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Abstract
Directed Steiner Tree (DST) is a central problem in combinatorial optimization and
theoretical computer science: Given a directed graph G = (V , E) with edge costs
c ∈ R

E≥0, a root r ∈ V and k terminals K ⊆ V , we need to output the minimum-cost
arborescence in G that contains an r → t path for every t ∈ K . Recently, Grandoni,
Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial
time O(log2 k/ log log k)-approximation Algorithms for the problem, which are tight
under popular complexity assumptions. In this paper, we consider the more general
Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are addition-
ally given a degree bound dv on each vertex v ∈ V , and we require that every
vertex v in the output tree has at most dv children. We give a quasi-polynomial
time (O(log n log k), O(log2 n))-bicriteria approximation: The Algorithm produces
a solution with cost at most O(log n log k) times the cost of the optimum solution that
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violates the degree constraints by at most a factor of O(log2 n). This is the first non-
trivial result for the problem. While our cost-guarantee is nearly optimal, the degree
violation factor of O(log2 n) is an O(log n)-factor away from the approximation lower
bound of �(log n) from the set-cover hardness. The hardness result holds even on the
special case of theDegree-BoundedGroup Steiner Tree problemon trees (DB-GST-T).
With the hope of closing the gap, we study the question of whether the degree violation
factor can be made tight for this special case. We answer the question in the affirma-
tive by giving an (O(log n log k), O(log n))-bicriteria approximation Algorithm for
DB-GST-T.

Keywords Group · Steiner · Approximation · Degrees

1 Introduction

Network design is a central problem in combinatorial optimization and computer
science. To capture more practical situations, the more general model of network
design with degree-constraintswas suggested in the early 90’s [8,21] and has attracted
researchers in both theory and practice for decades. One of the most famous examples
is the Degree-Bounded Minimum Spanning Tree (DB-MST) problem, which models
the problem of designing a multi-casting network in which each node only has enough
power to broadcast to a bounded number of its neighbors. This problem has been
studied in a sequence of works (see, e.g., [11,15,17,23]), leading to the breakthrough
result of Goemans [11] followed by the work of Singh and Lau [23], which settled
down the problem by giving an Algorithm that outputs a solution with optimum cost,
while violating the degree bound by an additive factor of +1 [23]. Since the works on
DB-MST,manyworks have been dedicated to studying generalizations of the problem:
theDegree-Bounded Steiner Tree problem, in which the goal is to find aminimum-cost
subgraph that connects all the terminals, while meeting the given degree bounds, was
studied in [16,20]. The Degree-Bounded Survivable Network Design problem, where
each pair of nodes v,w are required to have at least λvw edge-disjoint v-w paths, has
also been studied in literature; see, e.g., [19,20]. Recently, degree-bounded network
design problems have also been studied in the online setting [3–5].

Besides the standard (also called point-to-point) network design problems, a degree-
bounded version of the Group Steiner Tree problem has also been considered in the
literature [4]. In this problem, we are given a graph G = (V , E) with edge costs, a
root vertex r , as well as a collection of groups Ot ⊆ V , t ∈ [k], and the goal is to find
a minimum-cost tree that connects the root r to at least one vertex of each group Ot ,
t ∈ [k]. The Degree-Bounded Group Steiner Tree problem (DB-GST) is the variant
of group Steiner tree in which degree bounds are given for each vertex, and these
degree bounds must be obeyed by any feasible solution. Since the group Steiner tree
problem generalizes Steiner tree, its degree-bounded version generalizes the degree-
bounded Steiner tree problem. Dehghani et al. [4] studied the DB-GST problem in
the online setting, and gave a negative result for the problem: their result shows that it
is not possible to approximate both cost and weight of the Online DB-GST problem
simultaneously, even when the input graph is a star. More specifically, there exists
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an input demand sequence that forces any Algorithm to pay a factor of �(n) either
in the cost or in the degree violation. To date there was no non-trivial approximation
Algorithm for DB-GST, either in the online or offline setting, and even when all the
edges have zero-cost. This was listed as an open problem by Hajiaghayi [13] at the
8th Flexible Network Design Workshop (FND 2016).

In this paper, we study a degree-bounded variant of the classic network design
problem, theDegree-Bounded Directed Steiner Tree problem (DB-DST). Formally, in
DB-DST, we are given an n-vertex directed graph G = (V , E) with costs on edges, a
root vertex r , a set of k terminals K , and degree bounds dv for each vertex v. The goal
is to find a minimum-cost rooted tree T ⊆ G that contains a path from the root r to
every terminal t ∈ K , while respecting the degree bound, i.e., the out-degree of each
vertex v in T is at most dv . Despite being a classic problem, there was no previous
positive result on DB-DST as it is a generalization of DB-GST.

The barriers in obtaining any non-trivial approximationAlgorithm for DB-GST and
DB-DST are similar. Most of the previous Algorithms to these two problems either
run on the metric closure of the input graph [7,9,22], require metric-tree embedding
[1,6,9] or use height-reduction techniques [2,10,12,24], all of which lose track of the
degree of the solution subgraph.

We solve the open problem of Hajiaghayi [13], by presenting an Algorithm that is a
bicriteria (O(log k log n), O(log2 n))-approximation Algorithm for DB-DST running
in quasi-polynomial-time.We say that a randomized Algorithm is an (α, β)-bicriteria-
approximation Algorithm for DB-DST if it outputs a tree T containing an r → t path
for every terminal t ∈ K such that the number of children of every vertex v in T is at
most β ·dv , and the expected cost of the tree is at most α times the cost of the optimum
tree that does not violate the degree constraints.

Theorem 1.1 There is a randomized (O(log n log k), O(log2 n))-bicriteria approxi-
mation Algorithm for the degree-bounded directed Steiner tree problem in nO(log n)-
time.

To the best of our knowledge, our result for DB-DST is the first non-trivial bicri-
teria approximation for the problem. Our technique expands upon the recent result of
Grandoni, Laekhanukit and Li [12] for the Directed Steiner Tree problem.We observe
that their Algorithm can be easily extended to the problemwith degree bounds. Never-
theless, to amend the degree-constrainedproblem into their framework,we are required
to prove a concentration bound for the degrees, which is rather non-trivial. Notice that
the O(log n log k)-approximation factor on the cost of the tree is almost tight due
to the hardness of �(log2−ε n) in [14] for Directed Steiner Tree and the slightly
improved hardness of�(log2 n/ log log n) in [12]. There is a hardness of�(log n) for
the degree-violation factor from the set-cover problem, even if the cost of the output
tree is ignored.

While our result for DB-DST is (almost) tight on the cost guarantee, the degree vio-
lation factor O(log2 n) is an O(log n) factor away from the approximation lower bound
of �(log n) from the set-cover hardness. To understand if the gap can be reduced, we
study the special case of DB-DST obtained from the hardness construction in [14],
namely the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). In
this problem, we are given an (undirected) tree T ◦ = (V ◦, E◦)with edge-costs, a root
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r , k subsets of vertices (called groups) O1, . . . , Ok ⊆ V and a degree bound dv for
each vertex v ∈ V ◦. The goal is to find a minimum-cost subtree T ⊆ T ◦ that joins r to
at least one vertex from each group Ot , for every t ∈ [k], while respecting the degree
bound, i.e., the number of children of each vertex v in T is at most dv . We present
an (O(log k log n), O(log n))-bicriteria approximation Algorithm for DB-GST-T that
runs in polynomial time. So, the degree violation of our Algorithm is tight and the cost-
guarantee is almost tight. This improves upon the O(log n log k, log n log k)-bicriteria
approximation Algorithm due to Kortsarz and Nutov [18] who observe that the ran-
domized rounding Algorithm in [9] also gives a guarantee on degree-violation.

Theorem 1.2 There is a randomized
(
O(log n log k), O(log n)

)
-bicriteria approxima-

tion Algorithm for the degree-bounded group Steiner tree problem on trees, running
in polynomial time.

Remark As in [10,12], we could save a factor of log log n in the approximation factor
for DB-DST, with a slight increase in the running time. However, this complicates the
Algorithmic framework. To deliver the Algorithmic idea in a cleaner way, we choose
to present the results with O(log n log k) approximation ratios.

