
Algorithmica (2022) 84:961–981
https://doi.org/10.1007/s00453-021-00913-9

Parameter Analysis for Guarding Terrains

Akanksha Agrawal1,2 · Sudeshna Kolay1,3 ·Meirav Zehavi1

Received: 13 November 2020 / Accepted: 9 November 2021 / Published online: 6 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The Terrain Guarding problem is a well-known variant of the famous Art

Gallery problem. Only second to Art Gallery, it is the most well-studied vis-
ibility problem in Discrete and Computational Geometry, which has also attracted
attention from the viewpoint of Parameterized complexity. In this paper, we focus on
the parameterized complexity of Terrain Guarding (both discrete and continuous)
with respect to two natural parameters. First we show that, when parameterized by the
number r of reflex vertices in the input terrain, the problem has a polynomial kernel.
We also show that, when parameterized by the number c of minima in the terrain,
Discrete Orthogonal Terrain Guarding has an XP algorithm.

Keywords Terrain Guarding · Reflex vertices · Terrain minima · XP algorithm ·
Kernelization

A preliminary version of this article appeared in 17th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), 2020. During the work Agrawal was supported by PBC Fellowship Program
for Outstanding Post-Doctoral Researchers from China and India. Zehavi is supported by Israel Science
Foundation (ISF) individual research grant (No. 1176/18) and Binational Science Foundation (BSF)
startup grant (No. 2018302)..

B Akanksha Agrawal
akanksha@cse.iitm.ac.in

Sudeshna Kolay
skolay@cse.iitkgp.ac.in

Meirav Zehavi
meiravze@bgu.ac.il

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel

2 Present Address: Indian Institute of Technology Madras, Chennai, India

3 Present Address: Indian Institute of Technology Kharagpur, Kharagpur, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00913-9&domain=pdf
http://orcid.org/0000-0002-0656-7572

962 Algorithmica (2022) 84:961–981

1 Introduction

The (Continuous and Discrete) Terrain Guarding problem is a widely studied
problem in Discrete and Computational Geometry. In particular, it is the most well-
studied visibility problem except for the classic Art Gallery problem. Formally,
a 1.5-dimensional terrain T = (V , E), or terrain for short, is a graph on vertex-
set V = {v1, v2, . . . , vn} where each vertex vi is associated with a point (xi , yi) on
the two-dimensional Euclidean plane such that x1 ≤ x2 ≤ · · · ≤ xn , and for any
i ∈ {1, 2, . . . , n − 2}, having xi = xi+1 = xi+2 implies that either yi < yi+1 < yi+2
or yi > yi+1 > yi+2 (see Fig. 1); the edge-set of this graph is E = {{vi , vi+1} : i ∈
{1, 2, . . . , n − 1}}. In the two-dimensional Euclidean plane, let R1 be the horizontal
ray starting from vertex v1 ∈ V towards negative infinity, and R2 be the horizontal ray
starting from vn ∈ V towards positive infinity. The region bounded by T ∪ R1 ∪ R2
and lying on and above T is called the region bounded by the terrain T . Note that the
points lying on the terrain include the vertices vi ∈ V , 1 ≤ i ≤ n, as well as the points
that lie on the edges in E . The Continuous Terrain Guarding problem takes as
input a terrain and a positive integer k, and the objective is to decide whether one can
place guards on at most k points on the terrain such that each point on the terrain is
seen by at least one guard. When we say that a point p sees a point q, we mean that the
line segment pq lies in the region bounded by the terrain. Notice that the guards may
be placed on points on the terrain that do not belong to V . The Discrete Terrain

Guarding problem is defined similarly, with the requirement that the guards must be
placed on vertices in V only, as well as that only each vertex in V must be guaranteed
to be seen by at least one guard.

One of the reasons why the Terrain Guarding problem and its numerous vari-
ants are important is because there is a wide variety of applications in the design of
communication technologies such as cellular networks and line-of-sight transmission
networks for radio broadcasting, as well as in coverage of highways, streets and walls
with street lights as well as security cameras and natural terrain border security [3,14].
In Discrete and Computational Geometry, the problem has its origin in 1995, when an
NP-hardness proof was claimed byChen et al. [7]. This proof was never completed and
it took almost 15 years until King and Krohn [20] finally showed that this problem is
indeed NP-hard. In between, the problem has received a lot of attention from the view-
point of approximation algorithms. In 2005, Ben-Moshe et al. [3] obtained the first
constant-factor approximation algorithm for Discrete Terrain Guarding. Subse-

v1

v2

v3
v4

v5

v6 v7

v8

v9

v10

Fig. 1 A terrain, where convex vertices are denoted by circles, reflex vertices are denoted by double circles,
and edges are denoted by straight line segments. The set of reflex vertices sees all the vertices of the terrain

123

Algorithmica (2022) 84:961–981 963

quently, the approximation factor was gradually improved in [8,13,19], until a PTAS
was proposed by Gibson et al. [16] for Discrete Terrain Guarding. Recently,
Friedrichs et al. [14] showed that even the Continuous Terrain Guarding prob-
lem admits a PTAS.

