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Abstract
This paper is concerned with the 1||∑ p jU j problem, the problem of minimizing the
total processing time of tardy jobs on a single machine. This is not only a fundamental
scheduling problem, but also an important problem from a theoretical point of view
as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack
problem. The problem iswell-known to beNP-hard, but only in aweak sense, meaning
it admits pseudo-polynomial time algorithms. The best known running time follows
from the famous Lawler and Moore algorithm that solves a more general weighted
version in O(P ·n) time, where P is the total processing time of all n jobs in the input.
This algorithm has been developed in the late 60s, and has yet to be improved to date.
In this paper we develop two new algorithms for problem, each improving on Lawler
and Moore’s algorithm in a different scenario.

– Our first algorithm runs in Õ(P7/4) time, and outperforms Lawler and Moore’s
algorithm in instances where n = ω̃(P3/4).

– Our second algorithm runs in Õ(min{P ·D#, P+D}) time,where D# is the number
of different due dates in the instance, and D is the sum of all different due dates.
This algorithm improves on Lawler and Moore’s algorithm when n = ω̃(D#) or
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n = ω̃(D/P). Further, it extends the known Õ(P) algorithm for the single due
date special case of 1||∑ p jU j in a natural way.

Both algorithms rely on basic primitive operations between sets of integers and vectors
of integers for the speedup in their running times. The second algorithm relies on fast
polynomial multiplication as its main engine, and can be easily extended to the case of
a fixed number of machines. For the first algorithm we define a new “skewed” version
of (max,min)-Convolution which is interesting in its own right.

Keywords Single machine scheduling · Tardy processing time · Pseudo-polynomial
time algorithm · Fast polynomial multiplication · (max, min)-Convolution

1 Introduction

In this paper we consider the problem ofminimizing the total processing times of tardy
jobs on a single machine. In this problem we are given a set of n jobs J = {1, . . . , n},
where each job j has a processing time p j ∈ N and a due date d j ∈ N. A schedule
σ for J is a permutation σ : {1, . . . , n} → {1, . . . , n}. In a given schedule σ , the
completion time C j of a job j under σ is given by C j = ∑

σ(i)≤σ( j) pi , that is, the
total processing time of jobs preceding j in σ (including j itself). Job j is tardy in
σ if C j > d j , and early otherwise. Our goal is find a schedule with minimum total
processing time of tardy jobs. If we assign a binary indicator variable Uj to each job
j , where Uj = 1 if j is tardy and otherwise Uj = 0, our objective function can be
written as

∑
p jU j . In the standard three field notation for scheduling problems of

Graham [5], this problem is denoted as the 1||∑ p jU j problem (the 1 in the first field
indicates a single machine model, and the empty second field indicates there are no
additional constraints).

The 1||∑ p jU j problem is a natural scheduling problem, which models a basic
scheduling scenario. As it includes Subset Sum as a special case (see below), the
1|| ∑ p jU j problem is NP-hard. However, it is only hard in the weak sense, meaning
it admits pseudo-polynomial time algorithms. The focus of this paper is on developing
fast pseudo-polynomial time algorithms for 1||∑ p jU j , improving in several settings
on the best previously known solution from the late 60s. Beforewe describe our results,
we discuss the previously known state of the art of the problem, and describe how our
results fit into this line of research.

1.1 State of the Art

1|| ∑ p jU j is a special case of the famous 1||∑ w jU j problem. Here, each job j also
has a weight w j in addition to its processing time p j and due date d j , and the goal is
to minimize the total weight (as opposed to total processing times) of tardy jobs. This
problem has already been studied in the 60s, and even appeared in Karp’s fundamental
paper from1972 [6]. The classical algorithm of Lawler andMoore [10] for the problem
is one of the earliest and most prominent examples of pseudo-polynomial algorithms,
and it is to date the fastest known algorithm even for the special case of 1||∑ p jU j .
Letting P = ∑

j∈J p j , their result can be stated as follows:
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Theorem 1 [10] 1|| ∑ w jU j (and hence also 1||∑ p jU j ) can be solved in O(P · n)

time.

Note that as we assume that all processing times are integers, we have n ≤ P ,
and so the running time of the algorithm in Theorem 1 can be bounded by O(P2). In
fact, it makes perfect sense to analyze the time complexity of a pseudo-polynomial
time algorithm for either problems in terms of P , as P directly corresponds to the total
input length when integers are encoded in unary. Observe that while the case of n = P
(all jobs have unit processing times) essentially reduces to sorting, there are several
non-trivial cases where n is smaller than P yet still quite significant in the O(P · n)

term of Theorem 1. The question this paper addresses is:

“Can we obtain an O(P2−ε) time algorithm for 1||∑ p jU j , for any fixed
ε > 0 ?”

For 1||∑ w jU j there is some evidence that the answer to the analogous question
should be no. Karp [6] observed that the special case of the 1||∑ w jU j problem
where all jobs have the same due date d, the 1|d j = d| ∑ w jU j problem, is essentially
equivalent to the classical 0/1-Knapsack problem. Cygan et al. [4] and Künnemann
et al. [9] studied the (min,+)-Convolution problem (see Sect. 2), and conjectured
that the (min,+)-convolution between two vectors of length n cannot be computed
in Õ(n2−ε) time, for any ε > 0. Under this (min,+)-Convolution Conjecture, they
obtained lower bounds for several Knapsack related problems. In our terms, their result
can be stated as follows:

Theorem 2 [4,9] There is no Õ(P2−ε) time algorithm for the 1|d j = d| ∑ w jU j

problem, for any ε > 0, unless the (min,+)-Convolution Conjecture is false. In
particular, 1||∑ w jU j has no such algorithm under this conjecture.

