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Abstract
In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a
graph G and a positive integer k, and the objective is to decide whether G contains
a minimal vertex cover of size at least k. Motivated by the kernelization of MMVC

with parameter k, our main contribution is to introduce a simple general framework
to obtain kernelization lower bounds for a certain type of kernels for optimization
problems, which we call lop-kernels. Informally, this type of kernel is required to
preserve large optimal solutions in the reduced instance, and captures the vast majority
of existing kernels in the literature. As a consequence of this framework, we show that
the trivial quadratic kernel for MMVC is essentially optimal, answering a question
of Boria et al. Discrete Appl Math 196:62–71, 2015. https://doi.org/10.1016/j.dam.
2014.06.001), and that the known cubic kernel for Maximum Minimal Feedback

Vertex Set is also essentially optimal. We present further applications for Tree
Deletion Set and for Maximum Independent Set on Kt -free graphs. Back to
the MMVC problem, given the (plausible) non-existence of subquadratic kernels for
MMVC on general graphs, we provide subquadratic kernels on H -free graphs for
several graphs H , such as the bull, the paw, or the complete graphs, by making use of
the Erdős–Hajnal property. Finally, we prove thatMMVC does not admit polynomial
kernels parameterized by the size of a minimum vertex cover of the input graph, even
on bipartite graphs, unless N P ⊆ coN P/poly.
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1 Introduction

A vertex cover in a graph G is a subset of vertices containing at least one endpoint
of every edge. In the associated optimization problem, called Minimum Vertex

Cover, the objective is to find, given an input graph G, a vertex cover in G of min-
imum size. This problem has been one of the leitmotifs of the area of parameterized
complexity [26, 31], serving as a test bed for many of the most fundamental tech-
niques. An instance of a parameterized problem is of the form (x, k), where x is the
total input (typically, a graph) and k is a positive integer called the parameter. The
crucial notion is that of fixed-parameter tractable algorithm, FPT for short, which is
an algorithm deciding whether (x, k) is a yes-instance in time f (k) · |x |O(1), where f
is a computable function depending only on k. In the parameterized Vertex Cover

problem, we are given a graph G and an integer parameter k, and the objective is to
decide whether G contains a vertex cover of size at most k. One of the main fields
within parameterized complexity is kernelization [36], where the objective is to decide
whether an instance (x, k) of a parameterized problem can be transformed in polyno-
mial time into an equivalent instance (x ′, k′)whose total size is bounded by a function
of k; the reduced instance is called a kernel, and finding kernels of small size, typi-
cally polynomial or even linear in k in the best case, is one of the most active areas of
parameterized complexity.

Considering the “max–min” version of minimization problems, that is, maximizing
the size of an inclusion-wise minimal solution of the corresponding problem, is a
natural approach that has been applied to several problems such as Dominating

Set [7, 33] (whose “max–min” version is called Upper Domination), Feedback
Vertex Set [32], or Hitting Set [5, 27]. The initial motivation of this paper is
the “max–min” version of Minimum Vertex Cover, called Maximum Minimal

Vertex Cover, or just MMVC for short.

Previous work In his habilitation, Fernau [35] presented FPT algorithms for MMVC

as well as some results about its kernelization parameterized by the solution size k.
It is easy to note, as observed in [35], that the problem admits a kernel with at most
k2 vertices: if some vertex has degree at least k, we can safely answer “yes” (cf.
Lemma 2 for a proof); otherwise, the maximum degree is at most k −1, and it follows
that every instance without isolated vertices (which may be safely removed) that has
at least k2 vertices is a yes-instance, hence we have a trivial kernel with at most k2

vertices. Fernau [35] presented a kernel with at most 4k vertices forMMVC restricted
to planar instances using the algorithmic version of the Four Color Theorem [54], and
claimed in [35, Corollary 4.25] a kernel with at most 2k vertices on general graphs
using spanning trees. Unfortunately, this latter kernelization algorithm is incorrect, as
we discuss in Sect. 6.

Boria et al. [18] initiated a study of the complexity of MMVC and presented a num-
ber of results, in particular a polynomial-time approximation algorithmwith ratio n1/2

123



Algorithmica (2022) 84:3365–3406 3367

on n-vertex graphs, and showed that, unless P = NP, no polynomial-time approx-
imation algorithm with ratio n1/2−ε exists for any ε > 0. They also presented FPT
algorithms forMMVC for several choices of parameters such as the treewidth, the size
of a maximummatching, or the size of a minimum vertex cover of the input graph. The
authors asked explicitly whether kernels of size o(k2) exist forMMVC parameterized
by k.

Zehavi [58] presented tight FPT algorithms, under the Strong Exponential Time
Hypothesis, for MMVC and its weighted version parameterized by the size of a mini-
mumvertex cover. Recently, Bonnet andPaschos [16] andBonnet et al. [15] considered
the inapproximability of MMVC in subexponential time.

Note that theMMVC problem is the dual of the well-studiedMinimum Indepen-

dent Dominating Setproblem (to see this, note that the complement of anyminimal
vertex cover is an independent dominating set), which has applications in wireless and
ad-hoc networks [47]. We refer to the survey of Goddard and Henning [40].

Our results and techniques. The starting motivation of this paper is the kernelization
of the MMVC problem, which has been almost unexplored so far in the literature.
This initial motivation has resulted in a general framework that can be applied to a
broad class of optimization problems in order to derive kernelization lower bounds.

Namely, motivated by the question of Boria et al. [18] about the existence of
subquadratic kernels for MMVC, we introduce a generic framework to obtain kernel-
ization lower bounds for a “certain type” of kernels for parameterizedmaximization or
minimization problems (in particular, forMMVC), based on a hypothesis that guaran-
tees an inapproximability result, typically P �= NP. Informally, by “certain type” we
mean kernelization algorithms that, in polynomial time, either decide the instance (by
answering “yes” or “no”) or produce an equivalent instance of the considered problem
in which the value of an optimal solution is “preserved”, in the sense that it may drop
only by the drop suffered by the parameter; see Sect. 3.1 for the formal details for the
case ofmaximization problems.We call such kernels large optimal preserving kernels,
or lop-kernels for short. Even if this type of kernel may seem restrictive, in particular
we are not aware of any “non-artificial” kernel for a maximization problem (such as
those that have become nowadays standard [36]) which is not a lop-kernel. We do
have such an example for a minimization problem, as discussed later. The core idea
of our approach is to show that a lop-kernel yields a polynomial-time approximation
algorithmwhose ratio depends on the size (and most importantly, on the degree) of the
kernel, and to use known inapproximability results to obtain the desired lower bound.

We present our framework of lop-kernels separately for maximization (Sect. 3) and
minimization (Sect. 4) problems. Even if both versions are similar, they are not totally
symmetric, and a number of technical differences pop up; we discuss them in detail
as they appear in Sect. 4. Our general result is stated in Theorem 13 and Theorem 24
for maximization and minimization problems, respectively. In order be able to apply
our framework to an optimization problem, we need it to be “well-behaved”, a mild
condition defined in Sects. 3 and 4 that, for instance, for vertex-optimization prob-
lems is weaker than their decision version being in NP. Also, our results distinguish
the existence of constructive or non-constructive approximation algorithms. Since
our framework seems to particularly fit vertex-optimization problems, we present the
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particular cases of Theorem 13 and Theorem 24 for vertex-maximization and vertex-
minimization problems in Theorem 10 and Theorem 21, respectively. In order to ease
the application of our results to concrete problems, we provide in Corollary 11 and
Corollary 22 the “contrapositive” versions of Theorem 10 and Theorem 21, respec-
tively.

Applications of our framework. Combining Corollary 11 with the O(n
1
2−ε)-

inapproximability result for MMVC by Boria et al. [18] immediately rules out (cf.
Corollary 26) the existence of a lop-kernel forMMVC withO(k2−ε) vertices for any
ε > 0, unless P = NP. Thus, while Corollary 26 does not completely rule out the
existence of subquadratic kernels for MMVC, it tells that, if such a kernel exists, it
should consist of “non-standard” reduction rules.

Interestingly, our framework has consequences beyond the MMVC problem. One
of them concerns the Maximum Minimal Feedback Vertex Set (MMFVS)
problem, defined in the natural way. Dublois et al. [32] recently provided a cubic
kernel for MMFVS parameterized by the solution size, and proved that the problem

does not admit an O(n
2
3−ε)-approximation algorithm for any ε > 0, unless P = NP.

By applying Corollary 11 we directly obtain (Corollary 27) that the cubic kernel of
Dublois et al. [32] is “essentially” optimal.

Another application of our results deals with the Tree Deletion Set problem.
In this case, the fact that this problem does not admit a polynomial-time O(n1−ε)-
approximation for any ε > 0 unless P �= NP [57] implies, together with Corollary 22,
that Tree Deletion Set parameterized by the solution size does not admit a polyno-
mial lop-kernel, unless P = NP (Corollary 28). However, Tree Deletion Set does
admit a polynomial kernel withO(k4) vertices [39]. Therefore, this polynomial kernel
cannot be a lop-kernel unless P = NP, and so far it constitutes the only non-artificial
example of non-lop-kernel that we are aware of.

Our last application concerns theMaximum Independent Set problem restricted
to Kt -free graphs. In particular, we show (Corollary 30) that a lop-kernel with
O(kt−1−ε) vertices for Maximum Independent Set on Kt -free graphs would

improve the best known approximation ratio n
t−2
t−1 that follows from Ramsey’s the-

orem [53]. Finally, generalizing a conjecture of Bonnet et al. [17], we conjecture that
for every fixed graph H , the Maximum Independent Set problem restricted to
H -free graphs admits a polynomial lop-kernel.

Comparison with other frameworks Compared to existing frameworks to obtain lower
bounds on kernelization, such as cross-compositions [10, 12], weak compositions [28,
29, 45], polynomial parameter transformations [8, 13], or techniques to obtain lower
bounds on the coefficients of linear kernels [21], or that relate approximation and
kernelization [1, 9, 42, 49, 51], our approach has the advantages that it is quite simple,
straightforward to apply, and relies on the same hypothesis onwhich the corresponding
inapproximability result is based, typically the standard hypothesis that P �= NP. On
the negative side, it has the following two drawbacks. The first one is that, in order to
obtain a non-trivial lower bound on the kernel size, it can only be applied to problems
which are quite hard to approximate, for example within a factor O(nr−ε) for some
constant r > 0, as it is the case of MMVC and MMFVS. The second, and probably
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most important, drawbackof our techniques is that they are able to rule out the existence
of what we call lop-kernels of certain sizes, but smaller non-standard kernels that do
not preserve the value of large optimal solutions might, a priori, still exist (as it is
the case for Tree Deletion Set, as discussed above). Hence, since our framework
seems to be orthogonal to existing ones, we think that it adds to the above list of
techniques to obtain kernelization lower bounds.

Other results on the kernelization of MMVC. Coming back to the MMVC problem
parameterized by the solution size, given the above negative result on general graphs,
we identify graph classes where MMVC is still NP-hard and admits a subquadratic
kernel. In particular, we deal with graph classes defined by excluding an induced
subgraph H that satisfies the Erdős–Hajnal property [34], that is, for which there
exists a constant δ > 0 such that every H -free graph on n vertices contains either a
clique or an independent set of size nδ . In particular, we present a kernel for MMVC

withO(k7/4) vertices on the well-studied class of bull-free graphs (Theorem 32), with

O(k
2t−3
t−1 ) vertices on Kt -free graphs graphs for every t ≥ 3 (Theorem 34), and with

O(k5/3) vertices on paw-free graphs (Theorem 37). To the best of our knowledge, this
is the first time that the Erdős–Hajnal property is used to obtain polynomial kernels
(we would like to note that it was used by Kratsch et al. [50] to obtain kernelization
lower bounds).

Our strategy to obtain these subquadratic kernels on H -free graphs is as follows.
By the high-degree rule mentioned above, given an instance (G, k), we may assume
that the maximum degree of G is at most k − 1. We find greedily a minimal vertex
cover X of G. If |X | ≥ k we are done, so we may assume that |X | ≤ k − 1, hence
the goal is to bound the size of S := V (G) \ X . Using that G[X ] is also H -free, the
Erdős–Hajnal property implies (Lemma 31) that X can be partitioned in polynomial
time into a sublinear (in k) number of independent sets and cliques. Since S is an
independent set and we may assume that G has no isolated vertices, in order to bound
|S| by a subquadratic function of k, it is enough to show that, for each of the sublinearly
many cliques or independent sets Y that partition X , its neighborhood in S has size
O(k). This is easy if Y is an independent set: if |NS(Y )| ≥ k we can conclude that
(G, k) is a yes-instance (Lemma 2), so we may assume that |NS(Y )| ≤ k − 1. The
case where Y is a clique is more interesting, and we need ad-hoc arguments depending
on each particular excluded induced subgraph H .

We also present several positive results for MMVC restricted to other particular
graph classes, such as K1,t -free graphs (Lemma 38), graph classes with bounded
chromatic number (Lemma 39), or graph classes with bounded cliquewidth (Obser-
vation 40).

Finally, we show (Theorem 42) that MMVC, parameterized by the size of a min-
imum vertex cover (or of a maximum matching) of the input graph, does not admit
a polynomial kernel unless N P ⊆ coN P/poly, even restricted to bipartite graphs.
This result complements the FPT algorithms for MMVC under these parameteriza-
tions given by Boria et al. [18] and Zehavi [58], and shows that, in what concerns the
existence of polynomial kernels for MMVC, the most natural structural parameters
smaller than the solution size are not large enough to yield polynomial kernels (note
that the treewidth of any graph is at most one more than its vertex cover number, hence
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our result rules out the existence of polynomial kernels for MMVC parameterized by
treewidth as well). The proof consists of a polynomial parameter transformation from
Monotone Sat parameterized by the number of variables. In particular, our reduc-
tion yields also the NP-hardness of MMVC on bipartite graphs, which provides an
alternative proof to the one of Boliac and Lozin [14] via the NP-hardness of Minimum

Independent Dominating Set on bipartite graphs.