A special case of Terrain Guarding that has received notable attention is
Orthogonal Terrain Guarding, which was recently shown to be NP-hard [5].
Here, the terrain is orthogonal: for each vertex vi , 2 ≤ i ≤ n−1, either both xi−1 = xi
and yi = yi+1 or both yi−1 = yi and xi = xi+1. In other words, each edge is either
a horizontal line segment or a vertical line segment, and each vertex is incident to
at most one horizontal edge and at most one vertical edge (see Fig. 2 for two exam-
ples of orthogonal terrains). This problem is of particular interest to the algorithm
design community as it provides more structure and therefore more positive results
than Terrain Guarding [12,17,21,22]. Although the PTASes designed in [14,16]
clearly work for the Orthogonal Terrain Guarding problem as well, studies on
this particular variant of Terrain Guarding bring out interesting structural prop-
erties specific to this variant. For instance, in the work of Katz and Roisman [17] a
relatively simple 2-approximation algorithm is described for Discrete Orthogo-

nal Terrain Guarding. Recently, Lyu and Üngör [21] improved upon this result
by developing a linear-time 2-approximation algorithm for Orthogonal Terrain

Guarding. In [12,22], restricted versions were studied under which Orthogonal

Terrain Guarding can be solved in polynomial time.
With a satisfactory landscape of approximation results for Terrain Guarding,

the focus shifted to parameterized variants of the problem. In fact, in their landmark
paper [20] King and Krohn state that “the biggest remaining question regarding the
complexity of Terrain Guarding is whether or not it is FPT”. Khodakarami et al.
[18] introduced the parameter “the depth of the onion peeling of a terrain” and showed
that Terrain Guarding is FPT with respect to this parameter. In [2], for the solution
size k as parameter a subexponential-time algorithm for Terrain Guarding with
running time nO(

√
k) was given in both discrete and continuous domains. In the same

paper, an FPT algorithm with running time kO(k) · nO(1) was presented for Discrete
Orthogonal Terrain Guarding. We remark that a lower bound of 2�(

√
n) for

the time complexity of any algorithm for Terrain Guarding under the Exponential
TimeHypothesis (ETH) was claimed in the conference version [4] of [5], but the proof
was said to be false and replaced by a lower bound of 2�(n1/3) under the ETH in [5].

TheParametersWeconsider two structural parameters. So far, the understanding of the
parameterized complexity of Terrain Guarding has been very limited, and, more
generally, exact (exponential-time) algorithms for any visibility problem are extremely
scarce. All our results utilize new and known structural properties of terrains. The
individual resultsmake use of differentmethods in parameterized complexity, and thus
show several ways of how the aforementioned structural properties can be exploited
algorithmically. In particular, we show how the paradigm of parameterized complexity
can successfully yieldpositive, non-trivial results in the context of visibility.Webelieve
that our work will open the door for additional research of which structural properties
of terrains, polygons and related input domains make them easy to solve, and which

123

964 Algorithmica (2022) 84:961–981

(a) (b)

Fig. 2 As illustration of c being arbitrary a larger or b smaller than k. In the terrains vertices are denoted
by squares and edges by straight line segments. The red vertices are solution vertices, and the blue edges
are the minima (Color figure online)

do not. For example, here we see that terrains somewhat close to being convex, or
which has constantly many minima, can be efficiently guarded.

We first consider the number r of reflex vertices of the terrain as a parameter;
reflex vertices are those whose incident edges create an angle strictly larger than 180
degree in the region bounded by the terrain (see Fig. 1);1 all other vertices are convex
vertices. It is known (and follows from, say, Theorem 1.5 of [23]) that if one places
a guard on each of the reflex vertices of the terrain, then all points of the terrain are
guarded. Hence, the parameterized instances of interest are those where r > k, k
being the intended solution size. Thus, r can be considered as a natural relaxation
of parameterization by solution size (whose status is a longstanding open problem).
Further, we believe that it is interesting in its own right, since having a small (but
not necessarily a fixed constant) parameter r means that the terrain is close to being
convex. For such terrains, our result (formally stated ahead) not only shows that the
problem is solvable efficiently (by a parameterized algorithm) but also that, in fact,
the entire terrain can be shrunk to be of small size (by a kernelization algorithm).

Wewould like to remark that for a closely related problemcalledArt Gallery, the
problem has been studied with respect to the number of reflex vertices, inspired by the
W[1]-hardness result of Bonnet andMiltzow [6] for the problem, when parameterized
by the number of reflex vertices. In particular, Agrawal et al. [1] obtained that Art
Gallery parameterized by the number of reflex vertices admits an FPT algorithm.

The second structural parameter we consider is the number c of local minima (or
minima for short) of the terrain, for orthogonal terrains. Recall that in the orthogonal
terrains that we consider, every vertex is incident to at most one horizontal and at
most one vertical edge. Then in an orthogonal terrain, a minimum is a horizontal edge
whose y-coordinates are all the same as well as smaller than that of the (at most) two

1 For the sake of convenience, we use the convention that the end vertices of the terrain are also its reflex
vertices, unless otherwise stated.

123

Algorithmica (2022) 84:961–981 965

neighbours on either end (see the blue edges in Fig. 2). Notice that in an orthogonal
terrain, except for possibly the first and the last vertices of the terrain, the minima
occur in pairs of convex endpoints of horizontal edges (see Fig. 2).