1.1 Our Techniques

Our Algorithm for degree-bounded directed Steiner tree takes ingredients from both
[12] and [10]. As in these papers, we consider an optimum solution, and recursively
partition it into balanced sub-trees; we then assign a “state” to each of these sub-trees.
The tree structure of this recursive partition, as well as all of the states, form what we
call a state tree. We solve the problem indirectly, by finding a good state tree, which
we can transform back into a corresponding good solution. The state of a sub-tree
contains a set of special vertices in the sub-tree that we call portals; these were used
in [10] to obtain their improved approximation Algorithm for DST. We construct a
super-tree T◦ that contains all possible state trees as sub-trees and reduce the problem
considered into that of finding a good sub-tree of small cost in T◦. This can be done
by formulating a linear program (LP) relaxation and rounding the LP solution using a
recursive procedure. The construction of the super-tree and theLP rounding techniques
are similar to those in [12]. To extend the algorithm to DB-DST, we need to store the
degrees of all of the portals in the state.

This algorithmic framework outputs a so-called “multi-tree”: This is a tree where
a vertex or an edge can appear multiple times. Repeating the procedure for Q =
O(log n log k) times, we obtain a set of Q multi-trees. This process violates the degree
requirements and thus we obtain bicriteria approximation results. The analysis of
this process is non-trivial as we need to introduce several techniques and prove a
concentration bound on the number of times a vertex appears in a multi-tree. We
summarize the techniques used to analyze this process below.

To bound the factor bywhich degree requirements are violated,we introduce several
techniques. First, we transform the graph so that the out-degree of each vertex is at
most 2. Since this clearly changes the degree bounds, we introduce a recursive process
that, given a solution in the transformed graph, computes the original degree of each
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vertex, that is, the degree of the vertex in the corresponding solution in the original
graph (see Section 2.1 for details). By imposing the degree bounds on these original
degrees, we obtain an equivalent problem on a graph with maximum out-degree of 2.

Next, wemust ensure that the bounds on the original degrees are satisfied in the state
tree: to do so, the original degrees of portals are stored in the state; by construction of
the state tree, edges are only added to the solution at leaves of the state tree, and all
outgoing edges for a (copy of a) single vertex are chosen by the state of a single leaf.
Since the original degree of a vertex can be recursively computed from the original
degrees of its children, we check for bounds on original degrees on the leaves of the
state tree, by only considering valid those that lead to satisfied degree bounds (see
Section 3.2 for details).

Finally, we must consider the existence of multiple copies of a vertex in a multi-
tree: while the step above bounds the degree of a single copy of a vertex, we must
now bound the number of copies of a vertex in a multi-tree. We use the expectation
of exponential random variables to bound the total number of copies of a vertex, over
all Q runs, to be at most O(log2 n) with large constant probability (see Sections 2.3
and 5.4). Combining these three steps with the techniques for DST, we obtained the
claimed bicriteria approximation.

For the DB-GST-T problem, our technique comes from observing that the rounding
algorithm for GST-T (no degree bounds) in [9] is indeed a generalization of random
walk. As we slightly boost the branching probability by a constant factor, this (almost)
does not affect the degree bound, but the probability of connecting the root vertex to
each group is amplified dramatically. A drawback is that it also incurs a huge blow-
up in the cost. To handle the blow-up, we stop amplifying the branching probability
when the connecting probability is sufficiently large. The best (but inaccurate) way to
illustrate our algorithm is by considering a randomwalk from the root vertex to a group
Ot . We change the random process by branching into two directions simultaneously in
each step, and then stop the extra branching when it generates �(log n) simultaneous
random walks. Since we have O(log n) simultaneous random walks, the cost incurred
by the process is blown-up by a factor O(log n), but the degree-violation is blown-up
by only a factor 2. At the same time, the probability of reaching the group Ot goes
up by a factor �(log n). Thus, if we need O(log k log n) rounds to reach every group,
then we now need only O(log k) rounds. There is no difference in the cost for running
the algorithm for O(log k log n) rounds or O(log k) rounds (with an extra O(log n)

factor in the cost), but it saves a factor in the degree-violation of O(log n).

2 Preliminaries for Degree-Bounded Directed Steiner Tree

2.1 Notations and Assumptions

In our algorithm and analysis for the DB-DST problem, a tree is always an out-
arborescence. Given a tree T , we use root(T ) to denote its root. Given T and a vertex
v in T , we use �T (v) to denote the set of children of v, and �∗

T (v) to denote the set
of descendants of v (including v itself) in the tree T . A sub-tree T ′ of T is a weakly-
connected sub-graph of T ; such a T ′ must be an out-arborescence. Sometimes, we
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Fig. 1 Example of the transformation to a graph with out-degree 2. On the left, a star consisting of the
outgoing edges of a vertex is presented; on the right, the transformed subgraph. Vertices that are added
by the transformation are represented as hollow circles. Each non-leaf vertex is labeled by its computed
original degree

shall use left and right children to refer to the two children of a vertex in a tree; in this
case, the order of the two children is important and will be clearly specified. For an
edge e = (u, v), we use tail(e) = v to denote its tail. For a triple ξ = (u, v, v′) of
three vertices, we use second(ξ) = v and third(ξ) = v′ to denote the second and third
parameter of ξ .

Our input digraph is G. Let dmax = maxv∈V dv . We shall assume each terminal
t ∈ K has only one incoming edge and no outgoing edges in G. This can be assumed
w.l.o.g using the following simple operation: For every terminal t ∈ K that does not
satisfy the condition, we add a new vertex t ′, an edge (t, t ′) and replace t with t ′ in
K . We increase dt by 1 and set dt ′ = 0.

Wewill assume that each non-terminal u ∈ V \K has atmost 2 outgoing edges inG,
though this requires us to extend the problem definition slightly. We will show how to
transform G into a new graph G ′ = (V ′, E ′)where the condition above holds, and the
problem is equivalent, with using a more general definition of degree constraints. We
describe the transformation by focusing on some non-terminal u with b ≥ 3 outgoing
edges. We replace the star centered at u with its b outgoing edges by a gadget which
is a full binary-tree rooted at u with b leaves being the out-neighbors of u. For every
newly added vertex u, we set du = dmax. This way every vertex in G ′ will have at
most 2 outgoing edges. The cost of the edges in the gadget can be naturally defined.

Unfortunately, this operation changes the degree of vertices. To address this issue,
we define a simple transformation function φv : Z → Z for every v ∈ V ′ as follows:
If v is a vertex in the original graph (v ∈ V ), then φv is identically 1 (φ(x) = 1,
x ∈ Z). Otherwise, v is a non-root internal vertex of some gadget and we define φv

to be the identity function (φ(x) = x , x ∈ Z). Given a tree T ′ of G ′, we can compute
the original degree ρu of a vertex u in the corresponding tree T in G recursively as
follows: ρu = 0 if u is a leaf, and ρu = ∑

v∈�T (u) φv(ρv) otherwise. We require that
for every v in the output tree T , the original degree ρv of v is at most dv , thus ensuring
that the original tree inG will satisfy the degree bounds. For simplicity of notation, we
refer to this modified graph as G = (V , E) instead of G ′ = (V ′, E ′) in the remainder
of the text (Fig. 1).
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2.2 Balanced Tree Partition

We shall use the following basic tool as the starting point of our algorithm design. Its
proof is elementary and deferred to Appendix A.

Lemma 2.1 Let T = (VT , ET ) be an n-vertex binary tree. Then there exists a vertex
v ∈ VT with n/3 < |�∗

T (v)| ≤ 2n/3 + 1.

Given a tree T = (VT , ET ) as in the lemma, we can partition it into two trees
T1 = (VT1 , ET1) and T2 = (VT2 , ET2), where T2 contains vertices in �∗

T (v) and T1
contains vertices in VT \ (�∗

T (v) \ {v}). First assume n ≥ 4. Since 2n/3 + 1 < n,
we know that v 
= root(T ), thus implying root(T1) = root(T ) 
= root(T2) = v,
which is a leaf in T1. Consequently, we have ET1 ∪ ET2 = ET , ET1 ∩ ET2 = ∅, and
VT1 ∪ VT2 = VT , VT1 ∩ VT2 = {root(T2)}. Moreover, |VT1 |, |VT2 | ≤ 2n/3 + 1, which
is strictly less than n. Thus, T1 and T2 are sub-trees that form a balanced partition of
(the edges of) T . We call this procedure the balanced tree partitioning on T .

When n = 3, there are 2 types of trees. If the root has two children, then we could
not make both |VT1 | and |VT2 | to be smaller than 3. If the tree is a path of 2 edges, then
we can choose v to be the middle vertex and the procedure partitions the tree into two
edges. Later, we shall apply the balanced tree partitioning procedure recursively. We
stop the recursion when the tree is either an edge, or only contains the root and its 2
children. In other words, we stop when the tree has only 1 level of edges.