Organization. In Sect. 2we provide somebasic preliminaries about graphs, theMMVC

problem, parameterized complexity, and approximation algorithms. In Sect. 3 (resp.
Sect. 4) we present our framework to obtain kernelization lower bounds for maxi-
mization (minimization) problems. In both sections, the contents are split into three
subsections: we start with the general definitions, then we focus on the particular and
relevant case of vertex-optimization problems, and then we present the general results
for what we call “well-behaved” optimization problems. In Sect. 5 we present several
applications of the framework of lop-kernels for concrete problems, and in Sect. 6 we
discuss the flaw in the linear kernel for MMVC claimed by Fernau [35]. Section 7 is
devoted to the subquadratic kernels for MMVC on particular graph classes, as well
as to other positive results for MMVC. Our reduction to rule out the existence of
polynomial kernels for MMVC parameterized by the size of a minimum vertex cover
(or a maximum matching) is presented in Sect. 8. We conclude the paper in Sect. 9
with a discussion and some directions for further research.

2 Preliminaries

Graphs and functions We use standard graph-theoretic notation, and we refer the
reader to [30] for any undefined notation. For an integer p ≥ 1, we let [p] be the set
containing all integers i with 1 ≤ i ≤ p. We use � to denote the disjoint union. We
will only consider finite undirected graphs without loops nor multiple edges, and we
denote an edge between two vertices u and v by {u, v}. A subgraph H of a graph G
is induced if H can be obtained from G by deleting a set of vertices D = V (G) \ S,
and we denote H = G[S]. Given a graph H , a graph G is H-free if it does not contain
any induced subgraph isomorphic to H . If H is a collection of graphs, a graph G is
H-free if it is H -free for every H ∈ H. For a graph G and a set S ⊆ V (G), we use the
notation G \ S = G[V (G) \ S], and for a vertex v ∈ V (G), we abbreviate G \ {v} as
G \ v. A vertex v is complete to a set S ⊆ V (G) if v is adjacent to every vertex in S.

The open (resp. closed) neighborhood of a vertex v in a graph G is denoted by
NG(v) (resp. NG [v]), or just by N (v) (resp. N [v]) whenever the graph G is clear
from the context. For vertex sets X ,Y ⊆ V (G), we define N [X ] = ⋃

v∈X N [v],
N (X) = N [X ] \ X , NY [X ] = N [X ] ∩ Y , and NY (X) = NY [X ] \ X . The degree of
a vertex v in a graph G is defined as |N (v)|, and we denote it by degG(v), or just
deg(v) if the graph is clear from the context. For an integer t ≥ 1, we denote by Pt
(resp. It , Kt ) the path (resp. edgeless graph, complete graph) on t vertices. For two
integers a, b ≥ 1, we denote by Ka,b the complete bipartite graph with parts of sizes
a and b.
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A clique (resp. independent set) in a graph G is a set of vertices that are pairwise
adjacent (resp. not adjacent). A graph property is hereditary if whenever it holds for a
graphG, it holds for all its induced subgraphs as well. Note that the properties of being
an edgeless graph, a complete graph, or an independent set are hereditary. We denote
by �(G) (resp. ω(G)) the maximum vertex degree (resp. clique size) of a graph G.

A vertex cover of a graph G is a set of vertices containing at least one endpoint
of every edge, and it is minimal if no proper subset of it is a vertex cover. One of the
concrete problems that we study in this paper is formally stated as follows. We state
it as a decision problem, since most of our results consider its parameterization by the
solution size k.

Maximum Minimal Vertex Cover (MMVC)

Input: A graph G and a positive integer k.
Question: Does G contain a minimal vertex cover of size at least k?

For a graph G, we denote by mmvc(G) the maximum size of a minimal vertex
cover of G. The following observation has been already used in previous work [18,
58].

Observation 1 Let G be a graph. A set X ⊆ V (G) is a minimal vertex cover of G if
and only if X is a vertex cover of G and, for every vertex v ∈ X, N (v) � X.

The next lemma provides a useful way to conclude that we are dealing with a
yes-instance in the kernelization algorithms presented in Sect. 7.

Lemma 2 Let G be a graph and let S ⊆ V (G) be an independent set. There exists a
minimal vertex cover of G containing N (S).

Proof Note that, since S is an independent set, V (G)\ S is a vertex cover ofG. Hence,
there exists a minimal vertex cover X of G such that X ⊆ V (G) \ S. We claim that
N (S) ⊆ X . Suppose for the sake of contradiction that there exists a vertex v ∈ N (S)

such that v /∈ X . Since v has a neighbor u in S and S ∩ X = ∅, the edge {u, v} would
not be covered by X . ��

Note that, in particular, Lemma 2 implies that if (G, k) is an instance of theMaxi-

mum Minimal Vertex Cover problem and v ∈ V (G) is a vertex of degree at least
k, then we can conclude that (G, k) is a yes-instance. This will allow us to assume, in
our kernelization algorithms, that �(G) ≤ k − 1.

Parameterized complexity. We refer the reader to [26, 31] for basic background on
parameterized complexity, and we recall here only some basic definitions used in
this paper. A parameterized problem is a language L ⊆ �∗ × N. For an instance
I = (x, k) ∈ �∗ × N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algo-
rithm A, a computable function f , and a constant c such that given an instance
I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by f (k) · |I |c. For instance, the Vertex Cover problem parameterized by
the size of the solution is FPT.
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For an instance (x, k) of a parameterized problem Q, a kernelization algorithm is
an algorithmA that, in polynomial time, generates from (x, k) an equivalent instance
(x ′, k′) of Q such that |x ′| + k′ ≤ f (k), for some computable function f : N → N,
where |x ′| denotes the size of x ′. If f (k) is bounded from above by a polynomial
of the parameter, we say that Q admits a polynomial kernel. In particular, if f (k) is
bounded by a linear (resp. quadratic) function, then we say that Q admits a linear
(resp. quadratic) kernel.

A polynomial parameter transformation, abbreviated as PPT, is an algorithm that,
given an instance (x, k) of a parameterized problem A, runs in time polynomial in |x |
and outputs an instance (x ′, k′) of a parameterized problem B such that k′ is bounded
from above by a polynomial on k and (x, k) is a yes-instance if and only if (x ′, k′)
is a yes-instance. If a parameterized problem A does not admit a polynomial kernel
unless N P ⊆ coN P/poly and there exists a PPT from A to a parameterized problem
B, then B does not admit a polynomial kernel unless N P ⊆ coN P/poly either [26].

Approximation algorithms. We refer the reader to [56] for background on approxi-
mation algorithms, and we define here only some non-standard notions used in this
paper.

As, when dealing with graph problems, one typically measures the size of kernels
in terms of the number of vertices or edges (and not in the classical bit-size of the
instance), we introduce a general notion of size as follows. Given a optimization
problem �, we say that a non-negative integer-valued function | · | is a size function
if, given an instance I of �, |I | can be computed in polynomial time in the classical
bit-size, and |I | is upper-bounded by a polynomial in the classical bit-size.

For an optimization problem �, an instance I of �, and a feasible solution s of �

in I , we denote by val�(I , s) the value of the objective function of� for s. We restrict
ourselves to optimization problems�whose objective functions for feasible solutions
take non-negative integer values. For a maximization (resp. minimization) problem
� and an instance I of �, we denote by opt�(I ) the maximum (resp. minimum) of
val�(I , s) over all feasible solutions s of � in I .

A maximization (resp. minimization) problem � is a vertex-maximization (resp.
vertex-minimization) problem if their instances consist of a graph G, and the objec-
tive is to find a vertex set S ⊆ V (G) of maximum (resp. minimum) size satisfying
some conditions. For instance, Maximum Independent Set and Minimum Ver-

tex Cover are typical examples of vertex-maximization and vertex-minimization
problems, respectively. As a simple example for the latter problem �, consider the
approximation algorithm that, given a graph G, first computes a maximum matching
M of G in polynomial time, and then outputs as a vertex cover S of G the set of
vertices that are endpoints of edges in M . Then, if opt�(G) = k, it is easy to verify
that val�(G, S) ≤ 2k.

For kernelization purposes,we need to consider the decision version of optimization
problems. For a maximization (resp. minimization) problem�whose instances are of
the form I , we denote by �dec the decision problem whose instances are of the form
(I , k), where k is a non-negative integer, and where (I , k) is a yes -instance of �dec

if opt�(I ) ≥ k (resp. opt�(I ) ≤ k), and a no -instance otherwise.
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Since we aim at establishing a link between the existence of certain kernels and
approximation algorithms, we need to take care of constructibility issues. The standard
definition of a kernelization algorithm [36] does not involve constructing a solution of
the considered problem.On the other hand, the standard definition of an approximation
algorithm [56] does take into account the construction of the corresponding solution.
Hence, in order to establish such a connection, we need to consider slightly “non-
standard” definitions of these objects.

Namely, we distinguish between constructive and non-constructive approximation
algorithms, so that the kernelization lower bounds that we present are able to rule
out constructive or non-constructive kernels (cf. the second paragraph of Sect. 3). To
this end, we say that an algorithm for a maximization (resp. minimization) decision
problem �dec constructively decides an instance (I , k) if, whenever it holds that
opt�(I ) ≥ k (resp. opt�(I ) ≤ k), the algorithm outputs a feasible solution s such
that val�(I , s) ≥ k (resp. val�(I , s) ≤ k).

When using the term “approximation algorithm” with ratio ρ ≥ 1 for a max-
imization (resp. minimization) problem �, we assume, unless stated otherwise,
that it is constructive, that is, that the algorithm, given an instance I of �, out-
puts a feasible solution s of � in I such that opt�(I )/val�(I , s) ≤ ρ (resp.
val�(I , s)/opt�(I ) ≤ ρ). Note that the approximation ratio ρ is, in general, a non-
negative (not necessarily integer-valued) function that depends on I . Coming back to
the simple algorithm forMinimum Vertex Cover discussed above, since it satisfies
that val�(G, S)/opt�(G) ≤ 2, it constitutes an approximation algorithm with ratio
2.

We define a value-approximation algorithm with ratio ρ ≥ 1 for a maximization
(resp. minimization) problem� as an algorithm that, given an instance I of�, returns
a non-negative integer k such that 1 ≤ opt�(I )/k ≤ ρ (resp. 1 ≤ k/opt�(I ) ≤ ρ).
Again, here ρ is, in general, a non-negative integer-valued function that depends on
I . Note that a value-approximation algorithm is not only not required to construct a
feasible solution with value k, but also not required to guarantee that such a solution
exists.

3 A Framework for Ruling Out Certain Polynomial Kernels: The Case
of Maximization Problems

In this section we introduce our generic framework to obtain lower bounds on the size
of a certain type of polynomial kernels, which we call lop-kernels (see Definition 5),
for a broad class of maximization problems that we proceed to introduce. Informally,
the framework is based on simple and self-contained arguments proving that a “small”
lop-kernel implies the existence of a “good” approximation algorithm. Then, the con-
trapositive of this statement implies that inapproximability results can be turned into
lop-kernel lower bounds.

It isworthmentioning here thatmost of the inapproximability results in the literature
hold for the value-approximation algorithms as defined at the end of Sect. 2, that is, for
algorithms that are not required to construct in polynomial time an appropriate solution
of the corresponding problem, but only to report a value within the appropriate range.
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In order to guarantee that it is also possible to use our framework when only the non-
existence of constructive approximation algorithms is known, we introduce a variant
of lop-kernels, called constructive lop-kernels, such that their existence implies the
existence of a constructive approximation algorithm. However, in a first reading, we
recommend to skip all technical details concerning constructibility.

We say that a maximization problem � is well-behaved if it comes equipped with
a size function (as defined in Sect. 2) and it satisfies the following condition, which
we denote by Cmax:

There exists an algorithm that, given as input a real number c and an instance I
of� such that opt�(I ) ≤ c, runs in polynomial time for every fixed c and either
decides that opt�(I ) = 0 and provides a feasible solution s with val�(I , s) = 0,
or provides a feasible solution s with val�(I , s) > 0.

Observe that most of the classical maximization problems are well-behaved, and
in particular any vertex-maximization problem whose decision version belongs to NP
is well-behaved, as we can enumerate all subsets of vertices of size at most c, and
for each of them verify in polynomial time if it is a feasible solution. It is worth
mentioning here that we will need the considered problem to be well-behaved in the
proof of Lemma 12. Given a well-behaved maximization problem �, we say that a
function u : N → N is an upper bound function for � if for any instance I of �,
it holds that opt�(I ) ≤ u(|I |), where | · | is the size function of �. Throughout the
paper, we assume that the notions of size used in both the size of kernels and the upper
bound function are the same.

The reminder of this section is organized as follows. In Sect. 3.1 we present the
definition of lop-rules and lop-kernels for well-behaved maximization problems, and
we prove a general technical result, namely Lemma 8. In Sect. 3.2 we present the con-
nection between lop-kernels and approximation algorithms for vertex-maximization
problems, and in Sect. 3.3 we generalize it to arbitrary well-behaved maximization
problems.

3.1 Definition of lop-Rules and lop-Kernels

Definition 3 A large optimal preserving reduction rule, or lop-rule for short, for a
well-behaved maximization problem �, is a polynomial-time algorithm R that, given
an instance (I , k) of�dec, computes another instance (I ′, k′) of�dec with 0 ≤ k′ ≤ k
and such that

1. if (I , k) is a no-instance of �dec, then (I ′, k′) is a no-instance of �dec, and
2. if (I , k) is a yes-instance of�dec, thenopt�(G ′) ≥ opt�(G)−(k−k′), implying

that (I ′, k′) is a yes-instance of �dec.

A lop-rule R is constructive if, given I and any solution s′ of I ′ of such that
val�(I ′, s′) ≥ k′, it constructs (in polynomial time) a solution s of I such that
val�(I , s) ≥ k.

