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Abstract
It is known that problems like Vertex Cover, Feedback Vertex Set and Odd

Cycle Transversal are polynomial time solvable in the class of chordal graphs.We
consider these problems in a graph that has at most k vertices whose deletion results
in a chordal graph when parameterized by k. While this investigation fits naturally
into the recent trend of what is called ‘structural parameterizations’, here we assume
that the deletion set is not given. One method to solve them is to compute a k-sized
or an approximate ( f (k) sized, for a function f ) chordal vertex deletion set and
then use the structural properties of the graph to design an algorithm. This method
leads to at least kO(k)nO(1) running time when we use the known parameterized or
approximation algorithms for finding a k-sized chordal deletion set on an n vertex
graph. In this work, we design 2O(k)nO(1) time algorithms for these problems. Our
algorithms do not compute a chordal vertex deletion set (or even an approximate
solution). Instead, we construct a tree decomposition of the given graph in 2O(k)nO(1)

time where each bag is a union of four cliques and O(k) vertices. We then apply
standard dynamic programming algorithms over this special tree decomposition. This
special tree decomposition can be of independent interest. Our algorithms are, what are
sometimes called permissive in the sense that given an integer k, they detect whether
the graph has no chordal vertex deletion set of size at most k or output the special tree
decomposition and solve the problem. We also show lower bounds for the problems
we deal with under the strong exponential time hypothesis.
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1 Introduction andMotivation

The main motivation for parameterized complexity and algorithms is that hard prob-
lems have some parameters in their input, and feasible algorithms can be obtained
when some of these parameters tend to be small. However, barring width parameters
(like treewidth and cliquewidth), early parameterizations of problems were mostly in
terms of solution size. However starting from thework of Fellows et al. [17] and Jansen
et al. [18, 28], there has been a lot of study on parameterizations by some structure
of the input. The motivations for these parameterizations are that many problems are
computationally easy on special classes of graphs like edge-less graphs, forests, and
interval graphs. Thus parameterizing by the size of a modulator (set of vertices in the
graph whose removal results in a graph in easy graph class) became a natural choice
of investigation. Examples of such parameterizations include Clique and Feedback
Vertex Set parameterized by the size of minimum vertex cover (i.e., modulator
to edge-less graphs), Vertex Cover parameterized by the size of minimum feed-
back vertex set (i.e., modulator to forests) [28, 29]. See also [35, 36] for more such
parameterizations.

We continue this line of work on problems in input graphs that are not far from
a chordal graph. By distance to a chordal graph, we mean the minimum number of
vertices in the graph whose deletion results in a chordal graph. We call this set a
chordal vertex deletion set (CVD). Specifically, we look at Vertex Cover, Feed-
back Vertex Set and Odd Cycle Transversal and some generalizations of
these problems, parameterized by the size of a CVD, as these problems are polyno-
mial time solvable in chordal graphs [10, 23, 40].

In problems for which the parameter is the size of a modulator, it is also assumed
that the modulator is given with the input. This assumption can be removed if finding
the modulator is also fixed-parameter tractable (FPT) parameterized by the modulator
size. However, there are instances where finding the modulator is more expensive
than solving the problem if the modulator is given. For example, finding a subset of k
vertices whose deletion results in a perfect graph is known to beW -hard [25], whereas
if the deletion set is given, then one can show (as explained a bit later in this section)
that Vertex Cover (thus Independent Set) is FPT when parameterized by the
size of the deletion set.

Hence Fellows et al. [18] ask whether Independent Set (or equivalently,Vertex
Cover) is FPT when parameterized by a (promised) bound on the vertex-deletion
distance to a perfect graph, without giving a minimum deletion set in the input. While
we do not answer this question, we address a similar question in the context of prob-
lems parameterized by the distance to chordal graphs, another well-studied class of
graphs where Vertex Cover is polynomial time solvable whereas the best-known
algorithm to find a k-sized chordal deletion set takes kO(k)nO(1) time [8]. We also
do not know of a constant factor (FPT) approximation algorithm for CVD even with
2O(k)nO(1) running time. There are many recent results on polynomial time approxi-
mation algorithms for Chordal Vertex Deletion [1, 31, 32] with the current best
algorithm having a O(log2 opt) ratio, where opt is the size of minimum CVD [1]. If
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we use this approximation algorithm and do branching (see Sect. 1.1 below), then we
can obtain a 2O(k log2 k)nO(1) time algorithm for Vertex Cover.

Hence, in a similar vein to the question by Fellows et al. we ask whether (minimum)
Vertex Cover (and other related problems) can be solved in 2O(k)nO(1) time with
only a promise on the size k of the chordal deletion set, and answer the question
affirmatively. Our algorithms go one step further, not even needing the promise. They
solve the problem or determine that the chordal deletion set is of size more than k.

Our Results Specifically, we give 2O(k)nO(1) algorithms for the problems defined
below.

d- Colorable Subgraph by CVD Parameter: k
Input: A graph G = (V , E) and k, �, d ∈ N.
Question: Does there exist a vertex set X of size at most � in G such that G − X
is d-colorable or output that minimum chordal vertex deletion set of G is of size
more than k?

When d = 1 and d = 2, the problem reduces to Vertex Cover by CVD and
Odd Cycle Transversal by CVD where we require the graph G − X to be an
independent set and bipartite, respectively. We also define Feedback Vertex Set

by CVD where we require the graph G − X to be a forest.
We remark that our algorithms do not necessarily address the question of whether

the input graph has a CVD of size at most k, and may solve the problem sometimes
even when the CVD size is more than k.

We also show that all the problems mentioned above cannot be solved in (2 −
ε)knO(1) time under Strong Exponential Time Hypothesis (SETH) even if a CVD
of size k is given as part of the input. This matches the upper bound of the known
algorithm for Vertex Cover by CVD when the modulator is given.

1.1 RelatedWork

When CVD is given If we are given a CVD S of size k along with an n-vertex graph
G as the input, then one can easily get a 2knO(1) time algorithm (call itA) forVertex
Cover as follows. First, we guess the subset X of S that is part of our solution. Let Y
be the subset of vertices in V (G)\ S such that for each y ∈ Y there is an edge between
y and a vertex in S \ X . The set X ∪ Y is part of the Vertex Cover solution and
it will cover all the edges incident on S. Then we are left with finding an optimum
vertex cover in G − (S ∪Y ) which is a chordal graph. This can be done in polynomial
time. As we have 2k choices for X , the total running time of the algorithm is 2knO(1).
An FPT algorithm with 2O(k)nO(1) time for Feedback Vertex Set by CVD is
given by Jansen et al [30] where they first find the modulator. This algorithm follows
the algorithm to find a minimum feedback vertex set in bounded treewidth graphs. A
similar trick works for Odd Cycle Transversal too when the modulator is given.

When the modulator is given, the FPT algorithms discussed above have been gen-
eralized for other problems and other classes of graphs (besides those that are k away
from the class of chordal graphs). Let � be a Counting Monadic Second Order Logic
(CMSO) formula and t ≥ 0 be an integer. For a given graph G = (V , E), the task
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is to maximize |X | subject to the following constraints: there is a set F ⊆ V such
that X ⊆ F , the subgraph G[F] induced by F is of treewidth at most t , and structure
(G[F], X)models�. Note that the problem corresponds to finding a minimum vertex
cover and a minimum feedback vertex set when t = 0 and t = 1 respectively when �

is a tautology. For a polynomial poly, let Gpoly be the class of graphs such that, for
any G ∈ Gpoly , graph G has at most poly(n) minimal separators. Fomin et al. [21]
gave a polynomial time algorithm for solving this optimization problem on the graph
class Gpoly . Consider Gpoly + kv to be the graph class formed from Gpoly where
to each graph we add at most k vertices of arbitrary adjacencies. Liedloff et al. [33]
further proved that the above problem is FPT on Gpoly + kv, with parameter k, where
the modulator is also a part of the input. As a chordal graph has polynomially many
minimal separators [23], we obtain that this problem parameterized by CVD size is
FPT when the modulator is given.

Other ‘Permissive’ Problems Similar problems have been termed as ‘permissive
problems’ in the context of testing satisfiability of CSPs (constraint satisfaction prob-
lems) with small-sized strong backdoors [22]. While detecting strong backdoors to a
general CSP is hard, the authors address the question of satisfiability of CSPs where
the backdoor set is not given, and the algorithm was supposed to solve satisfiability
or determine that the backdoor set size is more than k.