Analogous to the situation with 1||∑w jU j , the special case of 1||∑ p jU j where
all jobs have the same due date d (the 1|d j = d| ∑ p jU j problem) is equivalent to
the classical Subset Sum problem. Recently, there has been significant improvements
for Subset Sum resulting in algorithms with Õ(T + n) running times [2,7], where n is
number of integers in the instance and T is the target. Due to the equivalence between
the two problems, this yields the following result for the 1|d j = d| ∑ p jU j problem:

Theorem 3 [2,7] 1|d j = d| ∑ p jU j can be solved in Õ(P) time.

On the other hand, due to the equivalence of 1|d j = d| ∑ p jU j and Subset Sum,
we also know that Theorem 3 above cannot be significantly improved unless the
Strong Exponential Time Hypothesis (SETH) fails. Specifically, combining a recent
reduction from k-SAT to Subset Sum [1] with the equivalence of Subset Sum and
1|d j = d| ∑ p jU j , yields the following:

Theorem 4 [1] There is no Õ(P1−ε) time algorithm for the 1|d j = d| ∑ p jU j prob-
lem, for any ε > 0, unless SETH fails.

Nevertheless, Theorem 4 still leaves quite a big gap for the true time complexity of
1|| ∑ p jU j , as it can potentially be anywhere between the Õ(P) time known already
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for the special case of 1|d j = d| ∑ p jU j (Theorem 3), and the O(Pn) = O(P2)

time of Lawler and Moore’s algorithm (Theorem 1) for the 1||∑w jU j problem. In
particular, the 1||∑ p jU j and 1||∑ w jU j problems have not been distinguished from
an algorithmic perspective so far. This is the starting point of our paper.

1.2 Our Results

The main contribution of this paper is two new pseudo-polynomial time algorithms
for 1||∑ p jU j , each improving on Lawler andMoore’s algorithm in a different sense.
Our algorithms take a different approach to that of Lawler and Moore in that they rely
on fast operators between sets and vectors of numbers.

Our first algorithm improves Theorem 1 in case there are sufficiently many jobs in
the instance compared to the total processing time. More precisely, our algorithm has
a running time of Õ(P7/4), and so it is faster than Lawler and Moore’s algorithm in
case n = ω̃(P3/4).

Theorem 5 1||∑ p jU j can be solved in Õ(P7/4) time.

The algorithm in Theorem 5 uses a new kind of convolution which we coined “Skewed
Convolution” and is interesting in its own right. In fact, one of the main technical
contributions of this paper is a fast algorithm for the (max,min)-Skewed-Convolution
problem (see definition in Sect. 2).

Our second algorithm for 1||∑ p jU j improves Theorem 1 in case there are not
too many different due dates in the problem instance; that is, D# = |{d j : j ∈ J }| is
relatively small when compared to n. This is actually a very natural assumption, for
instance in cases where delivery costs are high and products are batched to only few
shipments. Let D denote the sum of the different due dates in our instance. Then our
second result can be stated as follows:

Theorem 6 1||∑ p jU j can be solved in Õ(min{P · D#, P + D}) time.

The algorithm in Theorem 6 uses basic operations between sets of numbers, such
as the sumset operation (see Sect. 2) as basic primitives for its computation, and
ultimately relies on fast polynomial multiplication for its speedup. It should be noted
that Theorem 6 includes the Õ(P) result of Theorem 3 for 1|d j = d| ∑ p jU j as a
special case where D# = 1 or D = d. However, when measuring only in terms of n
and D, the running times of the algorithms in [2,7] for the single due date case are
Õ(D + n), which can be significantly faster than Õ(P).

As a final result we show that the algorithm used in Theorem 6 can be easily
extended to the case where we have a fixed number m ≥ 1 of parallel machines at our
disposal. This problem is known as Pm || ∑ p jU j in the literature. We show that the
complexity of Theorem 6 scales naturally in m for this generalization. This should be
compared with the O(Pmn) running time of Lawler and Moore’s algorithm.

Theorem 7 Pm || ∑ p jU j can be solved in Õ(min{Pm · D#, Pm + Dm}) time.
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1.3 Roadmap

The paper is organized as follows. In Sect. 2 we discuss all the basic primitives that
are used by our algorithms, including some basic properties that are essential for the
algorithms. We then present our second algorithm in Sect. 3, followed by our first
algorithm in Sect. 4. Section 5 describes our fast algorithm for the skewed version
of (max,min)-convolution, and is the main technical part of the paper. In Sect. 6 we
consider the case of multiple machines and prove Theorem 7, and we conclude with
some remarks and open problems in Sect. 7.