Note that Property 2 in Definition 3 is stronger than the implication “if (I , k) is a
yes-instance of �dec, then (I ′, k′) is a yes-instance of �dec”, which would yield the
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definition of a classical kernelization algorithm [26, 31]. Indeed, when we consider
how this latter implication is generally proved in safeness proofs of classical kernels,
one of the following scenarios often occurs:

(a) For every solution s of I there exists a solution s′ of I ′ with val�(I ′, s′) ≥
val�(I , s) − (k − k′).

(b) For every solution s of I with val�(I , s) ≥ k, there exists a solution s′ of I ′
with val�(I ′, s′) ≥ val�(I , s) − (k − k′).

(c) If there exists a solution s of I with val�(I , s) ≥ k, then there exists a solution
s′ of I ′ with val�(I ′, s′) ≥ k′.

In Case (a), the rule preserves all optimal values, as it implies that opt�(G ′) ≥
opt�(G) − (k − k′). In Case (b), the rule preserves only large optimal values, as
it implies that if opt�(G) ≥ k, then opt�(G ′) ≥ opt�(G) − (k − k′), implying
Property 2 above. Note that if opt�(G) < k, then opt�(G ′) and opt�(G) are not nec-
essarily related. This justifies our choice for “large optimal preserving” rules. Case (c)
corresponds to theweaker and classical implication “if (I , k) is a yes-instance of�dec,
then (I ′, k′) is a yes-instance of �dec”.

The following observation is an immediate consequence of the definition of a lop-
rule.

Observation 4 lop-rules can be composed. Formally, consider two lop-rules R1 and
R2. Then, the rule R that, given a instance (I , k) of �dec, returns R2(R1(I , k)), is
also a lop-rule. Moreover, if R2 and R1 are constructive, then R is also constructive.

A typical example of a lop-rule for a vertex-maximization problem is when we can
identify a “dominant” set of vertices that can be safely included into a solution. More
precisely, consider a rule that, given a graph G, finds a subset T ⊆ V (G) and a graph
G ′ such that there exists an optimal solution S	 in G satisfying S	 = T ∪ S′, where
S′ is a solution in G ′, and for every solution S′ in G ′, S′ ∪ T is a solution in G. Such
a rule is a (constructive) lop-rule, as we even fall into Case (a) described above.

Even if we are not aware of known reduction rules for vertex-maximization prob-
lems that are not lop-rules, we can artificially devise such an example. For instance,
for the MMVC problem, given an instance (G, k), if there is a vertex that has more
than k neighbors of degree one, we can safely delete all but any k of them to obtain a
reduced graph G ′, and leave k unchanged. Note that this rule falls into Case (c) above,
since by Lemma 2 both G and G ′ are yes-instances of MMVC, but it does not satisfy
Property 2 in Definition 3, since mmvc(G) may be arbitrarily larger than mmvc(G ′).

If we defined a lop-kernel as an algorithm consisting only of lop-rules, we would
exclude from being a lop-kernel, for instance, a rule that detects a yes-instance as in
the above paragraph. This justifies the next definition, where we also allow lop-kernels
to decide instances.

Definition 5 Let � be a well-behaved maximization problem and let s : N → N be a
computable function. A lop-kernel of size s for� parameterized by the solution size is
a polynomial-time algorithm that takes as input an instance (I , k) of �dec, and either

123



3376 Algorithmica (2022) 84:3365–3406

• decides that (I , k) is a yes-instance or a no-instance, or
• outputs a reduced instance (I ′, k′) by applying a sequence of lop-rules to (I , k),
with |I ′| ≤ s(k).

A lop-kernel is constructive if, in the first case, it constructively decides (I , k) (but in
the second case it may not use constructive rules).

As it is common in kernels to exhaustively apply reduction rules, and then to either
decide the reduced instance or to output it, let us introduce and discuss the following
definition1.

Definition 6 Let � be a well-behaved maximization problem and let s : N → N be
a computable function. A lop-kernel	 of size s for � parameterized by the solution
size is a polynomial-time algorithm that takes as input an instance (I , k) of �dec,
computes an instance (I ′, k′) by applying a (possibly empty) sequence of lop-rules to
(I , k), and either

• decides that (I ′, k′) is a yes-instance or a no-instance, or
• outputs (I ′, k′), with |I ′| ≤ s(k).

A lop-kernel	 is constructive if, in the first case, it constructively decides (I ′, k′) and,
in the second case, it only uses constructive lop-rules.

Firstly, observe that a lop-kernel	 (resp. constructive lop-kernel	) is a lop-kernel
(resp. constructive lop-kernel). Indeed, if a lop-kernel	 decides (I ′, k′), then, as the
definition of lop-rules implies that the reduced instance (I ′, k′) is equivalent to (I , k),
it also decides (I , k).Moreover, if a lop-kernel	 is constructive and decides that (I ′, k′)
is a yes-instance by providing a solution s′ with val�(I ′, s′) ≥ k′, then, as the rules
are constructive, and according to Observation 4, we can build in polynomial time
a solution s with val�(I , s) ≥ k, and thus constructively decide (I , k). Secondly,
observe that a lop-kernel is a lop-kernel	, but that a constructive lop-kernel is not
necessarily a constructive lop-kernel	. The conclusion of this discussion is that for
the non-constructive versions, both definitions are equivalent, and for the constructive
versions, lop-kernels are slightly more general. As many inapproximability results
even hold for the non-constructive version of approximation, we suggest the reader
to stick to the non-constructive version, and thus to chose any of the two definitions.
The only case where it could make a difference would be for a problem � for which
inapproximability results are only known for ruling out constructive approximation
algorithms. Then, Corollary 11 will turn this inapproximability into a kernel lower
bound even for constructive lop-kernels, and not only for constructive lop-kernels	.
This justifies why we consider henceforth only lop-kernels.

Our next objective is to prove that a lop-kernel yields an approximation algorithm.
For this, we need the following definition, which is inspired by a similar notion intro-
duced byHochbaumand Shmoys [46], and referred to as f -relaxed decision procedure
in [56].

1 This definition was used in the conference version of this paper [4].
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Definition 7 Let � be a well-behaved maximization problem and let f : N → N be
a function.

An f -dual-approximation algorithm for � is a polynomial-time algorithm that,
given an instance (I , k) of �dec, concludes one of the following:

• opt�(I ) ≥ k.
• opt�(I ) < f (k).

An f -dual approximation algorithm is constructive if, whenever it concludes that
opt�(I ) ≥ k, it provides a solution s with val�(I , s) ≥ k.

In the next lemma we prove that a lop-kernel of size s yields an f -dual-
approximation algorithm (where f depends on s), which in turn yields a classical
approximation algorithm whose ratio depends on s. To provide some insight on the
statement of the next lemma, keep in mind that for vertex-maximization problems, the
upper bound function u is typically the identity function.

Lemma 8 Let � be a well-behaved maximization problem with a non-decreasing
upper bound function u and let s : N → N be a computable function. If � admits
a lop-kernel of size s, then � admits an f -dual-approximation algorithm where
f (k) := u(s(k)) + k + 1. Moreover, if the lop-kernel is constructive, then the f -
dual-approximation algorithm is also constructive.

Proof Let k ∈ N, (I , k) be an instance of �dec, and R be a lop-kernel of size s for
�. We describe an f -dual approximation algorithm A which takes as input I and k,
starts by runningR with input (I , k), and continues based on its possible output. IfR
decides that (I , k) is a yes-instance, then opt�(I ) ≥ k, and A returns opt�(I ) ≥ k
as well. Notice that if R is constructive, then it provides a solution s of I such that
val�(I , s) ≥ k, and A returns this solution as well. Otherwise, we claim that it is
safe forA to return opt�(I ) ≤ f (k). Indeed, ifR decides that (I , k) is a no-instance,
then opt�(I ) < k, implying opt�(I ) < u(s(k)) + k = f (k). Finally, suppose that
R outputs an equivalent instance (I ′, k′) obtained from (I , k) using only lop-rules
and such that |I ′| ≤ s(k). By using Observation 4 we can assume that (I ′, k′) is
obtained from (I , k) by a single lop-rule, and Property 2 in Definition 3 implies that
opt�(I ) ≤ opt�(I ′) + (k − k′) ≤ u(|I ′|) + k ≤ u(s(k)) + k < f (k), where we have
used the fact that u is non-decreasing. ��

Let us now turn to ourmain results relating the size of lop-kernels to the existence of
approximation algorithms. To keep statements as simple as possible, we first provide
in Sect. 3.2 results that correspond to the specialized versions for vertex-maximization
problems of the general results presented in Sect. 3.3.

3.2 Connection Between lop-Kernels and Approximation Algorithms for
Vertex-Maximization Problems

In this subsection we deal with vertex-maximization problems. The following lemma
is a folklore result [56], but as it is generally tuned for a particular function f appearing
in the considered context, we need to restate it in a general form.
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Lemma 9 Let � be a vertex-maximization problem whose decision version is in NP,
and f : N → N be a computable function.

1. For every real number c > 1, if � admits an f -dual-approximation algorithm
with f (k) = O(kc), then � admits a polynomial-time value-approximation

algorithm with ratio O(n
c−1
c ) on n-vertex graphs.

2. For every real number β ≥ 1, if � admits an f -dual-approximation algorithm
with f (k) = βk + 1, then � admits a polynomial-time value-approximation
algorithm with ratio β + ε for every real number ε > 0.

Moreover, if the f -dual-approximation is constructive, then the corresponding approx-
imation algorithm is also constructive.

Proof Let A be an f -dual-approximation algorithm for �. We proceed to construct a
polynomial-time approximation algorithm for � with the claimed ratio. We consider
the two statements of the lemma separately.
Case 1: f (k) = O(kc).
Given an n-vertex graph G as instance of �, we find k0 ∈ {0, . . . , n} defined as the
largest positive integer k such that algorithm A returns that opt�(G) ≥ k. Note that
k0 can be found in polynomial time by performing at most n + 1 calls to algorithm A.
If there is no such k0, or if k0 = 0, then opt�(G) < max( f (0), f (1)) = O(1), and
since the decision version of� is inNP, we can find an optimal solution in polynomial
time by verifying all vertex subsets of size at most max( f (0), f (1)). Otherwise, that
is, if k0 ≥ 1, our approximation algorithm returns k0, or if it is constructive it returns a
solution S0 (a subset of vertices here) such that |S0| ≥ k0. Let us prove that it provides
the claimed approximation ratio. We distinguish two subcases depending on the value
of k0. Suppose first that k0 ≥ n1/c. Since opt�(G) ≤ n, in this case we get that

opt�(G)

k0
≤ n

n1/c
= n

c−1
c .

Otherwise, it holds that k0 < n1/c. By the definition of k0 we have opt�(G) <

f (k0 + 1) = O((k0 + 1)c) = O((k0)c). Thus, in this case we get that

opt�(G)

k0
= O((k0)c)

k0
= O

(
(k0)

c−1
)

= O
(
n

c−1
c

)
.

Since in both cases we have a ratio of O(n
c−1
c ), the lemma follows in Case 1.

Case 2: f (k) = βk + 1.
Let ε > 0 be a arbitrary real number, let ε′ = ε

β
, and let us provide a polynomial-time

approximation algorithm with ratio β(1 + ε′) = β + ε. As in Case 1, we start by
finding k0, defined as the largest positive integer k such that algorithm A returns that
opt�(G) ≥ k. By definition of k0 we have opt�(G) < f (k0 + 1) = β(k0 + 1)+ 1 ≤
β(k0 + 2). If k0 < 2

ε′ , then opt�(G) is constant, and again by enumerating all subsets
of size at most β( 2

ε′ + 2) we find an optimal solution. Otherwise, we return k0, or if it
is constructive it returns a solution S0 (a subset of vertices here) such that |S0| ≥ k0.
We have opt�(G) ≤ β(k0 + 2) ≤ β(1 + ε′)k0, concluding Case 2 of the proof. ��
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As a vertex-maximization problem whose decision version is in NP is a well-
behaved problem, the hypothesis of Lemma 8 is satisfied (taking the identity function
as upper bound function), and thus the following theorem is immediate by pipelining
Lemmas 8 and 9.

Theorem 10 Let � be a vertex-maximization problem whose decision version is in
NP.

1. For every real number c > 1, if � admits a lop-kernel withO(kc) vertices, then

it admits a polynomial-time value-approximation algorithm with ratioO(n
c−1
c )

on n-vertex graphs.
2. For every real number β ≥ 1, if � admits a lop-kernel with βk vertices, then

for any real number ε > 0, it admits a polynomial-time value-approximation
algorithm with ratio (β + 1 + ε).

Moreover, if the lop-kernel is constructive, then the corresponding approximation
algorithm is also constructive.

As the framework of lop-kernels is mainly defined as a tool to get lop-kernel lower
bounds from inapproximability, let us explicitly formulate the contrapositive of The-
orem 10. Note that, when applying it to a concrete problem �, the inapproximability
of � will rely on some complexity assumption, typically P �= NP.

Corollary 11 Let � be a vertex-maximization problem whose decision version is in
NP.

1. For every real number r ∈ (0, 1), if � does not admit a polynomial-time
value-approximation algorithm with ratio O(nr ) on n-vertex graphs, then �

parameterized by the solution size does not admit a lop-kernel with O(k
1

1−r )

vertices.
2. For every real number β > 1, if � does not admit a polynomial-time value-

approximation algorithm with ratio β, then � parameterized by the solution
size does not admit a lop-kernel with (β − 1− ε)k vertices for any real number
ε > 0.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-
kernels.

3.3 Connection Between lop-Kernels and Approximation Algorithms for
Well-BehavedMaximization Problems

The following lemma and theorem are the versions of Lemma 9 and Theorem 10,
respectively, in the more general setting of arbitrary well-behaved maximization prob-
lems.