2.3 Multi-Tree

We define a multi-tree in G as an intermediate structure. It is simply a tree over
multi-sets of vertices and edges in G:

Definition 2.2 (Multi-Tree) Given the input digraphG = (V , E), amulti-tree inG is a
tree T = (VT , ET ) where every vertex a ∈ VT is associated with a label label(a) ∈ V
such that for every (a, b) ∈ ET , we have (label(a), label(b)) ∈ E .

We say that each vertex a ∈ VT is a copy of the vertex label(a) ∈ V and each edge
(a, b) ∈ ET is a copy of the edge (label(a), label(b)) ∈ E . So, we say that T is rooted
at a copy of v ∈ V , if label(root(T )) = v, and T contains a copy of some v ∈ V if
there exists some a ∈ VT with label(a) = v.

We extend the costs ce, the functions φv and the degree bounds dv automatically to
their copies in amulti-tree. Thatmeans, for a vertex a and an edge (a, b) in amulti-tree,
da = dlabel(a), φa ≡ φlabel(a) and c(a,b) = c(label(a),label(b)). The cost of a multi-tree
T = (VT , ET ) is naturally defined as cost(T ) = ∑

e∈ET
ce. Given a multi-tree T , the

“original degree” ρa of a vertex a can be computed in the same way as before.

Definition 2.3 (Good Multi-Trees) Let T = (VT , ET ) be a multi-tree in G. We say
that T is good if it is rooted at a copy of r , has leaves being copies of terminals, and
the original degree of any vertex a in T is at most da (Fig. 2).

We can then state the main theorem for DB-DST, which we prove in Sections 3 to
5.
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Fig. 2 Example of a multi-tree and corresponding subgraph of G

Theorem 2.4 [Main Theorem for DB-DST] There is an nO(log n)-time randomized
algorithm that outputs a good multi-tree T = (VT , ET ) such that

(2.4a) ET [cost(T )] ≤ opt, where opt is the cost of the optimum solution for the instance.
(2.4b) For every t ∈ K, we have PrT [VT contains a copy of t] ≥ �(1/ log n).

(2.4c) For some s = �
(

1
log n

)
, it holds, for every v ∈ V , that

E
[
exp

(
s · (number of copies of v inT )

)] ≤ 1 + O
(

1
log n

)
.

We show that this implies Theorem 1.1.

Proof of Theorem 1.1 We run the algorithm in Theorem 2.4 Q times to obtain Q good
multi-trees T1, T2, · · · , TQ , for some large enough Q = O(log n log k). Our output
will contain all edges that appear in the Q multi-trees. Notice that the output may not
be a tree, but we can remove edges so that it becomes a tree. Applying union bound,
all terminals appear in the union of the Q trees with probability at least 0.9, when Q
is big enough. By Property (2.4c) in the theorem statement, we have for every v,

E
[
exp

(
s · (# copies ofv in T1, · · · , TQ)

)] ≤
(
1 + O

(
1

log n

))Q

= exp(O(log k)).

The above inequality holds since the Q trees are produced independently.
Thus, if M = O(log n) is big enough, by Markov’s inequality we have

Pr
[
exp

(
s · (# copies of v in T1, · · · , TQ)

) ≥ exp(M)
] ≤ 1

10n
.

The event on the left side is exactly that the number of copies of v in T1, · · · , TQ is at
least M/s.

Thus, with probability at least 0.8, every terminal t appears in one of the Q trees
and every vertex v appears at most M/s = O(log2 n) times in T1, T2, · · · , TQ . Taking
the union of all trees and reflecting the edges in original graph G, we have a sub-graph
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G ′ of G that contains a path from r to every terminal t ∈ K . The total cost of edges
in G ′ is at most O(log n log k) · opt. For every vertex v, the out-degree of v in G ′ will
be at most (M/s)dv = O(log2 n)dv . We can take an arbitrary Steiner tree T in G ′
as the output of the algorithm. This gives us an (O(log n log k), O(log2 n))-bicriteria
approximation algorithm for the degree-bounded directed Steiner tree problem. The
running time of the algorithm is nO(log n). ��
OrganizationThe remaining part of the paper is organized as follows. In Section 3, we
define states and good state trees. In Section 4, we argue that the problem of finding
a small cost valid tree can be reduced to that of finding a small cost state-tree. In
Section 5, we present our linear programming rounding algorithm that finishes the
proof of Theorem 2.4. Section 6 is dedicated to the proof of Theorem 1.2 for the
degree-bounded group Steiner tree problem on trees (DB-GST-T).

3 States and State-Trees

Given the optimum tree T ∗ (which is binary by our assumptions) for the DB-DST
problem, we can apply the balanced tree partitioning recursively to obtain a decom-
position tree: We start from T ∗ and partition it into two trees T1 and T2 using the
balanced-tree-partitioning procedure, and then recursively partition T1 and T2 until
we obtain sub-trees with 1 level of edges: Such a tree contains either a single edge, or
two edges from the root. Then the decomposition tree is a full binary tree where each
node corresponds to a sub-tree of T ∗. Due to the balance condition, the height of the
tree will be O(log n). Throughout the paper, we shall use h = �(log n) to denote an
upper bound on the height of this decomposition tree.

Thanks to its small depth, the decomposition tree becomes the object of interest.
However, as each node in the tree corresponds to a sub-tree of the optimum solution
T ∗, it contains toomuch information for the algorithm to handle. Instead, we shall only
extract a small piece of information from each node that we call the state of the node.
On one hand, a state contains much less information than a sub-tree does, so we can
afford to enumerate all possible states for a node. On the other hand, the states of nodes
in the decomposition tree still contain enough information for us to check whether the
correspondent multi-tree is good. We call the binary tree of states a state tree; we
require in a good state tree, the states of nodes satisfy some consistency constraints.
Then we can establish a two-direction connection between good multi-trees and good
state trees.

Given a valid tree T in G and a sub-tree T ′ of T , we now start to make definitions
related to the state of T ′ w.r.t T . It is convenient to think that T is the optimum tree
T ∗ and T ′ is a sub-tree of T = T ∗ obtained from the recursive balanced-partitioning
procedure, since this is how we use the definitions. However, the definitions are w.r.t
general T and T ′; from now on till the end of Section 3, we fix any valid tree T and
its sub-tree T ′ (Fig. 3).
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3.1 Portals

Other than root(T ′), the state for T ′ w.r.t T contains the set of portals of T ′:

Definition 3.1 A vertex v in T ′ is a portal in T ′, if v is root(T ′) or a non-terminal leaf
of T ′.

In general, the set of portals of T ′ can be large, but if T ′ is obtained from the
recursive balanced-tree-partitioning procedure for T , then the number of portals can
be shown to be at most h+1. As we shall often use the root and set of portals together,
we make the following definition:

Definition 3.2 (Root-Portals-Pair) (r ′, S) is called a root-portals-pair if r ′ ∈ S ⊆
V \ K .

It is easy to see that the root-portal-pairs for an internal node of the decomposition
tree and its two children satisfy some properties stated in the following definition:

Definition 3.3 (Allowable Child-Pair) Given three root-portals-pairs (r ′, S), (r ′, S1)
and (r ′′, S2), we say ((r ′, S1), (r ′′, S2)) is an allowable child-pair of (r ′, S) if r ′′ /∈
S, S1 ∪ S2 = S ∪ {r ′′} and S1 ∩ S2 = {r ′′}.

The following claim motivates the definition of allowable child pairs:

Claim 3.4 Assume T ′ = (V ′, E ′) contains at least 2 levels of edges. Let T ′
1 = (V ′

1, E
′
1)

and T ′
2 = (V ′

2, E
′
2) be the two sub-trees obtained by applying the balanced tree

partitioning on T ′. Let r ′ = root(T ′) = root(T ′
1), r

′′ = root(T ′
2) 
= r ′ and S, S1, S2

be the sets of portals in T ′, T ′
1, T

′
2 respectively. Then, ((r

′, S1), (r ′′, S2)) is an allowable
child-pair of (r ′, S).

Proof First, r ′′ is not a portal of T ′ since it is a non-root internal vertex in of T ′.
Second, it is easy to see that S1 = (S ∪ {r ′′}) ∩ V ′

1 and S2 = (S ∪ {r ′′}) ∩ V ′
2. So,

S1 ∪ S2 = S ∪ {r ′′} and S1 ∩ S2 = {r ′′}. ��

3.2 Degree Vectors

The next piece of the information in a state is a degree vector:

Definition 3.5 A degree vector for a set S ⊆ V \ K is a vector ρ = (ρv)v∈S , where
ρv is an integer in [1, dv] for every v ∈ S.