2 Preliminaries

In the following we discuss the basic primitives and binary operators between
sets/vectors of integers that will be used in our algorithms. In general, we will use
the letters X and Y to denote sets of non-negative integers (where order is irrelevant),
and the letters A and B to denote vectors of non-negative integers.
Sumsets: The most basic operation used in our algorithms is computing the sumset of
two sets of non-negative integers:

Definition 1 (Sumsets)Given two sets of non-negative integers X1 and X2, the sumset
of X1 and X2, denoted X1 ⊕ X2, is defined by

X1 ⊕ X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

Clearly, the sumset X1 ⊕ X2 can be computed in O(|X1| · |X2|) time. However,
in certain cases we can do better using fast polynomial multiplication. Consider the
two polynomials p1[α] = ∑

x∈X1
αx and p2[β] = ∑

x∈X2
βx . Then the exponents of

all terms in p1 · p2 with non-zero coefficients correspond to elements in the sumset
X1 ⊕ X2. Since multiplying two polynomials of maximum degree d can be done in
O(d log d) time [3], we have the following:

Lemma 1 Given two sets of non-negative integers X1, X2 ⊆ {0, . . . , P}, one can
compute the sumset X1 ⊕ X2 in O(P log P) time.

Set of all Subset Sums: Given set of non-negative integers X , we will frequently be
using the set of all sums generated by subsets of X :

Definition 2 (Subset Sums) For a given set of non-negative integers X , define the set
of all subset sums S(X) as the set of integers given by

S(X) =
{ ∑

x∈Y
x : Y ⊆ X

}
.

Here, we always assume that 0 ∈ S(X) (as it is the sum of the empty set).

We can use Lemma 1 above to compute S(X) from X rather efficiently: First, split
X into two sets X1 and X2 of roughly equal size. Then recursively compute S(X1) and
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S(X2). Finally, compute S(X) = S(X1)⊕S(X2) via Lemma 1. The entire algorithm
runs in Õ(

∑
x∈X x) time.

Lemma 2 ([7]) Given a set of non-negative integers X, with P = ∑
x∈X x, one can

compute S(X) in Õ(P) time.

Convolutions: Given two vectors A = (A[i])ni=0, B = (B[ j])nj=0, the (◦, •)-
Convolution problem for binary operators ◦ and • is to compute a vector C =
(C[k])2nk=0 with

C[k] = ©i+ j=k A[i] • B[ j].

Throughout this paper we assume that A, B (and C) are integer vectors with entries
boundedbynO(1), andwith the exceptional values+∞ and−∞. Aprominent example
of a convolution problem is (min,+)-Convolution discussed above; another similarly
prominent example is (max,min)-Convolution which can be solved in Õ(n3/2) time
[8]. For our purposes, it is convenient to look at a skewed variant of this problem:

Definition 3 (Skewed Convolution) Given two vectors A = (A[i])ni=0, B =
(B[ j])nj=0, we define the (max,min)-Skewed-Convolution problem to be the problem

of computing the vector C = (C[k])2nk=0 where the kth entry in C equals

C[k] = max
i+ j=k

min{A[i], B[ j] + k}

for each k ∈ {0, . . . , 2n}.
The main technical result of this paper is an algorithm for (max,min)-Skewed-

Convolution that is significantly faster than the naive O(n2) time algorithm.

Theorem 8 The (max,min)-Skewed-Convolution problem can be solved in Õ(n7/4)
time.

3 Algorithm via Sumsets and Subset Sums

In the following section, we provide a proof of Theorem 6 by presenting an algorithm
for 1||∑ p jU j running in Õ(min{P · D#, P + D}) time. Recall that J = {1, . . . , n}
denotes our input set of jobs, and p j and d j respectively denote the processing time
and due date of job j ∈ {1, . . . , n}. Our goal is to determine the minimum total
processing time of tardy jobs in any schedule for J . Throughout the section we let
d(1) < · · · < d(D#) denote the D# ≤ n different due dates of the jobs in J .

A key observation for the 1||∑ p jU j problem, used already by Lawler andMoore,
is that any instance of the problem always has an optimal schedule of a specific type,
namely an Earliest Due Date schedule. An Earliest Due Date (EDD) schedule is a
schedule π : J → {1, . . . , n} such that

– any early job precedes all late jobs in π , and
– any early job precedes all early jobs with later due dates.
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In other words, in an EDD schedule all early jobs are scheduled before all tardy jobs,
and all early jobs are scheduled in non-decreasing order of due dates.

Lemma 3 ([10]) Any 1||∑ p jU j instance has an optimal schedule which is EDD.

The D#-many due dates in our instance partition the input set of job J in a natural
manner: Define Ji = { j : d j = d(i)} for each i ∈ {1, . . . , D#}. Furthermore, let
Xi = {p j : j ∈ Ji } the processing-times of job in Ji . According to Lemma3 above,we
can restrict our attention to EDD schedules. Constructing such a schedule corresponds
to choosing a subset Ei ⊆ Ji for each due date d(i) such that

∑
j∈E�,�≤i p j ≤ d(i)

holds for each i ∈ {1, . . . , D#}. Moreover, the optimal EDD schedule maximizes the
total sum of processing times in all selected Ei ’s.

Our algorithm is given in Algorithm 1. It successively computes sets S1, . . . , SD# ,
where set Si corresponds to the set of jobs J1 ∪ · · · ∪ Ji . In particular, Si includes the
total processing-time of any possible set-family of early jobs {E1, . . . , Ei }. Thus, each
x ∈ Si corresponds to the total processing time of early jobs in a subset of J1∪· · ·∪ Ji .
The maximum value x ∈ SD# therefore corresponds to the maximum total processing
time of early jobs in any schedule for J . Thus, the algorithm terminates by returning
the optimal total weight of tardy jobs P − x .