It is to be noted that c, unlike r , cannot be related to k—it can be arbitrarily smaller
or arbitrarily larger than k (as well as than r); see Fig. 2. We believe that in many
naturally occurring terrains the number of minima is much smaller than the number of
observable vertices (where the gradient of the terrain changes). Indeed, it is conceivable
to have (e.g., on natural hills or artificial structures) a huge number of vertices with
slight changes of slope, and only few that actually alter the current “trend” (of having
increasing y-coordinates or decreasing y-coordinates) of the terrain, in which case c
is small.

Our Contribution First, we consider the Discrete Terrain Guarding problem
parameterized by the number r of reflex vertices. Then, an instance of the problem is
denoted by (T , k, r), where the input terrain T has r reflex vertices, and the objective
is to determine if there is a k-sized vertex guard set for guarding all vertices of the
terrain. Parameterized by r , we obtain a polynomial kernel for Terrain Guarding:

Theorem 1 For an instance (T , k, r) of Discrete Terrain Guarding, in poly-
nomial time we can find an equivalent instance (T ′ = (V ′, E ′), k, r) of the problem,
where |V ′| ∈ O(r2). Moreover, the problem admits a polynomial kernel, when param-
eterized by r .

Our algorithm exploits structural properties of consecutively appearing convex ver-
tices to identify vertices sufficient to capture a solution. We also find vertices guarding
which would imply that all vertices of the terrain are guarded. Then, roughly speaking,
we remove useless vertices (and make their neighbors adjacent) to obtain an instance
withO(r2) vertices.We remark that Theorem 1 also works forContinuous Terrain

Guarding, by using an appropriate “discretization” as described in [14] (for details
see Sect. 3).

We would like to note that the equivalent instance (T ′, k′r) with |V ′| ∈ O(r2),
obtained using the first statement in the above theorem does not directly imply a
polynomial kernel for the problem, as the coordinates of the vertices of T ′ may not be
bounded by a (polynomial) function of r . Thus to obtain a polynomial kernel using
the above instance, we will rely on the known (explicit) polynomial time reducibility
among appropriate NP-complete problems.

Next, we consider Discrete Orthogonal Terrain Guarding parameterized
by the number of minima, c, of the input orthogonal terrain. We design a somewhat
tricky dynamic programming algorithm for it that belongs to XP. The membership in
FPT remains open.

Theorem 2 Discrete Orthogonal Terrain Guarding parameterized by c can
be solved in 4c · n2c+O(1) time.

123

966 Algorithmica (2022) 84:961–981

2 Preliminaries

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}. We use standard
notation and terminology from the book of Diestel [10] for graph-related terms which
are not explicitly defined here. We only consider simple undirected graphs. Given a
graph H , V (H) and E(H) denote its vertex-set and edge-set, respectively.

Terrains Consider a terrain T = (V , E), where V = {vi = (xi , yi) | i ∈ [n]} and
x1 ≤ x2 ≤ · · · ≤ xn . We denote the ordering of vertices in T by v1 ≺ v2 ≺ · · · ≺ vn .
Moreover, for vertices vi , v j ∈ V , we write vi ≺ v j if i < j , and vi � v j if i ≤ j .
We say that a subset of points P on the terrain sees a subset of points Q on the
terrain if each point in Q is seen by at least one point in P . A subterrain of T is an
induced subgraph of T over a set {vi , vi+1, . . . , v j } of consecutive vertices in V with
i ≤ j ∈ [n] (retaining the points associated with the vertices).

Proposition 1 (Order Claim [3]) For a terrain T = (V , E), consider four vertices
vi ≺ v j ≺ vt ≺ vr , such that vi sees vt , and v j sees vr . Then, vi sees vr .

Consider an orthogonal terrain T = (V , E). A minimum (resp. maximum) of T
is a pair of consecutive vertices (vi , vi+1) of T , where 1 ≤ i ≤ n, such that the
following conditions are satisfied: i) yi = yi+1, ii) if vi−1 exists, then yi−1 > yi (resp.
yi−1 < yi), and iii) if vi+2 exists, then yi+1 < yi+2 (resp. yi+1 > yi+2).2 We denote
the set of minima and maxima of T by Min(T) and Max(T), respectively.

Parameterized Complexity In Parameterized Complexity each problem instance is
accompanied by a parameter k. A central notion in this field is fixed-parameter
tractability (FPT). This means, for a given instance (I , k), solvability in time
f (k)|I |O(1) where f is some computable function of k. A kernelization algorithm
for a parameterized problem � is a polynomial time procedure which takes as input
an instance (x, k), where k is the parameter, and returns an instance (x ′, k′) such that
(x, k) ∈ � if and only if (x ′, k′) ∈ � and |x ′| + k′ ≤ g(k), where g is a computable
function. In the above, we say that � admits a g(k)-kernel. If g(k) is a polynomial
function, then the kernel is a polynomial kernel for�. For more information on Param-
eterized Complexity we refer the reader to [9,11].

3 Polynomial Kernel forDiscrete Terrain Guarding

We design a polynomial kernel for Discrete Terrain Guarding when parameter-
ized by the number of reflex vertices. The main goal will be to prove the next lemma,
which is the first statement of Theorem 1.