An example line of work where a faster constant factor approximation algorithm is
available is in the context of optimization problems parameterized by treewidth.

For example, the Independent Set problem parameterized by treewidth of the
graph tw can be solved using standard dynamic programming (DP) in 2tw · twO(1) ·
n time [12]. But the best known algorithm for outputting a tree-decomposition of
minimum width takes time twO(tw3)n [2]. Thus, the total running time is twO(tw3)n,
when a tree decomposition is not given as an input. But one can overcome this by
obtaining a tree decomposition of width 5tw in time 2O(tw)n [4] and then applying
the DP algorithm over the tree decomposition.

One previous example we know of a parameterized problem where the FPT algo-
rithm solves the problemwithout themodulator or even the promise isVertex Cover

parameterized by the size ofKönig Vertex Deletion set k. AKönig vertex deletion
set of G is a subset of vertices of G whose removal results in a graph where the size
of its minimum vertex cover and maximum matching is the same. In Vertex Cover

by König Vertex Deletion, we are given graph G = (V , E), k, � ∈ N and an
assumption that there exists a König vertex deletion set of size k in G, here k is param-
eter. We want to ask whether there exists a vertex cover of size � in G. Lokshtanov et
al. [34] solve Vertex Cover by König Vertex Deletion in 1.5214knO(1) time
without the promise.

Finally, we remark that there is an analogous line of work in the classical world of
polynomial time algorithms. For example, it is known that finding a maximum clique
in a unit disk graph is polynomial time solvable given a unit disk representation of
the unit disk graph [9], though it is NP-hard to recognize whether a given graph is a
unit disk graph [7]. Raghavan and Spinrad [38] give a permissive algorithm that given
a graph either finds a maximum clique in the graph or outputs a certificate that the
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given graph is not a unit disk graph. See also [6, 21, 24] for some other examples of
permissive algorithms.

1.2 Our Techniques

The first step in our algorithms is to obtain, what we call a semi clique tree decom-
position of the given graph if one exists. It is known [23] that every chordal graph
has a clique-tree decomposition, i.e., a tree decomposition where every bag is a clique
in the graph. If the modulator is given, then we can add it to each bag, and obtain
a tree-decomposition where each bag is a clique plus at most k vertices. In our case
(where the modulator is not given), we obtain a tree decomposition in 2O(k)nO(1) time
where each bag can be partitioned into C � N , where C can be covered by at most 4
cliques in G and |N | ≤ 7k+5. Here we also know a partition C1 �C2 �C3 �C4 of C
where each Ci is a clique. We call this tree decomposition a (4, 7k + 5)-semi clique
tree decomposition. Our result in this regard is formalized in the following theorem.

Theorem 1 There is an algorithm that given a graph G and an integer k, runs in
O(27k · (kn4 + nω+2)) time where ω is the matrix multiplication exponent, and either
constructs a (4, 7k+5)-semi clique tree decomposition T of G or concludes that there
is no chordal vertex deletion set of size k in G. Moreover, the algorithm also provides
a partition C1 � C2 � C3 � C4 � N of each bag of T such that |N | ≤ 7k + 5 and Ci

is a clique in G for all i ∈ {1, 2, 3, 4}.
After getting a (4, 7k + 5)-semi clique tree decomposition, we then design

DP algorithms for Vertex Cover, Feedback Vertex Set and Odd Cycle

Transversal on this tree decomposition. Since the vertex cover of a clique has
to contain all but one vertex of the clique, the number of ways the solution might
intersect a bag of the tree is at most O(27kn4). Using this fact, one can bound the
running time for the DP algorithm for Vertex Cover by CVD to O(27kn5). The
overall running time would be the sum of the time taken to construct a (4, 7k+5)-semi
clique tree decomposition and the time of the DP algorithm on this tree decomposi-
tion which is bounded byO(27kn5). In the case of Feedback Vertex Set and Odd
Cycle Transversal, again from each clique all but two vertices will be in the solu-
tion. Using this fact one can bound the running time of Feedback Vertex Set By

CVD and Odd Cycle Transversal by CVD to be 2O(k)nO(1).
Very recently, Fomin and Golovach [19] give subexponential algorithms to various

problems on graphs which can be turned into a chordal graph by adding k edges.
Similar to the line of work in this paper, they come up with an almost-clique tree
decomposition (where each bag can be converted to a clique by adding k edges)
and then apply dynamic programming algorithms on this tree decompositions. We
use the dynamic programming algorithms in this paper on the tree decomposition
we constructed to give algorithms for d- Colorable Subgraph parameterized by
minimum CVD size.

Organization of the Paper In Sect. 2, we state the notations used in this paper and give
the necessary preliminaries on tree decomposition and parameterized complexity. In
Sect. 3, we prove Theorem 1. In Section 4, we first address d- Colorable Subgraph
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by CVD using dynamic programming on semi clique tree decomposition. We then
givemore direct and faster algorithms forVertex Cover by CVD andOdd Cycle

Transversal by CVD and also for Feedback Vertex Set by CVD. We then
conclude this section with lower bounds on these problems assuming SETH.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We use A � B to denote the set formed
from the union of disjoint sets A and B. For a function w : X → R, we use w(D) =∑

x∈D w(x).
We use the term graph for a simple undirected graph without loops and parallel

edges. For a graph G, we use V (G) and E(G) to denote its vertex set and edge set,
respectively. For V ′ ⊆ V , G[V ′] and G − V ′ denote the graph induced on V ′ and
V \V ′, respectively. For a vertex v ∈ V ,G−v denotes the graphG−{v}. For a vertex
v ∈ V , NG(v) and NG [v] denote the open neighborhood and closed neighborhood
of v, respectively. That is, NG(v) = {u : (v, u) ∈ E} and NG [v] = NG(v) ∪ {v}.
Also we define for a subset X ⊆ V (G), NG(X) = ⋃

v∈X (NG(v) \ X) and NG [X ] =
NG(X) ∪ X . We omit the subscript G, when the graph is clear from the context.

A graph is chordal if it does not contain a cycle of length greater than or equal to
4 as an induced subgraph. A subset S ⊆ V (G) such that G − S is a chordal graph is
called a chordal vertex deletion set. We say that a graph G is a union of � cliques if
V (G) = V1 � . . . � V� and Vi is a clique in G for all i ∈ {1, . . . , �}. We use standard
notation and terminology from the book [14] for graph-related terms which are not
explicitly defined here.

A graph G is k-colorable if its vertices can be colored using k colors in such a way
that the endpoints of every edge of G have two different colors.

Definition 1 (Separator and separation) Given a graph G and vertex subsets A, B ⊆
V (G), a subsetC ⊆ V (G) is called a separator of A and B if every path from a vertex
in A to a vertex in B (we call it A− B path) contains a vertex from C . A pair of vertex
subsets (A, B) is a separation in G if A ∪ B = V (G) and A ∩ B is a separator of
A \ B and B \ A.

Definition 2 (Balanced separator and balanced separation) For a graph G, a weight
function w : V (G) → R≥0 and 0 < α < 1, a set S ⊆ V (G) is called an α-
balanced separator ofG with respect tow if for any connected componentC ofG−S,
w(V (C)) ≤ α ·w(V (G)). A pair of vertex subsets (A, B) is an α-balanced separation
in G with respect to w if (A, B) is a separation in G and w(A \ B) ≤ α · w(V (G))

and w(B \ A) ≤ α · w(V (G)).

Note that in the definition of balanced separator we only need a bound for the
connected components of G − S whereas in the case of balanced separation, we have
a 2-partition (A \ B, B \ A) of V − S with S = A ∩ B, each of which is bounded.

Definition 3 (Tree decomposition) A tree decomposition of a graph G is a pair T =
(T , {Xt }t∈V (T )), where T is a tree and for any t ∈ V (T ), a vertex subset Xt ⊆ V (G)

is associated with it, called a bag, such that the following conditions holds.
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• ⋃
t∈V (T ) Xt = V (G).

• For any edge (u, v) ∈ E(G), there is a node t ∈ V (T ) such that u, v ∈ Xt .
• For any vertex u ∈ V (G), the set {t ∈ V (T ) : u ∈ Xt } of nodes induces a
connected subtree of T .

The width of the tree decomposition T is maxt∈V (T ) |Xt | − 1 and the treewidth of G
is the minimum width over all tree decompositions of G.

Proposition 1 [15] Let G be a graph and C be a clique in G. Let T = (T , {Xt }t∈V (T ))

be a tree decomposition of G. Then, there is a node t ∈ V (T ) such that C ⊆ Xt .