Supposedly, ρv will be the original degree of v in the tree T .

Definition 3.6 (Consistency of degree vectors) Given a root-portals-pair (r ′, S), an
allowable child-pair ((r ′, S1), (r ′′, S2)) of (r ′, S), three degree vectors ρ, ρ1 and ρ2

for S, S1 and S2 respectively, we say ρ1 and ρ2 are consistent with ρ, if

• For every v ∈ S1 \ {r ′′}, we have ρv = ρ1
v ,

• For every v ∈ S2 \ {r ′′}, we have ρv = ρ2
v and

• ρ1
r ′′ = ρ2

r ′′ .
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Fig. 3 Example of a subtree T ′ and the subtrees corresponding to an allowable child-pair. Portals are drawn
as hollow circles and terminals as hollow squares. The left subtree is T ′, the right subtrees are T ′

1 (top-right)
and T ′

2 (bottom-right). The sets of portals S, S1, S2 contain the portals of T ′, T ′
1, T

′
2 respectively

So, the degree vectors are consistent if there is no contradictory information among
them.

Definition 3.7 (Edge/Triple Agreeing with Degree Vector) Given a root-portals-pair
(r ′, S)with |S| ≤ 2, a degree vector ρ for S, and an edge (r ′, v) ∈ E with {r ′, v}\K =
S, we say (r ′, v) agrees with ρ if ρr ′ = (φv(ρv) or 1), where (φv(ρv) or 1) denotes
φv(ρv) if ρv is defined (i.e, if v ∈ S) and 1 otherwise.

Similarly, given a root-portals-pair (r ′, S) with |S| ≤ 3, a degree vector ρ for S,
and two edges (r ′, v), (r ′, v′) ∈ E such that {r ′, v, v′} \ K = S, we say the triple
(r ′, v, v′) agrees with ρ if ρr ′ = (φv(ρv) or 1) + (φv′(ρv′) or 1).

Notice that in the above definition either v ∈ S or v ∈ K . In the former case,
ρv is defined; in the latter case ρv is not defined but we know φv is identically 1.
The same argument holds for v′. The definition corresponds to the case when T ′ is
a base case of the recursive balanced tree partitioning, i.e., T ′ contains only 1 level
of edges. If T ′ contains an edge e = (r ′, v), then the portal set of T ′ is {r ′, v} \ K .
We shall have ρr ′ = φv(ρv) or 1. Thus, if ρ is restricted to the portal set, we have
ρr ′ = (φv(ρv) or 1). Similarly, if T ′ contains 3 vertices (r ′, v, v′) with r ′ being the
root, then we must have ρr ′ = (φv(ρv) or 1) + (φv′(ρv′) or 1).

3.3 States and Good State-Trees

With degree vectors, we can define states and good state-trees:

Definition 3.8 A state is a tuple (r ′, S, ρ) where (r ′, S) is a root-portals-pair and ρ is
a degree vector for S.

The state of the tree T ′ w.r.t T is the tuple (r ′, S, ρ) with r ′ = root(T ′), S being
the set of portals in T ′, and ρ being the vector of original degrees of vertices in S w.r.t
the tree T .
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Definition 3.9 (Good State Trees) A good state tree is a full binary tree τ of depth at
most h, where every node p is associated with a state (r ′

p, Sp, ρ
p), and every leaf o is

associated with either an edge eo ∈ E or a triple ξo such that the following conditions
hold.

3.9a
(
r ′
root(τ ), Sroot(τ )

)
= (r , {r}).

3.9b For any leaf o of τ , either eo or ξo agrees with ρo.
3.9c For an internal node p in τ , letting q and o be the left and right children of

p, then the pair ((r ′
q , Sq), (r

′
o, So)) is an allowable child-pair of (r ′

p, Sp) (so,
r ′
q = r ′

p 
= r ′
o), and ρq and ρo are consistent with ρ p.

We say that a terminal t ∈ K is involved in a good state tree τ if there exists a leaf
o of τ with t = tail(eo), or t ∈ {second(ξo), third(ξo)}.

Given a good state tree τ , and a leaf o in τ , we define the cost c(o) as follows. If
eo is defined, then we define c(o) = ceo ; otherwise, define c(o) = c(r ′

o,second(ξo)) +
c(r ′

o,third(ξo)). The cost of a state-tree τ is defined as cost(τ ) := ∑
o leaf of τ c(o).

We remark that the degree bounds are ensured by Property (3.9b), as the outgoing
edges for a vertex v (or actually, for a copy of a vertex), are decided by the state of a
leaf p of τ . Now, we can use the fact that the original degrees of portals are stored in ρ,
and non-portals count as a single outgoing edge, together with the recursive definition
of original degree, to compute the original degree of v and check the degree bounds.
The checks corresponding to this process follow from Definitions 3.5 and 3.7.

4 Reduction to Finding Good State-Trees

4.1 From aValid Tree to a Good State-Tree Involving All Terminals

In this section, we show that the decomposition tree of the optimum tree T ∗ can
be turned into a good state tree τ ∗ with cost cost(τ ∗) = cost(T ∗) that involves
all terminals. As we alluded, the state tree τ ∗ is constructed by taking the state
for each node in the decomposition tree for T ∗. Formally, it is obtained by calling
gen − state − tree(T ∗) (defined in Algorithm 1). In the Algorithm ρT ∗

is the vector of
original degrees of all vertices in T ∗. The procedure is only for needed for the purpose
of analysis; it is not a part of our Algorithm.

Algorithm 1 gen − state − tree(T ′)
1: create a node p with r ′

p = root(T ′), Sp = portals of T ′ and ρ p being ρT ∗
restricted to Sp

2: if T ′ has only 1 level of edges then
3: if T ′ contains a single edge e then let ep = e and return the single node p
4: otherwise, T ′ contains two edges (r ′, v) and (r ′, v′), let ξp = (r ′, v, v′) and return p

5: apply balanced tree partitioning to decompose T ′ into T ′
1 and T ′

2
6: τ1 ← gen − state − tree(T ′

1), τ2 ← gen − state − tree(T ′
2)

7: return the tree τ obtained by combining p, τ1 and τ2 with edges (p, root(τ1)) and (p, root(τ2)), with
root(τ1) and root(τ2) being the left and right children of p respectively
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Fig. 4 The figure represents the encoding of a tree as a state tree. Each state is a succinct encoding of a tree
that captures its boundary information (i.e. the portals). The state tree then encodes how a tree is further
decomposed to subtrees. In the example we have a one-step decomposition – an allowable child-pair, and
it corresponds to an 1-level state tree with three states

Lemma 4.1 τ ∗ is a good state tree involving all terminals and cost(τ ∗) = cost(T ∗).

Proof We first show that τ ∗ is a good state tree, by showing that it satisfies all the
properties in Definition 3.9. Property (3.9a) trivially holds by the way we define the
parameters for the root recursion of gen − state − tree. Property (3.9b) holds by that
each ρ p is ρT ∗

restricted to Sp. Property (3.9c) follows from the same facts and
Claim 3.4. cost(τ ∗) = ∑

e∈ET∗ ce = cost(T ∗) since every edge in T ∗ counted exactly
once in τ ∗. ��

4.2 From a Good State Tree to a GoodMulti-Tree

Now we focus on the other direction of the reduction. Suppose we are given a good
state tree τ , and our goal is to construct a good multi-tree T with cost(T ) = cost(τ ).
Moreover, if a terminal t ∈ K is involved in τ , then T contains a copy of t (Fig. 4).

The multi-tree T is constructed by joining the edges associated with all leaf nodes
o in τ using a recursive procedure. For each node p in τ we shall construct a multi-tree
Tp for p, as well as a mapping πp from Sp to vertices in Tp. The multi-tree Tp and
the mapping πp satisfy the following properties:

(P1) For every v ∈ Sp, we have label(πp(v)) = v, that is, πp(v) is a copy of v.
(P2) πp(r ′

p) = root(Tp).

In particular, the two properties imply that root(Tp) is a copy of r ′
p.

