
Algorithmica (2022) 84:1724–1761
https://doi.org/10.1007/s00453-022-00957-5

Fast Mutation in Crossover-Based Algorithms

Denis Antipov1 ·Maxim Buzdalov1 · Benjamin Doerr2

Received: 18 November 2020 / Accepted: 6 March 2022 / Published online: 25 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The heavy-tailed mutation operator proposed in Doerr et al. (GECCO 2017), called
fast mutation to agree with the previously used language, so far was proven to be
advantageous only in mutation-based algorithms. There, it can relieve the algorithm
designer from finding the optimal mutation rate and nevertheless obtain a performance
close to the one that the optimal mutation rate gives. In this first runtime analysis of
a crossover-based algorithm using a heavy-tailed choice of the mutation rate, we
show an even stronger impact. For the (1 + (λ, λ)) genetic algorithm optimizing the
OneMax benchmark function, we show that with a heavy-tailed mutation rate a linear
runtime can be achieved. This is asymptotically faster than what can be obtained with
any static mutation rate, and is asymptotically equivalent to the runtime of the self-
adjusting version of the parameters choice of the (1+ (λ, λ)) genetic algorithm. This
result is complemented by an empirical study which shows the effectiveness of the
fast mutation also on random satisfiable MAX- 3SAT instances.

1 Introduction

It is often cited as a strength of evolutionary algorithms (EAs) that by setting the
parameters right the algorithm can be adjusted to the particular problem to be solved.

Extended version of the paper [1] in the proceedings of GECCO. This version contains all proofs and
other details that had to be omitted in the conference version for reasons of space. Also, we have greatly
expanded the experimental section.

B Denis Antipov
antipovden@yandex.ru

Maxim Buzdalov
mbuzdalov@gmail.com

Benjamin Doerr
doerr@lix.polytechnique.fr

1 ITMO University, St. Petersburg, Russia

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00957-5&domain=pdf
http://orcid.org/0000-0001-7906-096X

Algorithmica (2022) 84:1724–1761 1725

However, it is also known that this process of optimizing the parameters is time-
consuming and needs a lot of expert knowledge.

The theoretical research in this field (see, e.g., [2, 13, 20, 26]) has contributed to
this challenge via mathematical runtime analyses for general parameter values, which
allow to understand the influence of the parameter on the performance and allow to
derive optimal parameter values. Examples include (i) the works of Jansen et al. [21]
as well as Doerr and Künnemann [11], which determine the runtime of the (1 +
λ) EA on OneMax for general value of λ and from this conclude that a linear speed-
up with regard to the number of iterations exists only for λ = O

(log(n) log log(n)
log log log(n)

)
,

(ii) Witt’s analysis [33] of the runtime of the (μ + 1) EA for general values of μ

on the LeadingOnes benchmark, which in particular shows that for μ = O(n
log n) a

larger parent population does not lead to an asymptotic slow-down of the algorithm, or
(iii) the results of Lehre [22, 23] andmany follow-upworks, which formany non-elitist
algorithms determine asymptotically precise thresholds for the selection pressure that
separate a highly inefficient regime from one with polynomial runtimes.

Concerning the mutation rate p of the standard bit mutation operator for bit strings
of length n, which is our main object of interest in this work, a large number of
classic results suggests that a value of p = 1

n or close by is a good choice. We note
that a mutation rate of p = 1

n means that on average a single bit is flipped. The
recommendation p = 1

n can already be found in [6, 25]. Rigorously proven results
show, among others, that only p = �(1n) can give an O(n log n) runtime of the
(1 + 1) EA on OneMax [16], that the asymptotically optimal mutation rate for the
(1 + 1) EA on LeadingOnes is approximately p = 1.59

n , that p = (1 ± o(1)) 1n
is the asymptotically best mutation rate of the (1 + 1) EA for all pseudo-Boolean
linear functions [34], that only a mutation rate below c

n , where c is a specific constant,
guarantees a polynomial runtime of the (1 + 1) EA on all monotonic functions [10,
24], and that (1± o(1)) 1n is the optimal mutation rate for the (1+λ) EA on OneMax

when λ is small [18].
In the light of this previous state of the art, it came as a surprisewhenDoerr et al. [12]

determined the runtime of the (1+1) EA on jump functions for general mutation rates
and observed that here much higher mutation rates were optimal.1 The jump function
Jumpnk (we deviate here from the notation of [12]) is a function defined on bit-string of
length nwhich ismostly identical to the easyOneMax function, butwhich has a valley
of low fitness of Hamming width k − 1 around the global optimum. Consequently,
elitist algorithms can leave this local optimum only by flipping k specific bits (and
[14] suggests that non-elitist algorithms cannot do better). As shown in [12], for this
multimodal benchmark function the insights gained previously on unimodal functions
like OneMax, linear functions, or LeadingOnes do not apply. The optimal mutation
rate for Jumpnk was found to be (1 ± o(1)) kn . Deviating from this optimal rate by a

1 As a reviewer of [1] pointed out, in [28] an upper bound was shown for the runtime of the (1 + 1) EA
with general mutation rate on the hurdle problem with hurdle width 2 and 3. This upper bound is minimized
by the mutation rates 2

n and 3
n . This could have been seen earlier as a hint that larger mutation rates can

be useful. Since the central research question discussed in [28] was whether crossover is beneficial or not,
apparently this detail was overlooked by the broader scientific audience.

123

1726 Algorithmica (2022) 84:1724–1761

small constant factor leads to a runtime increase by a factor of e�(k). Consequently,
the choice of the mutation rate for this problem is truly delicate.

To overcome this difficulty, the use of a random mutation rate chosen according to
a heavy-tailed distribution, more specifically, a power-law distribution with exponent
β > 1, was suggested. This mutation operator, called fast mutation in agreement with
previous uses of heavy-tailed distributions in continuous evolutionary computation
[30, 35, 36], samples a random number α ∈ [1 · · · � n

2 �] with probability proportional
to α−β and then flips each bit independently with rate α

n . Each application of this
operator samples the value of α independently.

The main result in [12] is that the (1+1) EA with this mutation operator optimizes
Jumpnk in a time that is only by a factor of O(kβ−0.5) larger than the time resulting
from standard bit mutation with the optimal rate. Given that missing the optimal rate
(which is only accessible when knowing k) by a small constant factor already incurs
a runtime increase by a factor of e�(k), the O(kβ−0.5) price for having a one-size-fits-
all mutation operator appears to be a good investment. From the asymptotic point of
view β should be taken arbitrarily close to 1, but the experiments conducted in [12]
suggested that β = 1.5 is a good choice. Both theory and experiments showed that
the choice of β is not overly critical. For this reason, it is fair to call fast mutation a
parameterless operator.

Since the fast mutation operator is nothing else than a random linear combination of
standard bit mutation operators with rates α

n , α = 1, . . . , � n
2 �, it is not surprising that

the resulting runtime is higher than the one from the best of these individual operators.
Rather, it is surprising that by simply averaging over the available options, one comes
relatively close to the optimum, and this in a scenario where for static rates a small
deviation from the optimum leads to a significantly increased runtime.

In this work, we observe an even more surprising strength of the fast mutation
operator. We investigate how the (1 + (λ, λ)) genetic algorithm ((1 + (λ, λ)) GA),
first proposed in Doerr et al. [9], performs with the fast mutation operator. The (1 +
(λ, λ)) GA is an evolutionary algorithm that creates λ offspring from a unique parent
individual with an unusually high mutation rate (independently, apart from the fact
that they all have the same Hamming distance from the parent), selects the best of
these, and creates another λ individuals via a biased crossover between this mutation
winner and the original parent. The best of these is taken as the new parent individual
if it is at least as good as the previous parent (see Sect. 2 for more details).

This combination of a high mutation rate and crossover with the parent as
repair mechanism allows the algorithm to more efficiently explore the search
space when the parameters are chosen suitably. Both from informal considera-
tions and from existing runtime results, the right parameterization seems to be
that the mutation rate is p = λ

n and the crossover bias, that is, the rate with
which the crossover offspring takes bits from the mutation winner, is c = 1

λ
. The

informal argument for this is that a single application of mutation and crossover
generates a bit string distributed as if generated via standard bit mutation with
rate 1

n .

123

Algorithmica (2022) 84:1724–1761 1727

With a number of runtime analyses [4, 7–9] supporting this choice,2 we fix this
relation of the three parameters in the remainder of this work. Since the mutation rate
is the starting point of our research, we can alternatively first choose a mutation rate
of type p = α

n and then set λ = pn and c = 1
pn .

The right choice of the mutation rate is non-trivial. The good news from [9] is that
any rate between p = ω(1n) and p = o(log nn) leads to a runtime of o(n log n) on
OneMax, that is, asymptotically faster than the performance of classic evolutionary
algorithms. The optimal mutation rate of

p = �

(
1

n

√
log(n) log log(n)

log log log(n)

)

,

however, is non-trivial to find [8]. It yields an expected runtime on OneMax of

E[T] = �

(

n

√
log(n) log log log(n)

log log(n)

)

.

Our main research goal in this work is understanding how the (1 + (λ, λ)) GA per-
forms when instead of standard bit mutation with a fixed mutation rate p the fast
mutation operator is used. With the previously suggested relations between mutation
rate, offspring number, and crossover bias, this means that first a number α is sampled
from a power-law distribution, then λ = α offspring are generated via flipping � bits
chosen uniformly at random, where � ∼ Bin(n, α

n),3 and finally λ times a biased
crossover with bias c = 1

α
between parent and mutation winner is performed. We call

this modified algorithm the fast (1 + (λ, λ)) GA.
Our main result is that not only the use of the fast mutation operator in the (1 +
(λ, λ)) GA relieves us from finding a good mutation rate, but surprisingly we can
even obtain a runtime that is faster than the runtime of the (1 + (λ, λ)) GA with any
fixed mutation rate: If the power-law exponent β satisfies 2 < β < 3, then the fast
(1 + (λ, λ)) GA has an expected runtime of O(n) on OneMax.

We note that a linear runtime of the (1 + (λ, λ)) GA on OneMax was obtained
earlier with a self-adjusting choice of the mutation rate based on the one-fifth rule [8].
While this worked well on OneMax, experimental [17] and theoretical [7] studies on
satisfiable MAX- 3SAT instances showed that this approach carries the risk that the
population size λ increases rapidly because the problem structure may just not allow a
one-fifth success rate, regardless how large λ is. Since this behavior increases the time
complexity of each iteration, it leads to a significant performance loss. Such problems,
naturally, cannot arise with the static behavior of the fast mutation operator.