Definition 4 (Clique tree decomposition) A clique tree decomposition of a graph G is
a tree decomposition T = (T , {Xt }t∈V (T ))where Xt is a clique in G for all t ∈ V (T ).

Proposition 2 ([23])Agraph is chordal if andonly if it has a clique tree decomposition.

Definition 5 A graph G is called a (c, �)-semi clique if there is a partition C � N of
V (G) such that G[C] is a union of at most c cliques and |N | ≤ �.

Definition 6 ((c, �)-semi clique tree decomposition) For a graphG and c, � ∈ N, a tree
decomposition T = (T , {Xt }t∈V (T )) of G is a (c, �)-semi clique tree decomposition
if G[Xt ] is a (c, �)-semi clique for each t ∈ V (T ).

We define the Node Multiway Cut problem where we are given an input graph
G = (V , E), a set T ⊆ V of terminals and an integer k. We want to ask whether there
exists a set X ⊆ V \ T of size at most k such that any path between two different
terminals intersects X .

We use the following lemma in Sect. 3.

Proposition 3 [20] Let T be a tree and x, y, z ∈ V (T ). Then there exists a vertex
v ∈ V (T ) such that every connected component of T − v has at most one vertex from
{x, y, z}.

Note that v can also be one of x, y or z in the above proposition.

SETH For q ≥ 3, let δq be the infimum of the set of constants c for which there exists
an algorithm solving q-SAT with n variables and m clauses in time 2cn · mO(1). The
strong exponential-time hypothesis (SETH) conjectures that limq→∞ δq = 1. SETH
implies that CNF- SAT on n variables cannot be solved in (2− ε)nmO(1) time for any
ε > 0.

For definitions and notions on parameterized complexity, we refer to [12]. Through-
out the paper, ω denotes the matrix multiplication exponent.

3 Semi Clique Tree Decomposition

Given a graph G and an integer k, we aim to construct a (4, 7k + 5)-semi clique tree
decomposition T of G or conclude that G has no CVD of size at most k. We loosely
follow the ideas used for the tree decomposition algorithm in [39] to construct a tree
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decomposition of a graphG ofwidth atmost 4tw(G)+4, where tw(G) is the treewidth
of G. But before that, we propose the following lemmas that we use in getting the
required (4, 7k + 5)-semi clique tree decomposition.

Lemma 1 Let G be a graph having a CVD of size k. Then G has a (1, k)-semi clique
tree decomposition.

Proof Let Y be the chordal vertex deletion set of G of size k. Since G−Y is a chordal
graph, it has a clique tree decomposition T ′. Adding Y to each bag of the tree decom-
position T ′, we get a (1, k)-semi clique tree decomposition T = (T , {Xt }t∈V (T )) of
G. �
Lemma 2 For a graph G on n vertices with a CVD of size k, the number of maximal
cliques in G is bounded by O(2k · n). Furthermore, there is an algorithm that given
any graph G either concludes that there is no CVD of size k in G or enumerates all
the maximal cliques of G in O(2k · nω+1) time where ω is the matrix multiplication
exponent.

Proof Let X ⊆ V (G) be of size at most k such that G − X is a chordal graph. For
any maximal clique C in G let CX = C ∩ X and CG−X = C \ X . Since G − X is a
chordal graph, it has at most n − k maximal cliques [23].

We claim that for a subset CX ⊆ X and a maximal clique Q in G − X , there is at
most one subset Q′ ⊆ Q such that CX ∪ Q′ forms a maximal clique in G. If there are
two distinct subsets Q1, Q2 of Q such that CX ∪ Q1 and CX ∪ Q2 are cliques in G,
then CX ∪ Q1 ∪ Q2 is a clique larger than the cliques CX ∪ Q1 and CX ∪ Q2. Thus,
since there are at most 2k subsets of X and at most n maximal cliques in G, the total
number of maximal cliques in G is upper bounded by 2k(n − k).

There is an algorithm that given a graph H , enumerates all themaximal cliques of H
withO(|V (H)|ω) delay (themaximum time taken between outputting two consecutive
solutions) [37]. If G has a CVD of size k, there are at most 2kn maximal cliques in G.
We use the algorithm to enumerate all the maximal cliques of the graph and keep the
count of such cliques while doing so. If the count exceeds 2kn, we stop the algorithm
concluding that the graph G has no CVD of size k. �
Lemma 3 Let G be a graph having a CVD of size k andw : V (G) → R≥0 be a weight
function on V (G). There exists a 2

3 -balanced separation (A, B) of G with respect tow

such that the graph induced on the corresponding separator G[A∩ B] is a (1, k)-semi
clique.

Proof First, we prove that there is a 1
2 -balanced separator X such that G[X ] is a

(1, k)-semi clique. By Lemma 1, there is a (1, k)-semi clique tree decomposition
T = (T , {Xt }t∈V (T )) of G. Arbitrarily root the tree of T at a node r ∈ V (T ).
For any node y ∈ V (T ), let Ty denote the subtree of T rooted at node y and Gy

denote the graph induced on the vertices of G present in the bags of nodes of Ty .
That is V (Gy) = ⋃

t∈V (Ty) Xt . Let t be the farthest node of T from the root r such

that w(V (Gt )) > 1
2w(V (G)). That is, for all nodes t ′ ∈ V (Tt ) \ {t}, we have that

w(V (Gt ′)) ≤ 1
2w(V (G)).
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We claim that X = Xt is a 1
2 -balanced separator ofG. Let t1, . . . , tp be the children

of t . Since X is a bag of the tree decomposition T , each of the connected components
of G− X are contained either in Gti − X for some i ∈ [p] or G[V (G)\V (Gt )]. Since
w(V (Gt )) > 1

2w(V (G)), we have w(V (G) \ V (Gt )) < 1
2w(V (G)). By the choice

of t , we have w(V (Gti )) ≤ 1
2w(V (G)) for all i ∈ [p].

Now we define a 2
3 -balanced separation (A, B) for G where the set X = A ∩ B is

a 1
2 balanced separator. Let D1, . . . , Dq be the vertex sets of the connected compo-

nents of G − X . Let ai = w(Di ) for all i ∈ [q]. Without loss of generality, assume

that a1 ≥ . . . ≥ aq . Let q ′ be the smallest index such that
∑q ′

i=1 ai ≥ 1
3w(V (G))

or q ′ = q if no such index exists. Clearly,
∑q

i=q ′+1 ai ≤ 2
3w(V (G)). We prove

that
∑q ′

i=1 ai ≤ 2
3w(V (G)). If q ′ = 1,

∑q ′
i=1 ai = aq ′ ≤ 1

2w(V (G)) and we are

done. Else, since q ′ is the smallest index such that
∑q ′

i=1 ai ≥ 1
3w(V (G)), we have

∑q ′−1
i=1 ai < 1

3w(V (G)). We also note that aq ′ ≤ aq ′−1 ≤ ∑q ′−1
i=1 ai < 1

3w(V (G)).

Hence
∑q ′

i=1 ai = ∑q ′−1
i=1 ai + aq ′ ≤ 2

3w(V (G)).
Now we define A = X ∪ ⋃

i∈[q ′] Di and B = X ∪ ⋃
i∈[q]\[q ′] Di . Notice that

X = A ∩ B and (A, B) is a separation of G. Also notice that w(A \ B) = ∑q ′
i=1 ai ≤

2
3w(V ) and w(B \ A) = ∑q

i=q ′+1 ai ≤ w(V (G)) − 1
3w(V (G)) = 2

3w(V (G)) as
q ′
∑

i=1
ai ≥ 1

3w(V (G)). Since X is a bag of the tree decomposition T , G[X ] is a (1, k)-

semi clique. �
Using Lemmas 2 and 3, we obtain the following corollary.

Corollary 1 Let G be a graphwith aCVDof size k. Let N ⊆ V (G)with 5k+3 ≤ |N | ≤
6k + 4. Then there exists a partition (NA, NB) of N and a vertex subset X ⊆ V (G)

satisfying the following properties.

• |NA|, |NB | ≤ 4k + 2.
• X is a vertex separator of NA and NB in the graph G.
• G[X ] is a (1, k)-semi clique.

Moreover, there is an algorithm that given any graph G, either concludes that there
is no CVD of size k in G or computes such a partition (NA, NB) of N and the set X
in O(27k · (kn3 + nω+1)) time.