The trees and mappings are constructed from the bottom to the top of the tree τ .
Focus on a leaf node p with ep = (r ′, v). If ep is defined, then Tp only contains a
copy of the edge (r ′, v). πp maps r ′ to the copy of r ′, and if v /∈ K (thus, v ∈ Sp),
v to the copy of v in Tp. Otherwise ξp is defined. Then Tp contains a tree with two
edges: a copy of (r ′

p, second(ξp)) and a copy of (r
′
p, third(ξp)). πp can also be defined

naturally.
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Now consider the case that p is an internal node and let q and o be its left and right
children. Then, we have r ′

p = r ′
q , r

′
o /∈ Sp, Sq ∪ So = Sp ∪ {r ′

o} and Sq ∩ So = {r ′
o}

by Property (3.9c). Then we identify πq(r ′
o) with πo(r ′

o) = root(To), and then the
multi-tree Tp is the new tree containing vertices in Tq and To. Notice that both πq(r ′

o)

and πo(r ′
o) are copies of r

′
o; thus the obtained Tp can be well-defined. The mapping

πp is just the combination of πq and πo: For a vertex v ∈ Sq , let πp(v) = πq(v); for a
vertex v ∈ So, let πp(v) = πo(v); since Sq ∩ So = {r ′

o} and we identified πq(r ′
o) with

πo(r ′
o), the mapping is well-defined. Also, it is easy to see that (P1) and (P2) holds for

Tp and πp.
Our final multi-tree for τ will be T = Troot(τ ). It is straightforward to see that if

t ∈ K is involved in τ , then T contains a copy of t . Notice that all the ρ p-vectors
are consistent with each other, and for every leaf o, eo or ξo agrees with ρo. Thus,
aggregating all the ρ p vectors will recover the vector ρT of original degrees of vertices
in ρT . So, the multi-tree T is good since every v in T has ρT

v ∈ [1, dv]. The cost
of T is

∑
e∈ET

ce = ∑
o: leaves of τ c(o) = cost(τ ). The procedure is presented in

Algorithm 2.

5 Finding a Good State Tree using LP Rounding

5.1 Extended State Trees and Construction of T0

With the relationship between good multi-trees and good state trees established, we
can now focus on the problem of finding a good state-tree of small cost involving
many terminals. We shall construct a quasi-polynomial sized tree T◦ so that every
good state-tree τ corresponds a sub-tree T of T◦ satisfying some property. Roughly
speaking, T◦ is the “super-set” of all potential good state-trees τ . However, since the
consistency conditions are defined over three states for a parent and its two children,
it is more convenient to insert a “virtual” node between every internal node and its
two children. Also, it is convenient to break a leaf state node o into two nodes, one
containing the state information and the other containing eo or ξo. Formally, for a good
state-tree τ , we construct a correspondent tree T as follows.

Algorithm 2 gen − multi − tree(p, τ )

1: if p is a leaf then
2: if ep is defined then
3: return a copy of ep
4: else if ξp is defined then
5: return a copy of the star with edges {(r ′

p, second(ξp)), (r
′
p, third(ξp))}

6: else if p is a node with children q (left) and o (right) then
7: Tq ← gen − multi − tree(q, τ ), To ← gen − multi − tree(o, τ )

8: Let T ′
p be the union of Tq and To

9: Obtain Tp from T ′
p by unifying the root of To with the copy of the portal r ′

o ∈ Sq in Tq
10: Return Tp
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1. Let T be a copy of τ . All nodes in T are called state nodes.
2. For every internal state node p in T with left and right children p1 and p2, we

create a virtual node q and replace the two edges (p, p1) and (p, p2) with 3 edges
(p, q), (q, p1) and (q, p2); p1 is still the left child and p2 is the right child.

3. For every leaf state node p, we create a base node o and let o be the child of p.
Then we move the ep or ξp information from the node p to node o: If ep is defined,
then we let eo = ep and undefine ep; otherwise, let ξo = ξp and undefine ξp.

4. We add a super node r and an edge from r to the root of T. r will be the new root
for T.

We call this T the extended state-tree for τ ; we say T is good if its correspondent τ
is good. Clearly, there is a 1-to-1 correspondence between good state trees and good
extended state trees.

OurT◦ will be the “super-set” of all potential good extended state treesT. Formally,
we create a super node r to be the root of T◦. Then, for every ρr ∈ [1, dr ], we call
cnstr−T◦(0, r , {r}, ρ = (ρr )) to obtain a tree and let its root be a child of r (Fig. 5).

Algorithm 3 cnstr−T◦(h′, r ′, S, ρ)

1: create a state node p with (r ′
p, Sp, ρ

p) = (r ′, S, ρ)

2: for every (r ′, v) ∈ E such that {r ′, v} \ K = S and (r ′, v) agrees with ρ do
3: create a “base node” o with eo = (r ′, v) and let o be a child of p
4: let c(o) = c(r ′,v)

5: for every (r ′, v), (r ′, v′) ∈ E such that {r ′, v, v′} \ K = S and (r ′, v, v′) agrees with ρ do
6: create a “base node” o with ξo = (r ′, v, v′) and let o be a child of p
7: let c(o) = c(r ′,v) + c(r ′,v′)
8: if h′ < h then
9: for every allowable child-pair ((r ′, S1), (r ′′, S2)) of (r ′, S) do
10: for every pair of degree vectors ρ1 for S1 and ρ2 for S2 such that ρ1 and ρ2 are consistent with

ρ do
11: create a “virtual node” q and let q be a child of p
12: T1 ← cnstr−T◦(h′ + 1, r ′, S1, ρ1)
13: T2 ← cnstr−T◦(h′ + 1, r ′′, S2, ρ2)
14: let the left and right sub-trees of q be T1 and T2 respectively

15: return the tree T rooted at p

The following claim is immediate from the construction of T◦.

Claim 5.1 A subtree T of T◦ with root(T) = root(T◦) is a good extended state tree if
and only if the following happens:

• The super node in T has exactly one child (which is a state node).
• Each state node in T has exactly one child (which is an base node or a virtual
node).

• For each virtual node q in T, both q’s children in T◦ are in T.

On the other hand, every good extended tree T of depth at most h + 1 is a sub-tree of
T◦ with root being root(T◦).
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Fig. 5 T◦ is the union of all good extended state trees. Virtual nodes are denoted as triangles, each of
which represents a way to decompose (the subtree corresponding to) its parent state node. For example,
(p′, (S1, S2)) means we break the tree at vertex p′ (thus creating a new portal p′), and divide the portals S
of the original tree (along with p′) to the two new subtrees as S1 and S2

Also, we say that a vertex v is involved in T if there is an base node o in T with
v = tail(eo) or v ∈ {second(ξo), third(ξo)}. The cost of T, denoted as cost(T), is
defined the sum of c(o) over all base nodes in T. So, the problem now becomes
finding a small-cost good extended state tree in T◦ that involves each terminal with
large probability.

5.2 LP Formulation

We formulate an LP relaxation for our task. Let V◦ be the set of nodes in T◦, r =
root(T◦), and let V◦

state,V
◦
virt and V◦

base be the sets of state, virtual and base nodes in
T◦, respectively. Notice that there is only one super node, which is the root r. For
every v ∈ V , let Ov = {

o ∈ V◦
base : v = tail(eo) or v ∈ {second(ξo), third(ξo)}

}
be

the set of base nodes involving v. Let T∗ be our target good extended state tree; this
is the tree correspondent to the good state tree τ ∗. Then, in our LP, we have a variable
xp for every p ∈ V◦, that indicates whether p is in the T∗ or not.

min
∑

o∈V◦
base

xoc(o) (1)

∑

q∈�T◦ (p)

xq = xp,∀p ∈ V◦
state ∪ {r} (2)

xp = xq ,∀q ∈ V◦
virt, p ∈ �T◦(q) (3)

xp ∈ [0, 1],∀p ∈ V◦ (4)
∑

o∈�∗
T◦ (p)∩Ot

xo ≤ xp,∀p ∈ V◦, t ∈ K (5)

∑

o∈Ot

xo = 1,∀t ∈ K (6)
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The objective function of LP (1) is to minimize the total cost of all leaves in T∗.
(2) requires that for every state or super node p in T∗, exactly one child of p is in T∗.
(3) requires that a virtual node q in T∗ has both its children in T∗. (5) says for every
node p in T∗ and every terminal t ∈ K , there is at most one descendant base node
o of p that is in Ot . In the whole tree T∗, exactly one leaf node o has t = tail(eo)
or t ∈ {second(ξo), third(ξo)}, for every t ∈ K (Constraint (6)); in the LP, all the
variables are between 0 and 1 (Constraint (4)).

Notice that (5) for p = r and any t ∈ K and (6) for the same t imply that xr = 1.
(2) and (3) imply that the x values over the nodes of a root-to-leaf path in T◦ are
non-increasing.