Via an empirical study, we show that the fast mutation operator indeed without any
modification also solves well the satisfiableMAX- 3SAT instances for which the one-
fifth rule variant of the (1 + (λ, λ)) GA did not perform well in [7] (unless enriched

2 We note that the work [5] conducted in parallel to ours suggests that a different choice is necessary when
large fitness valleys need to be crossed.
3 This mutation can be interpreted as a standard bit mutation with rate α

n , but conditional on having the
same number of flipped bits for all individuals.

123

1728 Algorithmica (2022) 84:1724–1761

with a suitable cap on λ). However, our study also shows that on OneMax itself, the
self-adjusting (1+(λ, λ))GA is by a constant factor faster than the fast (1+(λ, λ))GA.
Since the runtime loss from a degenerate behavior of the one-fifth rule version of the
(1 + (λ, λ)) GA can be large (due to the population size of order n), we draw from
these results the recommendation to use the more robust fast (1 + (λ, λ)) GA on a
novel problem rather than the self-adjusting (1 + (λ, λ)) GA.

2 Notation and Problem Statement

The (1 + (λ, λ)) GA, first presented in [9], has the following working principles. It
stores one current individual x , which is initialized with a random bit string. Each
iteration of the (1+ (λ, λ)) GA consists of two phases, which are the mutation phase
and the crossover phase. In the mutation phase the algorithm first chooses the muta-
tion strength � following the binomial distribution with parameters n and p, where
p is usually called the mutation rate. It then creates λ mutants by copying the cur-
rent individual x and flipping exactly � bits which are chosen uniformly at random,
independently for each mutant. After that the mutant with the best fitness is chosen
as the winner of the mutation phase x ′ (all ties are broken uniformly at random). In
the crossover phase the algorithm λ times performs a crossover between x and x ′ by
taking each bit from x ′ with probability c and from x otherwise. The probability c
is called the crossover bias. The best crossover offspring y (all ties are again broken
uniformly at random) is compared with the current individual x . If y is not worse, then
it replaces x . The main hope behind this algorithm is that with a highmutation rate, the
mutation winner x ′ contains some beneficial solution elements, and that the crossover
with the parent acts as repair mechanism that removes the destructions caused by the
high mutation rate.

As it was discussed in the introduction, the standard parameter setting proposed in
[9] uses the mutation rate p = λ

n and the crossover bias c = 1
λ
. However, there is

not strong recommendation on how to choose λ. For the static choice [9] suggests to
use λ = ω(1) and λ = o(log(n)) in order to have a o(n log n) runtime on OneMax,
but this runtime is still super-linear. It was also shown in [9] that choosing a fitness-

dependent λ =
√

n
n− f (x) gives a linear runtime on OneMax. In [8] it was shown that

if we control λ according to the one-fifth rule we also get a�(n) runtime onOneMax.
In this paper we propose to choose λ in each iteration from some heavy-tailed

distribution. More precisely, the probability that we choose λ = i is

Pr[λ = i] =
{
Cβ,ui−β, if i ∈ [1 · · · u],
0, otherwise,

whereβ ∈ R is the power-law exponent of the distribution (which is always considered
as a constant), u ∈ N is an upper bound on the choice of λ (and may depend on n),
and Cβ,u :=(

∑u
i=1 i

−β)−1 is the normalization coefficient. All our runtime results
on OneMax will hold for the classic choice u = �n/2�. We introduce this additional
parameter because theMax-SATanalyses in [7] showed that sometimes a stricter upper

123

Algorithmica (2022) 84:1724–1761 1729

bound on λ is necessary. For that reason, it is interesting to see also in the OneMax

analyses how small an upper bound on λ can be taken so that a linear runtime is still
obtained.

The detailed pseudocode of the fast (1+ (λ, λ)) GA is shown in Algorithm 1. Our
main result will be that this simple way of choosing λ gives us a linear runtime for all

β ∈ (2, 3) and u ≥ ln
1

3−β (n).

Algorithm 1: The fast (1 + (λ, λ)) GA with power-law exponent β and upper
limit u maximizing f : {0, 1}n → R

1 x ← random bit string of length n;
2 while not terminated do
3 Choose λ from [1 · · · u] with Pr[λ = i] ∼ i−β ;

4 Choose � ∼ Bin
(
n, λ

n

)
;

5 for i ∈ [1 · · · λ] do
6 x(i) ← a copy of x ;

7 Flip � bits in x(i) chosen uniformly at random;
8 end
9 x ′ ← argmaxz∈{x(1),...,x(λ)} f (z);

10 for i ∈ [1 · · · λ] do
11 Create y(i) by taking each bit from x ′ with probability 1

λ and from x with probability λ−1
λ ;

12 end
13 y ← argmaxz∈{y(1),...,y(λ)} f (z);

14 if f (y) ≥ f (x) then
15 x ← y;
16 end
17 end

2.1 Useful Tools

In this section we collect some classic results which are used in our proofs. First, to be
able to make the transition between the number of iterations and the number of fitness
evaluations, we use Wald’s equation [32].

Lemma 1 (Wald’s equation) Let (Xt)t∈N be a sequence of real-valued random vari-
ables and let T be a positive integer random variable. Let also all following conditions
be true.

1. All Xt have the same finite expectation.
2. For all t ∈ N we have E[Xt1{T≥t}] = E[Xt]Pr[T ≥ t].
3.

∑+∞
t=1 E[|Xt |1{T≥t}] < ∞.

4. E[T] is finite.
Then we have

E

[
T∑

t=1

Xt

]

= E[T]E[X1].

123

1730 Algorithmica (2022) 84:1724–1761

Fig. 1 Illustration of the inequality
∑�s�

i=1 i
−α ≥ ∫ s

1 x−αdx for the case α ≥ 0. In this example we have
α = 1, s = 3.5 and �s� = 4. The red area equals to the sum. The blue area (fully under red, thus purple)
equals to the integral (Color figure online)

We use the following inequality to estimate the probability that at least one of λ

Bernoulli trials succeeds.

Lemma 2 For all p ∈ [0, 1] and all λ > 0 we have

1 − (1 − p)λ ≥ λp

1 + λp
.

Proof. By [29,Lemma 8] (or (1.4.19) in [15]) we have (1 − p)λ ≤ 1
1+λp . Hence,

1 − (1 − p)λ ≥ 1 − 1

1 + λp
= λp

1 + λp
.

We frequently use the following bounds on the partial sums of the generalized
harmonic series.

Lemma 3 For all s ∈ R such that s ≥ 1and for allα �= 1wehave
∑�s�

i=1 i
−α ≥ s1−α−1

1−α
.

For α = 1 we have
∑�s�

i=1 i
−α ≥ ln(s).

Proof Weestimate the sum forα �= 1 through the corresponding integral (this estimate
is illustrated in Figs. 1 and 2).

�s�∑

i=1

i−α ≥
∫ s

1
x−αdx = s1−α − 1

1 − α
.

The case for α = 1 is a well-known bound on the partial sum of the harmonic series.

123

Algorithmica (2022) 84:1724–1761 1731

Fig. 2 Illustration of the inequality
∑�s�

i=1 i
−α ≥ ∫ s

1 x−αdx for the case α < 0. In this example we have
α = −1.5, s = 3.5 and �s� = 4. The red area equals to the sum. The blue area equals to the integral and to
the green area, which is fully under the red one (Color figure online)

Lemma 4 For all u ∈ N we have

• ∑u
i=1 i

−α ≤ u1−α 2−α
1−α

, if α < 0,

• ∑u
i=1 i

−α ≤ u1−α

1−α
, if α ∈ [0, 1),

• ∑u
i=1 i

−α ≤ α
α−1 , if α > 1,

• ∑u
i=1 i

−α ≤ ln(u) + 1, if α = 1.

Proof of Lemma 4 By analogy with Lemma 3 we estimate the sum through a corre-
sponding integral. If α < 0 we have

u∑

i=1

i−α ≤
∫ u

1
x−αdx + u−α ≤ u1−α − 1

1 − α
+ u−α ≤ u1−α 2 − α

1 − α
.

If α ≥ 0 we have

u∑

i=1

i−α ≤ 1 +
∫ u+1

2
(x − 1)−αdx ≤ 1 + u1−α − 1

1 − α

If α ∈ [0, 1), then we haveu∑

i=1

i−α ≤ u1−α − 1 + 1 − α

1 − α
≤ u1−α

1 − α
.

If α > 1, we have

u∑

i=1

i−α ≤ 1 + 1

α − 1
≤ α

α − 1
.

123

1732 Algorithmica (2022) 84:1724–1761

The case for α = 1 is a well-known bound on the partial sum of the harmonic
series.

3 Runtime Analysis

In this section we prove upper and lower bounds on the runtime of the fast (1 +
(λ, λ)) GA on OneMax.

3.1 Upper Bound

Our aim in this subsection is to prove an upper bound on the number of fitness evalua-
tions taken until the fast (1+(λ, λ))GAfinds the optimumof theOneMax benchmark.
Since it is technically easier, we first regard the number of iterations until the optimum
is found. For algorithms with fixed population sizes, such a bound would immediately
imply a bound on the number of fitness evaluations (namely by multiplying the num-
ber of iterations with the fixed number of fitness evaluations per iteration). For the fast
(1 + (λ, λ)) GA using a newly sampled value of λ in each iteration, things are not
that easy, but Wald’s equation (Lemma 1) allows to argue that multiplying with the
expected number of fitness evaluations per iteration gives the right result.

Before proceeding with proofs, we now state two theorems that together constitute
the main result of this subsection. We start by showing that for reasonable parameter
values, the optimum is found in a linear number of iterations.

Theorem 5 If β ∈ (1, 3) and u ≥ ln
1

3−β (n), then the expected number of iterations
until the fast (1 + (λ, λ)) GA finds the optimum of OneMax function is O(n).

When β > 2, the expected number of fitness evaluations per iteration is �(1)
(see Lemma 9). With this observation and Wald’s equation, we obtain the following
estimate for the runtime.