Algorithm 1: SumsetScheduler(J )

1. Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2. Compute Xi = {p j : d j = d(i)} for each i ∈ {1, . . . , D#}.
3. Compute S(X1), . . . ,S(XD# ).
4. Let S0 = ∅.
5. For i = 1, . . . , D# do

- Compute Si = Si−1 ⊕ S(Xi ).
- Remove any x ∈ Si with x > d(i).

6. Return P − x , where x is the maximum value in SD# .

Correctness of our algorithm follows immediately from the definitions of sumsets
and subset sums, and from the fact that we prune out elements x ∈ Si with x > d(i)

at each step of the algorithm. This is stated more formally in the lemma below.

Lemma 4 Let i ∈ {1, . . . , D#}, and let Si be the set of integers at the end of the second
step of 5(i). Then x ∈ Si if and only if there are sets of jobs E1 ⊆ J1, . . . , Ei ⊆ Ji
such that

–
∑

j∈⋃i
�=1 E�

p j = x, and

–
∑

j∈⋃i0
�=1 E�

p j ≤ d(i0) holds for each i0 ∈ {1, . . . , i}.

Proof The proof is by induction on i . For i = 1, note that S1 = S(X1)\{x : x > d(1)}
at the end of step 5(1). Since S(X1) includes the total processing time of any subset
of jobs in J1, the first condition of the lemma holds. Since {x : x > d(1)} includes all
integers violating the second condition of the lemma, the second condition holds.
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Let i > 1, and assume the lemma holds for i − 1. Consider some x ∈ Si at the
end of the second step of 5(i). Then by Definition 1, we have x = x1 + x2 for some
x1 ∈ Si−1 and x2 ∈ S(Xi ) due the first step of 5(i). By definition of S(Xi ), there
is some Ei ⊆ Ji with total processing time x2. By our inductive hypothesis there is
E1 ⊆ J1, . . . , Ei−1 ⊆ Ji−1 such that

∑
j∈⋃i

�=1 E�
p j = x1, and

∑
j∈E�,�≤i0 p j ≤

d(i0) holds for each i0 ∈ {1, . . . , i − 1}. Furthermore, by the second step of 5(i), we
know that

∑
j∈E�,�≤i p j = x ≤ d(i). Thus, E1, . . . , Ei satisfy both conditions of the

lemma. �

Let us next analyze the time complexity of the SumsetScheduler algorithm.
Steps 1 and 2 can be both performed in Õ(n) = Õ(P) time. Next observe that step
3 can be done in total Õ(P) time using Lemma 2, as X2, . . . , XD# is a partition of
the set of all processing times of J , and these all sum up to P . Next, according to
Lemma 1, each sumset operation at step 5 can be done in time proportional to the
largest element in the two sets, which is always at most P . Thus, since we perform at
most D# sumset operations, the merging step requires Õ(D# · P) time, which gives
us the total running time of the algorithm above.

Another way to analyze the running time of SumsetScheduler is to observe that
the maximum element participating in the i th sumset is bounded by d(i+1). It follows
that we canwrite the running time of themerging step as Õ(D), where D = ∑D#

i=1 d
(i).

Thus, we have just shown that 1||∑ p jU j can be solved in Õ(min{D# · P, D + P})
time, completing the proof of Theorem 6.

4 Algorithm via Fast Skewed Convolutions

We next present our Õ(P7/4) time algorithm for 1||∑ p jU j , providing a proof of
Theorem 5. As in the previous section, we let d(1) < · · · < d(D#) denote the D# ≤ n
different due dates of the input jobs J , and Ji = { j : d j = d(i)} and Xi = {p j : j ∈ Ji }
as in Sect. 3 for each i ∈ {1, . . . , D#}.

For a consecutive subset of indices I = {i0, i0 + 1, . . . , i1}, with i0, . . . , i1 ∈
{1, . . . , D#}, we define a vector M(I ), where M(I )[x] equals the latest (that is, max-
imum) time point x0 for which there is a subset of the jobs in

⋃
i∈I Ji with total

processing time equal to x that can all be scheduled early in an EDD schedule starting
at x0. If no such subset of jobs exists, we define M(I )[x] = −∞.

For a singleton set I = {i}, the vector M(I ) is easy to compute once we have
computed the set S(Xi ):

M({i})[x] =
{
d(i) − x if x ∈ S(Xi ) and x ≤ d(i),

−∞ otherwise.
(1)

For larger sets of indices, we have the following lemma.

Lemma 5 Let I1 = {i0, i0 + 1, . . . , i1} and I2 = {i1 + 1, i1 + 2, . . . , i2} be any two
sets of consecutive indices with i0, . . . , i1, . . . , i2 ∈ {1, . . . , D#}. Then for any value
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x we have:

M (I1 ∪ I2) [x] = max
x1+x2=x

min {M (I1) [x1] , M (I2) [x2] − x1} .

Proof Let I = I1∪ I2. ThenM(I )[x] is the latest time point afterwhich a subset of jobs
J ∗ ⊆ ⋃

i∈I Ji of total processing time x can be scheduled early in an EDD schedule.
Let x1 and x2 be the total processing times of jobs in J ∗

1 = J ∗ ∩ (⋃
i∈I1 Ji

)
and

J ∗
2 = J ∗∩(⋃

i∈I2 Ji
)
, respectively. Then x = x1+x2. Clearly,M(I )[x] ≤ M(I1)[x1],

since we have to start scheduling the jobs in J ∗
1 at time M(I1)[x1] by latest. Similarly,

it holds that M(I )[x] ≤ M(I2)[x2] − x1 since the jobs in J ∗
2 are scheduled at latest at

M(I2)[x2] and the jobs in J ∗
1 have to be processed before that time point in an EDD

schedule. In combination, we have shown that LHS ≤ RHS in the equation of the
lemma.