Lemma 1 For an instance (T , k, r) ofDiscrete Terrain Guarding, in polynomial
time we can compute an equivalent instance (T ′ = (V ′, E ′), k, r) of the problem,
where |V ′| ∈ O(r2).

2 Recall that in an orthogonal terrain each vertex is adjacent to at most one horizontal edge and at most one
vertical edge.

123

Algorithmica (2022) 84:961–981 967

Fig. 3 An illustration of convex regions in a terrain and Marking Scheme II. The terrain has six con-
vex regions C1,C2, . . . ,C6, and the reflex vertices are double circled. The blue/red/green (dotted)
lines/points/squares are the objects defined in Marking Scheme II. Also, the labelling of vertices and points
are as defined in Marking Scheme II. We remark that for the pair of reflex vertices w,w′, the line segment
Lww′ is blocked by the terrain (Color figure online)

We (again) remark that the above lemma does not direct imply a polynomial kernel
for Discrete Terrain Guarding as it may not necessarily be possible to represent
the coordinates of points in the resulting instance using bit-length proportional to
a (polynomial) function of r . Thus to obtain a proof of Theorem 1, after proving
Lemma 1, we will rely on (an explicit) two-step polynomial time reduction via the
Dominating Set problem, exploiting the polynomial time reducibility among NP-
complete problems, to obtain a proof of the theorem.

Now we focus on the proof of Lemma 1. Let (T = (V , E), k, r) be an instance
of Discrete Terrain Guarding. We will design three marking schemes that will
mark at mostO(r2) vertices. Roughly speaking, we will argue that there is a solution
contained in the marked set of vertices, and guarding the marked vertices is enough
to guard all the vertices. Our first marking scheme will be used to ensure that there is
a solution that contains only marked vertices. Our second and third marking schemes
will be used to ensure that it is enough to guard the marked vertices. Finally, to obtain
the proof of Lemma 1, we construct a modified terrain by adding edges between
“consecutive” marked vertices in the original terrain. We begin with some definitions
and establish some useful properties regarding them, which will be helpful in proving
the lemma.

For a terrain T ′, a convex region of T ′ is a maximal subterrain of T ′ where every
vertex is a convex vertex (see Fig. 3). For a convex region C , the vertex set of C is
denoted by V (C). A vertex in V (C) that is not one of the two (not necessarily distinct)
endpoints is called an internal vertex of C . A partial convex region is a subterrain of a
convex region C that contains at least one endpoint of C . We can also define internal
vertices of partial convex regions as above. Notice that the ordering of vertices given by
� (and≺) naturally extends to an ordering of convex regions, as two convex regions do
not have common vertices. Thus, hereafter we will use � (and ≺) to denote orderings
among convex regions as well. In the following we state some useful observations
regarding convex regions. The next observation follows from from the assumption
that the end vertices of a terrain are reflex vertices.

Observation 3 The number of convex regions in T is at most r − 1.

123

968 Algorithmica (2022) 84:961–981

Observation 4 Consider a convex region C in T with endpoints vi � v j . For each
u, u′ ∈ V (C) ∪ {vi−1, v j+1},3 u sees u′.

Observation 5 Let C be a convex region in T with endpoints vi � v j . Consider
vertices v /∈ V (C) and u ∈ V (C), such that v sees u and v � vi � u � v j (resp.
vi � u � v j � v). Then v sees each vertex u′ such that u � u′ � v j (resp.
vi � u′ � u).

Proof Consider the case when v � vi � u � v j . (The other case can be proved by
following similar arguments.) If u = v j , then the claim trivially follows. Thus we
assume that u ≺ v j . Consider u′ ∈ V (C), such that u ≺ u′ � v j . If v = vi−1,
then from Observation 4 it follows that v sees u′. Now we consider the case when
v ≺ vi−1. From Observation 4, vi−1 sees u′, by our assumption v sees u, and we have
v ≺ vi−1 ≺ u ≺ u′. Thus by the Order Claim (Proposition 1) we can conclude that v
sees u′. 	

We are now ready to state our first marking scheme. Intuitively speaking, this
marking scheme is used to identify a set of vertices where we can always find a
solution.

Definition 1 (Marking Scheme I) We create a subset S1 ⊆ V of vertices as follows.

1. Add all the reflex vertices of T to S1.
2. For each convex region C , add its two (not necessarily distinct) endpoints to S1.
3. Consider an ordered pair of distinct convex regions (Ci ,C j) such that there is

v ∈ V (Ci) that sees all vertices of C j . If Ci ≺ C j (resp. C j ≺ Ci), let f (Ci ,C j)

be the largest (resp. smallest) vertex in Ci other than the endpoints of Ci that sees
C j . Add f (Ci ,C j) to S1.

4. Consider a reflex vertex v and a convex region C with endpoints vi , v j , such that
vi � v j ≺ v (resp. v ≺ vi � v j). Let f (C, v) be the largest (resp. smallest) vertex
in C , other than the endpoints of C , that v sees. Add f (C, v) to S1.

The following observation easily follows from the above definition and Observa-
tion 3.

Observation 6 The number of vertices in S1 is bounded by O(r2).

In the next lemma we show existence of a solution (for a yes-instance) contained
in S1.