Theorem 6 If β ∈ (2, 3) and u ≥ ln
1

3−β (n), then the expected number of fitness
evaluations until the fast (1 + (λ, λ)) GA finds the optimum of OneMax function is
O(n).

We start with the proof of Theorem 5. For the readers’ convenience we split the
proof into Lemmas 7 and 8. The first lemma is essentially an interpretation of Lemma 7
in [9].

Lemma 7 If λ ≤
√

n
d(x) , where d(x) is the current Hamming distance between the

current individual x and the optimum, then the probability pd(x)(λ) of increasing the
fitness in one iteration is at least

C
d(x)λ2

n
,

where C > 0 is an absolute constant. If λ >
√

n
d(x) , then this probability is at least C.

123

Algorithmica (2022) 84:1724–1761 1733

Proof By [9,Lemma 7], the probability of a true progress (that is, an iteration in which
we find a strictly better individual than the current individual x) pd(x)(λ) is at least

C ′
⎛

⎝1 −
(
1 − d(x)

n

) λ2
2

⎞

⎠ ,

where C ′ > 0 is an absolute constant. By Lemma 2 we have

pd(x)(λ) ≥ C ′
⎛

⎝1 −
(
1 − d(x)

n

) λ2
2

⎞

⎠ ≥ C ′
d(x)λ2

2n

1 + d(x)λ2
2n

.

If λ ≤
√

n
d(x) , then we have pd(x)(λ) ≥ C ′ d(x)λ2

3n . Note that C :=C ′
3 is an absolute

constant as well as C ′. If λ >
√

n
d(x) , then pd(x)(λ) ≥ C ′

3 = C .

Lemma 8 Letβ ∈ (1, 3). Then the probability pd(x) of having progress in one iteration
given that the current distance to the optimum is d(x) is at least

C(β)
d(x)U 3−β

n
,

where U = min
{
u,

√
n

d(x)

}
and C(β) is some constant independent of n.

Proof Note that since u is an integer number, we have u ≥ �U�. Hence, by Lemma 7
we have

pd(x) =
u∑

λ=1

Cβ,uλ
−β pd(x)(λ) ≥ Cβ,uC

�U�∑

λ=1

d(x)λ2−β

n
= Cβ,uC

d(x)

n

�U�∑

λ=1

λ2−β

If U ≥ 2, then by Lemma 3 we have

�U�∑

λ=1

λ2−β ≥ U 3−β − 1

3 − β
≥ 1 − 2β−3

3 − β
U 3−β ≥ 3

8
U 3−β.

Otherwise, when U < 2 we have

�U�∑

λ=1

λ2−β ≥ 1 = Uβ−3U 3−β ≥ 2β−3U 3−β ≥ 1

4
U 3−β.

Finally, we estimate

pd(x) ≥ Cβ,uC
d(x)

n

�U�∑

λ=1

λ2−β ≥ Cβ,uC
1

4

d(x)

n
U 3−β = C(β)

d(x)U 3−β

n

123

1734 Algorithmica (2022) 84:1724–1761

Table 1 The probability pd(x)
to increase fitness in one
iteration for various values of
parameters β ∈ R and u ∈ N

β u ≤
√

n
d(x) u >

√
n

d(x)

< 1 �

(
d(x)u2

n

)
�(1)

= 1 �

(
d(x)u2

n log(u)

)
≥

1+ln(u)−ln(
√

n
d(x))

36 ln(u)

(1, 3) �

(
d(x)u3−β

n

)
�

(√
n

d(x)

1−β
)

= 3 �
(
d(x) log(u)

n

)
�

(
log(n/d(x))+1

n/d(x)

)

> 3 �
(
d(x)
n

)

with C(β):= 1
4Cβ,uC . Since C is an absolute constant by Lemma 7 and since, by

Lemma 4, Cβ,u is at least β−1
β

, which is a constant independent of u, C(β) is also a
constant independent of u.

In order to show a full picture we also computed the values of pd(x) for a wider
range of parameters u and β. The results are shown in Table 1 and their proofs are
included in the “Appendix”.

We are now ready to prove Theorem 5.

Proof of Theorem 5 We estimate the upper bound on the expectation of the runtime TI
(in terms of iterations) as the sum of expected times until the algorithm leaves each
fitness level. By Lemma 8 we have

E[TI] ≤
n∑

d=1

1

pd
≤ 1

C(β)

⎛

⎝
�n/u2�∑

d=1

n

du3−β
+

n∑

d=�n/u2�+1

√
n

d

β−1
⎞

⎠ .

By Lemma 4 we estimate the first sum

�n/u2�∑

d=1

n

du3−β
≤

n
(
ln

(
n
u2

)
+ 1

)

u3−β
≤ n(ln(n) + 1)

ln(n)
= n(1 + o(1)),

where in the last inequality we used the assumption u ≥ ln
1

3−β (n). By Lemma 4 we
estimate the second sum as follows.

n∑

d=�n/u2�+1

√
n

d

β−1

≤
n∑

d=1

√
n

d

β−1

≤ n
β−1
2

n∑

d=1

d− β−1
2 ≤ n

β−1
2

n
3−β
2

(3 − β)/2
= O(n).

123

Algorithmica (2022) 84:1724–1761 1735

Therefore, we have

E[TI] ≤ 1

C(β)
(O(n) + O(n)) = O(n).

Before we prove Theorem 6 we first estimate E[λ], which is half the expected cost
of one iteration.

Lemma 9 If λ is sampled from the heavy-tailed distribution with parameter β and
upper limit u, then its expected value is

• E[λ] = �(1), if β > 2,
• E[λ] = �(log(u)), if β = 2,
• E[λ] = �(u2−β), if β ∈ (1, 2),
• E[λ] = �(u

log(u)
), if β = 1, and

• E[λ] = �(u), if β < 1,

where the asymptotic notation is for u → +∞.

Proof First recall that Cβ,u = (
∑u

i=1 i
−β)−1. By Lemmas 3 and 4 we have

• If β < 1, then Cβ,u = �(uβ−1),
• If β = 1, then Cβ,u = �(1/ ln(u)), and
• If β > 1, then Cβ,u = �(1).

We compute

E[λ] =
u∑

i=1

i Pr[λ = i] = Cβ,u

u∑

i=1

i1−β.

If β > 2, then by Lemma 4 we have

Cβ,u ≤ E[λ] ≤ Cβ,u
β − 1

β − 2
.

Hence, E[λ] = �(1).
Ifβ = 2, then

∑u
i=1 i

1−β is a partial sumof the harmonic series, thus it is�(log(u)).
If β < 2, then by Lemmas 3 and 4 we have

Cβ,u
u2−β − 1

2 − β
≤ E[λ] ≤ Cβ,u

u2−β

2 − β
.

Therefore, E[λ] = Cβ,u�(u2−β). Together with the estimates of Cβ,u this proves the
lemma for β < 2.

We are now in the position to prove Theorem 6

Proof of Theorem 6 Let {λt }t∈N be a sequence of random variables, each following the
power-law distribution with parameters β and u. We can assume that for all t ∈ N the

123

1736 Algorithmica (2022) 84:1724–1761

fast (1+ (λ, λ)) GA chooses λ:=λt in iteration t . Since the cost of one iteration is 2λ
fitness evaluations (λ for the mutation phase and λ for the crossover phase), the total
number of fitness evaluations TF has the same distribution as

∑TI
t=1 2λt . We aim at

proving that the sequence (λt)t∈N and TI allow to use Wald’s equation (Lemma 1).
We show that conditions (1)–(4) of this lemma are satisfied.

1. All λt have the same expectation, which is finite by Lemma 9.
2. The event TI ≥ t is independent of the outcome of λt , which implies that for all

i ∈ [1 · · · u] we have Pr[TI ≥ t | λt = i] = Pr[TI ≥ t]. Therefore, we have

E[λt1{TI≥t}] =
u∑

i=1

i Pr[λt = i]Pr[TI ≥ t | λt = i]

= Pr[TI ≥ t]
u∑

i=1

i Pr[λt = i] = Pr[TI ≥ t]E[λt].

3. By the previous condition we have

+∞∑

t=1

E[|λt | · 1{TI≥t}] =
+∞∑

t=1

Pr[TI ≥ t]E[λt] = E[λ]E[TI],

since for all t ∈ N we have E[λt] = E[λ]. By Theorem 5 and Lemma 9, both
E[λ] and E[TI] are finite, hence their product is finite as well.

4. By Theorem 5 E[TI] is finite.
Thus, by Wald’s inequality we have

E[TF] = E[TI]E[2λt].

By Theorem 5 and Lemma 9 we conclude

E[TF] = O(n) · �(1) = O(n).

Although we are mostly interested in β ∈ (2, 3) and reasonably high upper limit
u, a reader might find it interesting to see the upper bounds for the runtimes yielded
by different parameters values.

For this reason we show the estimates for E[TI] and E[TF] for a wider range of
parameters values in Table 2 and their proofs are included in the “Appendix”.

In the proofs of Theorems 5 and 6 we aimed at delivering only asymptotic upper
bounds disregarding the leading constant in order not to reduce the readability of
the paper. However, for the complete picture, without proof we estimate the leading
constant delivered by our arguments.