Lemma 12 Let� be awell-behavedmaximization problem, a ∈ R+, u : N → N, and
f : N → N be functions such that u(n) = O(na), u is polynomial-time computable,
and f is computable. Suppose that� has u as upper bound function and that it admits
an f -dual-approximation.
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1. If f (k) = O(kd) for some real number d > 1, then � admits a polynomial-time

value-approximation algorithm with ratio O(n
a(d−1)

d ), where n is the size of the
input.

2. If f (k) = λkd + k + 1 for some real numbers d ≤ 1 and λ > 0, then � admits
a polynomial-time value-approximation algorithm with ratio λ2d + 3.

Moreover, if the f -dual-approximation algorithm is constructive, then the correspond-
ing approximation algorithm is also constructive.

Proof Let A be an f -dual-approximation algorithm for �. For both cases in the
statement in the lemma, we proceed to construct a polynomial-time approximation
algorithm for � with the claimed ratio.

Given an instance I of �, we find k0 ∈ {0, . . . , u(n)} (recall that n = |I |) defined
as the largest positive integer k such that algorithm A returns that opt�(G) ≥ k. Note
that k0 can be found in polynomial time as |I | is polynomial-time computable and its
value n is polynomially upper-bounded in the classical bit-size of the instance, and
that u(n) can be computed in polynomial time as well. If there is no such k0, or if
k0 = 0, then opt�(G) < max( f (0), f (1)) = O(1), and since � is well-behaved,
we can, given max( f (0), f (1)), decide in polynomial time if either opt�(I ) = 0 and
provide a solution s with val�(I , s) = 0, or provide a solution s with val�(I , s) >

0. In both cases we even have a constructive constant-factor approximation, and as
opt�(I ) < f (1) = λ + 2, we get the claimed ratio in both cases. Otherwise, that is,
when k0 ≥ 1, our approximation algorithm returns k0, or if it is constructive it returns
a solution s0 such that val�(I , s0) ≥ k0. Let us prove that it provides the claimed
approximation ratio. We now distinguish the two cases claimed in the statement of the
lemma.
Case 1: f (k) = O(kd).
Suppose first that k0 ≥ na/d . In this case we have

opt�(I )

k0
≤ u(n)

k0
= O(na)

na/d
= O

(
n

a(d−1)
d

)
.

Otherwise, it holds that k0 < na/d . By the definition of k0 we have opt�(G) <

f (k0 + 1) = O((k0 + 1)d) = O((k0)d). Thus, in this case we get that

opt�(I )

k0
= O((k0)d)

k0
= O

(
(k0)

d−1
)

= O
(
n

a(d−1)
d

)
.

Since in both cases we have a ratio of O(n
a(d−1)

d ), the lemma follows in Case 1.
Case 2: f (k) = λkd + k + 1.

We have
opt�(I )

k0
≤ f (k0 + 1)

k0
≤ λ(k0 + 1)d + k0 + 2

k0

Let

h(x) = λ(x + 1)d + x + 2

x
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and note that the approximation ratio is at most h(k0).
To bound h(k0), we proceed to show that h(x) is decreasing in x when x > 0 and

obtain the desired approximation ratio of h(k0) ≤ h(1) = λ2d + 3. To show that h(x)
is indeed decreasing in x when x > 0, note that

∂h(x)

∂x
= λ(x + 1)d

x2
·
(

d
x

x + 1
− 1

)

− 1

x2
,

which is negative when d ≤ 1 and x > 0. ��
The next theorem follows immediately by pipelining Lemmas 8 and 12. Namely,

startingwith the hypothesis ofTheorem13,wefirst applyLemma8and thenLemma12
with d = ac and λ = αβa .

Theorem 13 Let� be a well-behaved maximization problem, a, c ∈ R+, u : N → N,
and s : N → N be functions such that u(n) = O(na), s(k) = O(kc), u is non-
decreasing, and s and u are polynomial-time computable. Suppose that � has u as
upper bound function and that it admits a lop-kernel of size s, according to the same
size function | · | associated with �.

1. If ac > 1, then� admits a polynomial-time value-approximation algorithmwith

ratio O(n
ac−1
c ), where n is the size of the instance.

2. If ac ≤ 1 and α, β ∈ R+ are such that u(n) ≤ αna and s(k) ≤ βkc, then �

admits a polynomial-time value-approximation algorithmwith ratio αβa2ac+3.

Moreover, if the lop-kernel is constructive, then the corresponding approximation
algorithm is also constructive.

To provide some insight on the formulas used in the statement of Theorem 13, and
especially on the role of the upper bound function u(n) = O(na), one can typically
think of a graph problem where the output is a subset of edges, and where the size of
an instance is the number of vertices of input graph. In that case, we have a = 2, and
thus a lop-kernel of size (in terms of number of vertices) O(kc) would only imply an

O(n
2c−1
c )-approximation algorithm, which is worse than the ratio O(n

c−1
c ) obtained

in Theorem 10, where a = 1. On the other hand, the ratio can also sometimes be
slightly better, as there may exist problems with upper bound function u(n) = O(na)
for some a < 1. Moreover, observe that for problems where a ≤ 1, the second item
covers the case of linear kernels, which corresponds to c = 1.

By taking the contrapositive of Theorem 13, we obtain the following more general
version of Corollary 11.

Corollary 14 Let � be a well-behaved maximization problem with a non-decreasing
and polynomial-time computable upper bound function u(n) = O(na) for a ∈ R+.
In what follows, the size of the instance, denoted by n, and the size of the kernel are
defined according to the same size function | · | associated with �.

1. For every real number r ∈ (0, 1), if � does not admit a polynomial-time value-
approximation algorithmwith ratioO(nr ), then� parameterized by the solution

size does not admit a lop-kernel of size O(k
1

a−r ).
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2. Suppose that u(n) ≤ αna for some α ∈ R+. For every real number β > 1, if
� does not admit a polynomial-time value-approximation algorithm with ratio
β, then � parameterized by the solution size does not admit a lop-kernel of size
β ′kc′

for any real numbers β ′, c′ such that ac′ ≤ 1 and αβ
′a2ac

′ + 3 ≤ β.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-
kernels.

4 A Framework for Ruling Out Certain Polynomial Kernels: The Case
of Minimization Problems

In this section we adapt the framework of lop-kernels introduced in Sect. 3 to min-
imization problems. The definitions and results for minimization problems are very
close to those for maximization problems, but there are a number of subtle differences
that we will discuss as they appear.

We say that a minimization problem � is well-behaved if it comes equipped with
a size function (as defined in Sect. 2) and it satisfies the following condition, which
we denote by Cmin:

There exists a polynomial-time algorithm that, given as input an instance I
of �, decides if opt�(I ) = 0, and in this case provides a solution s where
val�(I , s) = 0, or otherwise provides any solution s.

Note that condition Cmin above is not the symmetric version of condition Cmax

defined at the beginning of Sect. 3.
Given a well-behaved minimization problem �, we say that a function u : N → N

is an upper bound function for � if for any instance I of � and any solution s of
I , we have val�(I , s) ≤ u(|I |), where | · | is the size function of �. Note that this
notion of upper bound function differs from the one given for maximization problems.
Again, throughout the paper, we assume that the notions of size used in both the size
of kernels and the upper bound function are the same.

The reminder of this section is organized similarly to Sect. 3. Namely, in Sect. 4.1
we present the definition of lop-rules and lop-kernels for well-behaved minimization
problems, and we prove a general technical result, namely Lemma 19. In Sect. 4.2 we
present the connection between lop-kernels and approximation algorithms for vertex-
minimization problems, and in Sect. 4.3 we generalize it to arbitrary well-behaved
minimization problems.

4.1 Definition of lop-Rules and lop-Kernels

The following definition should be compared to Definition 3.

Definition 15 A large optimal preserving reduction rule, or lop-rule for short, for a
well-behaved minimization problem �, is a polynomial-time algorithm R that, given
an instance (I , k) of�dec, computes another instance (I ′, k′) of�dec with 0 ≤ k′ ≤ k
and such that
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1. if (I , k) is a yes-instance of �dec, then (I ′, k′) is a yes-instance of �dec, and
2. if (I , k) is ano-instance of�dec, then opt�(G ′) ≥ opt�(G)−(k−k′), implying

that (I ′, k′) is a no-instance of �dec.

A lop-rule R is constructive if, for any solution s′ of I ′, it constructs (in polynomial
time) a solution s of I such that val�(I , s) ≤ val�(I ′, s′) + (k − k′).

Note that Property 2 in Definition 15 is stronger than the implication “if (I , k) is
a no-instance of �dec, then (I ′, k′) is a no-instance of �dec”, which would yield the
definition of a classical kernelization algorithm. Observe also that the constructibil-
ity condition implies Property 2, unlike in the maximization case. Indeed, when we
consider how this latter implication is generally proved in safeness proofs of classical
kernels, we generally prove its contrapositive, and one of the following scenarios often
occur:

(a) For every solution s′ of I ′ there exists a solution s of I with val�(I , s) ≤
val�(I ′, s′) + (k − k′).

(b) For every solution s′ of I ′ with val�(I ′, s′) ≤ k′, there exists a solution s of I
with val�(I , s) ≤ val�(I ′, s′) + (k − k′).

(c) If there exists a solution s′ of I ′ with val�(I ′, s′) ≤ k′, then there exists a
solution s of I with val�(I , s) ≤ k.

In Case (a), the rule preserves all optimal values, as it implies that opt�(G ′) ≥
opt�(G)− (k − k′), and note that it implies Property 2 in Definition 15. Compared to
the maximization case, Case (c) still implies only the classical implication “if (I , k) is
a no-instance of�dec, then (I ′, k′) is a no-instance of�dec”, but note that Case (b) no
longer implies Property 2. This is one of reasons why, in our opinion, the framework
of lop-kernels seems to be more natural when applied to maximization problems.

The following observation is again an immediate consequence of the definition of
a lop-rule.

Observation 16 lop-rules can be composed. Formally, consider two lop-rules R1 and
R2. Then, the rule R that, given a instance (I , k) of �dec, returns R2(R1(I , k)), is
also a lop-rule. Moreover, if R2 and R1 are constructive, then R is also constructive.

A typical example of a lop-rule for a vertex-minimization problem is when, for
some problem �, we can identify a “dominant” set of vertices that can be safely
included into a solution. More precisely, consider a rule that, given a graph G, finds a
subset T ⊆ V (G) and a graph G ′ such that there exists an optimal solution S	 in G
such that S	 = T ∪ S′, where S′ is a solution in G ′, and for every solution S′ in G ′,
S′ ∪ T is a solution in G. Such a rule is indeed a (constructive) lop-rule.

Even if almost all classical known reduction rules for minimization problems are
lop-rules [26, 36], here is a simple example a non-lop-rule. Consider the Vertex

Cover problem, and suppose that, given an instance (G, k), we find in G a matching
M of size k+1. The rule just outputs (G ′, k′) = (M, k), hence preserving the fact that
(G, k) is a no-instance. However, this rule does not satisfy Property 2 in Definition 15,
since the size of a minimum vertex cover of G may be arbitrarily large compared to
k, hence the inequality opt�(G ′) ≥ opt�(G) may not hold. In Sect. 5 we discuss
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a (much more involved) reduction rule for a vertex-minimization problem, namely
Tree Deletion Set, which is not a lop-rule either.

As in the maximization case, if we defined a lop-kernel as an algorithm consisting
only of lop-rules, we would exclude from being a lop-kernel, for instance, the algo-
rithm consisting of the rule that detects a no-instance of Vertex Cover as in the
above paragraph. This justifies the next definition, where we also allow lop-kernels to
decide instances, and that should be compared to Definition 5.

Definition 17 Let � be a well-behaved minimization problem and let s : N → N

be a computable function. A lop-kernel of size s for � parameterized by the solution
size is a polynomial-time algorithm that takes as input an instance (I , k) of �dec, and
either

• decides that (I , k) is a yes-instance or a no-instance, or
• outputs a reduced instance (I ′, k′) by applying a sequence of lop-rules to (I , k),
with |I ′| ≤ s(k).

A lop-kernel is constructive if, in the first case, it constructively decides (I , k), and,
in the second case, it only uses constructive lop-rules.

Note that the constructibility condition in Definition 17 differs from that in Defi-
nition 5 for maximization problems. We need this stronger property in the proof of
Lemma 19.

Our next objective is to prove that a lop-kernel yields the existence of a polynomial-
time approximation algorithm. For this, we need the following definition, which is the
version of Definition 7 for minimization problem.

Definition 18 Let � be a well-behaved minimization problem and let f : N → N.
An f -dual-approximation algorithm for � is a polynomial-time algorithm that, given
an instance (I , k) of �dec, concludes one of the following:

• opt�(I ) ≤ f (k).
• opt�(I ) > k.

An f -dual-approximation algorithm is constructive if, whenever it concludes that
opt�(I ) ≤ f (k), it provides a solution s with val�(I , s) ≤ f (k).

In the next lemma we prove that a lop-kernel of size s yields an f -dual-
approximation algorithm (where f depends on s), which in turn yields a classical
approximation algorithm whose ratio depends on s. As in the maximization case,
to provide some insight on the statement of the next lemma, keep in mind that for
vertex-minimization problems, the upper bound function u is typically the identity
function. Note that in the next lemma, the derived function f (k) differs slightly from
that of Lemma 8; this is due to technical reasons motivated by the fact that there the
maximization and minimization versions of our framework are not totally symmetric.

Lemma 19 Let � be a well-behaved minimization problem with a non-decreasing
upper bound function u and let s : N → N be a computable function. If � admits a
lop-kernel of size s, then� admits an f -dual-approximation algorithmwhere f (k) :=
u(s(k))+k.Moreover, if the lop-kernel is constructive, then the f -dual-approximation
algorithm is also constructive.
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Proof Let k ∈ N, (I , k) be an instance of �dec, and R be a lop-kernel of size s
for �. We describe an f -dual-approximation algorithm A which takes as input I
and k, starts by running R with input (I , k), and continues based on its possible
output. If R decides that (I , k) is a no-instance, then opt�(I ) > k, and A returns
opt�(I ) > k. If R decides that (I , k) is a yes-instance, then opt�(I ) ≤ k, and A
returns opt�(I ) ≤ k ≤ f (k) as well. Notice that ifR is constructive, then it provides
a solution s of I such that val�(I , s) ≥ k, and A returns this solution as well.