Lemma 2 (T , k, r) is a yes-instance of Discrete Terrain Guarding if and only if
there is a solution S′ ⊆ S1.

Proof If some S′ ⊆ S1 is a solution for (T , k, r) then (T , k, r) is a yes-instance.
Now suppose that (T , k, r) is a yes-instance. Consider a solution S′ for (T , k, r) that
maximizes the number of vertices from S1 and is ofminimum possible size. If S′ ⊆ S1,

3 If i = 1, then we do not consider the vertex vi−1. Similarly, if j = n, then we do not consider v j+1.
Notice that if vi−1 or v j+1 exist, then they are reflex vertices.

123

Algorithmica (2022) 84:961–981 969

then we are done. Thus, we assume that there is v ∈ S′\S1. From Item 1 and 2 of
Definition 1 we can obtain that v is neither a reflex vertex nor an endpoint of any
convex region in T . Thus we assume that v belongs to a convex region, say C , with
vi ≺ v j as its endpoints.

We first consider the case when there is a convex region ˜C such that: i) ˜C contains
a vertex that is seen by v and no vertex in S′\{v}, and ii) v does not see all vertices
of ˜C . (Note that ˜C �= C , from Observation 4.) Without loss of generality we assume
that ˜C ≺ C . (The other case can be argued symmetrically.) For the arguments that
follow, please refer to Fig. 4a. Let vĩ ≺ v j̃ be the endpoints of ˜C . We will argue that
S∗ = (S′\{v}) ∪ {v j } is a solution for (T , k, r). Clearly, |S∗| ≤ k. We will now argue
that S∗ sees each vertex in V . To prove the above, it is enough to show that for each
u ∈ V , such that v is the only vertex in S′ that sees it, either v j sees u, or we arrive at
a contradiction to our assumption that v is the only vertex in S′ that sees u. Consider
such a vertex u, and the following cases based on the position of u.

– If u ∈ V (C), then from Observation 4, v j sees u.
– Now we consider the case when u ≺ vi ≺ v ≺ v j . We will show that v j sees
u, or arrive at a contradiction that u is seen only by v in S′. Recall that u sees v

by our assumption and vi sees v j (Observation 4). Thus using the Order Claim
(Proposition 1) on u ≺ vi ≺ v ≺ v j , we conclude that v j sees u.

– Finally, we consider the case when vi ≺ v ≺ v j ≺ u. As v does not see all vertices
of ˜C and ˜C ≺ C , using Observation 5 we conclude that v does not see v j̃ . As
S′ is a solution, there is some û ∈ S′\{v} that sees v j̃ . By Observations 4 and 5,

respectively, if û ∈ V (˜C) or v j̃ ≺ û then û sees all vertices in ˜C , which contradicts

the choice of ˜C to contain a vertex seen only by v and no other vertex in S′. Thus
including the fact that ˜C ≺ C , it must be the case that û ≺ vĩ ≺ v j̃ ≺ vi ≺ v ≺
v j ≺ u. From Observation 5 we obtain that v sees vĩ , and by assumption û sees
v j̃ . Thus, using the Order Claim for vertices û ≺ vĩ ≺ v j̃ ≺ v, we obtain that
û sees v. Next, as û ≺ vi ≺ v ≺ v j , û sees v, and vi sees v j (Observation 4
applied to C), using the Order Claim on û ≺ vi ≺ v ≺ v j we obtain that û
sees v j . Finally as û ≺ v ≺ v j ≺ u, v sees u, and û sees v j , using the Order
Claim on û ≺ v ≺ v j ≺ u we obtain that û sees u. The above contradicts that v

is the only vertex in S′ that sees u. From the above discussion we can conclude
that S∗ = (S′\{v}) ∪ {v j } is a solution for the instance (T , k, r), such that either
|S∗| < |S′|, or |S∗| = |S′| and |S∗ ∩ S1| > |S′ ∩ S1|. This contradicts the choice
of S′.

Hereafter we assume that for any convex region ˜C , either v sees all the vertices
in ˜C or sees none of its vertices. Again our goal will be to find another solution
S∗ by modifying S′ so as to obtain a contradiction to the choice of S′. Towards the
construction of S∗, we start by constructing a set X as follows. For each reflex vertex
u ∈ V such that v is the only vertex in S′ that sees u, we add the vertex f (C, u)

to X (see Definition 1). Similarly, for each convex region C ′ such that v is the only
vertex in S′ that sees all the vertices of it, add the vertex f (C,C ′) to X . As S′ is a
minimum sized solution, and hence a minimal solution, and v /∈ S1, we obtain that
X �= ∅. Let v∗ ∈ X be a vertex that is closest to v in (the path in) C . We assume that

123

970 Algorithmica (2022) 84:961–981

(a) (b)