Recall that C(β) = 1
12Cβ,uC ′. From the proof of Lemma 7 in [9] we can show

that C ′ which is used in Lemma 7 is at least 1
e (1 − exp(− exp(− 3

2))) ≈ 0.0735. For

123

Algorithmica (2022) 84:1724–1761 1737

Ta
bl
e
2

U
pp

er
bo

un
ds

on
th
e
ex
pe
ct
ed

nu
m
be
r
of

ite
ra
tio

ns
an
d
ex
pe
ct
ed

nu
m
be
r
of

fit
ne
ss

ev
al
ua
tio

ns
fo
r
di
ff
er
en
tv

al
ue
s
of

β
an
d
u

β
E

[T
I]

E
[T

F
]=

2
E

[T
I]E

[λ]

<
1

O
(n

)
if

u
≥

√ ln
(n

)

O
(

n u
2
lo
g

n u
2

)
if

u
≤

√ ln
(n

)

O
(n
u
)

if
u

≥
√ ln

(n
)

O
(
n u
lo
g

n u
2

)
if

u
≤

√ ln
(n

)

=
1

O
(n

)
if

u
≥

√ ln
(n

)
ln
ln

(n
)

O
(

n u
2
lo
g

(
n u
2

)
lo
g(
u
))

if
u

≤
√ ln

(n
)
ln
ln

(n
)

O
(

nu
lo
g(
u
)
)

if
u

≥
√ ln

(n
)
ln
ln

(n
)

O
(
n u
lo
g

(
n u
2

))
if

u
≤

√ ln
(n

)
ln
ln

(n
)

(1
,
2)

O
(n

)
if

u
≥

ln
1

3−
β

(n
)

O
(

n
u
3−

β
lo
g

(
n u
2

))
if

u
<

ln
1

3−
β

(n
)

O
(n
u
2−

β
)

if
u

≥
ln

1
3−

β
(n

)

O
(
n u
lo
g

(
n u
2

))
if

u
<

ln
1

3−
β

(n
)

=
2

O
(n

lo
g(
u
))

if
u

≥
ln

(n
)

O
(
n
lo
g(
u
)

u
lo
g

(
n u
2

))
if

u
<

ln
(n

)

(2
,
3)

O
(n

)
if

u
≥

ln
1

3−
β

(n
)

O
(

n
u
3−

β
lo
g

(
n u
2

))
if

u
<

ln
1

3−
β

(n
)

=
3

O
(n

lo
g
lo
g(
u
))

if
u

≥
n

1
ln
ln

(n
)

O
(

n
lo
g(
u
)
lo
g

(
n u
2

))
if

u
<

n
1

ln
ln

(n
)

O
(n

lo
g
lo
g(
u
))

if
u

≥
n

1
ln
ln

(n
)

O
(

n
lo
g(
u
)
lo
g

(
n u
2

))
if

u
<

n
1

ln
ln

(n
)

>
3

O
(n

lo
g(
n)

)
O

(n
lo
g(
n)

)

T
he

la
st
co
lu
m
n
is
ca
lc
ul
at
ed

by
W
al
d’
s
eq
ua
tio

n
in

th
e
sa
m
e
m
an
ne
r
as

in
T
he
or
em

6

123

1738 Algorithmica (2022) 84:1724–1761

any upper bound u = ω(1) we also have Cβ,u ≥ β−1
β

. Hence, we estimate the upper
bound on the leading constant.

1

C(β)

(
1 + 2

3 − β

)
≤ 12β(5 − β)

(3 − β)(β − 1)C ′ ≈ 164
β(5 − β)

(3 − β)(β − 1)
.

Taking into account the leading constant hidden in Lemma 9, which is β−1
β−2 if β > 2,

we estimate the upper bound on the leading constant for E[TF] delivered byTheorem6
as

328 · β(5 − β)

(3 − β)(β − 2)
. (1)

3.2 Lower Bound

In this section we prove the tightness of our upper bounds by showing a lower bound
of �(n) fitness evaluations for the runtime of the fast (1 + (λ, λ)) GA on OneMax.
This is a special case of a deeper result [31], which showed the same lower bound
for all comparison-based algorithms (which the (1 + (λ, λ)) GA is). For the readers’
convenience, we give an elementary proof as well.

Theorem 10 The expected runtime of the fast (1 + (λ, λ)) GA with parameter β ∈ R

and any upper limit u ∈ N on the OneMax function is at least �(n
E[λ]) iterations,

where E[λ] is estimated as in Lemma 9, and �(n) fitness evaluations.

Proof. The progress in one iteration cannot be greater than the number � of bits which
we flip in each mutant, since we cannot obtain more than � new one-bits in the winner
x ′ of the mutation phase. Therefore, after we have sampled λ, the expected progress
is

E[f (y) − f (x) | λ] ≤ E[� | λ] = λ.

The expected progress in one iteration thus is

E[f (y) − f (x)] =
u∑

i=1

Pr[λ = i]E[f (y) − f (x) | λ = i] ≤ E[λ].

Let x0 be the initial individual. Since it is chosen uniformly at random, its expected
fitness is E[f (x0)] = n

2 . Hence, by the additive drift theorem [19] the expectation of
the number of iterations TI before the algorithm finds the optimum is at least

E[TI] ≥ n − E[f (x0)]
E[λ] = n

2E[λ] .

Now we can use Wald’s equation as we did in the proof of Theorem 6. We obtain

E[TF] = E[TI]E[2λ] ≥ n

2E[λ] · 2E[λ] = n.

123

Algorithmica (2022) 84:1724–1761 1739

4 Experiments

Our theoretical findings show that the fast (1 + (λ, λ)) GA with the natural choice
β ∈ (2, 3) has a linear runtime on OneMax, which matches the performance of the
self-adjusting (1 + (λ, λ)) GA. Due to their asymptotic nature, our results cannot
indicate which of the two linear-time algorithms is faster, how the fast (1+ (λ, λ))GA
compares with other algorithms on reasonable problem sizes, and how its performance
depends on β ∈ (2, 3). For the latter, the only estimate we have from theory, Eq. (1),
provides a very large upper bound on the constant factor, which could suggest that
β = 2.5+ ε may be better than β = 2.5− ε for 0 < ε < 0.5, but without a matching
lower bound this is speculative. To answer these questions, but also to investigate the
performance on a slightly less artificial problem,we performed a series of experiments.

As algorithms, we regarded randomized local search (RLS) and the (1+1) EAwith
a standard bit mutation as well as the self-adjusting (1 + (λ, λ)) GA, which controls
λ (and thus p = λ/n and c = 1/λ) via the one-fifth success rule [8].

We have also considered the version of the (1+ (λ, λ)) GA with the one-fifth rule
with an upper limit of 2 ln(n + 1) on the value of λ, introduced in [7], since it showed
a much better performance on theMAX- 3SAT problem than without this upper limit.
For the same reason, we also consider the fast (1 + (λ, λ)) GA with the same upper
limit of 2 ln(n + 1) on the value of λ, which is imposed by setting the distribution
parameter u to u = 2 ln(n+ 1)). To investigate the effect of varying u further, we also
conduct a series of experiments with a fixed problem size n and different values of u.

For the fast (1 + (λ, λ)) GA, we used the values of β ∈ {2.1, 2.3, 2.5, 2.7, 2.9}
unless noted otherwise. In all the adaptive versions of the (1 + (λ, λ)) GA, the initial
value of λ is set to 1.

The source code used to perform these experiments is a part of a larger project
dedicated to the (1 + (λ, λ)) GA available on GitHub4 and as the supplementary
material for this paper.

4.1 Implementation Details and Their Discussion

In all runs we used slightly modified versions of the algorithms to avoid counting
obviously unnecessary fitness evaluations. The particular changes are as follows.

• In the (1 + 1) EA, if standard bit mutation flips zero bits, then we resample the
offspring until it is different from the parent. This is equivalent to not counting the
fitness evaluation of the offspring identical to the parent.

• In all versions of the (1+(λ, λ))GA, we resample � until � �= 0. This is equivalent
to not counting the fitness evaluations in iterations with � = 0 because here all
offspring are identical to the parent. In the crossover phase, samples taking all bits
from the parent x are repeated (without evaluating the fitness of the copy of the
parent) and samples taking all bits from the mutation winner x ′ are not evaluated
(that is, do not count towards the number of fitness evaluations). Additionally, x ′
also participates in the selection of the best among x and the crossover results y(i).
When there is a tie, then the crossover winner has a higher priority than x ′.

4 https://github.com/mbuzdalov/generic-onell.

123

https://github.com/mbuzdalov/generic-onell

1740 Algorithmica (2022) 84:1724–1761

We consider these natural modifications instead of the original algorithms in this
section, since we are sure that anyone implementing these algorithms for solving
practical problems would do the same. For a practitioner it does not make sense to
waste fitness evaluations on individuals which are identical to their parents, while in
theoretical works these are often counted since constant factors are often ignored. We
note that similar modifications of algorithms were called practice-aware in [27]. We
note that there are much more ways to tune the runtime of the (1 + (λ, λ)) GA in a
practical application, see, e.g., [17]. In contrast to the modifications described above,
for these it is not clear to what extent they are useful in general or only for particular
problems. For this reason, we did not consider them in this work.

Clearly our theoretical results from Sect. 3 apply to these mildly modified algo-
rithms. For the upper bounds it is enough to note that by resampling identical
individuals and by having x ′ participate in the selection, the probability to have a
progress in one iteration only increases. Thus, repeating the arguments from Theo-
rem 5 we obtain the same upper bound on the expected number of iterations. Since our
implementation does not affect the choice of λ, its expected value E[λ] stays the same.
The cost of one iteration is at most 2λ (but can be smaller). Thus, by Wald’s equation
we obtain the same upper bound on the expected number of fitness evaluations as in
Theorem 6. For the lower bound we use the same arguments as in Theorem 10, with
the only change that since we cannot choose � = 0, we have

E[� | λ] = λ

1 − (
1 − 1

λ

)λ
≤ λ

1 − 1
e

,

which still gives us a lower bound of �(n) fitness evaluations.

4.2 Experimental Setup

The experiments were performed on the OneMax function and on random satisfiable
instances of theMAX- 3SAT problem, that is, the problem of maximizing the number
of satisfied clauses in a Boolean formula represented in conjunctive normal form.
The second problem was chosen for two reasons. First, it is a more practical problem
than OneMax, second, there are already theoretical and empirical results for the
(1+ (λ, λ))GA on this function (see [7]). For this problem on n variables, the number
of clauses was chosen to be 4n ln n. An all-ones bit string is assumed to be a planted
optimal solution; this is without loss of generality, as all considered algorithms are
unbiased. For each clause, three participating variables and their signs (i.e., whether it
is negated or not) are sampled uniformly and independently until this clause is satisfied
by the planted solution (that is, not all three variables are negated). Note that these are
easy instances of the MAX- 3SAT problem, so the presented results on this problem
should not be considered as if the proposed algorithms are competitive in solving this
problem in general. However, these instances have a lower fitness-distance correlation,
which makes them harder in particular for the (1 + (λ, λ)) GA.

To speed-up the experiments, we used the incremental fitness evaluation technique,
which ismore commonly seen in gray-box optimization and in problem-aware solvers.

123

Algorithmica (2022) 84:1724–1761 1741

We note that this led only to a faster implementation of the algorithm, not to a differ-
ent algorithm behavior. In particular, the number of iterations or fitness evaluations
performed are not affected. We modified the implementation as follows.