Finally, suppose thatR outputs an equivalent instance (I ′, k′) obtained from (I , k)
using only lop-rules and such that |I ′| ≤ s(k). By using Observation 16 we can
assume that (I ′, k′) is obtained from (I , k) by a single lop-rule. Let us start by the
non-constructive case, in which A returns opt�(I ) ≤ f (k). If opt�(I ) ≤ k, then
we are done as k ≤ f (k). If opt�(I ) > k, Property 2 in Definition 15 implies that
opt�(I ) ≤ opt�(I ′) + (k − k′) ≤ u(|I ′|) + k ≤ u(s(k)) + k = f (k), where we have
used that u is non-decreasing. Let us now turn to the constructive case. As � is well-
behaved and verifies Cmin, we can compute in polynomial time a solution s′ (of any
cost), and according to the definition of u we have val�(I ′, s′) ≤ u(|I ′|) ≤ u(s(k)),
where we have used again that u is non-decreasing. Finally, as the rule is constructive,
we can construct in polynomial time a solution s such that val�(I , s) ≤ val�(I ′, s′)+
k ≤ f (k), and algorithm A returns this solution as well. ��

Let us now turn to ourmain results relating the size of lop-kernels with the existence
of approximation algorithms. As in Sect. 3, to keep statements as simple as possible,
we provide in Sect. 4.2 results that correspond to the specialized versions for vertex-
maximization problems of results in Sect. 4.3.

4.2 Connection Between lop-Kernels and Approximation Algorithms for
Vertex-Minimization Problems

In this subsection we deal with vertex-minimization problems. The following lemma,
which should be compared to Lemma 9 Note that the hypothesis in the second item of
Lemma 9 is slightly different from the one below, and that the obtained approximation
ratios are also slightly different.

Lemma 20 Let � be a vertex-minimization problem whose decision version is in NP,
c > 1 and β ≥ 1 be real numbers, and f : N → N be a computable function.

1. If � admits an f -dual-approximation algorithm where f (k) = O(kc), then �

admits a polynomial-time value-approximation algorithm with ratio O(n
c−1
c )

on n-vertex graphs.
2. If� admits a f -dual-approximation algorithmwhere f (k) = βk, then� admits

a polynomial-time value-approximation algorithm with ratio β.

Moreover, if the f -dual-approximation is constructive, then the corresponding approx-
imation algorithm is also constructive.

Proof Let A be an f -dual-approximation algorithm for �. We proceed to construct a
polynomial-time approximation algorithm for � with the claimed ratio. We consider
the two statements of the lemma separately.
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Case 1: f (k) = O(kc).
Given an n-vertex graph G as instance of �, we find k0 ∈ {0, . . . , n} defined as
the smallest positive integer k such that algorithm A returns that opt�(G) ≤ f (k).
Note that k0 can be found in polynomial time by performing at most n + 1 calls to
algorithm A. Notice that k0 always exists as we cannot have opt�(G) > n. If k0 = 0,
then opt�(G) ≤ f (0) = O(1), and since the decision version of � is in NP, we can
find an optimal solution in polynomial time by verifying all vertex subsets of size at
most f (0). Otherwise, that is, if k0 ≥ 1, our approximation algorithm returns f (k0),
or if it is constructive it returns a solution S0 (that is, a subset of vertices) such that
|S0| ≤ f (k0). By definition of k0, we have that opt�(G) > k0 − 1, or equivalently
opt�(G) ≥ k0. Let us prove that this algorithm provides the claimed approximation
ratio. We distinguish two subcases depending on the value of k0. Suppose first that
k0 ≥ n1/c. In this case we get that

f (k0)

opt�(G)
≤ n

k0
≤ O(n

c−1
c ).

Otherwise, it holds that k0 < n1/c. In this case we get that

f (k0)

opt�(G)
≤ f (k0)

k0
< O(kc−1

0 ) = O(n
c−1
c ).

Since in both cases we have a ratio of O(n
c−1
c ), the lemma follows in Case 1.

Case 2: f (k) = βk. As in Case 1, we start by finding k0 defined as the smallest positive
integer k such that algorithm A returns that opt�(G) ≤ f (k). If k0 = 0 we proceed
as in the first case. Otherwise, we return f (k0), or if the algorithm is constructive we
return a solution S0 (that is, a subset of vertices) such that |S0| ≥ f (k0). We have

f (k0)

opt�(G)
≤ f (k0)

k0
≤ β,

and the lemma follows in Case 2. ��
Asavertex-minimization problemwhose decision version is inNP is awell-behaved

problem, the hypothesis of Lemma 20 is satisfied (by taking the identity function as
upper bound function), and thus the following theorem is immediate by pipelining
Lemmas 19 and 20. The next theorem should be compared to Theorem 10.

Theorem 21 Let� be a vertex-minimization problem whose decision version is in NP.

1. For every real number c > 1, if � admits a lop-kernel withO(kc) vertices, then

it admits a polynomial-time value-approximation algorithm with ratioO(n
c−1
c )

on n-vertex graphs.
2. For every real number c > 1, if � admits a lop-kernel with at most ck vertices,

then it admits a polynomial-time value-approximation algorithm with ratio (c+
1).
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Moreover, if the lop-kernel is constructive, then the corresponding approximation
algorithm is also constructive.

As the framework of lop-kernels is mainly defined as a tool to get lop-kernel
lower bounds from inapproximability, let us explicitly formulate the contrapositive of
Theorem 21. Note again that, when applying it to a concrete problem�, the inapprox-
imability of � will rely on some complexity assumption, typically P �= NP.

Corollary 22 Let� be a vertex-minimization problem whose decision version is in NP.

1. For every real number r ∈ (0, 1), if � does not admit a polynomial-time
value-approximation algorithm with ratio O(nr ) on n-vertex graphs, then �

parameterized by the solution size does not admit a lop-kernel with O(k
1

1−r )

vertices.
2. For every real number β > 1, if � does not admit a polynomial-time value-

approximation algorithm with ratio β, then � parameterized by the solution
size does not admit a lop-kernel with (β − 1− ε)k vertices for any real number
ε > 0.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-
kernels.

4.3 Connection Between lop-Kernels and Approximation Algorithms for
Well-BehavedMinimization Problems

The following lemma and theorem are a more general version of Lemma 20 and
Theorem 21, respectively, for well-behaved minimization problems. The next lemma
should be compared to Lemma 12, and note that the obtained approximation ratios in
the second item of both lemmas are different.

Lemma 23 Let� be a well-behaved minimization problem, a ∈ R+, u : N → N, and
f : N → N be functions such that u(n) = O(na), u is polynomial-time computable,
and f is computable. Suppose that � has u as upper bound function u and that it
admits an f -dual-approximation.

1. If f (k) = O(kd) for some real number d > 1, then � admits a polynomial-time

value-approximation algorithm with ratio O(n
a(d−1)

d ), where n is the size of the
input.

2. If f (k) = λkd + k for some real numbers d ≤ 1 and λ > 0, then � admits a
polynomial-time value-approximation algorithm with ratio λ + 1.

Moreover, if the dual-approximation algorithm is constructive, then the corresponding
approximation algorithm is also constructive.

Proof Let A be an f -dual-approximation algorithm for �. For both cases in the
statement of the lemma, we proceed to construct a polynomial-time approximation
algorithm for � with the claimed ratio.
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Given an instance I of �, we find k0 ∈ {0, . . . , u(n)} (recall that n = |I |) defined
as the smallest positive integer k such that algorithm A returns that opt�(G) ≤ f (k).
Note that k0 can be found in polynomial time, as |I | is polynomial-time computable
and its value n is polynomially upper-bounded in the classical bit-size of the instance,
and that u(n) can be computed in polynomial time as well. Note that k0 always exists,
as we cannot have opt�(I ) > u(n). If k0 = 0, then as by hypothesis � satisfies
property Cmin, we can verify in polynomial time whether opt�(I ) = 0 and, if it is
the case, we provide an optimal solution s with val�(I , s) = 0. Otherwise, we have
opt�(I ) ≥ 1, and A returns f (k0), or a solution s such that val�(I , s) ≤ f (k0) if
the dual-approximation algorithm is constructive. In the first case (that is, if f (k) =
O(kd)), as opt�(I ) ≥ 1, we have a ratio f (0), implying the claimed ratio. In the
second case (that is, if f (k) = λkd + k), f (0) = 0, so we even have an optimal
solution.

Let us now assume that k0 ≥ 1, and recall that opt�(I ) ≥ k0. We distinguish the
two cases claimed in the statement of the lemma.
Case 1: f (k) = O(kd).
Suppose first that k0 ≥ na/d . In this case we have

f (k0)

opt�(I )
≤ u(n)

k0
≤ O(na)

k0
= O

(
n

a(d−1)
d

)
.

Otherwise, it holds that k0 < na/d In this case we get that

f (k0)

opt�(I )
= O((k0)d)

k0
= O

(
(k0)

d−1
)

= O
(
n

a(d−1)
d

)
.

Since in both cases we have a ratio of O(n
a(d−1)

d ), the lemma follows in Case 1.
Case 2: f (k) = λkd + k.
In this case we have

f (k0)

opt�(I )
≤ λkd0 + k0

k0
= λ(k0)

d−1 + 1.

As d ≤ 1, the last expression in the above equation is decreasing in k0, and as k0 ≥ 1,
the maximum is reached for k0 = 1, and the approximation ratio claimed in Case 2
follows. ��

The next theorem, which should be compared to Theorem 13, follows immediately
by pipelining Lemmas 19 and 23. Namely, starting with the hypothesis of Theorem 24,
we first apply Lemma 19 and then Lemma 23 with d = ac and λ = αβa .

Theorem 24 Let� be a well-behaved minimization problem, a, c ∈ R+, u : N → N,
and s : N → N be functions such that u(n) = O(na), s(k) = O(kc), u is non-
decreasing, and s and u are polynomial-time computable. Suppose that � has u as
upper bound function and that it admits a lop-kernel of size s, according to the same
size function | · | associated with �.

1. If ac > 1, then� admits a polynomial-time value-approximation algorithmwith

ratio O(n
ac−1
c ).
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2. If ac ≤ 1 and α, β ∈ R+ are such that u(n) ≤ αna and s(k) ≤ βkc, then �

admits a polynomial-time value-approximation algorithm with ratio αβa + 1.

Moreover, if the lop-kernel is constructive, then the corresponding approximation
algorithm is also constructive.

The discussion provided right after Theorem 13 also applies to the above theorem.
The contrapositive of Theorem 24 yields the following corollary.

Corollary 25 Let � be a well-behaved minimization problem with a non-decreasing
polynomial-time computable upper bound function u(n) = O(na) for a ∈ R+. In
what follows, the size of the instance, denoted by n, and the size of the kernel are
defined according to the same size function | · | associated with �.

1. For every real number r ∈ (0, 1), if � does not admit a polynomial-time value-
approximation algorithmwith ratioO(nr ), then� parameterized by the solution

size does not admit a lop-kernel of size O(k
1

a−r ).
2. Suppose that u(n) ≤ αna for some α ∈ R+. For every real number β > 1, if

� does not admit a polynomial-time value-approximation algorithm with ratio
β, then � parameterized by the solution size does not admit a lop-kernel of size
β ′kc′

for any real numbers β ′, c′ such that ac′ ≤ 1 and αβ
′a + 1 ≤ β.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-
kernels.

5 Applications of the Framework of lop-Kernels

In this section we provide several applications of the framework of lop-kernels intro-
duced in Sects. 3 and 4.

Our first application concerns theMaximum Minimal Vertex Cover problem,
defined in Sect. 2. Boria et al. [18] proved thatMaximum Minimal Vertex Cover

does not admit a polynomial-time O(n
1
2−ε)-approximation algorithm for any ε > 0,

unless P = NP. Hence, by applying Corollary 11 with r = 1
2 − ε we obtain the

following corollary, which matches the best known kernel havingO(k2) vertices [35].

Corollary 26 Maximum Minimal Vertex Cover parameterized by the solution
size does not admit a lop-kernel withO(k2−ε) vertices for any ε > 0, unless P = NP.

Our second application is similar to the first one. In the Maximum Minimal

Feedback Vertex Set problem, given an n-vertex graph G and an integer k, the
objective is to decide if there exists a minimal feedback vertex set S ⊆ V (G) (i.e., a set
S such that G \ S is a forest) of size at least k. Dublois et al. [32] recently proved that

the problem does not admit a polynomial-timeO(n
2
3−ε)-approximation algorithm for

any ε > 0, unless P = NP. Hence, by applying Corollary 11 with r = 2
3 −ε we obtain

the following corollary, which matches the best known kernel withO(k3) vertices also
provided by Dublois et al. [32].
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Corollary 27 Maximum Minimal Feedback Vertex Set parameterized by the
solution size does not admit a lop-kernel withO(k3−ε) vertices for any ε > 0, unless
P = NP.

Our third application concerns a vertex-minimization problem. In the Tree Dele-

tion Set problem, given a graphG and an integer k, the objective is to decide whether
at most k vertices can be deleted from an n-vertex graph G in order to obtain a tree. It
is known that this problem does not admit a polynomial-timeO(n1−ε)-approximation
for any ε > 0 unless P �= NP [57]. Corollary 22 implies the following.

Corollary 28 Tree Deletion Set parameterized by the solution size does not admit
a polynomial lop-kernel, unless P = NP.

The interesting fact is that Tree Deletion Set admits a kernel with O(k4) ver-
tices [39]. This kernel is the only non-artificial example of non-lop-kernel that we
are aware of so far. Thus, the algebraic reduction rule presented by Giannopoulou et
al. [39], which is based on identifying a subset of linear equations of appropriate size
that captures all solutions of size at most k, cannot be (even transformed to) a lop-rule.