To prove that LHS ≥ RHS, we construct a feasible schedule for jobs in
⋃

i∈I Ji
starting at RHS. Let x1 and x2 be the two values with x1 + x2 = x that maximize
RHS. Then there is a schedule which schedules some jobs J ∗

1 ⊆ ⋃
i∈I1 Ji of total

processing time x1 beginning at time min{M(I1)[x1], M(I2)[x2] − x1} ≤ M(I1)[x1],
followed by a another subset of jobs J ∗

2 ⊆ ⋃
i∈I2 Ji of total processing time x2 starting

at timemin{M(I1)[x1], M(I2)[x2]−x1}+x1 ≤ M(I2)[x2]. This is a feasible schedule
starting at timeRHS for a subset of jobs in

⋃
i∈I Ji which has total processing time x .�

Note that the equation given in Lemma 5 is close but not precisely the equation
defined in Definition 3 for the (min,max)-Skewed-Convolution problem. Neverthe-
less, the next lemma shows that we can easily translate between these two concepts.

Lemma 6 Let A and B be two integer vectors of P entries each. Given an algorithm
for computing the (max,min)-Skewed-Convolution of A and B in T (P) time, we can
compute in T (P) + O(P) time the vector C = A ⊗ B defined by

C[x] = max
x1+x2=x

min {A [x1] , B [x2] − x1} .

Proof Given A and B, construct two auxiliary vectors A0 and B0 defined by A0[x] =
B[x] + x and B0[x] = A[x] for each entry x . Compute the (max,min)-Skewed-
Convolution of A0 and B0, and let C0 denote the resulting vector. We claim that the
vector C defined by C[x] = C0[x] − x equals A ⊗ B. Indeed, we have

C0[x] − x = max
x1+x2=x

min{A0[x1], B0[x2] + x} − x

= max
x1+x2=x

min{A0[x1] − x, B0[x2]}
= max

x1+x2=x
min{B[x1] + x1 − x, A[x2]}

= max
x1+x2=x

min{B[x1] − x2, A[x2]}
= max

x1+x2=x
min{A[x1], B[x2] − x1},
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where in the third step we expanded the definition of A0 and B0, and in the last step
we used the symmetry of x1 and x2. �

We are now in position to describe our algorithm called ConvScheduler
which is depicted in Algorithm 2. The algorithm first computes the subset sums
S(X1), . . . ,S(XD# ), and the set of vectors M = {M1, . . . , MD# }. Following this,
it iteratively combines every two consecutive vectors inM by using the ⊗ operation.
The algorithm terminates when M = {M1}, where at this stage M1 corresponds to
the entire set of input jobs J . It then returns P − x , where x is the maximum value
with M1[x] > −∞; by definition, this corresponds to a schedule for J with P − x
total processing time of tardy jobs. For convenience of presentation, we assume that
D# is a power of 2.

Algorithm 2: ConvScheduler(J )

1. Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2. Compute Xi = {p j : d j = d(i)} for each i ∈ {1, . . . , D#}.
3. Compute S(X1), . . . ,S(XD# ).
4. ComputeM = {M1 = M(1), . . . , MD# = M(D#)}.
5. While |M| > 1 do

- Compute Mi = M2i−1 ⊗ M2i for each i ∈ {1, . . . , |M|/2}.
6. Return P − x , where x is the maximum value with M1[x] > −∞.

Correctness of this algorithm follows directly from Lemma 5. To analyze its time
complexity, observe that steps 1–4 can be done in Õ(P) time (using Lemma 2). Step 5
is performed O(log D#) = O(log P) times, and each step requires a total of Õ(P7/4)

time according to Theorem 8, as the total sizes of all vectors at each step is O(P).
Finally, step 6 requires O(P) time. Summing up, this gives us a total running time of
Õ(P7/4), and completes the proof of Theorem 5 (apart from the proof of Theorem 8).

5 Fast Skewed Convolutions

In the following sectionwepresent our algorithm for (max,min)-Skewed-Convolution,
and provide a proof for Theorem 8. Let A = (A[i])ni=0 and B = (B[ j])nj=0 denote
the input vectors for the problem throughout the section. Recall we wish the compute
the vector C� = (C[k])2nk=0 where

C[k] = max
i+ j=k

min{A[i], B[ j] + k}

for each k ∈ {0, . . . , 2n}.
We begin by first defining the problem slightly more generally, in order to facilitate

our recursive strategy later on. For this, for each integer � ∈ {0, . . . , log 2n}, let
A� = �A/2�� and B� = �B/2��, where rounding is done component-wise. We will
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compute vectors C� = (C�[k])2nk=0 defined by:

C�[k] = max
i+ j=k

min
{
A�[i], B�[ j] + �k/2��

}
.

Observe that a solution for � = 0 yields a solution to the original (max,min)-Skewed-
Convolution problem, and for � ≥ log(2n) the problem degenerates to (max,min)-
Convolution.

We next define a particular kind of additive approximation of vectors C�. We say
that a vector D� is a good approximation of C� if C�[k] − 2 ≤ D�[k] ≤ C�[k] for
each k ∈ {0, . . . , 2n}. Now, the main technical part of our algorithm is encapsulated
in the following lemma.