Proof Let us define a weight function w : V (G) → R≥0 such that w(v) = 1 if
v ∈ N and 0 otherwise. From Lemma 3, we know that there exists a pair of vertex
subsets (A, B) which is the balanced separation of G with respect to w where the
graph induced on the corresponding separator G[A ∩ B] is a (1, k)-semi clique.

Let us define the partition (NA, NB). We add (A \ B)∩N to NA and (B \ A)∩N to
NB . Since (A, B) is a balanced separation of G with respect tow, |(A \ B)∩N |, |(B \
A) ∩ N | ≤ 2

3 |N | ≤ 4k + 2. For each vertex u ∈ (A ∩ B) ∩ N , we iteratively add u to
the currently smaller of the two sets of NA and NB . Since |N | ≤ 6k+4 ≤ 2 · (4k+2),
we have |NA|, |NB | ≤ 4k + 2 even after this process. This shows the existence of
subsets NA, NB and X = A ∩ B. But the proof is not constructive as the existence of
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(A, B) uses the (1, k)-semi clique tree decomposition ofG which requires the chordal
vertex deletion set.

We now explain how to compute these subsets without the knowledge of a (1, k)-
semi clique tree decomposition of G. Let X = C ′′ � N ′′ where C ′′ is a clique and
|N ′′| ≤ k.WeuseLemma2 to either conclude thatG has noCVDof size k or go over all
maximal cliques of G to find a maximal clique D such that C ′′ ⊆ D. We can conclude
that in the remaining graph G[V \ D], there exists a separator Z ⊆ N ′′ = X \ C ′′ of
size at most k for the sets NA and NB .

We go over all 2|N | ≤ 26k+4 2-partitions of N to guess the partition (NA, NB). Then
we apply the classic Ford–Fulkerson maximum flow algorithm to find the separator
Z of the sets NA and NB in the graph G[V \ D]. If |Z | > k, we can conclude that G
has no CVD of size k in G. Thus, we obtained a set X ′ = D � Z such that G[X ′] is a
(1, k)-semi clique and X ′ is a vertex separator of NA and NB in the graph G.

Now we estimate the time taken to obtain these sets. We first go over all 2k · n
maximal cliques of the graph which takes O(2k · nω+1) time. Then for each of the
2k · n maximal cliques, we go over at most 26k+4 guesses for NA and NB . Finally,
we use the Ford–Fulkerson maximum flow algorithm to find the separator of size at
most k for NA and NB which takes O(k(n + m)) time. Overall the running time is
O(2k · nω+1 + (2kn) · 26k · (k(n + m))) = O(27k · (kn3 + nω+1)). �
Lemma 4 Let G be a graph having a CVD of size k. Let C1,C2,C3 be three distinct
cliques in G. Then there exists a vertex subset X ⊆ V (G) such that G[X ] is a (1, k)-
semi clique and X is a separator of Ci and C j for all i, j ∈ {1, 2, 3} and i �= j .
Moreover, there is an algorithm that given any graph G, either concludes that there
is no CVD of size k in G or computes X in O(4k · (kn3 + nω+1)) time.

Proof By Lemma 1, there is a (1, k)-semi clique tree decomposition T =
(T , {Xt }t∈V (T )) of G. By Proposition 1, we know that there exist nodes t1, t2, t3 ∈
V (T ) such that C1 ⊆ Xt1 , C2 ⊆ Xt2 and C3 ⊆ Xt3 . If two of the three nodes t1, t2, t3
is the same node t , then it can be easily seen that X = Xt is the required separator as
only at most one of C1,C2, and C3 remains after its deletion.

Hence assume that all three nodes t1, t2, t3 are distinct. From Proposition 3, we
know that there exists a node t ∈ V (T ) such that (i) t1, t2 and t3 are in different
connected components of T − t . We claim that X = Xt is the required separator.
Since X is a bag in the (1, k)-semi clique tree decomposition T , G[X ] is a (1, k)-semi
clique. Because of statement (i), we have that X is a separator of Ci and C j for all
i, j ∈ {1, 2, 3} and i �= j . The proof is not constructive as we do not have a (1, k)-semi
clique tree decomposition of G.

We compute a set X ′ such that G[X ′] is a (1, k)-semi clique and X ′ is a separator
of Ci and C j for all i, j ∈ {1, 2, 3} and i �= j , without the knowledge of a (1, k)-
semi clique tree decomposition of G. Let X = C ′′ � N ′′ where C ′′ is a clique and
|N ′′| ≤ k. Using Lemma 2, we either conclude that G has no CVD of size k or we
go over all the maximal cliques of the graph G. We know that C ′′ ⊆ D for one of
such maximal cliques D. Now in the graph G[V \ D], we know that there exists a set
Z ⊆ N ′′ = X \ C ′′ of size at most k which separates the cliques Cx \ D,Cy \ D and
Cz \ D. To find Z , we add three new vertices x ′, y′ and z′. We make x ′ adjacent to
all the vertices of Cx \ D, y′ adjacent to all the vertices of Cy \ D and z′ adjacent to
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all the vertices of Cz \ D. We find the node multiway cut Y of size at most k with the
terminal set being {x ′, y′, z′}. The set Y can be found in O(2kkm) using the known
algorithm for node multiway cut [13, 26]. If the algorithm returns that there is no such
set Y of size k, we conclude that there is no CVD of size at most k in G. Else we get
a set X ′ = D � Y which satisfies the properties of X .

Now we estimate the time taken to obtain X ′. We get all the 2k · n maximal cliques
of the graph inO(2k ·nω+1) time. Now for each maximal clique, we use the algorithm
for node multiway cut with O(2kkm) running time. Thus, the overall running time is
O(2k · nω+1 + (2kn) · (2kkm)) = O(4k · (kn3 + nω+1)). �

Now we prove our main result (i.e., Theorem 1) in this section. For convenience,
we restate it here.

Theorem 1 There is an algorithm that given a graph G and an integer k, runs in
O(27k · (kn4 + nω+2)) time and either constructs a (4, 7k + 5)-semi clique tree
decomposition T of G or concludes that there is no chordal vertex deletion set of size
k in G.Moreover, the algorithm also provides a partition C1 � C2 � C3 � C4 � N of
each bag of T such that |N | ≤ 7k + 5 and Ci is a clique in G for all i ∈ {1, 2, 3, 4}.
Proof We assume that G is connected as if not we can construct a (4, 7k + 5)-semi
clique tree decomposition for each connected component of G and attach all of them
to a root node whose bag is empty to get the required (4, 7k + 5)-semi clique tree
decomposition of G.

To construct a (4, 7k + 5)-semi clique tree decomposition T , we define a recursive
procedure Decompose(W , S, d) where S ⊂ W ⊆ V (G) and d ∈ {0, 1, 2}. The
procedure returns a rooted (4, 7k + 5)-semi clique tree decomposition of G[W ] such
that S is contained in the root bag of the tree decomposition. The procedure works
under the assumption that the following invariants are satisfied.

• G[S] is a (d, 6k + 4)-semi clique and W \ S �= ∅.
• S = NG(W \ S). Hence S is called the boundary of the graph G[W ].
To get the required (4, 7k + 5)-semi clique tree decomposition of G, we call

Decompose(V (G), ∅, 0) which satisfies all the above invariants. The procedure
Decompose(W , S, d) calls procedures Decompose(W ′, S′, d ′) and a new procedure
SplitCliques(W ′, S′) whenever d = 2. For these subprocedures, we will show that
|W ′ \ S′| < |W \ S|. Hence by induction on the cardinality of W \ S, we will show
the correctness of the Decompose procedure.

The procedure SplitCliques(W , S) with S ⊂ W ⊆ V (G) also outputs a rooted
(4, 7k + 5)-semi clique tree decomposition of G[W ] such that S is contained in the
root bag of the tree decomposition. But the invariants under which it works are slightly
different which we list below.

• G[S] is a (3, 5k + 3)-semi clique and W \ S �= ∅.
• S = NG(W \ S).

Notice that the only difference between invariants forDecompose and SplitCliques
is the first invariant where we require G[S] to be a (3, 5k + 3)-semi clique for
SplitCliques and (d, 6k + 4)-semi clique for Decompose.
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The procedure SplitCliques(W , S) calls procedures Decompose(W ′, S′, 2) where
we will again show that |W ′ \ S′| < |W \ S|. Hence again by induction on the
cardinality ofW \S, wewill show the correctness. Nowwe describe how the procedure
Decompose is implemented.