During mutation we do not copy the parent individual, but instead directly generate
the bit indices which are different in the parent and the offspring (the “patch”). Fol-
lowing that, we evaluate the fitness of the offspring based on the fitness of the parent
and the patch. For RLS and the (1+ 1) EA, if the new fitness is at least as good as the
one of the parent, we apply the patch to the parent, turning it into the offspring. For the
(1+(λ, λ))GA, we select the best patch out of all the mutants’ patches (based on their
fitness values). The subsequent applications of crossover translate to subsamplings of
that patch, so that fitness evaluation is again based on the parent’s fitness.

For OneMax, evaluation of the offspring’s fitness based on the parent’s fitness and
the patch is rather straightforward: only the bits at the affected indices are checked.
This results in an expected O(1) amount of work per each iteration of both RLS and
the (1+ 1) EA, and in the �(λ2) amount of work for the (1+ (λ, λ)) GA, which still
helps much because λ is typically much smaller than n.

For MAX- 3SAT, the incremental evaluation is more difficult as it involves some
preprocessing on the side of the fitness function. It amounts to constructing lists of
clauses affected by the changed bits and to evaluating the satisfaction status of these
clauses before and after the change. For the logarithmic density of clauses (that is, the
ratio of the number of clauses to the number of variables) employed in this paper, this
amounts to �(log n) expected work per iteration of RLS and the (1 + 1) EA, and to
�(λ2 log n) expected work for the (1 + (λ, λ)) GA, which is still faster than direct
evaluation, but less efficient than what is possible for OneMax.

We also note that the particular structure of all the considered algorithms also allows
to optimize the memory requirements: the memory used by RLS and the (1 + 1) EA
is �(n) words resulting from storing a single bit vector, whereas the (1+ (λ, λ)) GA
uses �(n + λ) words in expectation, as only the best patches for each of the phases
need to be stored.

In our experiments we chose the problem sizes n to be powers of two, so that the
asymptotic behavior of the algorithms is easier to investigate visually. For OneMax,
we limit the problem size to 222, and for MAX- 3SAT, the upper limit is 216. These
sizes were derived from the affordable computational times. We did not reach the size
of 220 on MAX- 3SAT as in [7], because the incremental fitness evaluations have a
weaker impact with fast mutation. Indeed, whenever λ is sampled from a heavy-tailed
distribution, the distribution of λ2, and hence of the wall-clock running time, has an
even heavier tail, so occasional high values of λ result in very expensive iterations. For
each algorithm, each problem setting, and each problem size, 100 independent runs
were performed. For the MAX- 3SAT problem, a new random instance was created
for each run.

Our runtime results are shown in Figs. 3, 4, 5 and 6. In Figs. 3, 4 and 5 the x-axis
indicates the problem size in a logarithmic scale, and the y-axis indicates the ratio
of the runtime to the problem size. In this visualization a linear runtime results in a
horizontal plot and any runtime in �(n log n) gives a linearly increasing plot.

123

1742 Algorithmica (2022) 84:1724–1761

Fig. 3 Mean runtimes and their standard deviation of different algorithms onOneMax benchmark problem.
By λ ∈ [1 · · · u] we denote the self-adjusting parameter choice via the one-fifth rule in the interval [1 · · · u].
The indicated interval for each value X is [E[X] − σ(X), E[X] + σ(X)], where σ(X) is the standard
deviation of X . We write lnp x := ln(x + 1). By pow(x) we denote the power-law distribution with
parameters u = n and β = x

4.3 Runtimes onONEMAX

In Fig. 3 we show the results of the runs on the OneMax function. If we do not
consider β = 2.1, which turns out to be too small (and therefore gives a too large
expected value of λ), then all versions of the fast (1+ (λ, λ)) GA start outperforming
the (1 + 1) EA already at population size n = 210 and then outperform RLS at
n = 220 or earlier. Recalling the discussion after the proof of Theorem 6 we note that
our estimate of the leading constant in the runtime was overly pessimistic, otherwise
we would have no chance to outperform RLS on these problem sizes.

The one-fifth rule shows a much better performance and yields a runtime of the
(1+ (λ, λ)) GA which is very close to linear already from n = 210 on for both linear
and logarithmic upper bounds on λ. The plots for the heavy-tailed choice of λ do not
look horizontal, but they show a stronglymarked tendency that they will do so at larger
population sizes. The runtimes for all β except β = 2.1 are quite well concentrated,
as well as the runtimes of the (1+ (λ, λ)) GAwith the one-fifth rule, in contrast to the
runtimes of the (1 + 1) EA and RLS. We have no results for β = 2.1 for population
sizes n ≥ 221 and for β = 2.3 for n ≥ 222, since they were too expensive (in terms of
computational resources) and most likely not too insightful.

Figure 3 also features the runtime plot of an asymptotically optimal static choice for
λ. It has been proven in [8] that the theoretically asymptotically optimal static choice

is λ = �(

√
ln(n) ln ln(n)
ln ln ln(n)

). By using lnp(n) := ln(n + 1) instead to avoid issues with

123

Algorithmica (2022) 84:1724–1761 1743

Fig. 4 Mean runtimes and their standard deviation of different algorithms on MAX- 3SAT instances with
4n ln(n) clauses. By λ ∈ [1 · · · u] we denote the self-adjusting parameter choice via the one-fifth rule in the
interval [1 · · · u]. The indicated interval for each value X is [E[X] − σ(X), E[X] + σ(X)], where σ(X) is
the standard deviation of X . By pow(x) we denote the power-law distribution with parameters u = n and
β = x

logarithms of too small values, and by fitting the outer constant factor using auxiliary

experiments with fixed λ ∈ [2 · · · 12], we have found that λ = 2
√

lnp(n) lnp lnp(n)
lnp lnp lnp(n)

approximates the optimal choices quite well, so we have used the version of the
(1 + (λ, λ)) GA with this choice in our plots. We also see that with the choice of
β = 2.5 the fast (1+ (λ, λ)) GA outperforms the statically optimal parameter choice
at problem sizes n ≥ 220.

4.4 Runtimes onMAX-3SAT

Figure 4 shows the results of the experiments on theMAX- 3SAT problem. As previ-
ously shown in [7], large values ofλ can be harmful. For this reason, the (1+(λ, λ))GA
with the unbounded one-fifth rule is outperformed already by the simple (1 + 1) EA.
The authors of [7] proposed to limit the value which λ can take by 2 ln(n + 1), which
greatly improved the performance up to the point that RLS was outperformed on this
problem.

As we see in Fig. 4, the fast (1+ (λ, λ))GA is quite efficient even without an upper
limit on λ. Except for the case β = 2.1, we managed to outperform the (1 + 1) EA
and the self-adjusting (1+ (λ, λ))GAwithout an upper limit on λ. Nevertheless, RLS
and the self-adjusting (1 + (λ, λ)) GA with a logarithmic cap on λ remained faster.

The runtimes of all algorithms appear super-linear in the plots.

123

1744 Algorithmica (2022) 84:1724–1761

Fig. 5 Mean runtimes and their standard deviation of different algorithms on MAX- 3SAT instances with
4n ln(n) clauses with logarithmically capped population sizes. By λ ∈ [1 · · · u]we denote the self-adjusting
parameter choice via the one-fifth rule in the interval [1 · · · u]. The indicated interval for each value X is
[E[X] − σ(X), E[X] + σ(X)], where σ(X) is the standard deviation of X

4.5 Effects of Capping forMAX-3SAT

Since apparently large values of λ are not helpful when optimizing MAX- 3SAT

instances (due to the weaker fitness-distance correlation), we conducted some exper-
iments with the fast (1 + (λ, λ)) GA choosing λ from a power-law distribution on a
smaller range [1 · · · u] of values. Based on the previous experience, we started with
an upper limit of u = 2 ln(n + 1). These results are presented in Fig. 5.

Using this upper limit reduced the computational burden associated with heavy-
tailed distributions and allowed us to regard problem sizes up to 219. The upper limit
also led a better performance in terms of fitness evaluations. When comparing Figs. 4
and 5 around the problem size n = 216, we see that for β ∈ {2.1, 2.3} a significant
speed-up was obtained, whereas for 2.5 ≤ β ≤ 2.9 the differences of the correspond-
ing mean running times are negligible. This is not surprising given that for smaller
values of β, the inefficient high values of λ are sampled more often. Interestingly, in
combination with the upper limit small values of β gave the best performance. This
suggests that it is important to use moderately large values of λ often and that only
too large values lead to efficiency losses.

To investigate the effect of the particular choice of the upper limit u on the running
time for various values of β, we performed additional experiments where the problem
size was fixed to n = 216, but the upper limits were varying. Figure 6 presents these
results, where u was taken from the set u ∈ {22, 23, . . . , 213}. Note that high values of
u again prevented us from choosing a higher problem size. We also plot for reference
the performance of the (1 + 1) EA on the same problem size.

123

Algorithmica (2022) 84:1724–1761 1745

Fig. 6 Mean runtimes and their standard deviation of different algorithms on MAX- 3SAT instances with
4n ln(n) clauses for different capping values. Problem size is n = 216. The indicated interval for each value
X is [E[X] − σ(X), E[X] + σ(X)], where σ(X) is the standard deviation of X

The plots in Fig. 6 indicate that for 2.1 ≤ β ≤ 2.5 the dependency on the upper
limit has a clear optimal value: Too small values of u prevent the (1 + (λ, λ)) GA
from choosing the more efficient mid-size values of λ, too high values of u lead to
sampling too large values of λ too often, which have little chance of making progress
and at the same time are very costly. It can be seen, however, that already for β = 2.5
the subsequent increase of the running time is not too pronounced. Higher values of β

tend to a monotonic behavior, up to the deviations from the mean running time. This
basically indicates that the sensitivity to the upper limit of the distribution is not large
even in practice.

4.6 Summary of Experimental Results

Summing up, from the results of the experiments we conclude the following three
points.

• The fast (1+(λ, λ))GAperforms generallywell, often beating the classicmutation
based algorithms. On OneMax, the self-adjusting (1 + (λ, λ)) GA both without
and with an upper limit of u = 2 ln(n + 1) are superior, on MAX- 3SAT only the
version with upper limit and RLS are superior.

