j.dam.2009.10.001

12. Corneil, D.G.: A unified view of graph searching. SIAM J. Discrete Math. 22(4), 1259–1276 (2008).
https://doi.org/10.1137/050623498

123

https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.1137/0210059
https://doi.org/10.3390/a3020100
https://doi.org/10.1016/S0166-218X(98)00005-5
https://doi.org/10.1137/1.9781611976496.11
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.1007/978-3-540-30559-0_1
https://doi.org/10.1016/j.dam.2003.07.001
https://doi.org/10.1137/11083856X
https://doi.org/10.1137/11083856X
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498

2666 Algorithmica (2022) 84:2642–2666

13. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-
free graphs. SIAMJ.Comput.28(4), 1284–1297 (1999). https://doi.org/10.1137/S0097539795282377.
(A preliminary version appeared in ICALP 1995)

14. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J.
Discrete Math. 23(4), 1905–1953 (2009). https://doi.org/10.1137/S0895480100373455. (A prelimi-
nary version appeared in SODA 1998)

15. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus demMathematischen Seminar der Universität
Hamburg 25(1), 71–76 (1961). https://doi.org/10.1007/BF02992776

16. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855
(1965). https://doi.org/10.2140/pjm.1965.15.835

17. Galinier, P., Habib,M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,M. (eds) Proceedings
of the 21st International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume
1017 of LNCS, pp. 358–371. Springer (1995). https://doi.org/10.1007/3-540-60618-1_88

18. Habib,M.,McConnell, R.M., Paul,C.,Viennot, L.: Lex-BFSandpartition refinement,with applications
to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci.
234(1–2), 59–84 (2000). https://doi.org/10.1016/S0304-3975(97)00241-7

19. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/
10.1145/321850.321852

20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001).
https://doi.org/10.1006/jcss.2000.1727. (A preliminary version appeared in CCC 1999)

21. Kratsch, D., Liedloff, M., Meister, D.: End-vertices of graph search algorithms. In: Paschos, V.T.,
Widmayer, P. (eds) Proceedings of the 12th International Conference on Algorithms and Complexity
(CIAC), volume 9079 of Lecture Notes in Computer Science, pp. 300–312. Springer (2015). https://
doi.org/10.1007/978-3-319-18173-8_22

22. Li, P., Yaokun, W.: A four-sweep LBFS recognition algorithm for interval graphs. Discrete Math.
Theor. Comput. Sci. 16(3), 23–50 (2014). https://doi.org/10.46298/dmtcs.2094

23. Nagamochi, H.: Computing edge-connectivity inmultigraphs and capacitated graphs. SIAMJ.Discrete
Math. 5(1), 54–66 (1992). https://doi.org/10.1137/0405004

24. Nagamochi, H., Ibaraki, T.: Algorithmic aspects of graph connectivity. In: Encyclopedia of
Mathematics and its Applications. Cambridge University Press (2008). https://doi.org/10.1017/
CBO9780511721649

25. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.
Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021. (A preliminary version appeared
in STOC 1975)

26. Sethi, R.: Scheduling graphs on two processors. SIAM J. Comput. 5(1), 73–82 (1976). https://doi.org/
10.1137/0205005

27. Shier, D.R.: Some aspects of perfect elimination orderings in chordal graphs. Discrete Appl. Math.
7(3), 325–331 (1984). https://doi.org/10.1016/0166-218X(84)90008-8

28. Simon, K.: A new simple linear algorithm to recognize interval graphs. In: Computational Geometry:
Methods, Algorithms and Applications, International Workshop on Computational Geometry CG’91,
Bern, Switzerland, March 21–22, pp. 289–308 (1991). https://doi.org/10.1007/3-540-54891-2_22

29. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972).
https://doi.org/10.1137/0201010. (A preliminary version appeared in SWAT (FOCS) 1971)

30. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984).
With Addendum in the same Journal 14(1):254–255 (1985.) https://doi.org/10.1137/0213035

31. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recur-
sive factorizing permutations. In: Automata, Languages and Programming (ICALP), Volume 5125 of
LNCS, pp. 634–645. Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_52

32. Zou, M., Wang, Z., Wang, J., Cao, Y.: End vertices of graph searches on bipartite graphs. Inf. Process.
Lett. 173, 106176 (2022). https://doi.org/10.1016/j.ipl.2021.106176

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/S0097539795282377
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1007/BF02992776
https://doi.org/10.2140/pjm.1965.15.835
https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1145/321850.321852
https://doi.org/10.1145/321850.321852
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/978-3-319-18173-8_22
https://doi.org/10.1007/978-3-319-18173-8_22
https://doi.org/10.46298/dmtcs.2094
https://doi.org/10.1137/0405004
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0205005
https://doi.org/10.1137/0205005
https://doi.org/10.1016/0166-218X(84)90008-8
https://doi.org/10.1007/3-540-54891-2_22
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0213035
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1016/j.ipl.2021.106176

	Graph Searches and Their End Vertices
	Abstract
	1 Introduction
	2 Preliminaries
	3 Maximum Cardinality Search on Chordal Graphs
	4 Maximum Cardinality Search on Weakly Chordal Graphs
	5 Lexicographic Depth-First Search on Chordal Graphs
	6 Breadth-First Search on Interval Graphs
	Acknowledgements
	References