Implementation of Decompose(W , S, d): Notice that d ∈ {0, 1, 2}. Firstly, if |W \
S| ≤ k + 1, we output the tree decomposition as a node r with bag Xr = W and stop.
Clearly, the graph G[Xr ] is a (4, 7k +5)-semi clique and it contains S. Otherwise, we
do the following.

We construct a set Ŝ with the following properties.

1. S ⊂ Ŝ ⊆ W ⊆ V (G).
2. G[Ŝ] is a (d + 1, 7k + 5)-semi clique. Let Ŝ = C ′ � N ′ where G[C ′] is the union

of d + 1 cliques and |N ′| ≤ 7k + 5.
3. Every connected component of G[W \ Ŝ] is adjacent to at most 5k + 3 vertices of

N ′.

Since G[S] is a (d, 6k + 4)-semi clique, we have that S = C � N , where G[C] is
the union of d cliques and |N | ≤ 6k + 4.

Case 1 |N | < 5k + 3. We set Ŝ = S ∪ {u}, where u is an arbitrary vertex in W \ S.
Note that this is possible as W \ S �= ∅. Clearly Ŝ follows all the properties above.

Case 2 5k + 3 ≤ |N | ≤ 6k + 4. Note that G[W ] being a subgraph of G also has
a chordal vertex deletion set of size at most k if G has it. Applying Corollary 1 for
the graph G[W ] and the subset N , we either conclude that G has no CVD of size
k or get a partition (NA, NB) of N , a subset X ⊆ W and a partition D � Z of X ,
where D is a clique in G[W ] and |Z | ≤ k, in time O(27k · (kn3 + nω+1)) such that
|NA|, |NB | ≤ 4k + 2 and X is a vertex separator of NA and NB in the graph G[W ]. �

We define Ŝ = S ∪ X ∪ {u} where u is an arbitrary vertex in W \ S. We need to
verify that Ŝ satisfies the required properties.

Claim 1 The set Ŝ satisfies properties (1), (2) and (3).

Proof Since u ∈ W \ S, S ⊂ Ŝ. Hence Ŝ satisfies property (1).
We now show that Ŝ satisfies property (2). Recall that S = C � N , where G[C]

is the union of d cliques and |N | ≤ 6k + 4. We define sets C ′ = C ∪ D and N ′ =
((N ∪ Z) \ C ′) ∪ {u} Notice that Ŝ = C ′ ∪ N ′. Clearly G[C ′] is the union of d + 1
cliques. Also |N ′| ≤ |N | + |Z | + 1 ≤ (6k + 4) + k + 1 ≤ 7k + 5. Thus Ŝ satisfies
property (2).

We now show that Ŝ satisfies property (3). Recall Ŝ = C ′ ∪ N ′, where C ′ = C ∪ D
and N ′ = ((N ∪ Z) \ C ′) ∪ {u}. Recall that X = D ∪ Z ⊆ Ŝ is separator of NA

and NB where N = NA � NB and |NA|, |NB | ≤ 4k + 2. This implies that any
connected component H in G[W \ X ] can contain at most 4k + 2 vertices from N
as the neighborhood of V (H) is contained in X , because X is a separator. Moreover
|Z | ≤ k. This implies that any connected component in G[W \ Ŝ] is adjacent to at
most 4k+2 vertices in N and at most k vertices in Z , and hence at most 5k+3 vertices
in N ′ = ((N ∪ Z) \ C ′) ∪ {u}. �
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Now we define the recursive subproblems arising in the procedure Decompose
(W , S, d) using the constructed set Ŝ. If Ŝ = W , then there will not be any recursive
subproblem.Otherwise, let P1, P2, . . . , Pq be vertex sets of the connected components
of G[W \ Ŝ] and q ≥ 1 because Ŝ �= W . We have the following cases:

Case 1 d < 2: For each i ∈ [q], recursively call the procedure Decompose(W ′ =
NG [Pi ], S′ = NG(Pi ), d + 1).

We now show that the invariants are satisfied for procedures Decompose(W ′ =
NG [Pi ], S′ = NG(Pi ), d + 1) for all i ∈ [q]. We start by noticing that since d < 2,
d + 1 ≤ 2 which is required for the validity of the procedure. Let Qi = S′ ∩ N ′.
Note that from condition (3) for Ŝ, we have |Qi | ≤ 5k + 3. Since S′ \ Qi ⊆ C ′
and G[C ′] is a union of d + 1 cliques, G[S′] forms a (d + 1, 5k + 3)-semi clique
which is also a (d + 1, 6k + 4)-semi clique. Also by definition of neighbourhoods,
Pi = NG[Pi ] \ NG(Pi ) = W ′ \ S′. Since Pi is a non-empty set by definition, W ′ \ S′
is non-empty. Hence the first invariant required for the Decompose is satisfied. Since
S′ = NG(Pi ) = NG(NG [Pi ] \ NG(Pi )) = NG(W ′ \ S′), the second invariant is
satisfied.

Case 2 d = 2: For each i ∈ [q], recursively call the procedure SplitCliques(W ′ =
NG [Pi ], S′ = NG(Pi )). We can show that the invariants for SplitCliques are satisfied
with the proofs similar to the previous case.

We now explain how to construct the (4, 7k + 5)-semi clique tree decomposi-
tion using Decompose(W , S, d). Here, we assume that Decompose(W ′, S′, d + 1)
and SplitCliques(W ′, S′) return a (4, 7k + 5)-semi clique tree decomposition G[W ′]
when |W ′ \ S′| < |W \ S|. That is, we apply induction on |W \ S|. Look at the
subprocedures Decompose(W ′, S′, d) and SplitCliques(W ′, S′). We have W ′ \ S′ =
NG [Pi ] \ NG(Pi ) = Pi which is a subset of W \ Ŝ which in turn is a strict subset
of W \ S. Hence |W ′ \ S′| < |W \ S|. Hence we apply induction on |W \ S| to the
subprocedures. Let Ti be the (4, 7k+5)-semi clique tree decomposition obtained from
the subprocedure withW ′ = NG [Pi ] and S′ = NG(Pi ). Let ri be the root of Ti whose
associated bag is Xri . By induction hypothesis S′ ⊆ Xri . We create a node r with
the corresponding bag Xr = Ŝ. For each i ∈ [q], we attach Ti to r by adding edge
(r , ri ). Let us call the tree decomposition obtained so with root r as T . We return T
as the output of Decompose(W , S, d). By construction, it easily follows that T is
a (4, 7k + 5)-semi clique tree decomposition of the graph G[W ] with the root bag
containing S. We note that when W = Ŝ, the procedure returns a single node tree
decomposition with Xr = W = Ŝ.

Implementation of SplitCliques Procedure:Again if |W \ S| ≤ k+1, we output the
tree decomposition as a node r with bag Xr = W and stop. Clearly the graph G[Xr ]
is a (4, 7k + 5)-semi clique and it contains S. Otherwise we do the following. Let
S = C � N = (Cx � Cy � Cz) � N where Cx ,Cy and Cz are the vertex sets of the
three cliques in G[C]. We apply Lemma 4 to graph G[W ] and sets Cx ,Cy and Cz , to
either conclude that G has no CVD of size k or obtain a set Y such that Y separates
the sets Cx ,Cy and Cz and G[Y ] is a (1, k)-semi clique. Let Y = D � X where D is
a clique and |X | ≤ k.

Let Y ′ = Y ∪ {u} where u is any arbitrary vertex from W \ S which we know to be
non-empty. If S ∪ Y ′ = W , then it will not call any recursive subproblem. Otherwise,
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let P1, P2, . . . , Pq be the connected components of the graph G[W \ (S ∪ Y ′)]. We
recursively call Decompose(W ′ = NG [Pi ], S′ = NG(Pi ), 2) for all i ∈ [q].

Since Y ′ is a separator of the cliques Cx ,Cy and Cz , any connected component Pi
will have neighbours to at most one of the three cliques Cx \Y ′,Cy \Y ′ and Cz \Y ′ in
G[W \ (S ∪ Y ′)]. We show that the invariants required for the procedure Decompose
are satisfied in these subproblems. Let us focus on the procedure Decompose(W ′ =
NG [Pi ], S′ = NG(Pi ), 2)which has neighbours only to the setCx \Y ′. We define sets
C ′ = Cx ∪D and N ′ = (N∪X∪{u})\C ′. The vertex set Pi has neighbours only to the
set (Cx �N )∪Y ′ = (Cx �N )∪(D�X)∪{u} = (Cx ∪D)∪(N ∪X ∪{u}) = C ′ �N ′.
Clearly G[C ′] is the union of at most two cliques and |N ′| ≤ |N | + |X | + 1 =
5k + 3 + k + 1 ≤ 6k + 4. Hence the first invariant is satisfied for the procedure
Decompose(NG [Pi ], NG(Pi ), 2). The proof of the second invariant is the same as
that of the subproblems of Decompose procedure. The satisfiability of invariants for
other subprocedures can also be proven similarly.