• The fast (1+(λ, λ))GA can easily be used as a parameterless algorithm and this is
what we suggest. We note that the (1+(λ, λ))GAwith the asymptotically optimal
static parameter setting could not beat the fast (1+ (λ, λ)) GA on OneMax. The
self-adjusting (1+(λ, λ))GAwithout an upper limitwas superior onOneMax, but
significantly inferior onMAX- 3SAT. The versionwith upper limit u = 2 ln(n+1)

123

1746 Algorithmica (2022) 84:1724–1761

was superior on bothOneMax andMAX- 3SAT. We still do not want to advertise
this approach as clearly such limits are problem-specific and non-trivial to find.
The logarithmic limit for MAX- 3SAT is based on a substantial mathematical
analysis [7] of these particular MAX- 3SAT instances. For other problems, such
a limit may be detrimental, e.g., it may be hard to leave a local optimum with a
large basin of attraction.

• The choice of β does not play a big role as long as it is not too close to the borders
of the interval (2, 3). Taking β between 2.5 and 2.7 might be a good general
recommendation.

5 Conclusion

In this first runtime analysis of a crossover-based algorithm using the fast mutation
operator, we observed that the fast mutation operator not only can relieve the algorithm
designer from the task of choosing a suitable mutation rate, but it can also lead to
runtimes asymptotically better than any static choice of the mutation rate.

Different from previous works, where any power-law exponent greater than one
could be used, our work requires that β is between 2 and 3. We note, however, that
the power-law distributions are often used with exponents in the open interval (2, 3)
and this for good reason. In this regime, we have a heavy tail (as opposed for β > 3),
but we still have a constant expectation (as opposed to β < 2). Since the complexity
of a single iteration is �(λ), having a constant expectation E[λ] is very natural.

On the technical side, our work shows that algorithms with a heavy-tailed number
of offspring can be much easier to analyze than those with a self-adjusting number of
offspring (such as the self-adjusting (1+(λ, λ))GA [8]), sinceWald’s equation allows
to estimate the expected runtime as the product of the expected number of iterations
and the expected number of offspring generated in one iteration.

The natural question arising from this work is for which other algorithms and prob-
lems such a speed-up can be obtained. Natural candidates are other crossover-based
algorithms or algorithms in which dynamic parameter choices could obtain a speed-up
over static choices. We note that after this research was conducted, it was found that
the (1 + (λ, λ)) GA with two of its parameters chosen independently from heavy-
tailed distributions has a good performance on jump functions [3]. The performance
is slightly inferior to the one with optimal static parameters [5], however these were
non-trivial to find as they deviated significantly from the previous recommendations.

Acknowledgements This work was supported by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH and by RFBR and CNRS, Project number
20-51-15009.

Appendix: Computation of Table 1

In this appendix we compute all estimates of the true progress probability pd(x) shown
in Table 1. We use the same expression for estimating pd(x) as in Lemma 8, that by

123

Algorithmica (2022) 84:1724–1761 1747

Lemma 7 is,

pd(x) =
u∑

λ=1

Cβ,uλ
−β pd(x)(λ)

≥

⎧
⎪⎪⎨

⎪⎪⎩

Cβ,uC
d(x)
n

∑u
λ=1 λ2−β, if u ≤

√
n

d(x) ,

Cβ,uC
d(x)
n

∑�
√

n
d(x) �

λ=1 λ2−β + Cβ,uC
∑u

λ=�
√

n
d(x) �+1

λ−β, else,

where C is some constant. Recall that by Lemma 4 we have

• If β < 0, then Cβ,u ≥ uβ−1 1−β
2−β

,

• If β ∈ [0, 1), then Cβ,u ≥ uβ−1(1 − β),
• If β = 1, then Cβ,u ≥ 1

ln(u)+1 , and

• If β > 1, then Cβ,u ≥ β−1
β

.

Now we consider 11 cases depending on β and u. We start with the cases when

u ≤
√

n
d(x) and therefore estimate pd(x) as

pd(x) ≥ Cβ,uC
d(x)

n

u∑

λ=1

λ2−β.

Case 1 β < 0, u ≤
√

n
d(x) .

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ2−β

≥ C · uβ−1 1 − β

2 − β
· d(x)

n
· u

3−β − 1

3 − β
= �

(
d(x)u2

n

)
.

Case 2 β ∈ [0, 1), u ≤
√

n
d(x) .

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ2−β

≥ C · uβ−1(1 − β) · d(x)

n
· u

3−β − 1

3 − β
= �

(
d(x)u2

n

)
,

which is the same as in Case 1.
Case 3 β = 1, u ≤

√
n

d(x) .

123

1748 Algorithmica (2022) 84:1724–1761

In this case we have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ

≥ C · 1

ln(u) + 1
· d(x)

n
· u(u + 1)

2

= �

(
d(x)u2

n log(u)

)
.

Case 4 β ∈ (1, 3), u ≤
√

n
d(x) .

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ2−β

≥ C · β − 1

β
· d(x)

n
· u

3−β − 1

3 − β

= �

(
d(x)u3−β

n

)
.

Case 5 β = 3, u ≤
√

n
d(x) .

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ−1

≥ C · 2
3

· d(x)

n
· ln(u)

= �

(
d(x) log(u)

n

)
.

Case 6 β > 3, u ≤
√

n
d(x) .

We have

pd(x) ≥ CCβ,u
d(x)

n

u∑

i=1

λ2−β

≥ C · β − 1

β
· d(x)

n
· 1

= �

(
d(x)

n

)
.

123

Algorithmica (2022) 84:1724–1761 1749

In the following cases we consider u >
√

n
d(x) , hence we estimate pd(x) as

pd(x) ≥ Cβ,uC
d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β + Cβ,uC
u∑

λ=�
√

n
d(x) �+1

λ−β

= CCβ,u

⎛

⎜⎜
⎝
d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β +
u∑

λ=�
√

n
d(x) �+1

λ−β

⎞

⎟⎟
⎠ .

In all cases we first estimate the sums in the brackets and then put it into the inequality.

Case 7 β < 1, u >
√

n
d(x) .

We consider three sub-cases.

1. When u ≤ 2
√

n
d(x)+2 and

√
n

d(x) ≤ 4. In this casewe also haveu ≤ 2·4+2 = 10.

Hence,

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ d(x)

n
≥ 1

16
≥ u1−β

16 · 101−β
.

2. When u ≤ 2
√

n
d(x) + 2 and

√
n

d(x) > 4. In this case we have
√

n
d(x) ≥ u

2 − 1. We

also have that
√

n
d(x)

3−β ≥ 43−β > 24−β (therefore, (
√

n
d(x) /2)

3−β > 2). Hence,

by Lemma 3 we have

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ d(x)

n

�
√

n
d(x) −1�
∑

λ=1

λ2−β ≥ d(x)

n
·
(√

n
d(x) − 1

)3−β − 1

3 − β

≥ d(x)

n
·
(√

n
d(x) /2

)3−β − 1

3 − β

≥ d(x)

n
·
(√

n
d(x) /2

)3−β

2(3 − β)

≥
√

n

d(x)

1−β 1

24−β(3 − β)

≥
(u
2

− 1
)1−β 1

24−β(3 − β)

≥ u1−β

2(6−3β)(3 − β)
.

123

1750 Algorithmica (2022) 84:1724–1761

3. When u > 2
√

n
d(x) + 2. In the same way as in Lemma 3 we estimate a sum via a

corresponding integral.

u∑

λ=�
√

n
d(x) �+1

λ−β ≥
∫ u

�
√

n
d(x) �+1

x−βdx ≥
∫ u

u/2
x−βdx = u1−β · 1 − 2β−1

1 − β
.

Summing up all three cases we have that for each β < 1 there exists a constant
γ1(β) = min{ 1

16·101−β , 1
2(6−3β)(3−β)

, 1−2β−1

1−β
} such that

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β +
u∑

λ=�
√

n
d(x) �+1

λ−β ≥ γ1(β) · u1−β.

If β < 0, we have

pd(x) ≥ CCβ,uγ1(β)u1−β ≥ Cuβ−1 1 − β

2 − β
γ1(β)u1−β = �(1).

If β ∈ [0, 1), we have

pd(x) ≥ CCβ,uγ1(β)u1−β ≥ Cuβ−1(1 − β)γ1(β)u1−β = �(1).

Case 8 β = 1, u >
√

n
d(x) . We aim at showing that

pd(x) ≥ C ·
⎛

⎜
⎝

1

36 ln(u)
+

ln(u) − ln
(√

n
d(x)

)

36 ln(u)

⎞

⎟
⎠ .

Note that in this case we do not use asymptotic notation for estimating pd(x) due to
having terms of different signs in the bound above (and thus, the leading constants
of these terms are important). However note that as long as u is by a constant times

greater than
√

n
d(x) , then the first term is dominant, therefore, this bound is �(1

log(u)
).

If u is at least φ ·
√

n
d(x) for some super-constant φ, then this bound is �(

log(φ)
log(u)

).

In this case we have u >
√

n
d(x) ≥ 1, hence u ≥ 2. Therefore, by Lemma 4 we

have

C1,u ≥ 1

1 + ln(u)
= 1

ln(u)
· ln(u)

1 + ln(u)
≥ 1

ln(u)
· ln(2)

ln(2) + 1
>

1

3 ln(u)
.

123

Algorithmica (2022) 84:1724–1761 1751

By the formula for a sum of arithmetic progression and estimating the second sum via
a corresponding integral in the same way as in Lemma 3, we have

d(x)

n

�
√

n
d(x) �∑

λ=1

λ +
u∑

λ=�
√

n
d(x) �+1

λ−1

≥ d(x)

n
·
�
√

n
d(x)�

(
�
√

n
d(x)� + 1

)

2
+

∫ u

�
√

n
d(x) �+1

dx

x

Since for all x ≥ 1 we have �x�
x ≥ 1

2 and �x�+1
x ≥ 1, we also have

�
√

n
d(x)�

(
�
√

n
d(x)� + 1

)

2n/d(x)
≥ 1

4
.

Now we consider two sub-cases. First, let u ≤ e2
√

n
d(x) . Then we have

pd(x) ≥ CC1,u · 1
4

≥ C

12 ln(u)
.