5.3 Rounding Algorithm

Given a valid solution x to LP (1), our rounding algorithm will round it to obtain set
V ⊆ V◦, which induces a good state tree. The algorithm is very similar to that of [9]
with the only one difference: For every state node or super-node p that is added to V,
we add exactly one child q of p to V, while the algorithm of [9] makes independent
decisions for each child. The algorithm is formally described in Algorithm 4. In the
main algorithm, we simply call round(r). It is straightforward to see that the tree

Algorithm 4 round(p)
1: if p ∈ V◦

state ∪ {r} then
2: randomly choose a child q of p according to probability vector

(
xq
xp

)

q∈�T◦ (p)
3: return {p} ∪ round(q)

4: else if p ∈ V◦
virt then

5: return {p} ∪ round(left child of p) ∪ round(right child of p)
6: else
7: return {p}

induced by round(r) is a good extended state tree. The following claim also holds:

Claim 5.2 Let p ∈ V◦ and q ∈ �∗
T◦(p). LetV be the random set returned by round(p).

Then we have Pr[q ∈ V] = xq
xp
.

Applying the above claim for p = r and every q ∈ V◦
base, we have that the expected

cost of the tree induced by V is exactly cost(x).
The main theorem we need about the rounding algorithm is as follows:

Theorem 5.3 Let V be the random set returned by round(r). Then, for any terminal
t ∈ K, we have

Pr[V ∩ Ot 
= ∅] ≥ 1

h + 1
.

Theorem 5.3 was proved [9] for the original rounding algorithm and was reproved
in [22]. However, adapting the analysis to our slightly different rounding algorithm is
straightforward and thus we omit the proof of the theorem here.
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We now wrap up and finish the proof of the main theorem (Theorem 2.4) except
for Property (2.4c), which will be proved in Section 5.4.

We solveLP(1) to obtain a solution x . Notice that cost(x) ≤ cost(T∗) = cost(τ ∗) =
cost(T ∗). LetV ← round(r). Then byClaim5.1 and the rounding algorithm, the treeT
induced byV is a good extended state tree. Let τ be the good state tree correspondent to
T, and let T be the goodmulti-tree inG constructed using the procedure in Section 4.2.
The cost of the multi-tree T is at most cost(x). By Theorem 5.3, for every t ∈ K , the
probability that t is involved T is at least 1/(h + 1) = �(1/ log n).

Let us consider the running time of the algorithmic framework, which is polynomial
on the size of the tree T◦. First notice that if ((r ′, S1), (r ′′, S2)) is an allowable child
pair of (r ′, S), then we have |S1|, |S2| ≤ |S| + 1 since S1 ∪ S2 = S ∪ {r ′′}. Thus, a
state-node p at the h′-th level in T◦ (the children of r have level 0 and for simplicity
we do not consider super and virtual nodes when counting levels) has |Sp| ≤ h′ + 1.
Thus, every state node p in T◦ has |Sp| ≤ h + 1.

Then we consider the degree of the tree T◦, which is the maximum number of
possible children of a state node p with (r ′

p, Sp, ρ
p) = (r ′, S, ρ). First, there are at

most n × 2|Sp | ≤ n · 2h+1 different allowable child pairs ((r ′, S1), (r ′′, S2)) of the
pair (r ′, S): there are at most n choices for r ′′ and 2h ways to split S into S1 and S2.
Then, for a fixed allowable child pair ((r ′, S1), (r ′′, S2)) we consider the number of
pairs of degree vectors

(
ρ1, ρ2

)
such that ρ1 and ρ2 are consistent with ρ. This is

determined by the value of ρ1
r ′′ = ρ2

r ′′ , which has at most dmax possibilities. So, the
number of virtual children of a state node is at most n ·2h+1 ·dmax = O(poly(n) since
h = O(log n). The number of child base nodes of p is at most n2. Since the height of
the tree T◦ is at most O(log n), its size bounded by (poly(n))O(log n) = nO(log n). So
the running time of the LP rounding algorithm is nO(log n). This finishes the proof of
Theorems 2.4 except for Property (2.4c).

5.4 Concentration Bound on Number of Copies of a Vertex Appearing in T

Finally, we prove Property (2.4c) in Theorem 2.4. To this end, we shall fix a vertex
v ∈ V . For every vertex p ∈ V◦, let z p = ∑

o∈�∗
T◦ (p)∩Ov

xo. By Constraint (5),

we have z p ≤ xp. Let mp = |�∗
T◦(p) ∩ Ov ∩ V| be the total number of nodes in

�∗
T◦(p) ∩ Ov that are selected by the rounding algorithm.
As is typical, we shall introduce a parameter s > 0 and consider the expectation of

the random exponential variables esm p (we use e for the natural constant). We shall
bound E[esm p |p ∈ V] from bottom to top by induction. So, in this proof, it is more
convenient for us to use a different definition of levels: the level of a node p in T◦ is
the maximum number of edges in a path in T◦ starting from p. So, the leaves have
level 0 and for an internal node p in T◦, the level of p is 1 plus the maximum of the
level of q over all children q of p. We define an αi for every integer i ≥ 0 as α0 = es

and αi = eαi−1−1,∀i ≥ 1. Notice that α0, α1, · · · is an increasing sequence. Thus, we
can induce the following lemma.

Lemma 5.4 For any node p be in T◦ of level at most i , E
[
esm p

∣∣p ∈ V
]

≤ α
z p/xp
i .
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Proof We prove the lemma by induction on i . If i = 0, then p is a leaf, and thus, we
have either z p = 0 or z p = xp, depending on whether p ∈ Ov or not. If z p = 0, then

mp is always 0, and thus, E
[
esm p

∣∣p ∈ V
]

= 1 = α
z p/xp
0 . If z p = xp, then mp is

always 1 (conditioned on p ∈ V), and thus, E
[
esm p

∣∣p ∈ V
]

= es = α
z p/xp
0 . So, the

lemma holds if i = 0.
Now, let i ≥ 1 be any integer and we assume the lemma holds for i − 1. We shall

prove that it also holds for i . Focus on a node p of level at most i . Then all children
q of p have level at most i − 1. If p is a virtual node, then p ∈ V implies that both
children of p in V. Since the two children are handled independently in the rounding
algorithm, we have

E

[
esm p

∣∣p ∈ V
]

=
∏

q∈�T◦ (p)

E

[
esmq

∣∣p ∈ V
]

=
∏

q∈�T◦ (p)

[
xq
xp

· E[esmq |q ∈ V] + 1 − xq
xp

]

=
∏

q∈�T◦ (p)

[
1 + xq

xp

(
E[esmq |q ∈ V] − 1

)]
.

If p is the super node or a state node, then we have
∑

q∈�T◦ (p) xq = xp. Conditioned
on p ∈ V, the rounding procedure adds exactly one child q of p to V. Then, we have

E

[
esm p

∣∣p ∈ V
]

=
∑

q∈�T◦ (p)

xq
xp

E

[
esmq

∣∣q ∈ V
]

= 1 +
∑

q∈�T◦ (p)

xq
xp

(
E[esmq

∣∣q ∈ V] − 1
)

≤
∏

q∈�T◦ (p)

[
1 + xq

xp

(
E[esmq |q ∈ V] − 1

)]
.

Thus, we always have

E

[
esm p

∣∣p ∈ V
]

≤
∏

q∈�T◦ (p)

[
1 + xq

xp

(
E[esmq |q ∈ V] − 1

)]

≤
∏

q∈�T◦ (p)

[
1 + xq

xp

(
α
zq/xq
i−1 − 1

)]
by induction hypothesis

≤ exp

⎡

⎣
∑

q∈�T◦ (p)

xq
xp

(
α
zq/xq
i−1 − 1

)
⎤

⎦

≤ exp

[
z p
xp

(αi−1 − 1)

]
= α

z p/xp
i . since 1 + θ ≤ eθ for every θ
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To see the second inequality in the last line, we notice that (i) αθ
i−1 − 1 is a convex

function of θ that is upper bounded by θ(αi−1 − 1) in the interval θ ∈ [0, 1], and
(ii) zq/xq ∈ [0, 1] for every q in the summation, which allows us to bound each term
by xq

xp
zq
xq

(αi−1 − 1) ≤ z p
xp

(αi−1 − 1). Since
∑

q∈�T◦ (p)
xq
xp

· zq
xq

= z p
xp
, the quantity

inside exp(·) has maximum value z p
xp

(αi−1 − 1). The equality in the last line is by the
definition of αi . ��

Let h′ = �(h) = �(log n) be the level of the root. Now, we set s = ln(1 + 1
2h′ ).

We prove inductively the following lemma:

Lemma 5.5 For every i ∈ [0, h′], we have αi ≤ 1 + 1
2h′−i .