We now construct the (4, 7k + 5)-semi clique tree decomposition returned by
SplitCliques (W , S). Again we apply induction on |W \ S|. Consider the subpro-
cedures Decompose(W ′, S′, d). We have W ′ \ S′ = NG[Pi ] \ NG(Pi ) = Pi which
is a subset of W \ (S ∪ Y ′) which in turn is a strict subset of W \ S as u ∈ W \ S
is present in Y ′. Hence |W ′ \ S′| < |W \ S| and we apply induction on |W \ S| to
the subprocedures. Let Ti be the (4, 7k + 5)-semi clique tree decomposition obtained
from the subprocedure with W ′ = NG [Pi ] and S′ = NG(Pi ). Let ri be the root of Ti
whose bag Xri we show contains S′. We create a node r with the corresponding bag
Xr = S ∪ Y ′ = (Cx � Cy � Cz � D) � N ′. For each i ∈ [q], we attach Ti to r by
adding edge (r , ri ). Let us call the tree decomposition obtained so with root r as T .
We return T as the output of SplitCliques(W , S, d). By construction, it easily follows
that T is a (4, 7k + 5)-semi clique tree decomposition of the graph G[W ] with the
root bag containing S. We mention that when W = S ∪ Y ′, the procedure returns a
single node tree decomposition with Xr = W .

Running time analysis In the procedure Decompose, we invoke Corollary 1 which
takesO(27k ·(kn3+nω+1)) time. For the procedure SplitCliques, we invoke Lemma 4
which takesO(4k ·(kn3+nω+1)) time. All that is left is to bound the number of calls of
the procedures Decompose and SplitCliques. Each time Decompose or SplitCliques
is called, it creates a set Ŝ (in the case of SplitCliques, Ŝ = S ∪ Y ′) which is a strict
superset of S. This allows us to map each call of Decompose or SplitCliques to a
unique vertex u ∈ Ŝ \ S of V (G). Hence the total number of calls of Decompose and
SplitCliques is not more than the total number of vertices n. Hence the overall running
time of the algorithm which constructs the (4, 7k+5)-semi clique tree decomposition
of G is O(27k · (kn4 + nω+2)). �
Faster Algorithm1 We can get a faster algorithm by making use of the fact that any
C4-free graph has O(n2) maximal cliques [16]. The algorithm first repeatedly find
induced C4s if any and delete the vertices of C4 from G. If there are more than k
disjoint induced C4s found, then return that G has no CVD of size at most k. Let Z
denote the union of the vertices removed in this process. We now apply the algorithm

1 We acknowledge Bart Jansen for the ideas leading to this algorithm.
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in Theorem 1 on the graph G − Z which is C4-free. Note that the graph G − Z
has O(n2) maximal cliques. This drops the 2kn factor to n2 in the running times of
the algorithms of Corollary 1 and 4 invoked in the algorithm of Theorem 1. Hence
the running time to obtain the semi clique tree decomposition T ′ of G − Z drops to
O(26k · (kn5 + nω+2)). We now obtain a semi clique tree decomposition T of G from
T ′ by adding Z to every bag of T ′.

We now prove that T is a (4, 7k + 5)-semi clique tree decomposition. Let k1 ≤ k
denote the number of disjoint C4’s present in Z . Hence |Z | = 4k1. Since Z has k1
disjoint C4’s, any CVD of G contains at least k1 vertices of Z . Hence G has a CVD of
size k if and only ifG−Z has a CVD of size k−k1. The algorithm of Theorem 1 either
concludes that G − Z has no CVD of size k − k1 or returns a (4, 7(k − k1) + 5)-semi
clique tree decomposition T ′ of G − Z . In the former case we can correctly conclude
that G has no CVD of size k. In the later case, we now obtain a semi clique tree
decomposition T of G from T ′ by adding Z to every bag of T ′. The vertices which
are not part of the cliques in every bag of T is 7(k−k1)+5+|Z | = 7(k−k1)+5+4k1
which is at most 7k + 5. Hence T is a (4, 7k + 5)-semi clique tree decomposition.
Hence we have the following theorem.

Theorem 2 There is an algorithm that given a graph G and an integer k runs in time
O(26k ·(kn5+nω+2))and either constructs a (4, 7k+5)-semi clique tree decomposition
T of G or concludes that there is no chordal vertex deletion set of size k in G.Moreover,
the algorithm also provides a partition C1 �C2 �C3 �C4 � N of each bag of T such
that |N | ≤ 7k + 5 and Ci is a clique in G for all i ∈ {1, 2, 3, 4}.
We note that though the above algorithm is faster, it does not improve the running time
of algorithms of the dynamic programming algorithms in Section 4. This is because
these algorithms store solutions for every possible subset of the non-clique part of
the bags which is at least 27k . Hence in the following section, we continue using the
algorithm in Theorem 1.

4 Structural Parameterizations with Chordal Vertex Deletion Set

Theorem 3 d-Colorable Subgraph by CVD can be solved in d4d+7k+523(7k+5)

nO(d) time.

Proof First,weuseTheorem1 to construct a (4, 7k+5)-semi clique tree decomposition
T = (T , {Xt }t∈V (T )) of G in 27knO(1) time. Now we use the dynamic programming
algorithm on tree decompositions given by Fomin and Golovach (Theorem 1 of [19])
on T to find the maximum sized induced subgraph H of G such that H is d-colorable.
Note that the set V (G) \ V (H) is the solution that we are looking for and if its size is
at most �, we return YES. Else we return NO.

This dynamic programming algorithm defines a state cost(t, S, c) for all nodes
t ∈ V (T ), subsets S ⊆ Xt such that G[S] is d-colorable and a function c : S → [d].
Since each bag Xt of T is a (4, 7k + 5) semi clique, at most d vertices of each clique
can be part of S as else there is a presence of a (d + 1) sized clique in S which is not
d-colorable. Hence we can bound the size of S as 4d + 7k + 5 and also bound the
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number of possible subsets S as n4d27k+5. Number of possible functions c is at most
d |S| which is at most d4d+7k+5. Hence we bound the number of states cost(t, S, c)
as d4d+7k+527k+5nO(d). For each state, the time taken is O(|S|2). Hence the overall
running time is d4d+7k+523(7k+5)nO(d). �
Corollary 2 Vertex Cover by CVD and Odd Cycle Transveral by CVD

can be solved in 221knO(1) and 228knO(1) time, respectively.

We can directly use the dynamic programming on bounded treewidth to get algo-
rithms with better running times for Vertex Cover by CVD and Odd Cycle

Transversal by CVD and for Feedback Vertex Set by CVD using the fact
that any vertex cover contains all but one fromeach clique and anyodd cycle transversal
and feedback vertex set contains all but two from each clique.

Theorem 4 Given a graph G and an integer k, there exist algorithms that determine
that G has no CVD of size k or

• find a minimum vertex cover in 27knO(1) time, and
• find a minimum odd cycle transversal in 37knO(1) time, and
• find a minimum feedback vertex set in 2ω7knO(1) time.

Proof First,weuseTheorem1 to construct a (4, 7k+5)-semi clique tree decomposition
T = (T , {Xt }t∈V (T )) of G in 27knO(1) time. Arbitrarily root the tree T at a node r .
Let Xt = Ct,1 � . . . � Ct,4 � Nt where |Nt | ≤ 7k + 5 and Ct, j is a clique in G for
all j ∈ {1, . . . , 4}. In the tree decomposition T = (T , {Xt }t∈V (T )), for any vertex
t ∈ V (T ), we call Dt to be the set of vertices that are descendant of t . We define Gt

to be the subgraph of G on the vertex set Xt ∪ ⋃
t ′∈Dt

Xt ′ .