Otherwise, if u > e2
√

n
d(x) , then we estimate the integral by

∫ u

�
√

n
d(x) �+1

dx

x
≥

∫ u

√
n

d(x) +1

dx

x
= ln(u) − ln

(√
n

d(x)
+ 1

)

= ln(u) − ln

(√
n

d(x)

)
− ln

(

1 +
√
d(x)

n

)

≥ ln(u) − ln

(√
n

d(x)

)
−

√
d(x)

n

≥
ln(u) − ln

(√
n

d(x)

)

2
+

ln(u) − ln
(

u
e2

)

2
− 1

=
ln(u) − ln

(√
n

d(x)

)

2
+ 1 − 1.

123

1752 Algorithmica (2022) 84:1724–1761

Hence, we conclude

pd(x) ≥ CC1,u

⎛

⎜
⎝
1

4
+

ln(u) − ln
(√

n
d(x)

)

2

⎞

⎟
⎠

≥ C ·
1 + 2

(
ln(u) − ln

(√
n

d(x)

))

12 ln(u)
.

We unite the two sub-cases with the following lower bound, which holds both for

u ≤ e2
√

n
d(x) and for u > e2

√
n

d(x) .

pd(x) ≥ C ·
1 + 2

(
ln(u) − ln

(√
n

d(x)

))

36 ln(u)

≥ C ·
1 + ln(u) − ln

(√
n

d(x)

)

36 ln(u)
.

Case 9 β ∈ (1, 3), u >
√

n
d(x) .

We consider three sub-cases

1. When β ≤ 2 and
√

n
d(x) ≤ 2.

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ d(x)

n
=

√
n

d(x)

1−β

·
√

n

d(x)

β−3

≥
√

n

d(x)

1−β

·
(
1

2

)β−3

≥
√

n

d(x)

1−β

·
(
1

2

)2

= 1

4

√
n

d(x)

1−β

.

2. When β > 2 and �
√

n
d(x)� ≤ 2

1
3−β . In this case we also have

√
n

d(x) ≤ 2
1

3−β + 1.

Hence, we have

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ d(x)

n
=

√
n

d(x)

1−β

·
√

n

d(x)

β−3

≥
√

n

d(x)

1−β

·
(
2

1
3−β + 1

)β−3

≥
√

n

d(x)

1−β

·
(
2

(
1

3−β
+1

))β−3

= 2β−4
√

n

d(x)

1−β

≥ 1

4

√
n

d(x)

1−β

.

123

Algorithmica (2022) 84:1724–1761 1753

3. When β > 2 and �
√

n
d(x)� ≥ 2

1
3−β or when β ≤ 2 and

√
n

d(x) > 2. In this case

we have both �
√

n
d(x)�3−β ≥ 2 and

√
n

d(x) ≥ 2. Hence, by Lemma 3 we have

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ d(x)

n
·
�
√

n
d(x)�3−β − 1

3 − β
≥ d(x)

n
·
�
√

n
d(x)�3−β

2(3 − β)

≥ d(x)

n
·
(√

n
d(x) − 1

)3−β

2(3 − β)
≥ d(x)

n
·
(
1
2

√
n

d(x)

)3−β

2(3 − β)

≥
√

n

d(x)

1−β 1

24−β(3 − β)
.

Summing up all three cases we have that for each β ∈ (1, 3) there exists a constant
γ2(β) = min{ 14 , 1

24−β(3−β)
} such that

d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β ≥ γ2(β) ·
√

n

d(x)

1−β

.

Taking into account that Cβ,u ≥ β−1
β

, we obtain

pd(x) ≥ CCβ,uγ (β)

√
n

d(x)

1−β

= �

(√
n

d(x)

1−β
)

.

Case 10 β = 3, u >
√

n
d(x) .

If
√

n
d(x) ≥ 2, we compute

pd(x) ≥ CC3,u
d(x)

n

�
√

n
d(x) �∑

λ=1

λ−1 ≥ C · 2
3

· d(x)

n
ln

(
�
√

n

d(x)
�
)

= �

⎛

⎜
⎝
ln

(√
n

d(x)

)

n/d(x)

⎞

⎟
⎠ .

Otherwise,

pd(x) ≥ CC3,u
d(x)

n
= �

(
1

n/d(x)

)
.

123

1754 Algorithmica (2022) 84:1724–1761

Therefore,

pd(x) = �

⎛

⎜
⎝
ln

(√
n

d(x)

)
+ 1

n/d(x)

⎞

⎟
⎠ .

Case 11 β > 3, u >
√

n
d(x) .

In this case we have

pd(x) ≥ CCβ,u
d(x)

n

�
√

n
d(x) �∑

λ=1

λ2−β

≥ C · d(x)

n
· β − 1

β
· 1 = �

(
d(x)

n

)
.

Appendix: Computation of Table 2

In this appendix we compute the values of the expected runtime shown in Table 2.
We start with computing the expected runtimes in terms of iterations for each value
of the algorithm’s meta-parameter β. Recall that pd is the probability to create a
better offspring in one iteration, which is shown in Table 1. Hence, using the fitness
levels argument we can estimate the expected number of iterations before we find the
optimum as follows.

E[TI] ≤
n∑

d=1

1

pd
=

� n
u2

�
∑

d=1

1

pd
+

n∑

d=� n
u2

�+1

1

pd
.

Note that in the first sum we have u ≤
√

n
d (thus, we should use values for pd from

the left column of Table 1) and in the second sum we have u >
√

n
d (thus, we should

use the estimates from the right column). Note that pd = �(f (n, d, u)) in Table 1
means that for each β there exists a constant γ (β) (independent of n, d and u) such
that pd ≥ γ (β) · f (n, d, u). We will use this constant in our further computations.

To estimate the expected runtime we consider five cases.
Case 1 β < 1.
In this case we have

E[TI] ≤
� n
u2

�
∑

d=1

1

pd
+

n∑

d=� n
u2

�+1

1

pd

≤ 1

γ (β)

⎛

⎜
⎝

� n
u2

�
∑

d=1

n

du2
+

n∑

d=� n
u2

�+1

1

⎞

⎟
⎠

123

Algorithmica (2022) 84:1724–1761 1755

≤ 1

γ (β)

(n

u2

(
ln� n

u2
� + 1

)
+ n − � n

u2
�
)

= O
(n

u2
ln

(n

u2

)
+ n

)
,

where we used the estimates for the sums from Lemma 4. Note that when u ≥ √
ln(n),

we have

n

u2
ln

(n

u2

)
≤ n

ln(n)
ln(n) = O(n).

Otherwise, we have

n

u2
ln

(n

u2

)
≥ n

ln(n)
(ln(n) − ln ln(n)) = �(n).

Therefore, we conclude

E[TI] =
{
O

(
n
u2

ln
(

n
u2

))
, if u <

√
ln(n),

O(n), if u ≥ √
ln(n).

Case 2 β = 1. In this case we have

E[TI] ≤
� n
u2

�
∑

d=1

1

pd
+

n∑

d=� n
u2

�+1

1

pd

≤ 1

γ (β)

⎛

⎜
⎝

� n
u2

�
∑

d=1

n ln(u)

du2
+

n∑

d=� n
u2

�+1

ln(u)

1 + ln(u) − ln(
√

n
d)

⎞

⎟
⎠

≤ 1

γ (β)

⎛

⎜
⎝
n ln(u)

u2

(
ln� n

u2
� + 1

)
+

� n
u �∑

d=� n
u2

�+1

ln(u) +
n∑

d=� n
u �+1

ln(u)

1 + 1
2 ln(u)

⎞

⎟
⎠

≤ 1

γ (β)

(
n ln(u)

u2

(
ln� n

u2
� + 1

)
+ n ln(u)

u
+ n · ln(u)

1 + 1
2 ln(u)

)

= O

(
n log(u) log(n

u2
)

u2
+ n log(u)

u
+ n

)

Note that
n ln(u) ln(n

u2
)

u2
is a decreasing function of u for all u ≥ 1, which can be

shown by considering its derivative (we omit this tedious computation). Hence, if
u <

√
ln(n) ln ln(n), then we have

123

1756 Algorithmica (2022) 84:1724–1761

n ln(u) ln(n
u2

)

u2
≥ n(ln ln(n) + ln ln ln(n))(ln(n) − ln ln(n) − ln ln ln(n))

2 ln(n) ln ln(n)

= �(n).

For such u we also have

n ln(u) ln(n
u2

)

u2
≥ n ln(u)

u
· ln(

n
u2

)

u

≥ n ln(u)

u
· (ln(n) − ln ln(n) − ln ln ln(n))√

ln(n) ln ln(n)

= �

(
n log(u)

u

√
log(n)

log log(n)

)

= �

(
n log(u)

u

)
.

If u ≥ √
ln(n) ln ln(n), we have

n ln(u) ln(n
u2

)

u2
≤ n ln ln(n)(ln(n) − ln ln(n) − ln ln ln(n))

2 ln(n) ln ln(n)
= O(n),

and we have

n ln(u)

u
≤ n = O(n).

Hence, we conclude

E[TI] =
{
O

(
n log(u)

u2
log

(
n
u2

))
, if u <

√
ln(n) ln ln(n),

O(n), if u ≥ √
ln(n) ln ln(n).

Case 3 β ∈ (1, 3).
In this case we have

E[TI] ≤
� n
u2

�
∑

d=1

1

pd
+

n∑

d=� n
u2

�+1

1

pd

≤ 1

γ (β)

⎛

⎜
⎝

� n
u2

�
∑

d=1

n

du3−β
+

n∑

d=� n
u2

�+1

√
n

d

β−1
⎞

⎟
⎠

≤ 1

γ (β)

(
n

u3−β

(
ln

(n

u2

)
+ 1

)
+ n(β−1)/2

n−1∑

d=1

d(1−β)/2

)

≤ 1

γ (β)

(
n

u3−β

(
ln

(n

u2

)
+ 1

)
+ n(β−1)/2 · n

(3−β)/2 − 1

(3 − β)/2

)

123

Algorithmica (2022) 84:1724–1761 1757

= O
(n

u3−β
log

(n

u2

)
+ n

)
,

where we used Lemma 4 to estimate the sums. When u < (ln(n))1/(3−β), we have

n

u3−β
ln

(n

u2

)
≥ n(ln(n) − 2

3−β
ln ln(n))

ln(n)
= �(n).

Otherwise, we have

n

u3−β
ln

(n

u2

)
≤ n ln(n)

ln(n)
= n.