Fig. 4 An illustrative example of the case study in Lemma 2. Here, v is an unmarked vertex in S′ that
belongs to convex regionC and vi , v j are the endpoints of the convex regionC . a ˜C is a convex region with
endpoints vĩ and v j̃ . A partial convex region C ′ of ˜C that includes vĩ is seen by v. The other endpoint v j̃ is

seen by a vertex û. b Any convex region that has some vertex seen by v has all its vertices seen by v. The
vertex v∗ is as defined in Lemma 2. Given a reflex vertex u, the vertex f (C, u) is shown in the diagram

vi � v ≺ v∗ ≺ v j . (The case when vi ≺ v∗ ≺ v � v j can be argued symmetrically.)
For the arguments that follow, please refer to Fig. 4b. Let S∗ = (S′\{v})∪{v∗}. Notice
that either |S∗| < |S′|, or |S∗| = |S′| and |S∗ ∩ S1| > |S′ ∩ S1|. Thus, like previously,
if we argue that S∗ is a solution to (T , k, r), then we will arrive at a contradiction to
the choice of S′. Now we will show that S∗ is a solution for (T , k, r). First, we show
that for each reflex vertex that v sees, the vertex v∗ sees it as well. Consider a reflex
vertex u that is seen by v. If v∗ = f (C, u), then clearly, v∗ sees u. Now we assume
that v∗ �= f (C, u). If vi ≺ v ≺ v j ≺ u, then by definition of f (C, u) and the fact that
v∗ �= f (C, u) we obtain that v∗ ≺ f (C, u) ≺ v j ≺ u. As v∗ sees v j (Observation 4)
and f (C, u) sees u, using the Order Claim on v∗ ≺ f (C, u) ≺ v j ≺ u we can
obtain that v∗ sees u. Next consider the case when u ≺ vi ≺ v ≺ v j (also we have
v∗ �= f (C, u) and v ≺ v∗). In this case by definition of f (C, u) and the fact that
v /∈ S1, we obtain that u ≺ f (C, u) ≺ v ≺ v∗. As v sees u and f (C, u) sees v∗, we
apply the Order Claim on u ≺ f (C, u) ≺ v ≺ v∗ to obtain that v∗ sees u.

Next, we show that for each convex region ˜C that v sees (we are in the case
when v sees all vertices of a convex region or none), the vertex v∗ sees it as well.
If v∗ = f (C, ˜C), then clearly, v∗ sees ˜C . Now we assume that v∗ �= f (C, ˜C). If
C ≺ ˜C then vi ≺ v ≺ v j ≺ u for each vertex u ∈ V (˜C). Then by definition of
f (C, ˜C) and the fact that v∗ �= f (C, ˜C) we obtain that v∗ ≺ f (C, ˜C) ≺ v j ≺ u
for each vertex u ∈ ˜C . As v∗ sees v j (Observation 4) and f (C, ˜C) sees ˜C , using the
Order Claim on v∗ ≺ f (C, ˜C) ≺ v j ≺ u for each vertex u ∈ V (˜C), we can obtain
that v∗ sees each u ∈ V (˜C). Next consider the case when ˜C ≺ C . Then for each
u ∈ V (˜C), u ≺ vi ≺ v ≺ v j (also we have v∗ �= f (C, ˜C) and v ≺ v∗). In this case
by definition of f (C, ˜C) and the fact that v /∈ S1, we obtain that for each u ∈ V (˜C),
u ≺ f (C, u) ≺ v ≺ v∗. As v sees u and f (C, ˜C) sees v∗, we apply the Order Claim
on u ≺ f (C, u) ≺ v ≺ v∗ to obtain that v∗ sees u, for each u ∈ V (˜C). Thus, v∗ sees
˜C . This concludes the proof. 	

Our next two marking schemes will help us identify vertices such that guarding
them will be sufficient for any vertex subset to qualify as a solution. We remark that

123

Algorithmica (2022) 84:961–981 971

the ordering ≺ (and �) of vertices of T naturally extends to the points that lie on
the terrain. We will slightly abuse the notation and use ≺ (and �) to also denote the
ordering of points on T .

Definition 2 (Marking Scheme II) Consider an (unordered) pair of distinct reflex ver-
tices u, u′ and let Luu′ be the line containing them (see Fig. 3). Let Luu′ (if it exists)
be the maximal line segment with (possibly non-vertex) endpoints puu′ and p̂uu′ that
contains both u and u′, and is completely contained on or above T . Let gl f tuu′ and grhtuu′
be the (not necessarily distinct from puu′) vertices in V such that gl f tuu′ (resp. grhtuu′) is

the largest (resp. smallest) vertex in V , such that gl f tuu′ � puu′ (resp. puu′ � grhtuu′). Add

the vertices gl f tuu′ and grhtuu′ , and their (at most two) neighbors in T to S2. Similarly, let

ĝl f tuu′ (resp. ĝrhtuu′) be the largest (resp. smallest) vertex in V , such that ĝl f tuu′ � p̂uu′ (resp.

p̂uu′ � ĝrhtuu′). Add the vertices ĝl f tuu′ and ĝrhtuu′ , and their neighbors in T to S2.

We design another simple marking scheme, which constructs a set of vertices S3
which marks the neighbors of the vertices in S1 ∪ S2 (excluding vertices in S1 ∪ S2).

Definition 3 (Marking Scheme III) For each u ∈ S1 ∪ S2 and v ∈ V \(S1 ∪ S2), such
that {u, v} ∈ E , add the vertex v to S3.