Proof sketch of the algorithm for Vertex Cover by CVD: We briefly explain
the dynamic programming (DP) table entries on T . In a standard DP for each node
t ∈ V (T ) and Y ⊆ Xt , we have a table entry DP[Y , t] which stores the size of a
minimum vertex cover S of Gt such that Y = Xt ∩ S and if no such vertex cover
exists, then DP[Y , t] stores ∞. In fact, we only need to store DP[Y , t] whenever it
is not equal to ∞. Now consider a bag Xt in T . For any Y ⊆ Xt , if |Ct, j \ Y | ≥ 2 for
any j ∈ [4], then DP[Y , t] = ∞ because Ct, j is a clique. Therefore, we only need
to consider subsets Y ⊆ Xt for which |Ct j \ Y | ≤ 1 for all j ∈ [4]. The number of
choices of such subsets Y is bounded byO(27kn4). This implies that the total number
of DP table entries isO(27kn5). All these values can be computed in timeO(27knO(1))

time using standard dynamic programming in a bottom up fashion. For more details
about dynamic programming over tree decomposition, see [12].

Proof sketch of the algorithm for Odd Cycle Transversal By CVD: Any odd
cycle transversal contains all but at most two vertices from each clique C1, j , i ∈ [4].
Using this fact we can bound the number of DP table entries to be at most 37knO(1).
Then, by computing the entries in a bottom-up fashion in time 37knO(1) using standard
arguments.

Proof sketch of algorithm for Feedback Vertex Set By CVD: We use the ideas
from theDPalgorithm forFeedback Vertex Set using the rank-based approach [3].
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We give a more detailed algorithm as the techniques for solving Feedback Vertex

Set parameterized by treewidth are slightly sophisticated and it may not be obvious
for the reader that these techniques extend to semi-clique tree decompositions.

We create an auxiliary graph G ′ by adding a vertex v0 to G and making it adjacent
to all the vertices of G. Let E0 be the set of newly added edges. Thus we add v0 to all
the bags to get the tree decomposition T = (T , {Xt }t∈V (T )) of G ′. We use a dynamic
programming algorithm for Feedback Vertex Set on T where the number of
entries of the DP table we will show to be 27k+5n11. Let Xt = Ct,1 � . . . � Ct,4 � Nt

for all t ∈ V (T ) where |Nt | ≤ 7k + 5 and Ct, j is a clique in G for all j ∈ {1, . . . , 4}.
For a node t ∈ V (T ), a subset Y ⊆ Xt and integers i, j ∈ [n], we define the entry
DP[t,Y , i, j]. The entry DP[t,Y , i, j] stores a partition P of Y if

• there exists a vertex subset X ⊆ Dt , v0 ∈ X such that X ∩ Xt = Y and
• there exists an edge subset X0 ⊆ E(Gt )∩ E0 such that in the graph (X , E(Gt [X \

{v0}])∪X0),we have i vertices, j edges, no connected component is fully contained
in Dt \ Xt and the elements of Y are connected according to the partition P .

We set DP[t,Y , i, j] = ∞ if the entry can be inferred to be invalid from Y .
We claim that the Feedback Vertex Set by CVD instance (G, k) is a yes

instance if and only if for the root r of T with Xr = {v0} and some i ≥ |V | − �, we
have DP[r , {v0}, i, i−1] to be non-empty. In the forward direction,wehave a feedback
vertex setW of size �. The graphG−W has |V |−� vertices and |V |−�−c edgeswhere
c is the number of connected components of G−W . We define X = V \W ∪{v0} and
X0 to be c edges connecting v0 to any one of the vertices of each of the c components
of V \W . We have |X | ≥ |V | − �. The graph (X , E(Gt [X \ {v0}]) ∪ X0) has |V | − �

edges and satisfies the properties required for an entry in DP[r , {v0}, i, i − 1]. In the
reverse direction, we have a graph (X , E(Gt [X \{v0}])∪ X0) having i edges and i −1
edges. Since no connected component of the graph can be contained in V (Gt ) \ {v0},
the graph is a tree. Hence V \ X is a feedback vertex set.

Now we give the recurrence relations for computing DP[t,Y , i, j]. For this pur-
pose, we convert T into a nice tree decomposition which can be done in O(n3) time.
Since each bag contains cliques of size O(n), the number of nodes of T can also
blow up to be O(n3) with O(n2) new nodes possibly added for each and edge of T
corresponding toO(n2) edges and vertices added or removed to obtain the collection
of the cliques in the child node from the collection in the parent node.

The recurrences for computing DP[t,Y , i, j] more or less remains the same as in
[3]. Before we state them, we define some operations on a familyA of partitions of a
universe U .

• Union: For two familiesA and B of partitions ofU , we define the unionA∪B as
the family obtained by taking the union of both families.

• Insert: For a family of partitionsA and set X such that X ∩U = φ, insert(X ,A)

is the family of partitions obtained by adding each element of X as singleton sets
in each of the partitions of A.

• Glue: For elements u, v, glue(uv,A) is obtained by combining the sets containing
u and v in each of the partitions of A.
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• Project: For a family of partitions A and set X ⊆ U , project(X ,A) is the fam-
ily obtained by removing all the elements of X from each of the partitions, but
discarding the partition if doing so reduces the number of sets in the partition.

• Join: For a partition P of universe U and Q of universe U ′, the join of P and Q
is defined as follows. Look at a graph G over vertices U ∪ U ′. Look at each set
S in P and turn the corresponding vertex set into a clique. We do so for all the
sets in P as well as Q. Now, look at the set of connected components of G. We
get a partition of U ∪ U ′ with each set of the partition being the vertex set of the
corresponding connected component. This partition is called the join of P and Q.
For a family of partitionsA overU and a family of partitionsB overU ′, join(A,B)

is the family of partitions over U ∪U ′ obtained by taking the join of each pair of
partitions from A and B.

We have the following recurrence relations.

• Leaf Node: We set the entry DP[t, φ, 0, 0] = {φ} and all other entries as invalid.
• Introduce vertex Node: Let t and t ′ be the parent and child nodes with vertex v

being introduced in t . We have

DP[t,Y , i, j] =

⎧
⎪⎨

⎪⎩

∞ if v = v0 and v /∈ Y

insert(v, DP[t ′,Y \ {v}, i − 1, j]) if v ∈ Y

DP[t ′,Y , i, j] otherwise

The first case is to ensure that if the vertex introduced is v0, then it has to be in Y .
Otherwise, if v ∈ Y , we extend solutions that do not contain v with i − 1 vertices
by adding singleton v to each of the partitions.

• Forget vertex node: Let t and t ′ be the parent and child nodes with vertex v being
forgotten in t . We have

DP[t,Y , i, j] = DP[t ′,Y , i, j] ∪ project(v, DP[t ′,Y ∪ {v}, i, j])

We extend solutions of child node t ′ for both the cases when v is present or absent
in the corresponding set Y . We do so by taking the union of partitions for both
cases. In the case when v is present, we make sure that the partitions where v is
a singleton are not added. This is because the corresponding component can no
longer be connected as it has no intersection with Xt .

• Introduce Edge Node: Let t and t ′ be the parent and child nodes with edge (u, v)

being added in t . We have

DP[t,Y , i, j]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DP[t ′,Y , i, j] ∪ glue(v0v, DP[t ′,Y , i, j − 1]) if u = v0 and v ∈ Y

DP[t ′,Y , i, j] ∪ glue(v0u, DP[t ′,Y , i, j − 1]) if v = v0 and u ∈ Y

glue(uv, DP[t ′,Y , i, j − 1]) if u, v ∈ Y

DP[t ′,Y , i, j] otherwise
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If u = v0 and v ∈ Y (or the symmetric case), then the edge v0v may or may not be
part of the maximal induced forest corresponding to the solution. Hence we can
choose to insert v0v or not. Else if both u and v are present in Y , then edge (u, v)

has to be present in the maximal induced forest. In the cases where the edge is
present, we obtain the corresponding family of partitions by gluing sets containing
u and v for each partition.

• Join node: Let t be the parent node and t ′, t ′′ be the child nodes. We have

DP[t,Y , i, j] =
⋃

i1+i2=i−|Y |, j1+ j2= j

join(DP[t ′,Y , i1, j1], DP[t ′′,Y , i2, j2])

A pair of vertices x, y in Xt is connected in Gt if there is a vertex z ∈ Xt such
that x and z is connected in Gt ′ and y and z is connected in Gt ′′ . The partition
of Y corresponding to this connectivity is obtained exactly via the join of pair of
partitions in the entries of t ′ and t ′′.