Lemma 7 There is an algorithm that computes C� in Õ(n7/4) time, given A�, B�, and
a good approximation D� of C�.

We postpone the proof of Lemma 7 for now, and instead show that it directly yields
our desired algorithm for (max,min)-Skewed-Convolution:

Proof of Theorem 8 In order to compute C = C0, we perform an (inverse) induction
on �: As mentioned before, if � ≥ log(2n), then we can neglect the “+ �k/2��” term
and compute C� in Õ(n3/2) = Õ(n7/4) time using a single (max,min)-Convolution
computation [8].

For the inductive step, let � < log(2n) and assume that we have already computed
C�+1. We construct the vector D� = 2C�+1, and argue that it is a good approximation
of C�. Indeed, for each entry k, on the one hand, we have:

D�[k] = 2C�+1[k] = 2 · max
i+ j=k

min{�A�[i]/2�, �B�[ j]/2� + �k/2�+1�}
≤ max

i+ j=k
min{A�[i], B�[ j] + �k/2��} = C�[k];

and on the other hand, we have:

D�[k] = 2C�+1[k] = 2 · max
i+ j=k

min{�A�[i]/2�, �B�[ j]/2� + �k/2�+1�}
≥ max

i+ j=k
min{A�[i] − 1, B�[ j] + �k/2�� − 2} ≥ C�[k] − 2.

Thus, using D� we can apply Lemma 7 above to obtain C� in Õ(n7/4) time. Since
there are O(log n) inductive steps overall, this is also the overall time complexity of
the algorithm. �

It remains to prove Lemma 7. Recall that we are given A�, B�, and D�, and our
goal is to compute the vector C� in Õ(n7/4) time. We construct two vectors L� and
R� with 2n entries each, defined by

L�[k] = max

{

A�[i0] : A�[i0] ≤ B�[k − i0] + �k/2�� and
D�[k] ≤ A�[i0] ≤ D�[k] + 2

}

,
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and

R�[k] = max

{

B�[ j0] + �k/2�� : B�[ j0] + �k/2�� ≤ A�[k − j0] and
D�[k] ≤ B�[ j0] + �k/2�� ≤ D�[k] + 2

}

for k ∈ {0, . . . , 2n}. That is, L�[k] and R�[k] respectively capture the largest value
attained as the left-hand side or right-hand side of the inner min-operation in C�[k],
as long as that value lies in the feasible region approximated by D�[k]. Since D� is a
good approximation, the following lemma is immediate from the definitions:

Lemma 8 C�[k] = max{L�[k], R�[k]} for each k ∈ {0, . . . , 2n}.
According to Lemma 8, it suffices to compute L� and R�. We first focus on comput-

ing L�. The computation of R� is very similar and we will later point out the necessary
changes.

Let 0 < δ < 1 be a fixed constant to be determined later. We say that an index
k ∈ {0, . . . , 2n} is light if

|
{
i : D�[k] ≤ A�[i] ≤ D�[k] + 2

}
| ≤ nδ.

Informally, k is light if the number of candidate entries A�[i]which can equalC�[k] is
relatively small (recall that D�[k] ≤ C�[k] ≤ D�[k]+2, as D� is a good approximation
of C�). If k is not light then we say that it is heavy.

Our algorithm for computing L� proceeds in three main steps: In the first step it
handles all light indices, in the second step it sparsifies the input vector, and in the
third step it handles all heavy indices:

– Light indices: We begin by iterating over all light indices k ∈ {0, . . . , 2n}. For
each light index k, we iterate over all entries A�[i] satisfying D�[k] ≤ A�[i] ≤
D�[k] + 2, and set L�[k] to be the maximum A�[i] among those entries with
A�[i] ≤ B�[k − i] + �k/2��. Note that after this step, we have

L�[k] = max

{

A�[i0] : A�[i0] ≤ B�[k − i0] + �k/2�� and
D�[k] ≤ A�[i0] ≤ D�[k] + 2

}

,

for each light index k.
– Sparsification step: After dealing with the light indices, several entries of A�

become redundant. Consider an entry A�[i] for which |{i0 : A�[i]− 2 ≤ A�[i0] ≤
A�[i] + 2}| ≤ nδ . Then all indices k for which L�[k] might equal A�[i] must be
light, and are therefore already dealt with in the previous step. Consequently, it is
safe to replace A�[i] by −∞ so that A�[i] no longer plays a role in the remaining
computation.

– Heavy indices: After the sparsification step A� contains few distinct values. Thus,
our approach is to fix any such value v and detect whether L�[k] ≥ v. To that
end, we translate the problem into an instance of (max,min)-Convolution: Let
(A�

v[i])ni=0 be an be an indicator-like vector defined by A�
v[i] = +∞ if A�[i] = v,
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and otherwise A�
v[i] = −∞. We next compute the vector L�

v defined by L�
v[k] =

�k/2��+maxi+ j=k min{A�
v[i], B�[ j]} using a single computation of (max,min)-

Convolution. We choose

L�[k] = max
{
v : L�

v[k] ≥ v and D�[k] ≤ v ≤ D�[k] + 2
}

for any heavy index k, and claim that L�[k] equals max{A�[i0] : A�[i0] ≤
B�[k − i0] + �k/2��}.