Our last application deals with the Maximum Independent Set problem
restricted to Kt -free graphs, for an integer t ≥ 3. Ramsey’s theorem [53] implies that,
given a Kt -free graph on n vertices, it is always possible to find in polynomial time

an independent set of size at least n
1

t−1 . This directly implies a polynomial-time n
t−2
t−1 -

approximation algorithm forMaximum Independent Set on Kt -free graphs, and a
constructive lop-kernel of size kt−1 (indeed, if the input graph has size at least kt−1,
we can safely declare it a yes-instance). To the best of our knowledge, improving this
trivial approximation factor is still open, and the only known inapproximability result

is the bound O(n
1
4−ε) on triangle-free graphs recently proved by Bonnet et al. [17],

which relies on the hypothesis that NP � BPP. In the same paper [17], the authors
state the following conjecture, called the “Improved Approximation Conjecture”: for
every fixed graph H , there exists a constant ε > 0 such thatMaximum Independent

Set admits a (randomized) polynomial-time n1−ε-approximation algorithm on H -free
n-vertex graphs. We state the following conjecture.

Conjecture 29 For every fixed graph H, the Maximum Independent Set problem
restricted to H-free graphs admits a polynomial lop-kernel.

Corollary 11, combined with the above discussion and the inapproximability result
of Bonnet et al. [17] on triangle-free graphs, imply the following.

Corollary 30 The following claims hold:

• Maximum Independent Set parameterized by the solution size does not admit
a lop-kernel with O(k4−ε) vertices on triangle-free graphs for any ε > 0, unless
NP ⊆ BPP.

• For every real number ε > 0 and every integer t ≥ 3, a lop-kernel withO(kt−1−ε)

vertices forMaximum Independent Set on Kt -free graphs would improve the

best known approximation ratio n
t−2
t−1 that follows from Ramsey’s theorem [53].

• Conjecture 29 implies the Improved Approximation Conjecture of Bonnet et
al. [17].

123



Algorithmica (2022) 84:3365–3406 3391

6 An Attempt to Obtain a Linear Kernel forMMVC

In this section we briefly explain the flaw in the linear kernel forMaximum Minimal

Vertex Cover (MMVC) claimed byFernau [35, Corollary 4.25], and that is based on
joint unpublishedworkwithDehne, Fellows, Prieto, andRosamond. The kernelization
algorithm is a small modification of a linear kernel for theNonblocker Set problem
presented byOre [52].A set of vertices S of a graphG is a nonblocker if its complement
is a dominating set ofG, that is, for every u ∈ S there exists v /∈ S with {u, v} ∈ E(G).
In theNonblocker Set problem, we are given a graphG and an integer parameter k,
and the goal is to decidewhetherG contains a nonblocker of size at least k. Suppose for
simplicity that G is connected. The idea is to consider an arbitrary spanning tree T of
G, root it arbitrarily at a vertex r , and partition V (G) = V0 � V1 such that the vertices
in V0 (resp. V1) are within even (resp. odd) distance from r in T . By construction,
each of V0 and V1 is a nonblocker in G, so if one of them has size at least k, we can
answer “yes”, and otherwise |V (G)| ≤ 2k and we are done.

Back to MMVC, it is observed in [35, Reduction rule 24] that a simple reduction
rule allows to assume that no connected component of G is a clique (in particular, an
isolated vertex). Assume again for simplicity that G is connected. It is then claimed
in [35] that, using the same algorithm as for Nonblocker Set, the largest of V0 and
V1, say V0, can be always completed into a minimal vertex cover of G, which would
immediately yield a kernel of size at most 2k for MMVC. Unfortunately, this claim
is not true: when adding new vertices to V0 in order to make it a vertex cover of G,
we may lose the minimality property, and some vertices may need to be removed. For
instance, let G be the graph obtained from a triangle on vertices u, v, w by adding
p ≥ 2 pendant vertices to each of u, v, and w. Let T be the spanning tree obtained
from G by removing the edge {v,w}, and root T at vertex u. Then |V0| = 1+ 2p and
|V1| = 2 + p, so |V0| > |V1|, and note that the edge {v,w} is the only edge of G not
covered by V0. But adding either of v orw to V0, say v, results in a non-minimal vertex
cover of G, and therefore the p pendant vertices adjacent to v have to be removed
from V0, which yields a set of size 2 + p <

|V (G)|
2 = 3+3p

2 , where we have used that
p ≥ 2. In fact, deciding whether a set S ⊆ V (G) can the extended to a minimal vertex
cover of G is an NP-complete problem [20].

7 Subquadratic Kernels forMMVC on Particular Graph Classes

In this section we present subquadratic kernels for Maximum Minimal Vertex

Cover restricted to particular graph classes when the parameter is the solution size
k. Namely, in Sect. 7.1 we provide kernels using the Erdős–Hajnal property, and in
Sect. 7.2 we provide further observations about other graph classes. It can be easily
verified that all kernels provided in this section are lop-kernels.
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7.1 Kernels Using the Erdos–Hajnal Property

For a constant δ > 0, a graph H is said to satisfy the Erdős–Hajnal property with
constant δ if every H -free graph G on n vertices contains either a clique or an inde-
pendent set of size nδ . The (still open) Erdős–Hajnal conjecture [34] states that every
graph H satisfies the Erdős–Hajnal property. As reported by Chudnovsky [22], the
Erdős–Hajnal conjecture has been verified for only a small number of graphs, namely
all graphs on atmost four vertices, the bull (i.e., the graph obtained by adding a pendant
vertex to two different vertices of a triangle), C5 [24], the complete graphs, and every
graph that can be constructed from them using the so-called substitution operation [3],
which we define later.

Since our goal is to use the Erdős–Hajnal property in order to obtain kernels for
Maximum Minimal Vertex Cover, we need an algorithmic version of it. As
defined by Bonnet et al. [17], for a constant δ > 0, a graph H is said to satisfy the
constructive Erdős–Hajnal property with constant δ if there exists an algorithm that
takes as input an H -free graph G on n vertices, and outputs in polynomial-time a
clique or an independent set of G of size at least nδ . Fortunately for our purposes,
all the graphs H shown to satisfy the Erdős–Hajnal property so far, also satisfy its
constructive version [17]. A possible exception is the recent case of C5, for which the
authors do not mention anything about an algorithm to find the corresponding clique
or independent set [24].

In the following simple lemmawe show that, if H is a graph satisfying the construc-
tive Erdős–Hajnal property, then the vertex set of an H -free graph can be partitioned
in polynomial time into “few” cliques or independent sets. This partition will then be
used to obtain subquadratic kernels on H -free graphs for several graphs H .

Lemma 31 Let H be a graph satisfying the constructive Erdős–Hajnal property with
constant δ. The vertex set of any H-free graph G on n vertices can be partitioned in
polynomial time into a collection of cliques C and a collection of independent sets I
such that |C| + |I| ≤

(
1

2(1−δ)−1

)
· n1−δ .

Proof Let G be an H -free graph on n vertices. We initialize X0 = V (G), C = I = ∅,
and we run the following procedure as long as |X0| ≥ 1:

Find in polynomial time a clique or an independent set Y in G[X0] with |Y | ≥
|X0|δ . Note that this is possible since G[X0] is an H -free graph for any X0 ⊆
V (G). Add Y to C or to I depending on whether Y is a clique or an independent
set, respectively (if |Y | = 1, choose C or I arbitrarily). Update X0 ← X0 \ Y .

Clearly, the above algorithm terminates in polynomial time. It remains to bound |C|+
|I|,which is equal to the number of iterations of the algorithm.To this end, for a positive
integer i , we say that an iteration belongs to step i of the algorithm if the current set
X0 at the start of the iteration satisfies n

2i
< |X0| ≤ n

2i−1 . We denote by ti the number
of iterations of the algorithm within step i . By definition, |C| + |I| = ∑∞

i=1 ti . Let
Y be a clique or an independent set found by the algorithm within step i . Since the

current set X0 satisfies |X0| > n
2i
, we have that |Y | >

(
n
2i

)δ

. And since the sum of
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the sizes of the sets found before the last iteration of step i is at most n
2i
, it follows that

ti ≤
(

n
2i

)1−δ

. Note that, in particular, ti = 0 for i > �log n�. Therefore, we conclude
that

|C| + |I| =
∞∑

i=1

ti ≤
∞∑

i=1

(
n

2i

)1−δ

= n1−δ ·
∞∑

i=1

(
1

21−δ

)i
= n1−δ ·

(
1

2(1−δ) − 1

)

,

and the lemma follows. ��
We are now ready to present the subquadratic kernel on bull-free graphs. Note that,

since bipartite graphs are bull-free, MMVC restricted to bull-free graphs is NP-hard
by [14] (or by Theorem 42). In the kernels presented in this section, since we can
easily obtain explicit constants, we decided not to use the big-O notation.

Theorem 32 TheMaximum Minimal Vertex Cover problem parameterized by k
restricted to bull-free graphs admits a kernel with at most c(k−1)7/4 +k−1 vertices,
where c = 2

2
3
4 −1

< 3.

Proof Let (G, k)be an instanceof theMaximum Minimal Vertex Coverproblem,
whereG is a bull-free graph. Recall that by Lemma 2we can assume that themaximum
degree of G is at most k − 1. We start by finding greedily, starting from V (G), a
minimal vertex cover X of G. Note that X can be easily found in polynomial time
by Observation 1. If |X | ≥ k, we conclude that (G, k) is a yes-instance, so we can
assume that |X | ≤ k − 1. Let S = V (G) \ X and note that S is an independent set.

Since the bull satisfies the constructive Erdős–Hajnal property with constant δ =
1
4 [17, 23], we can apply Lemma 31 to the bull-free graph G[X ] and obtain in polyno-
mial time a partition of X into a collection of cliques C and a collection of independent
sets I such that |C| + |I| ≤ d · |X |3/4 ≤ d · (k − 1)3/4, where d = 1

2
3
4 −1

< 1.47.

Since we can assume that G has no isolated vertices, as they can be safely removed
without affecting the type of the instance, it follows that

S =
⋃

C∈C
NS(C) ∪

⋃

I∈I
NS(I ). (1)

Hence, our objective is to bound |NS(Y )| for every Y ∈ C∪I. Suppose first that I ∈ I
is an independent set. From Lemma 2, if |NS(I )| ≥ k we can conclude that (G, k) is
a yes-instance, so we can assume henceforth that

for every independent set I ∈ I, it holds |NS(I )| ≤ k − 1. (2)

Suppose now that C ∈ C is a clique. We partition NS(C) = S1C � S2C as follows. Let
S1C be an inclusion-wise maximal set of vertices in NS(C) such that for any two (not
necessarily distinct) vertices x, y ∈ S1C , |NC (x) ∪ NC (y)| ≤ |C | − 1. That is, S1C is
a maximal set in NS(C) such that the neighborhoods of its vertices pairwise do not
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Fig. 1 Configuration considered
in the proof of Claim 33 and a
vertex z ∈ ⋂

x∈S2C NC (x)

x y

u v

w
z

S1
C S2

C

C

cover the whole clique C . We let S2C = NS(C) \ S1C . The following is the crucial
property of the set S1C .

Claim 33 The vertices in S1C can be ordered x1, . . . , xp so that NC (xi ) ⊆ NC (x j )
whenever i ≤ j .

Proof In order to prove the claim, it is sufficient to prove that, for any two vertices
x, y ∈ S1C , either NC (x) ⊆ NC (y) or NC (y) ⊆ NC (x). Suppose for the sake of
contradiction that there exist two vertices u ∈ NC (x)\NC (y) and v ∈ NC (y)\NC (x).
By definition of the set S1C , there exists a vertexw ∈ C \(NC (x)∪NC (y)). But then the
vertices x, y, u, v, w induce a bull as illustrated in Fig. 1, contradicting the hypothesis
that G is bull-free. ��

Claim 33 implies in particular that, unless S1C = ∅, there exists a vertex u ∈
⋂

x∈S1C NC (x). Since u has degree at most k − 1 in G, and each vertex x ∈ S1C is

adjacent to u, it follows that |S1C | ≤ k − 1.
Let us now focus on the set S2C . The definition of the set S

1
C together with Claim 33

imply that there exists a vertex z ∈ C \ ⋃
y∈S1C NC (y). Consider now an arbitrary

vertex x ∈ S2C . Since x could not be added to S1C , there exists a vertex y ∈ S1C such
that NC (x) ∪ NC (y) = C . But since z ∈ C \ ⋃

y∈S1C NC (y), necessarily z ∈ NC (x).

It follows that z ∈ ⋂
x∈S2C NC (x) (see Fig. 1). Using again the fact that z has degree

at most k − 1 in G, we obtain that |S2C | ≤ k − 1. Summarizing, we have that

for every cliqueC ∈ C, it holds |NS(C)| = |S1C | + |S2C | ≤ 2(k − 1). (3)

Putting all pieces together, Equations (1), (2), and (3) and the fact that |X | ≤ k − 1
and |C| + |I| ≤ d · |X |3/4 imply that, unless we have already concluded that (G, k) is
a yes-instance, we have that

|V (G)| = |X | + |S| = |X | + |
⋃

C∈C
NS(C)| + |

⋃

I∈I
NS(I )|

≤ |X | + (|C| + |I|) · max
Y∈C∪I

|NS(Y )| ≤ k − 1 + d · (k − 1)3/4 · 2(k − 1)

= 2d · (k − 1)7/4 + k − 1,

and the theorem follows. ��
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It is easy to prove that, for every integer t ≥ 2, every Kt -free graph G on n vertices

has an independent set of size n
1

t−1 , by induction on t : for t = 2 the statement is

trivial, and if t ≥ 3, then either �(G) < n
t−2
t−1 , and an independent set of size n

1
t−1

can be found greedily by adding any vertex to it and deleting its neighborhood, or

there exists a vertex v ∈ V (G) of degree at least n
t−2
t−1 , in which case an independent

set of size n
1

t−1 can be found applying the inductive hypothesis to the Kt−1-free
graph G[N (v)]. Clearly, this proof can be translated to a polynomial-time algorithm
to find an independent set of the appropriate size. Therefore, for any integer t ≥ 2,
Kt satisfies the constructive Erdős–Hajnal property with constant δ = 1

t−1 . The proof
of the following theorem is a simplified version of that of Theorem 32. Note that,
since bipartite graphs are Kt -free for every t ≥ 3, MMVC is NP-hard on Kt -free
graphs [14].