Observation 7 |S1 ∪ S2 ∪ S3| is bounded by O(r2). Moreover, S3 ∩ (S1 ∪ S2) = ∅.
In the next lemma we show that guarding S1 ∪ S2 ∪ S3 is enough to guard T , and

the guards can be selected from the set S1 ∪ S2 ∪ S3. (Although there is a solution
contained in S1 from Lemma 2, we state the lemma a bit differently to simplify its
usage later.)

Lemma 3 A set S′ ⊆ S1 ∪ S2 ∪ S3 of size at most k is a solution for the instance
(T , k, r) of Discrete Terrain Guarding if and only if for each u ∈ S1 ∪ S2 ∪ S3,
there is some v ∈ S′ that sees u.

Proof In one direction, suppose there is S′ ⊆ S1 ∪ S2 ∪ S3 that is a solution for the
instance (T , k, r). Then, clearly, for each u ∈ S1 ∪ S2 ∪ S3, there is some v ∈ S′ that
sees u.

In the other direction, consider a set S′ ⊆ S1 ∪ S2 ∪ S3 of minimum size that
sees each vertex in S1 ∪ S2 ∪ S3, and S′ maximizes the number of reflex vertices it
contains. We will show that S′ is a solution for the instance (T , k, r). For the sake of
contradiction, suppose that there is a vertex v ∈ V \(S1 ∪ S2 ∪ S3) that is seen by no
vertex in S′. Since S1 contains all reflex vertices (see Definition 1) and S1 is guarded
by S′, v must be a convex vertex. Let C be the convex region in T containing v. Let
v′
1 ∈ S1∪S2∪S3 be the largest vertex such that v′

1 ≺ v. Similarly, let v′
2 ∈ S1∪S2∪S3

be the smallest vertex such that v ≺ v′
2. From Item 2 of Definition 1, both v′

1 and v′
2

exist, and they must belong to the convex region C . Moreover, from Definition 3, we
obtain that v′

1, v
′
2 ∈ S3 (recall that S3 ∩ (S1 ∪ S2) = ∅, see Observation 7).

If there is a u1 ∈ S′ such that u1 � v′
1 and u1 sees v′

1, then using Observations 4
and 5 we conclude that u1 sees v. Similarly, if there is u2 ∈ S′, such that v′

2 � u2 and
u2 sees v′

2, then we conclude that u2 sees v. From the above, we assume that there are

123

972 Algorithmica (2022) 84:961–981

(a) (b)

Fig. 5 An illustrative example of the case study in Lemma 3. Here, v′
1 and v′

2 are the nearest marked vertices
to v. The vertices v′

1 and v′
2 are seen by u1 and u2, respectively. a In Case 1, u1 is a reflex vertex that sees

v′
1 but cannot see v because of a reflex vertex u. b In Case 2, u1 is a convex vertex and urht is the smallest
reflex vertex to the right of u1. Similarly, ul f t is the largest reflex vertex to the left of u1

vertices u1, u2 ∈ S′, such that u2 ≺ v′
1 ≺ v ≺ v′

2 ≺ u1, u1 sees v′
1, and u2 sees v′

2.
We now consider the following cases based on whether or not u1 is a reflex vertex.

1. Suppose u1 is a reflex vertex (see Fig. 5a). Since u1 sees v′
1 but not v, there must

be a reflex vertex u, such that v ≺ u ≺ u1 and the line segment Lu1u intersects
the subterrain C ′ of C between v′

1 and v (containing these vertices). Hence C ′
must contain a vertex from S2. As v′

1 is the largest vertex from S1 ∪ S2 ∪ S3 with
v′
1 ≺ v, C ′ has no vertex from S1 ∪ S2 ∪ S3 other than v′

1. But v′
1 ∈ S3 and

S3 ∩ (S1 ∪ S2) = ∅. This leads to a contradiction.
2. Suppose u1 belongs to a convex region, say C ′. By our assumption u1 does not

see v, thus using Observation 4 we obtain that C ′ �= C . Moreover, as v ≺ u1,
we have C ≺ C ′. Let urht be the smallest reflex vertex such that u1 ≺ urht , and
ul f t be the largest reflex vertex such that ul f t ≺ u1. Note that ul f t ≺ u1 ≺ urht .
We will show that S∗ = (S′\{u1}) ∪ {urht } sees each vertex in S1 ∪ S2 ∪ S3.
Moreover, either |S∗| < |S′|, or |S∗| = |S′| and S∗ contains strictly more reflex
vertices that S′. The above would lead us to a contradiction to the choice of S′.
Now we focus on showing that S∗ sees each vertex in S1 ∪ S2 ∪ S3 (see Fig. 5b).
Consider any u′ ∈ S1 ∪ S2 ∪ S3. If u′ is seen by a vertex in S′\{u1}, then clearly,
S∗ sees u′. If u′ ∈ V (C ′) or u′ ∈ {ul f t , urht }, then using Observation 4 we can
obtain that urht sees u′. Now we can assume that either u′ ≺ ul f t or urht ≺ u′.
First consider the case when u′ ≺ ul f t . As u′ ≺ ul f t ≺ u1 ≺ urht , u1 sees u′
(by assumption), and ul f t sees urht (Observation 4), using the Order Claim on
u′ ≺ ul f t ≺ u1 ≺ urht we obtain that urht sees u′. Now we consider the other
case, i.e., when urht ≺ u′. Recall that u2 ≺ v′

1 ≺ v′
2 ≺ u1, and u1 sees v′

1 and
u2 sees v′

2. Thus using the Order Claim on u2 ≺ v′
1 ≺ v′

2 ≺ u1 we obtain that
u1 sees u2. As u2 ≺ ul f t ≺ u1 ≺ urht , u1 sees u2, and ul f t sees urht , using the
Order Claim on u2 ≺ ul f t ≺ u1 ≺ urht we obtain that u2 sees urht . Again, as
u2 ≺ u1 ≺ urht ≺ u′, u2 sees urht , and u1 sees u′, using the Order Claim on
u2 ≺ u1 ≺ urht ≺ u′ we obtain that u2 sees u′. This concludes the proof.