Proof By definition, α0 = es = 1 + 1
2h′ and thus the statement holds for i = 0. Let

i ∈ [1, h′] and assume the statement holds for i − 1. Then, we have

αi = eαi−1−1 ≤ e1+
1

2h′−i+1 ≤ 1 + 1

2h′ − i + 1
+

(
1

2h′ − i + 1

)2

= 1 + 2h′ − i + 2

(2h′ − i + 1)2
≤ 1 + 1

2h′ − i
.

The first inequality used the induction hypothesis and the second one used that for
every θ ∈ [0, 1], we have eθ ≤ 1 + θ + θ2. ��

So, by Lemma 5.4 and 5.5 , we have E[esmr ] ≤ α1
h′ ≤ 1 + 1

h′ = 1 + O
(

1
log n

)
.

This finishes the proof of Property (2.4c) in Theorem 2.4.

6 Bicriteria-Approximation Algorithm for Degree-Bounded Group
Steiner Tree on Trees

In this section, we prove Theorem 1.2, which is repeated here.
Theorem 1.2 There is a randomized

(
O(log n log k), O(log n)

)
-bicriteria approxima-

tion algorithm for the degree-bounded group Steiner tree problem on trees, running
in polynomial time.

We first set up some notations for the theorem. Recall that T ◦ is the input tree,
V ◦ denotes the set of vertices of T ◦, and r denotes the root of T ◦. For simplicity, we
assume the costs are on the vertices instead of edges: Every vertex u ∈ V ◦ has a cost
cu ≥ 0. Notice that this does not change the problem. We have k groups indexed by
[k]. For each group t ∈ [k], we are given a set Ot ⊆ V ◦ of leaves in T ◦. W.l.o.g, we
assume all Ot ’s are disjoint. Every vertex v ∈ V is given a degree bound Dv . The
goal of the problem is then to output the smallest cost subtree T of T ◦ that satisfies
the degree constraints and contains the root r and one vertex from each Ot , t ∈ [k].
Since now we only have one tree T ◦, we use the following notations for children and
descendants: For every vertex u ∈ V ◦, let �u denote the set of children of u in T ◦,
and �∗

u to denote the set of descendants of u in T ◦ (including u itself).
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Nowwedescribe theLP relaxationwe use for our problem. For every vertex u ∈ T ◦,
we use xu to indicatewhether u is chosen or not (in the correspondent integer program).
LP (7) is a valid LP relaxation for the DB-GST-T problem:

min
∑

u∈V ◦
cuxu s.t. (7)

xv ≤ xu ∀u ∈ V ◦, v ∈ �u (8)
∑

o∈Ot

xo = 1 ∀t ∈ [k] (9)

∑

o∈Ot∩�∗
u

xo ≤ xu ∀t ∈ [k],∀u ∈ V ◦ (10)

∑

v∈�u

xv ≤ du · xu ∀u ∈ V ◦ (11)

xu ∈ [0, 1] ∀u ∈ V ◦ (12)

In the correspondent integer program, the objective we try to minimize is∑
u∈V ◦ cuxu , i.e, the total cost of all verticies we choose. Constraint (8) says that

if we choose a vertex v then we must choose its parent u. Constraint (9) requires for
every group t , exactly one vertex in Ot is added to the tree. Constraint (10) holds since
if u is chosen, at most one vertex in�∗

u∩Ot is chosen for every group t . Constraint (11)
is the degree constraint. In the LP relaxation, we require each xu to take value in [0, 1]
(Constraint (12)). Notice that (9) and (10) for the root r imply that xr = 1.

Modifying the LP solutions Solving LP (7), we can obtain the optimum LP solution
(xu)u∈V ◦ . In our rounding algorithm, it would be convenient if every xu is a (non-
positive) integer power of 2 that is not too small. So, we shall modify the LP solution
using the following operations, which may violate many of the LP constraints slightly.
For every v ∈ V ◦ with xv < 1

2n , we change xv to 0. This can only decrease the cost
of the solution. It is easy to see that Constraints (8), (10) and (11) will not be violated.
Constraint (9) may not hold any more, but we still have

∑
v∈Ot

xv ≥ 1− n × 1
2n ≥ 1

2
for every t ∈ [k]. We can remove all vertices v with xv = 0 from the instance and
thus assume xv ≥ 1

2n for every v ∈ V ◦. Next, we increase each xv to the smallest
(non-positive) integer power of 2 that is greater than or equal to xv . This will violate
many constraints in the LP by a factor of 2. We list the properties that our new vector
(xu)u∈V ◦ has:

(P1) For every u ∈ V ◦, xu is an integer power of 2 between 1
2n and 1.

(P2) The x values along any root-to-leaf path in T ◦ is non-increasing.
(P3)

∑
o∈Ot

xo ∈ [ 12 , 2] for every group t ∈ [k].
(P4)

∑
o∈Ot∩�∗

u
xo ≤ 2xu for every t ∈ [k] and u ∈ V ◦.

(P5)
∑

v∈�u
xv ≤ 2duxu for every u ∈ V ◦.

(P6)
∑

u∈V ◦ cuxu ≤ 2 · opt, where opt is the cost of the optimum integer solution.
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6.1 The Rounding Algorithm

We now describe our rounding algorithm.We define two important global parameters:
L := �log(2n)� and γ := �log L� − 2. We say an edge (u, v) with v ∈ �u has “hop
value” 1 if xu < xv and 0 if xu = xv . For every vertex u ∈ V ◦, we define �u to be the
sum of hop values over all edges in the path from the root to u in T ◦. Thus, for every
u ∈ V ◦ and v ∈ �u , we have �v − �u ∈ {0, 1}, and �v = �u if and only if xv = xu .
By Properties (P1) and (P2), we have that �v ∈ [0, L] for every v ∈ V ◦.

Our rounding algorithm is applied on some scaled solution x ′, which is defined as
follows:

x ′
u = 2min{�u ,γ }xu, for every u ∈ V ◦.

As we mentioned in the introduction, this change will increase the probability of
choosing v conditioned on choosing u by a factor of 2, for some u ∈ V ◦, v ∈ �u with
�u < �v ≤ γ .

Weprove one important property for x ′, which is necessary for us to run the recursive
rounding algorithm.

Claim 6.1 For every u ∈ V ◦ and v ∈ �u, we have x ′
v ≤ x ′

u.

Proof If xv = xu then we have (u, v) has hop value 0 and thus �v = �u . In this case
we have x ′

v = x ′
u as well. Otherwise, we have xv ≤ xu/2 and hv = hu + 1. So,

min {hv, γ } ≤ min {hu, γ } + 1 and therefore x ′
v ≤ x ′

u . ��
Notice that x ′

r = 1 and every x ′
v is an integer power of 2 between 2−L and 1. Our

recursive rounding algorithm is run over x ′. In the procedure recursive-rounding(u),
we add u to our output tree and do the following: for every v ∈ �u , with probability
x ′
v/x

′
u independent of all other choices, we call recursive-rounding(v). In the root

recursion, we shall call recursive-rounding(r).
Our final algorithm will repeat the recursive procedure M times independently, for

a large enough M = O(log k). Let T1, T2, · · · , TM be the M trees we obtained from
the M repetitions. Our final tree T will be the union of the M trees.

We first analyze the expected cost of T . First focus on the tree T1. It is easy to see
that the probability u is chosen by T1 is exactly x ′

u ≤ 2γ xu = O(L)xu . Therefore, the
expected cost of T1 is at most O(L) · opt by Property (P6). Therefore, the expected
cost of the tree T is at most O (ML) · opt = O(L log k) · opt = O(log n log k) · opt.

We then analyze the degree constraints on T . Given that u is selected by T1, the

probability that we select a child of v of u is x ′
v

x ′
u

≤ 2xv

xu
. By Property (P5), we have

∑
v∈�u

x ′
v

x ′
u

≤ ∑
v∈�u

2xv

xu
≤ 4du . Consider all the M trees T1, T2, · · · , TM . Even if we

condition on the event that u appears in all theM trees, the degree of u is the summation
of many independent random {0, 1}-variables. The expectation of the summation is at
most 4Mdu = O(log k) ·du . Using Chernoff bound, one can show that the probability
that the degree of u is more than O(log n) · du is at most 1

10n , for some large enough
O(log n) factor. Therefore, with probability at least 0.9, every node u in T has degree
at most O(log n) · du . Therefore, we proved that the degree violation factor of our
algorithm is O(log n), as claimed in Theorem 1.2.
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6.2 Analysis of Connectivity Probability

It remains to show that with high probability, the tree T contains a vertex from every
group. This is the goal of this section. Till the end of the section, we focus on the tree
T1 and a fixed group t . For every vertex u ∈ V ◦, we define Eu to be the event that u is
chosen by T1. Our goal is to give a lower bound on Pr[∨o∈Ot

Eo], i.e, the probability
that some vertex in Ot is chosen by the tree T1.