Theorem 34 For every integer t ≥ 3, the Maximum Minimal Vertex Cover

problem parameterized by k restricted to Kt -free graphs admits a kernel with at most

ct (k − 1)
2t−3
t−1 + k − 1 vertices, where ct = t−1

2
t−2
t−1 −1

.

Proof As in the proof of Theorem32, given an instance (G, k) ofMaximum Minimal

Vertex Cover, where G is a Kt -free graph, we partition V (G) = X � S, where X
is a minimal vertex cover of G with |X | ≤ k − 1, and we use Lemma 31 to partition
X into two collections C and I of cliques and independent sets, respectively, with

|C| + |I| ≤ dt · |X | t−2
t−1 , where dt = 1

2
t−2
t−1 −1

. Equations (1) and (2) still hold, but now

we have a much simpler version of Equation (3): if C ∈ C is a clique then, since G
is Kt -free, necessarily |C | ≤ t − 1, which together with the fact that �(G) ≤ k − 1
yield

for every cliqueC ∈ C, it holds |NS(C)| = (t − 1)(k − 1). (4)

Combining Equations (1), (2), and (4) we get

|V (G)| ≤ |X | + (|C| + |I|) · max
Y∈C∪I

|NS(Y )|

≤ k − 1 + dt · (k − 1)
t−2
t−1 · (t − 1)(k − 1),

and the theorem follows. ��
Wenow extend the results of Theorems 32 and 34 tomore general excluded induced

graphs H , by making use of the aforementioned substitution operation. As defined
by Alon et al. [3], for two graphs H1 and H2 on disjoint vertex sets, we say that H
is obtained from H1 by substituting H2 for v ∈ V (H1) (or just obtained from H1 by
substituting H2 if the vertex v in question is not important) if

• V (H) = (V (H1) \ {v}) ∪ V (H2),
• H [V (H2)] = H2,
• H [V (H1) \ {v}] = H1 \ v, and
• u ∈ V (H1) is adjacent in H to w ∈ V (H2) if and only if u is adjacent in H1 to v.
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Alon et al. [3] proved that if two graphs H1 and H2 satisfy Erdős–Hajnal property
and H is obtained from H1 by substituting H2, then H satisfies the Erdős–Hajnal
property as well. More precisely, by following the details in the proof of [3, Theorem
2.1], we can derive that if H1 and H2 satisfy Erdős–Hajnal property with constants
δ1 and δ2, respectively, then H satisfies the Erdős–Hajnal property with constant
δ = δ2

δ1+|V (H1)|·δ2 . The same applies to the constructive version of the Erdős–Hajnal
property.

For an integer t ≥ 2, we define the t-bull as the graph obtained from Kt by adding
a pendant vertex to two different vertices of the clique. Note that the 2-bull is equal to
P4 and that the 3-bull is equal to the bull. Note also that, for every t ≥ 3, the t-bull is
obtained from the bull by substituting Kt−2 for the vertex of degree two of the bull.
Therefore, by the discussion in the above paragraph, since the bull and Kt−2 satisfy the
constructive Erdős–Hajnal property with constants 1

4 and 1
t−3 , respectively, it follows

that, for every t ≥ 4, the t-bull satisfies the constructive Erdős–Hajnal property with
constant

δt =
1

t−3
1
4 + 5

t−3

= 4

t + 17
.

The proof of the next theorem follows again (and generalizes) that of Theorem 32.
Indeed, note that Theorem 32 corresponds to the particular case t = 3 of Theorem 35.
Note also that bipartite graphs are t-bull-free for t ≥ 3, hence MMVC is NP-hard on
t-bull-free graphs for t ≥ 3 [14]. On the other hand, 2-bull-free graphs are exactly
P4-free graphs, also called cographs, which have cliquewidth at most two, hence by
Observation 40 (proved later in Sect. 7.2) MMVC can be solved in polynomial time
on this class.

Theorem 35 For every integer t ≥ 3, the Maximum Minimal Vertex Cover

problem parameterized by k restricted to t-bull-free graphs admits a kernel with at
most ct (k − 1)2−δt + k − 1 vertices, where δ3 = 1

4 and δt = 4
t+17 for t ≥ 4, and

ct = t−1
2(1−δt )−1

.

Proof As in the proof of Theorem32, given an instance (G, k) ofMaximum Minimal

Vertex Cover, where G is a t-bull-free graph, we partition V (G) = X � S, where
X is a minimal vertex cover of G with |X | ≤ k−1, and we use Lemma 31 to partition
X into two collections C and I of cliques and independent sets, respectively, with
|C| + |I| ≤ dt · |X |1−δt , where δ3 = 1

4 and δt = 4
t+17 for t ≥ 4, and dt = 1

2(1−δt )−1
for

every t ≥ 3. Equations (1) and (2) still hold for every integer t ≥ 3, but now we need
slightly more involved arguments to obtain an appropriate version of Equation (3) for
every t ≥ 3.

To this end, suppose that C ∈ C is a clique. We partition NS(C) = S1C � S2C as
follows. Let S1C be an inclusion-wisemaximal set of vertices in NS(C) such that for any
two (not necessarily distinct) vertices x, y ∈ S1C , |NC (x)∪NC (y)| ≤ |C |−(t−2). That
is, S1C is a maximal set in NS(C) such that the neighborhoods of its vertices pairwise
leave at least t − 2 uncovered vertices in the clique C . We let S2C = NS(C) \ S1C . The
set S1C satisfies exactly the same crucial property as for the case t = 3 (see Claim 33).
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Claim 36 For every integer t ≥ 3, the vertices in S1C can be ordered x1, . . . , xp so that
NC (xi ) ⊆ NC (x j ) whenever i ≤ j .

Proof In order to prove the claim, it is sufficient to prove that, for any two vertices
x, y ∈ S1C , either NC (x) ⊆ NC (y) or NC (y) ⊆ NC (x). Suppose for the sake of
contradiction that there exist two vertices u ∈ NC (x)\NC (y) andw ∈ NC (y)\NC (x).
By definition of the set S1C , there exist t − 2 vertices w1, . . . , wt−2 ∈ C \ (NC (x) ∪
NC (y)). But then the vertices x, y, u, v, w1, . . . , wt−2 induce a t-bull, contradicting
the hypothesis that G is t-bull-free. ��

Claim 36 implies in particular that, unless S1C = ∅, there exists a vertex u ∈
⋂

x∈S1C NC (x). Since u has degree at most k − 1 in G, and each vertex x ∈ S1C is

adjacent to u, it follows that |S1C | ≤ k − 1.
Let us now focus on the set S2C . The definition of the set S

1
C together with Claim 36

imply that there exist at least t−2 vertices z1, . . . , zt−2 ∈ C \⋃
y∈S1C NC (y). Consider

now an arbitrary vertex x ∈ S2C . Since x could not be added to S
1
C , there exists a vertex

y ∈ S1C such that |NC (x) ∪ NC (y)| ≥ |C | − (t − 1). But since z1, . . . , zt−2 ∈
C \ ⋃

y∈S1C NC (y), there exists an index j ∈ [t − 2] such that z j ∈ NC (x). That is,

every vertex x ∈ S2C is adjacent to at least one of the vertices z1, . . . , zt−2. Using again
the fact that each of the vertices z1, . . . , zt−2 has degree at most k − 1 in G, we obtain
that |S2C | ≤ (t − 2)(k − 1). Summarizing, we have that

for every cliqueC ∈ C, it holds |NS(C)| = |S1C | + |S2C | ≤ (t − 1)(k − 1). (5)

Putting all pieces together, Equations (1), (2), and (5) and the fact that |X | ≤ k − 1
and |C| + |I| ≤ dt · |X |1−δt imply that, unless we have already concluded that (G, k)
is a yes-instance, we have that

|V (G)| ≤ |X | + (|C| + |I|) · max
Y∈C∪I

|NS(Y )| ≤ k − 1 + dt · (k − 1)1−δt · (t − 1)(k − 1),

and the theorem follows. ��
Let the paw be the graph obtained from a triangle by adding a pendant edge.

Gyárfás [43] showed that the paw satisfies the constructive Erdős–Hajnal property
with constant δ = 1

3 . Note that bipartite graphs are paw-free, hence MMVC is NP-
hard on paw-free graphs [14].

Theorem 37 TheMaximum Minimal Vertex Cover problem parameterized by k
restricted to paw-free graphs admits a kernel with at most c(k−1)5/3+k−1 vertices,
where c = 2

22/3−1
< 3.41.

Proof Given an instance (G, k) of Maximum Minimal Vertex Cover, where G
is a paw-free graph, we again partition V (G) = X � S, where X is a minimal vertex
cover of G with |X | ≤ k−1, and we use Lemma 31 to partition X into two collections
C and I of cliques and independent sets, respectively, with |C| + |I| ≤ d · |X |2/3,

123



3398 Algorithmica (2022) 84:3365–3406

where d = 1
22/3−1

. Equations (1) and (2) still hold, and we can again obtain in a
simpler way an appropriate version of Equation (3). Indeed, let C ∈ C be a clique, and
our goal is to bound |NS(C)|. If |C | = 1 then by the fact that �(G) ≤ k − 1 we get
that |NS(C)| ≤ k − 1, so assume that |C | ≥ 2. Suppose for the sake of contradiction
that there exists a vertex v ∈ NS(C) such that |NC (v)| ≤ |C |−2. Let w ∈ NC (v) and
let z1, z2 be two vertices in C \ NC (v). Then the vertices v,w, z1, z2 induce a paw,
contradicting the hypothesis thatG is paw-free. Therefore, for every vertex v ∈ NS(C)

it holds that |NC (v)| ≥ |C | − 1. Hence, the number of edges in G between C and
NS(C) is at least |NS(C)| · (|C | − 1) and, since �(G) ≤ k − 1, at most |C | · (k − 1).
Using that |C | ≥ 2, it follows that

for every cliqueC ∈ C, it holds |NS(C)| ≤ |C |
|C | − 1

· (k − 1) ≤ 2(k − 1). (6)

Putting all pieces together, Equations (1), (2), and (6) and the fact that |X | ≤ k − 1
and |C| + |I| ≤ d · |X |2/3 imply that, unless we have already concluded that (G, k) is
a yes-instance, we have that

|V (G)| ≤ |X | + (|C| + |I|) · max
Y∈C∪I

|NS(Y )| ≤ k − 1 + d · (k − 1)2/3 · 2(k − 1),

and the theorem follows. ��

7.2 Remarks on Other Graph Classes

In this subsection we provide additional observations about the complexity of the
Maximum Minimal Vertex Cover problem restricted to special graph classes.

Lemma 38 For every integer t ≥ 1, theMaximum Minimal Vertex Cover prob-
lem parameterized by k restricted to K1,t -free graphs admits a kernel with at most
t(k − 1) vertices.

Proof Given an instance (G, k) ofMaximum Minimal Vertex Cover, whereG is
a K1,t -free graph, we again partition V (G) = X�S, where X is aminimal vertex cover
of G with |X | ≤ k − 1. Since G is K1,t -free and S is an independent set, it holds that
for every v ∈ X , |NS(v)| ≤ t−1, and since we can assume thatG contains no isolated
vertex, we obtain that |V (G)| = |X | + | ⋃v∈X |NS(v)| ≤ k − 1 + (t − 1)(k − 1) =
t(k − 1).

Let C be a graph class such that there exists a polynomial-time algorithm that, given
a graphG ∈ C, outputs a proper coloring of the vertices ofG using at most c colors, for
some integer c ≥ 1. We say that such a graph class C is poly-χ -c-bounded. Examples
of poly-χ -c-bounded classes are planar graphs, minor-free graphs, or, more generally,
graphs of bounded expansion. We note that Fernau [35, Corollary 4.14] provides a
similar observation for the particular case of planar graphs.

Lemma 39 For every integer c ≥ 1, theMaximum Minimal Vertex Cover prob-
lem parameterized by k restricted to the class of poly-χ -c-bounded graphs admits a
kernel with at most c(k − 1) vertices.
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Proof Given an instance (G, k) of MMVC, where G belongs to a poly-χ -c-bounded
class, we first compute in polynomial time a proper vertex coloring of G using at most
c colors. We may clearly assume that G has no isolated vertices, as such vertices can
be safely removed. Let V (G) = S1 � · · · � Sc be the corresponding partition of V (G)

into independent sets. By Lemma 2, for every i ∈ [c] there exists a minimal vertex
cover of G that contains N (Si ). Hence, if for some i ∈ [c] we have that |N (Si )| ≥ k,
we can safely answer “yes”, so wemay assume that, for every i ∈ [c], |N (Si )| ≤ k−1.
Since G has no isolated vertices and every set Si is an independent set, it follows that
V (G) = ⋃

i∈[c] N (Si ), so we have that |V (G)| ≤ ∑
i∈[c] |N (Si )| ≤ c(k − 1). ��

Another graph class K that allows for linear kernels is defined such that, for every
graph G ∈ K, the minimum size of a dominating set of G is equal to the size of a
minimum independent dominating set of G. We furthermore ask K to be hereditary.
Such graphs have been studied, for instance, in [2, 55], and include in particular K1,3-
free graphs (note that a generalization to K1,t -graphs is given in Lemma 38). Let us
see why the class K allows for a linear kernel. As discussed at the end of Sect. 8,
the complement of a dominating set is called a nonblocker, and the Nonblocker

Set problem admits a linear kernel [35]. On the other hand, the complement of an
independent dominating set is a minimal vertex cover. Hence, if G ∈ K, an instance
(G, k) of Nonblocker Set is a yes-instance if and only if (G, k) is a yes-instance
of MMVC. Note the linear kernel for the Nonblocker Set problem discussed at
the end of Sect. 8 outputs a subgraph G ′ of G, and we have that G ′ ∈ K since K
is hereditary. Hence, the equivalence between Nonblocker Set and MMVC also
holds for G ′, and it follows that this kernel is also a linear kernel forMMVC restricted
to graphs in K.