Now we bound the number of table entries and the number of partitions stored for
each entry. Consider a bag Xt in T . For any Z ⊆ Xt , We focus on the sets Ct, j \ Z
which is part of the forest. If |Ct, j \ Z | ≥ 3 for any j ∈ [4], then DP[t,Y , i, j] = ∞
because G[Ct, j ] contains a triangle as Ct, j is a clique. Therefore, we only need to
consider subsets Z ⊆ Xt for which |Ct, j \ Z | ≤ 2 for all j ∈ [4]. Hence we have
|Ci | ≤ 2. The number of choices for each Ci is at most |Ct,i | ≤ n2. We also have
|Y | ≤ |Nt | ≤ 7k + 5. Since the number of nodes of T is O(n3), we have the total
number of DP table entries is O(27kn13). In each DP table entry DP[t,Y , i, j], we
store partitions of Y . The cardinality of Y is bounded by 7k+13 as |Ct j \Y | ≤ 2 for all
j ∈ [4]. Hence the number of partitions stored in a particular entry DP[t,Y , i, j] can
be as huge as |Y |O(|Y |) which is bounded by (7k + 13)O(k). But as we will see below,
we devise a reducing routine that allows us to only store at most 27k+13 partitions in
each table entry.

We use the ideas from [3] to bound the time taken to compute all the table entries
of a particular node t . In particular, for each table enrty DP[t,Y , i, j], after obtaining
a familyA of partitions over a universeU using recurrence relations, we use reducing
algorithm Theorem 3.7 of [3] to obtain a subfamilyA′ of size 2|U | which “represents"
A. Since the subfamily A′ represents A, it can be used for furthur evaluations in the
dynamic programming algorithm. For more details, we refer to [3].

Let us first bound the time taken to compute the recurrence relations. Using Propo-
sition 3.3 of [3], given to familiesA and B over a universeU , the time taken for every
operation is bounded by |A||B||U |O(1). The leading factor is the time taken for the
reducing algorithm Theorem 3.7 of [3] which is bounded byO(|A| ·2(ω−1)|U ||U |O(1))

where ω is the matrix multiplication exponent. Since the number of table entries is
O(27kn13),U is at most 7k+13 andA is at most 2|U |, we have the total time bounded
to be O(2(ω−1)7k(7k)O(1)27kn13) = O(2ω7k(7k)O(1)n13). �
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4.1 SETH Lower Bounds

A graphG is called a cluster graph if it is a disjoint union of complete graphs. It can be
seen that all cluster graphs are chordal. We define a problem called Vertex Cover

by ClsVD.

Vertex Cover by ClsVD Parameter: k
Input: A graph G = (V , E), k, � ∈ N and a set S ⊆ V (G) with |S| ≤ k such
that G[V \ S] is a cluster graph.
Question: Is there a vertex cover of size � in G?

Assuming SETH, we show that Vertex Cover by ClsVD, FVS by CVD and
OCT by CVD cannot have an (2−ε)knO(1) FPT algorithm. As the class of all cluster
graphs is a subclass of the class of chordal graphs, deletion distance to a chordal graph
is a smaller parameter. Hence the lower bound also holds for Vertex Cover by

CVD.
To show the following theorem, we give a parameterized reduction from Hitting

Set parameterized by the size of the universe n to Vertex Cover by ClsVD and
use the fact that assuming SETH,Hitting Set cannot be solved in (2−ε)n(n+m)O(1)

time for n elements and m sets.

Theorem 5 Vertex Cover by ClsVD cannot be solved in (2 − ε)knO(1) time for
any ε > 0 assuming SETH.

Proof We give a reduction from Hitting Set defined as follows.
Hitting Set : In any instance ofHitting Set, we are given a set of elementsU with
|U | = n, a family of subsets F = {F ⊆ U } with m = |F | and a natural number k.
The objective is to find a set F ⊆ U , |F | ≤ k such that S ∩ F �= ∅ for all S ∈ F .

The problem cannot be solved in (2 − ε)n(n + m)O(1) time assuming SETH [11].
Consider a Hitting Set instance (U ,F). We construct an instance of Vertex

Cover by ClsVD as follows. For each element u ∈ U , we add a vertex vu . For each
set S ∈ F , we add |S| vertices corresponding to the elements in S. We also make the
vertices of S into a clique. Finally, for each element u ∈ U , we add edges from vu to
the vertex corresponding to u for each set in S that contains u. See Fig. 1.

Note that the set of vertices
⋃

u∈U vu forms a cluster vertex deletion set of size n
for the graph G we constructed.

We claim that there is a hitting set of size k in the instance (U ,F) if and only if
there is a vertex cover of size k + ∑

S∈F
(|S| − 1) in G.

Let X ⊆ U be the hitting set of size k. For each set S ∈ F , mark an element of X
which intersects S. Now we create a subset of vertices Y in G consisting of vertices
corresponding to elements in X plus the vertices corresponding to all the unmarked
elements in S for every set S ∈ F . Clearly |Y | = k+ ∑

S∈F
(|S|−1). We claim that Y is

a vertex cover of G. Let us look at an edge of G between an element vertex u and its
corresponding copy vertex in S containing u. If u is unmarked in S, then it is covered
as the vertex corresponding to u in S is present in Y . If it is marked, then the element
vu is present in Y which covers the edge. All the other edges of G have both endpoints
in a set S ∈ F . Since one of them is unmarked, it belongs to Y which covers the edge.
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Fig. 1 Reduction from Hitting Set to Vertex Cover by ClsVD

Conversely, let Z be a vertex cover of G of size k + ∑
S∈F (|S| − 1). Since the

graph induced on vertices of set S forms a clique for each S ∈ F , Z should contain all
the vertices of the clique except one to cover all the edges of the clique. Let us mark
these vertices. This means that at least

∑
S∈F (|S| − 1) of the vertices of Z are not

element vertices vu . Now the remaining k vertices of Z should hit all the remaining
edges in G. Suppose it contains another vertex x corresponding to an element u in set
S ∈ F . Since x can only cover the edge from x to the element vertex vu out of the
remaining edges, we could remove x and add vu as it is not present in Z and still get a
vertex cover of G of the same size. Hence we can assume, without loss of generality
that all the remaining vertices of Z are element vertices vu . Let X ′ be the union of the
k elements corresponding to these element vertices. We claim that X ′ is a hitting set
of (U ,F) of size k. Suppose X ′ does not hit a set S ∈ F . Look at the unmarked vertex
x in the vertices of S. There is an edge from x to its element vertex vu . Since u /∈ X ′,
this edge is uncovered in G giving a contradiction.

Hence given a Hitting Set instance (U ,F), we can construct an instance for
Vertex Cover by ClsVD with parameter n. Hence, if we could solve Vertex

Cover by ClsVD in (2−ε)knO(1) time, we can solveHitting Set in (2−ε)n(n+
m)O(1) time contradicting SETH. �

The proof of the following theorem works by modifying the reduction in the above
proof to replace edges with triangles.

Theorem 6 FVS by CVD andOCT by CVD given the modulator cannot be solved
in (2 − ε)knO(1) time for any ε > 0 assuming SETH.

Proof To prove the above theorem, we again give a reduction very similar to the reduc-
tion given in the proof of Theorem 5. Consider a Hitting Set instance (U ,F). To
create an instance of Feedback Vertex Set by CVD orOdd Cycle Transver-

sal by CVD, we replace each edge in the above reduction by a triangle. It can be
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easily shown that the graph obtained after removing the vertices corresponding to
elements in U forms a chordal graph. The proof follows on similar lines. �

5 Conclusion

Our main contribution is to develop techniques for addressing structural parameter-
ization problems when the modulator is not given. The problem posed by Fellows
et al. about whether there is an FPT algorithm for Vertex Cover parameterized
by perfect deletion set with only a promise on the size of the deletion set, is open.
Regarding problems parameterized by chordal deletion set size, though our algorithms
are based on treewidth DP, we remark that not all problems that have FPT algorithms
when parameterized by treewidth necessarily admit an FPT algorithm parameterized
by CVD. For example, Dominating Set parameterized by treewidth admits an FPT
algorithm [12] while Dominating Set parameterized by CVD is para-NP-hard as
the problem is NP-hard in chordal graphs [5]. Generalizing our algorithms for other
problems, for example, for the optimization problems considered by Liedloff et al.
[33] would be an interesting direction.

Finally, we believe that this whole notion of permissive problems needs to be
explored in many facets of structural parameterizations where finding the modulator
is more expensive than solving the problem when the modulator is given.
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