Notice that when two adjacent nodes in T ◦ have the same x ′ value, then the child is
chosen whenever the parent is. Thus, we can w.l.o.g contract any sub-tree of nodes in
T ◦ with the same x ′ value into one single super-vertex, without changing the rounding
algorithm. Notice that if two adjacent vertices u ∈ V ◦, v ∈ �u have �u = �v then we
have xu = xv and thus x ′

u = x ′
v . So, we contract every maximal sub-tree of vertices

in T ◦ with the same � value. After this operation, for every u ∈ V ◦, �u is exactly the
level of u in the tree T ◦. So, for every u ∈ V ◦ and v ∈ �v we have �v = �u + 1. A
super-vertex is in Ot if one of its vertices before contracting is in Ot . If an internal
super-vertex is in Ot , we can remove all its descendants without changing the analysis
in this section. So, again we have that Ot only contains leaves.

For every vertex u, we define

zu =
∑

o∈Ot∩�∗
u

xo.

Notice that zu ≤ 2xu by Property (P4).

In the following, we shall bound Pr
[∨

o∈Ot∩�∗
u
Eo

∣∣Eu

]
for every u ∈ V ◦ from

bottom to top. This is done in two stages due to the threshold γ we used when we
define x ′ variables. First we consider the case when �u ≥ γ and then we focus on the
case when �u < γ . The two stages are captured by Lemmas 6.2 and 6.3 respectively.

Lemma 6.2 For a vertex u with �u ≥ γ , we have Pr
[∨

o∈Ot∩�∗
u
Eo

∣∣Eu

]
≥

1
2(L+1−�u)

zu
xu
.

Similar lemmas have been proved multiple times in many previous results. Since
our parameters are slightly different, we provide the complete proof here. There are
two different approaches to prove the lemma, one based on bounding the conditional
second moment of the random variable for the number of chosen vertices in Ot ∩ �∗

u ,
and the other based on the mathematical induction on �u , which is the one we use
here.

Proof of Lemma 6.2 Suppose u is a leaf. Then zu/xu = 1 if u ∈ Ot and zu/xu = 0

otherwise. So, we have Pr
[ ∨

o∈Ot∩�∗
u
Eo

∣∣Eu

]
= zu

xu
and the lemma clearly holds

since we have �u ≤ L .
Then, we prove the lemma by induction on �u . If �u = L then u must be a leaf and

thus the lemma holds. We assume the lemma holds for every u with �u = � + 1, for
some � ∈ [γ, L − 1]. Then we prove the lemma for u with �u = �. If u is a leaf the
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lemma holds and thus we assume u is not a leaf.

Pr
[ ∨

o∈Ot∩�∗
u

Eo
∣∣Eu

]
≥ 1 −

∏

v∈�u

(
1 − x ′

v

x ′
u

· 1

2(L − �)

zv
xv

)

= 1 −
∏

v∈�u

(
1 − xv

xu
· 1

2(L − �)
· zv
xv

)

≥ 1 −
∏

v∈�u

exp

(
− 1

2(L − �)
· zv
xu

)

= 1 − exp

(
− 1

2(L − �)
· zu
xu

)

≥ 1

2(L − �)
· zu
xu

− 1

2

(
1

2(L − �)
· zu
xu

)2

≥ 1

2(L − �)
· zu
xu

−
(

1

2(L − �)

)2 zu
xu

=
(
2(L − �) − 1

(2(L − �))2

)
zu
xu

≥ 1

2(L + 1 − �)
· zu
xu

.

The inequality in the first line used the induction hypothesis: x ′
v

x ′
u
is the probability

that we choose v in T1 conditioned on that we choose u, and 1
2(L−�)

zv
xv

is the lower
bound on the probability that we choose some vertex in Ot ∩ �∗

v conditioned on
that v is chosen. The equality in the line used that x ′

u = 2γ xu and x ′
v = 2γ xv . The

inequality in the second line used that 1− θ ≤ e−θ for every real number θ . The first
inequality in the third line used that e−θ ≤ 1 − θ + θ2

2 for every θ ≥ 0. The second
inequality in the line used Property (P4), which says zu

xu
≤ 2. The last inequality used

that (2(L − �) − 1) · 2(L − � + 1) ≥ 4(L − �)2 since L − � ≥ 1. ��
The lemma implies that for every u with �u ≥ γ , we have Pr

[∨
o∈Ot∩�∗

u
Eo

∣∣Eu

]
≥

1
2L · zu

xu
.

Now we analyze the probability for u with �u ≤ γ . Recall that γ = �log L� − 2
and thus we have 2γ ∈ (L/8, L/4]. Let αγ = 1

2L and for every � ∈ [0, γ − 1], define
α� = 2α�+1 − 4α2

�+1. It is easy to see that for every � ∈ [0, γ ], we have α� ≤ 2γ−�

2L .
Then, we have for every � ∈ [0, γ − 1],

α� =2α�+1 − 4α2
�+1 = 2α�+1(1 − 2α�+1)

≥2α�+1

(
1 − 2 × 2γ−�−1

2L

)

=2α�+1

(
1 − 2γ−�−1

L

)
.

123



1276 Algorithmica (2022) 84:1252–1278

Therefore, we have

α0 ≥ 2γ

γ∏

�=1

(
1 − 2γ−�−1

L

)
αγ ≥ 2γ

2L

γ∏

�=1

e−2γ−�/L ≥ 2γ

2L
e−2γ /L = �(1).

The second inequality used that 1−θ ≥ e−2θ for every θ ∈ (0, 1/2). The last equality
used that γ = �log L� − 2 and thus 2γ = �(L).

With the α values defined, we prove the following lemma via mathematical induc-
tion:

Lemma 6.3 For every vertex �u = � ≤ γ , we have Pr
[ ∨

o∈Ot∩�∗
u
Eo

∣∣Eu

]
≥ α�

zu
xu
.

Proof The lemmaholds if � = γ aswementioned. So,we assume � < γ and the lemma

holds with � replaced by �+1. If u is a leaf, then we have Pr
[∨

o∈Ot∩�∗
u
Eo

∣
∣Eu

]
= zu

xu
and the lemma holds. So again we assume u is not a leaf. Then,

Pr
[ ∨

o∈Ot∩�∗
u

Eo
∣∣Eu

]
≥ 1 −

∏

v∈�u

(
1 − x ′

v

x ′
u
α�+1

zv
xv

)

= 1 −
∏

v∈�u

(
1 − 2xv

xu
α�+1

zv
xv

)

≥ 1 −
∏

v∈�u

exp

(
−2α�+1

zv
xu

)

= 1 − exp

(
−2α�+1

zu
xu

)

≥ 2α�+1
zu
xu

− 1

2

(
2α�+1

zu
xu

)2

≥ 2α�+1
zu
xu

− (2α�+1)
2 zu
xu

= α�

zu
xu

.

To see the equality in the first line, we notice that x ′
u = 2�xu and x ′

v = 2�+1xv for
every v ∈ �u . Many other inequalities used the same arguments as in Lemma 6.2. ��

Applying the lemma for the root r of T ◦, we have that Pr
[ ∨

o∈Ot
Eo

] ≥ α0 · zr
xr

≥
α0 · 1

2 = �(1).
Nowwe consider all theM trees T1, T2, · · · , TM together. The probability that Ot is

not chosen by any of the M trees is at most (1 − �(1))M ≤ 1
10k , if our M = O(log k)

is big enough. Thus the probability that T , the union of all trees T1, T2, · · · , TM ,
contains an r -to-Ot path for every t , is at least 0.9.
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Appendix: Omitted Proofs

Proof of Lemma 2.1 Weassume n ≥ 4; otherwise, if n = 3, thenwe have 2n/3+1 = 3,
and root(T ) satisfies the condition. Our goal is to find a vertex u with n/3 < |�∗(u)| ≤
2n/3+1. Start from u = root(T ) in the tree, and thus, we have�∗(u) > 2n/3+1. Let
v be the child of u with the biggest |�∗(v)|. So, |�∗(v)| ≥ (|�∗(u)| − 1)/2 > n/3.
We then replace u with v. So |λ∗(u)| has decreased but the condition |�∗(u)| > n/3
is maintained. Thus, if we repeat the process, we will eventually find a u with n/3 <

|�∗(u)| ≤ 2n/3 + 1. ��
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