Our last contribution in this section concerns graph classes of bounded cliquewidth.
Cliquewidth,whichwe do not need to define here, is a graph parameter that is “smaller”
than treewidth in the sense that graph classes of bounded treewidth have also bounded
cliquewidth (the opposite is not true, as cliques have cliquewidth one but unbounded
treewidth); see [25] for the formal definition.

The variation of monadic second order logic of graphs called MSO1 is defined by
a syntax that includes the logical connectives ∨, ∧, ¬, variables for vertices, edges,
sets of vertices (but not sets of edges), the quantifiers ∀, ∃ that can be applied to these
variables, and the binary relations expressingwhether a vertex belongs to a set, whether
an edge is incident to vertex, whether two vertices are adjacent, and whether two sets
are equal. It is well-known that finding a minimum or maximumweight vertex set that
satisfies a given graph property expressed in MSO1 can be solved in linear time on
graphs of cliquewidth bounded by a constant [6, 25].

Observation 40 TheMaximum Minimal Vertex Coverproblemcanbe expressed
in MSO1, and therefore it can be solved in linear time when restricted to any graph
class of cliquewidth bounded by a constant.

Proof Given a graph G, we can express the property of a vertex set S being a minimal
vertex cover of G in the syntax of MSO1 as follows: for every pair of vertices u, v

such that u is adjacent to v, u ∈ S or v ∈ S (this guarantees that S is a vertex cover of
G), and for every vertex v ∈ V (G), v /∈ S or there exists a vertex u adjacent to v such
that u /∈ S (this guarantees, by Observation 1, that S is minimal). ��
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Let the diamond be the graph obtained from K4 by removing an edge. Since Brand-
städt [19] proved that {P5, diamond}-free graphs have bounded cliquewidth, from
Observation 40 we immediately get the following corollary.

Corollary 41 The Maximum Minimal Vertex Cover problem restricted to
{P5, diamond}-free graphs can be solved in linear time.

8 Ruling Out Polynomial Kernels forMMVC for Smaller Parameters

In this section we rule out, assuming that N P � coN P/poly, the existence of poly-
nomial kernels forMMVC parameterized by the size of a minimum vertex cover of the
input graph. As mentioned in the introduction, the reduction given in Theorem 42 also
provides an alternative proof of the NP-completeness of MMVC on bipartite graphs,
which also follows from [14]. We note that the existing NP-hardness reductions for
MMVC, such as the one in [14], do not seem to be easily modifiable so to yield the
non-existence of polynomial kernels.

Theorem 42 The Maximum Minimal Vertex Cover problem parameterized by
the size of a minimum vertex cover (or of a maximum matching) of the input graph
does not admit a polynomial kernel unless N P ⊆ coN P/poly, even restricted to
bipartite graphs.

Proof We present a PPT from Monotone Sat parameterized by the number of vari-
ables, which is also an NP-completeness reduction. The Monotone Sat problem is
the restriction of the Sat problem to formulas in which the literals in each clause are
either all positive or all negative. This problem is well-known to be NP-complete [38],
and it is easy to see that, when parameterized by the number of variables, it does
not admit a polynomial kernel unless N P ⊆ coN P/poly. Indeed, Fortnow and San-
thanam [37] proved that the Sat problem parameterized by the number of variables
does not admit a polynomial kernel unless N P ⊆ coN P/poly, and the classical
reduction from Sat to Monotone Sat that replaces each variable with a “positive”
and a “negative” variable and adds extra clauses appropriately [38] is in fact a PPT
when the parameter is the number of variables.

Given an instance φ of Monotone Sat, where the formula φ contains n vari-
ables andm clauses, we construct in polynomial time an instance (G, k) ofMaximum

Minimal Vertex Cover as follows. For each variable xi of φ, i ∈ [n], we add
to G four vertices �i , x

+
i , x−

i , ri and three edges {�i , x+
i }, {x+

i , x−
i }, {x−

i , ri }, hence
inducing a P4. We call the vertex x+

i (resp. x−
i ) a positive (resp. a negative) vertex

of G. For each clause C j of φ, j ∈ [m], we add to G a vertex c j , which we con-
nect to the positive or negative vertices corresponding to the literals contained in C j .
This concludes the construction of G, which is illustrated in Fig. 2a. Note that, since
φ is a monotone formula, G is a bipartite graph. Note also that the set of vertices
{x+

i , x−
i | i ∈ [n]} is a minimum vertex cover of G of size 2n, and that the set of edges

{{�i , x+
i }, {x−

i , ri } | i ∈ [n]} is a maximum matching of G of size 2n. We claim that
φ is satisfiable if and only if G contains a minimal vertex cover of size k := 2n + m.
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Fig. 2 a Illustration of the graph G built from the formula φ in the proof of Theorem 42. b A minimal
vertex cover X of G is shown with larger red vertices

Suppose first that φ is satisfiable, and let σ be an assignment of the variables that
satisfies all the clauses in φ. We proceed to define a minimal vertex cover X of G
of size k. First, add to X all the clause vertices {c j | j ∈ [m]}. For every i ∈ [n], if
σ(xi ) = true (resp. σ(xi ) = f alse), add to X vertices x−

i and �i (resp. x
+
i and ri ). See

Fig. 2b for an illustration, where the set X is shown with larger red vertices. Clearly,
X is a vertex cover of G. To see that it is minimal, by Observation 1 it is enough to
verify that, for every vertex v ∈ X , N [v] � X . This condition holds easily for all
vertices in X that are in the P4’s, since for each P4 its vertices in X are not adjacent.
Let c j be a clause vertex. Since σ is a satisfying assignment of the variables, there
exists a variable xi such that if σ(xi ) = true (resp. σ(xi ) = f alse) then xi ∈ C j

(resp. x̄i ∈ C j ). By definition of X , if σ(xi ) = true (resp. σ(xi ) = f alse) then
x+
i /∈ X (resp. x−

i /∈ X ), and by construction of G we have that x+
i ∈ N (c j ) (resp.

x−
i ∈ N (c j )), so in both cases N [c j ] � X .
Conversely, suppose that G contains a minimal vertex cover X of size k, and we

proceed to define a variable assignment σ as follows. For i ∈ [n], as {x+
i , x−

i } ∈ E(G)

we have that X contains one or two vertices in the set {x+
i , x−

i }. If x+
i /∈ X (resp.

x−
i /∈ X ) we set σ(xi ) = true (resp. σ(xi ) = f alse), and if both x+

i and x−
i belong

to X we set σ(xi ) to true or to false arbitrarily. We claim that σ satisfies all the clauses
in φ. For i ∈ [n], let Pi be the P4 of G induced by the vertices �i , x

+
i , x−

i , ri . Since X
is a vertex cover, clearly |X ∩ V (Pi )| ≥ 2. We claim that |X ∩ V (Pi )| = 2. Indeed, if
|X ∩ V (Pi )| ≥ 3, then {�i , x+

i } ⊆ X or {x−
i , ri } ⊆ X (or both). But then N [�i ] ⊆ X

or N [ri ] ⊆ X (or both), contradicting Observation 1. Thus, |X ∩ V (Pi )| = 2, which
implies that |X ∩ ⋃

i∈[n] V (Pi )| = 2n, hence necessarily X contains the whole set
{c j | j ∈ [m]} of clause vertices. Consider an arbitrary clause vertex c j . Since X is
minimal and c j ∈ X , by Observation 1 there exists a neighbor of c j in G that is not in
X , and by definition of σ it follows that the literal corresponding to that neighbor of
c j satisfies clause C j . Thus, σ is a satisfying assignment and the proof is complete.

Finally, note that the above reduction is also an NP-completeness reduction from
Monotone Sat toMaximum Minimal Vertex Cover on bipartite graphs. ��
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9 Conclusions and Further Research

Motivated by the existence of subquadratic kernels for theMaximum Minimal Ver-

tex Cover problem parameterized by the solution size, we introduced a general
framework to rule out certain types of kernels, which we called lop-kernels, for opti-
mization problems. This “lop” assumption does not seem to be very restrictive, as
the vast majority of known kernels are in fact lop-kernels [36]. For instance, the
classical kernels for Vertex Cover, such as those using the high-degree rule, the
crown decomposition rule, or the Nemhauser-Trotter rule [36], are lop-kernels. More
involved kernels, such as those based on protrusion replacement [11], are also lop-
kernels. However, we discussed in Sect. 5 an example of a polynomial kernel for
a vertex-minimization problem, namely Tree Deletion Set [39], which is not a
lop-kernel. We still do not know of a similar example that is a vertex-maximization
problem.

For several technical reasons, we think that the framework of lop-kernels seems to
be more suited for maximization problems. In this direction, we showed that a direct
application of our general result for vertex-maximization problems (Corollary 11)
yields kernelization lower bounds for MMVC (Corollary 26) and MMFVS (Corol-
lary 27), matching the sizes of the best known kernels for these problems. We also
presented consequences of our results for theMaximum Independent Set problem
restricted to Kt -free graphs (Corollary 30) and conjectured (Conjecture 29) that, for
every fixed graph H , theMaximum Independent Set problem restricted to H -free
graphs admits a polynomial lop-kernel. For (vertex-)minimization problems, the only
application that we were able to find concerns the Tree Deletion Set problem
(Corollary 28).

We believe that our results could be applied to other vertex-maximization problems,
in particular to the “max–min” version of other vertex-minimization problems, as they
seem to be quite hard to approximate. It would be interesting to find other examples
of vertex-minimization problems, other than Tree Deletion Set, where our results
could be applied. Here, the natural candidates seem to be the “min-max” version of
vertex-maximization problems, which seem to have been almost unexplored so far.

Our general results formaximization (Theorem13) andminimization (Theorem24)
problems take into account an upper bound function u(n) = O(na) that upper-bounds
the size of optimal solutions of the considered problems.All our applications presented
in Sect. 5 correspond to vertex problems, that is, to the case a = 1.We leave for further
research to find applications of our results for problems with superlinear upper bound
functions, such as edge problems, for which a = 2.

Our results are also able to derive lower bounds on the multiplicative constants of
the existing kernels (cf. for instance the second item of Corollary 11 and Corollary 22).
We still do not have any relevant application of this type for a concrete problem. For
instance, if we apply Corollary 22 to theVertex Cover problem, relying on the non-
existence of a (2 − ε)-approximation under the Unique Games Conjecture [48], we
rule out the existence of a lop-kernel with (1− ε)k vertices, which is not particularly
interesting.

We presented (Sect. 7) subquadratic kernels for Maximum Minimal Vertex

Coveron H -free graphs for somegraphs H satisfying the (constructive)Erdős–Hajnal
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property, such as the bull, the complete graphs, or the paw. It would be interesting to
obtain subquadratic kernels for other graphs H satisfying the Erdős–Hajnal property,
such as C4, the diamond, or C5. Note that, from [43], C4 and the diamond satisfy
the constructive Erdős–Hajnal property with constant δ ≥ 1/3. Note also that the
graphs constructed in the reduction of Theorem 42 are {C5, diamond}-free, as they
are bipartite, hence MMVC is NP-hard on this class, in contrast to the fact (Corol-
lary 41) that MMVC can be solved in linear time on {P5, diamond}-free graphs. To
the best of our knowledge, the complexity on P5-free graphs is open, as well as on
K1,t graphs for t ≥ 3 (see Lemma 38). It is worth mentioning that P5-free graphs
have unbounded cliquewidth, because co-bipartite graphs, which are P5-free, have
unbounded cliquewidth.

As defined in Sect. 2, for a graphG letmmvc(G) be themaximum size of aminimal
vertex cover ofG. Boria et al. [18] proved that ifG is an n-vertex graphwithout isolated
vertices, thenmmvc(G) ≥ �n1/2�. Note that this immediately yields a quadratic kernel
forMMVC: if k ≤ �n1/2�we answer “yes”, otherwise n ≤ k2. By the same argument,
if C is a graph class such that every n-vertex graph G ∈ C without isolated vertices
satisfies mmvc(G) ≥ n1/2+ε, for some ε > 0, then MMVC restricted to C admits

a (subquadratic) kernel with at most k
2

1+2ε vertices. It might be possible that this is
the case for some of the H -free graph classes for which we provided subquadratic
kernels in Sect. 7: we were not able to find any counterexample, that is, a family of
n-vertex H -free graphs G for which mmvc(G) = �(n1/2). In particular, the case of
triangle-free graphs seems particularly interesting. Haviland [44] and Goddard and
Lyle [41] established upper bounds on the size of a minimum independent dominating
set (that is, the complement of a minimal vertex cover) of triangle-free graphs. It
follows from their results [41, 44] that there exist n-vertex triangle-free graphs G with
mmvc(G) = �(n2/3 · log n), hence if such a constant ε > 0 as discussed above
exists for triangle-free graphs, necessarily ε ≤ 2

3 − 1
2 = 1

6 . Therefore, the smallest

kernel that we may obtain in this way on triangle-free graphs would have k
2

1+2ε ≤ k3/2

vertices, which matches the size of the kernel that we obtained in Theorem 34 for the
particular case t = 3, disregarding lower-order terms and multiplicative constants.
Finding such a constant ε > 0 on H -free graphs for small graphs H , in particular on
triangle-free graphs, looks like a challenging problem, having interesting connections
with the Ramsey numbers [41, 44].
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