On the one hand, if L�
v[k] ≥ v then there are indices i and j with i + j = k for

which A�[i] = v and B�[ j] + �k/2�� ≥ A�[i] = v. Thus, the computed value
L�[k] is not greater than

L�[k] ≤ max

{

A�[i0] : A�[i0] ≤ B�[k − i0] + �k/2�� and
D�[k] ≤ A�[i0] ≤ D�[k] + 2

}

.

On the other hand, for all values v for which A�[i] = v for some i ∈ {0, . . . , n},
we have if v = A�[i] ≤ B�[k − i] + �k/2�� then A�

v[i] = −∞, which in turn
implies that A�

v[i] ≥ B�[k − i] + �k/2�� ≥ A�[i] = v. Thus, our selection of
L�[k] is also at least as large as

L�[k] ≥ max

{

A�[i0] : A�[i0] ≤ B�[k − i0] + �k/2�� and
D�[k] ≤ A�[i0] ≤ D�[k] + 2

}

,

and hence, these two values must be equal.

We finally argue how to adapt the approach to compute R�. In the first step, we
instead classify an index k as light if |{i : D�[k] ≤ B�[ j]+�k/2�� ≤ D�[k]+2}| ≤ nδ .
In the sameway as before we can compute R�[k] for all light indices k, as well as apply
the sparsification step to replace all entries B�[ j] which satisfy |{ j0 : B�[ j] − 2 ≤
B�[ j0] ≤ B�[ j] + 2}| ≤ nδ by −∞. After the sparsification, the vector B� contains
only few distinct values, and for any such value v we proceed similar to before.
Defining B�

v analogously, we compute R�
v[k] = maxi+ j=k min{A�[i], B�

v [ j]} and
return

R�[k] = max

{

v + �k/2�� : R�
v[k] ≥ v + �k/2�� and

D�[k] ≤ v + �k/2�� ≤ D�[k] + 2

}

for all heavy indices k. One can verify that this choice of R�[k] is correct with exactly
the same proof as before.

This completes the description of our algorithm.Aswe argued its correctness above,
what remains is to analyze its time complexity. Note that we can determine in O(log n)

time whether an index k is light or heavy, by first sorting the values in A�. For each
light index k, determining L�[k] can be done in O(nδ) time (on the sorted A�), giving
us a total of Õ(n1+δ) time for the first step. For the second step, we can determine
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whether a given entry A�[i] can be replaced with −∞ in O(log n) time, giving us a
total of Õ(n) time for this step.

Consider then the final step of the algorithm. Observe that after exhausting the spar-
sification step, A� contains at most O(n1−δ) many distinct values: For any surviving
value v, there is another (perhaps different) value v′ of difference at most 2 from v

that occurs at least 1/5 · nδ times in A�, and so there can only be at most O(n1−δ)

such distinct values. Thus, the running time of this step is dominated by the running
time of O(n1−δ) (max,min)-Convolution computations, each requiring Õ(n3/2) time
using the algorithm of [8], giving us a total of Õ(n5/2−δ) time for this step.

Thus, the running time of our algorithm is dominated by the Õ(n1+δ) running time
of its first step, and the Õ(n5/2−δ) running time of its last step. Choosing δ = 3/4
gives us Õ(n7/4) time for both steps, which is the time promised by Lemma 7. Thus,
Lemma 7 holds.

6 Multiple Machines

In the following we show how to extend the SumsetScheduler algorithm of Sect. 3
to the case of a fixed number m multiple machines, the Pm || ∑ p jU j problem. In this
variant, we have m machines at our disposal, and so a schedule σ for the set of jobs
J is now a function σ : {1, . . . , n} → {1, . . . ,m} × {1, . . . , n}. The first component
of σ( j) specifies the machine one which j is scheduled, and the second component
specifies its order on the machine. The completion time C j of j is then the sum of
all jobs preceding j (including j itself) on the same machine that j is scheduled. Our
goal remains to minimize the total processing time of tardy jobs

∑
p jU j .

For extending algorithm SumsetScheduler, we need to first extend Definition 2
to the case of multiple machines.

Definition 4 For a given set of non-negative integers X , define the set Sm(X) as the
set of m-tuples given by

Sm(X) =
{( ∑

x∈Y1 x, . . . ,
∑

x∈Ym x
)

: Y1, . . . ,Ym ⊆ X and Yi ∩ Y j = ∅
for each i, j ∈ {1, . . . ,m}, i �= j

}

.

Thus, every element in Sm(X) is an m-tuple x = (x1, . . . , xm) of non-negative
integers, where we interpret xi as the total processing time onmachine i ∈ {1, . . . ,m}.
We consider component-wise addition between two m-tuples, and define the sumset
X1 ⊕ X2 of two sets of m-tuples as in Definition 1; i.e., X1 ⊕ X2 = {x1 + x2 : x1 ∈
X1, x2 ∈ X2}.

To efficiently compute the sumset X1 ⊕ X2 when X1 and X2 are sets of
m-tuples we use multivariate polynomial multiplication. Let p1[α1, . . . , αm] =∑

(x1,...,xm )∈X1
Πm

i=1α
xi
i and p2[β1, . . . , βm] = ∑

(x1,...,xm )∈X2
Πm

i=1β
xi
i . Then the

exponents of all terms in p1 · p2 with non-zero coefficients correspond to elements
in the sumset X1 ⊕ X2. Since multiplying two m-variate polynomials of maximum
degree d on each variable can be reduced to multiplying two univariate polynomi-
als of maximum degree O(dm) using Kronecker’s map (see e.g. [11]), we obtain the
following:
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Lemma 9 Given two sets of m-tuples of non-negative integers X1, X2 ⊆ {0, . . . , P}m,
one can compute the sumset X1 ⊕ X2 in O(Pm log P) time.