Therefore, we have

E[TI] =
{
O

(
n

u3−β log
(

n
u2

))
, if u < (ln(n))1/(3−β),

O(n), if u ≥ (ln(n))1/(3−β).

Case 4 β = 3. We compute

E[TI] ≤
� n
u2

�
∑

d=1

1

pd
+

n∑

d=� n
u2

�+1

1

pd

≤ 1

γ (β)

⎛

⎜
⎝

� n
u2

�
∑

d=1

n

d ln(u)
+

n∑

d=� n
u2

�+1

n

d
(
ln

(n
d

) + 1
)

⎞

⎟
⎠

≤ 1

γ (β)

⎛

⎜
⎝

n

ln(u)

(
ln

(n

u2

)
+ 1

)
+ n + n

n∑

d=� n
u2

�+2

1

d
(
ln

(n
d

) + 1
)

⎞

⎟
⎠

≤ 1

γ (β)

(
n

ln(u)

(
ln

(n

u2

)
+ 1

)
+ n + n

∫ n

n/u2

dx

x(ln(n) − ln(x) + 1)

)
,

where we used the fact that f (x) = 1
x(ln(n)−ln(x)+1) is a decreasing function in interval[1, n] to estimate the sum via a corresponding integral. We estimate the integral as

follows.

∫ n

n/u2

dx

x(ln(n) − ln(x) + 1)
= −

∫ n

n/u2

d(ln(n) − ln(x) + 1)

(ln(n) − ln(x) + 1)

= ln((ln(n) − ln(x) + 1))

∣
∣∣∣

n/u2

n

= ln(2 ln(u) + 1)

123

1758 Algorithmica (2022) 84:1724–1761

Therefore,

E[TI] ≤ 1

γ (β)

(
n

ln(u)

(
ln

(n

u2

)
+ 1

)
+ n(ln(2 ln(u) + 1) + 1)

)

= O

(
n

log(u)
log

(n

u2

)
+ n log log(u)

)

Note that the first term is decreasing in u, while the second one is increasing. We show
that they are asymptotically the same when u = n1/ ln ln(n).

n

ln(n1/ ln ln(n))
ln

(n

n2/ ln ln(n)

)
= n ln ln(n)

ln(n)
·
(
ln(n) − 2 ln(n)

ln ln(n)

)

= �(n ln ln(n)),

n ln ln(n1/ ln ln(n)) = n ln
ln(n)

ln ln(n)
= n ln ln(n) − n ln ln ln(n)

= �(n ln ln(n)).

Therefore, when u ≤ n1/ ln ln(n), the first term is dominant, otherwise the second term
is dominant. Hence, we conclude

E[TI] =
{
O

(
n

log(u)
log

(
n
u2

))
, if u < n1/ ln ln(n),

O(n log log(u)), if u ≥ n1/ ln ln(n).

Case 5 β > 3.
In this case we have

E[TI] ≤
n∑

d=1

1

pd
≤ 1

γ (β)

n∑

d=1

n

d
≤ n(ln(n) + 1)

γ (β)
= O(n log(n))

We complete the computation of the right column of Table 2 by usingWald’s equation
(Lemma 1) and estimates of the expected cost of each iteration shown in Lemma 9.

Case 1 β < 1.
If u ≥ √

ln(n), then

E[TF] = O(n) · �(u) = O(nu).

If u <
√
ln(n), then

E[TF] = O
(n

u2
log

n

u2

)
· �(u) = O

(n
u
log

n

u2

)
.

123

Algorithmica (2022) 84:1724–1761 1759

Case 2 β = 1.
If u ≥ √

ln(n) ln ln(n), then

E[TF] = O(n) · �

(
u

log(u)

)
= O

(
nu

log(u)

)
.

If u <
√
ln(n) ln ln(n), then

E[TF] = O

(
n log(u)

u2
log

n

u2

)
· �

(
u

log(u)

)
= O

(n
u
log

n

u2

)
.

Case 3 β ∈ (1, 2).
If u ≥ (ln(n))1/(3−β), then

E[TF] = O(n) · �(u2−β) = O(nu2−β).

If u < (ln(n))1/(3−β), then

E[TF] = O
(n

u3−β
log

n

u2

)
· �(u2−β) = O

(n
u
log

n

u2

)
.

Case 4 β = 2.
If u ≥ ln(n), then

E[TF] = O(n) · �(log(u)) = O(n log(u)).

If u < ln(n), then

E[TF] = O
(n
u
log

n

u2

)
· �(log(u)) = O

(
n log(u)

u
log

n

u2

)
.

Case 5 β ∈ (2, 3).
If u ≥ (ln(n))1/(3−β), then

E[TF] = O(n) · �(1) = O(n).

If u < (ln(n))1/(3−β), then

E[TF] = O
(n

u3−β
log

n

u2

)
· �(1) = O

(n

u3−β
log

n

u2

)
.

Case 6 β = 3.
If u ≥ n1/ ln ln(n), then

E[TF] = O(n log log(u)) · �(1) = O(n log log(u)).

If u < n1/ ln ln(n), then

E[TF] = O

(
n

log(u)
log

n

u2

)
· �(1) = O

(
n

log(u)
log

n

u2

)
.

123

1760 Algorithmica (2022) 84:1724–1761

Case 7 β > 3.
For all u we have

E[TF] = O(n log(n)) · �(1) = O(n log(n)).

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2020, pp. 1268–1276. ACM (2020)

2. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing
(2011)

3. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed (1 + (λ, λ)) genetic algorithm on jump
functions. In: Parallel Problem Solving From Nature, PPSN 2020, Part II, pp. 545–559. Springer
(2020)

4. Antipov, D., Doerr, B., Karavaev, V.: A tight runtime analysis for the (1 + (λ, λ))GA on LeadingOnes.
In: Foundations of Genetic Algorithms, FOGA 2019, pp. 169–182. ACM (2019)

5. Antipov, D., Doerr, B., Karavaev, V.: The (1 + (λ, λ)) GA is even faster on multimodal problems. In:
Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1259–1267. ACM (2020)

6. Bäck, T.: Optimalmutation rates in genetic search. In: International Conference onGeneticAlgorithms,
ICGA 1993, pp. 2–8. Morgan Kaufmann (1993)

7. Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable
3-CNF formulas. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 1343–
1350. ACM (2017)

8. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic
algorithm. Algorithmica 80, 1658–1709 (2018)

9. Doerr, B.,Doerr, C., Ebel, F.: Fromblack-box complexity to designing newgenetic algorithms. Theoret.
Comput. Sci. 567, 87–104 (2015)

10. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing
monotone functions. Evol. Comput. 21, 1–21 (2013)

11. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1 + λ) evolutionary algorithm–
different asymptotic runtimes for different instances. Theoret. Comput. Sci. 561, 3–23 (2015)

12. Doerr, B., Le, H.P.,Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary
Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

13. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation—Recent Developments in Dis-
creteOptimization. Springer. https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.
pdf (2020)

14. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and Evolutionary Com-
putation Conference, GECCO 2020, pp. 1304–1313. ACM (2020)

15. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neu-
mann, F. (eds) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pp. 1–87. Springer, https://arxiv.org/abs/1801.06733 (2020)

16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7,
173–203 (1999)

17. Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Genetic and Evolutionary Com-
putation Conference, GECCO 2014, pp. 785–792. ACM (2014)

18. Gießen, C., Witt, C.: The interplay of population size and mutation probability in the (1 + λ) EA on
OneMax. Algorithmica 78, 587–609 (2017)

19. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.
127, 51–81 (2001)

20. Jansen, T.: Analyzing Evolutionary Algorithms: The Computer Science Perspective. Springer, Berlin
(2013)

21. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evol. Comput. 13, 413–440 (2005)

22. Lehre, P.K.: Negative drift in populations. In: Parallel Problem Solving from Nature, PPSN 2010, pp.
244–253. Springer (2010)

123

https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://arxiv.org/abs/1801.06733

Algorithmica (2022) 84:1724–1761 1761

23. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Genetic and Evolutionary Computation Con-
ference, GECCO 2011, pp. 2075–2082. ACM (2011)

24. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. In: Parallel Prob-
lem Solving from Nature, PPSN 2018, Part II, pp. 3–15. Springer (2018)

25. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Parallel Problem
Solving from Nature, PPSN 1992, pp. 15–26. Elsevier (1992)

26. Neumann, F.,Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their
Computational Complexity. Springer, Berlin (2010)

27. Pinto, E.C., Doerr, C.: Towards a more practice-aware runtime analysis of evolutionary algorithms.
CoRR, arXiv:1812.00493 [abs] (2018)

28. Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theoret. Comput. Sci. 320,
135–153 (2004)

29. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ) evolutionary algorithm.
Theoret. Comput. Sci. 545, 20–38 (2014)

30. Szu, H.H., Hartley, R.L.: Fast simulated annealing. Phys. Lett. A 122, 157–162 (1987)
31. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In: Parallel Problem Solving

from Nature, PPSN 2006, pp. 21–31. Springer (2006)
32. Wald, A.: Some generalizations of the theory of cumulative sums of random variables. Ann. Math.

Stat. 16, 287–293 (1945)
33. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14,

65–86 (2006)
34. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions.

Comb. Probab. Comput. 22, 294–318 (2013)
35. Yao, X., Liu, Y.: Fast evolution strategies. In: Evolutionary Programming, volume 1213 of Lecture

Notes in Computer Science, pp. 151–162. Springer (1997)
36. Yao, X., Liu, Y., Lin, G.: Evolutionary programmingmade faster. IEEETrans. Evol. Comput. 3, 82–102

(1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1812.00493

	Fast Mutation in Crossover-Based Algorithms
	Abstract
	1 Introduction
	2 Notation and Problem Statement
	2.1 Useful Tools

	3 Runtime Analysis
	3.1 Upper Bound
	3.2 Lower Bound

	4 Experiments
	4.1 Implementation Details and Their Discussion
	4.2 Experimental Setup
	4.3 Runtimes on OneMax
	4.4 Runtimes on MAX-3SAT
	4.5 Effects of Capping for MAX-3SAT
	4.6 Summary of Experimental Results

	5 Conclusion
	Acknowledgements
	Appendix: Computation of Table 1
	Appendix: Computation of Table 2
	References