Using the same divide and conquer approach used for Lemma 2, we can use Lemma 9
above to compute Sm(X) from X . The same analysis used for Lemma 2 will give us
a running time of O(Pm log P) instead of O(P log P).

Lemma 10 Given a set of non-negative integers X, with P = ∑
x∈X x, one can com-

pute Sm(X) in Õ(Pm) time.

The algorithm now proceeds in an analogous manner to the single machine case.
First we partition the set of jobs J into J1, . . . , JD# according to the D# different
due dates d(1), . . . , d(D# ), and we let Xi = {p j : j ∈ Ji } for each i ∈ {1, . . . , D#}.
This can be done in O(n) = O(P) time. We then compute Sm(X1), . . . ,Sm(XD# ) in
Õ(Pm) time using Lemma 10. Finally, we compute S0, S1, . . . , SD# ⊆ {0, . . . , P}m
starting from S0 = ∅, and then iteratively computing Si by Si = Si−1⊕Sm(X), where
elements in Si with a component strictly larger than d(i) are discarded from future com-
putations. The time complexity of this last final step is Õ(min{Pm · D#, Dm}), using
a similar analysis to the one done in Sect. 3. This completes the proof of Theorem 7.

7 Discussion and Open Problems

In this paper we presented two algorithms for the 1||∑ p jU j problem; the first run-
ning in Õ(P7/4) time, and the second running in Õ(min{P · D#, P + D}) time. Both
algorithms provide the first improvements over the classical Lawler and Moore algo-
rithm in 50 years (which can also solve the more general 1||∑w jU j ), and use more
sophisticated tools such as polynomial multiplication and fast convolutions. More-
over, both algorithms are very easy to implement given a standard ready made FFT
implementation for fast polynomial multiplication. Nevertheless, there are still a few
ways which our results can be improved or extended:

– Multiple machines: As we showed in Sect. 6, the SumsetScheduler algorithm
can easily be extended to the multiple parallel machine case, giving us a total
running time of Õ(min{Pm · D#, Pm + Dm}). We do not know how to obtain a
similar extension for algorithm ConvScheduler. In particular, there is no reason
to believe that Pm || ∑ p jU j cannot be solved in Õ(Pm) time, or even better, either
by extending algorithm ConvScheduler or by a completely different approach.

– Even faster skewed convolutions: We have no indication that our algorithm for
(max,min)-Skewed-Convolution is the fastest possible. It would interesting to
see whether one can improve its time complexity, say to Õ(P3/2). Naturally, any
such improvement would directly improve Theorem 5. Conversely, one could try
to obtain some sort of lower bound for the problem, possibly in the same vein as
Theorem 2. Improving the time complexity beyond Õ(P3/2) seems difficult as
this would directly imply an improvement to the (max,min)-Convolution prob-
lem. Indeed, let A, B be a given (max,min)-Convolution instance and construct
vectors A0, B0 with A0[i] = N · A[i] and B0[ j] = N · B[ j] for N = 2n + 1.
If C0 is the (max,min)-Skewed-Convolution of A0 and B0 (that is, C0[k] =
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maxi+ j=k min{A0[i], B0[ j] + k}), then the vector C with C[k] = �C0[k]/N� is
the (max,min)-Convolution of A and B.

– Other scheduling problems: Can the techniques in this paper be applied to any
other interesting scheduling problems? A good place to start might be to look at
other problems which directly generalize Subset Sum.

References

1. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: SETH-based lower bounds for subset sum and
bicriteria path. In: Proceedings of of the 30th Annual ACM-SIAMSymposium on Discrete Algorithms
(SODA), pp. 41–57 (2019)

2. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1084 (2017)

3. Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford: Introduction to Algo-
rithms, 3rd edn. The MIT Press, Cambridge (2009)

4. Cygan, Marek, Mucha, Marcin, Wegrzycki, Karol, Wlodarczyk, Michal: On problems equivalent to
(min, +)-convolution. ACM Trans. Algorithms 15(1), 14:1-14:25 (2019)

5. Graham, Ronald L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–
429 (1969)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,
pp. 85–103. Springer, Berlin (1972)

7. Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1062–1072 (2017)

8. Kosaraju, S.R.: Efficient tree pattern matching. In: Proceedings of the 30th annual symposium on
Foundations Of Computer Science (FOCS), pp. 178–183 (1989)

9. Künnemann,M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-dimensional dynamic
programming. In: Proceedings of the 44th International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 21:1–21:15 (2017)

10. Lawler, Eugene L., Moore, James M.: A functional equation and its application to resource allocation
and sequencing problems. Manage. Sci. 16(1), 77–84 (1969)

11. Pan,VictorY.: Simplemultivariate polynomialmultiplication. J. Symb.Comput. 18(3), 183–186 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Faster Minimization of Tardy Processing Time on a Single Machine
	Abstract
	1 Introduction
	1.1 State of the Art
	1.2 Our Results
	1.3 Roadmap

	2 Preliminaries
	3 Algorithm via Sumsets and Subset Sums
	4 Algorithm via Fast Skewed Convolutions
	5 Fast Skewed Convolutions
	6 Multiple Machines
	7 Discussion and Open Problems
	References