	

123

Algorithmica (2022) 84:961–981 973

(a) (b)

Fig. 6 An illustrative example of deriving from terrain T = (V , E) shown in a the new terrain T ′ =
(S1 ∪ S2 ∪ S3, E

′) shown in b. The vertices in S1 ∪ S2 ∪ S3 are denoted by boxes whereas unmarked
vertices of V are denoted as circles

We define a new terrain T ′ = (V ′ = S1 ∪ S2 ∪ S3, E ′) (see Fig. 6), where the
coordinates of S1 ∪ S2 ∪ S3 remain the same as in T and the edge set E ′ is defined as
follows. Consider the restriction of the ordering, ≺, of vertices in T to the vertices in
S1∪ S2∪ S3. The set E ′ contains an edge between every consecutive pair of vertices in
S1 ∪ S2 ∪ S3, given by the above ordering. We have the following observations about
the new terrain T ′.

Observation 8 A vertex is reflex in T if and only if it is a reflex vertex in T ′.

Proof Consider a reflex vertex v in T . By Definition 1, v ∈ V ′. We show that v is
also a reflex vertex of T ′. If v is the first or last vertex of T , then it is also the first or
last vertex of T ′ and therefore is a reflex vertex by definition. Otherwise, v has two
neighbours, say u1 and u2. From Definition 1 we can obtain that u1, u2 ∈ V ′. As the
coordinates of u1, v, u2 in T are the same as that in T ′, we obtain that v is a reflex
vertex of T ′.

Now we show that a vertex v ∈ S1 ∪ S2 ∪ S3 that is a convex vertex in T is also
a convex vertex in T ′. By definition, v cannot be the first or last vertex. Let u1 and
u2 be the two neighbours of v such that u1 ≺ v ≺ u2. If u1, u2 ∈ V ′, then as the
coordinates of u1, v, u2 in T are the same as that in T ′, we obtain that v is also a convex
vertex in T ′. Otherwise, let u′

1 ∈ V ′ be the closest such vertex to v where u′
1 ≺ v.

By definition of V ′, such a vertex exists for all convex vertices v. Notice that it must
hold that u′

1 � u1 ≺ v. Also by definition of V ′, if u1 is a reflex vertex then u′
1 = u1

and u1 ∈ V ′. Similarly, let u′
2 ∈ V ′ be the closest such vertex to v where v ≺ u′

2. By
definition of V ′, such a vertex exists for all convex vertices v. Notice that it must hold
that v ≺ u2 � u′

2. Again by definition of V
′, if u2 is a reflex vertex then u′

2 = u2 and
u2 ∈ V ′. Note that in T ′, u′

1 and u
′
2 are the neighbours of v such that u′

1 ≺ v ≺ u′
2. We

are in the case that at least one of u1 �= u′
1 and u2 �= u′

2 holds. If u
′
1 (u

′
2) is not a reflex

vertex, by construction of V ′ it must belong to the same convex region as v, u1 (v, u2).
By Observation 4, u′

1 sees v (u′
2 sees v) and therefore u1 lies below or on the line ̂Lu′

1v

(u2 lies below or on the line ̂Lvu′
2
). Now consider ∠u′

1vu
′
2 and ∠u1vu2 made inside

the region bounded by T . It must be the case that ∠u′
1vu

′
2 ≤ ∠u1vu2. Thus, if v was

a convex vertex in T then it means that in the region bounded by T ∠u1vu2 ≤ 180◦.
This implies that in the region bounded by T ′ ∠u′

1vu
′
2 ≤ 180◦, which means that v is

a convex vertex of T ′. 	

123

974 Algorithmica (2022) 84:961–981

Observation 9 Given two vertices u, v ∈ S1 ∪ S2 ∪ S3, u sees v in T if and only if it
sees v in T ′.

Proof For any u, v ∈ S1 ∪ S2 ∪ S3 such the u sees v in T , each w ∈ V , such that
v ≺ w ≺ u (or u ≺ w ≺ v) must lie below or on the line ̂Luv , containing u and v.
In particular, each w ∈ S1 ∪ S2 ∪ S3 such that v ≺ w ≺ u (or u ≺ w ≺ v) must lie
below or on the line ̂Luv . Thus we can obtain that u sees v in T ′.

Consider u, v ∈ S1 ∪ S2 ∪ S3 such the u sees v in T ′. Consider a w ∈ V such
that u ≺ w ≺ v (we can give a symmetric argument for v ≺ w ≺ u). If w ∈ V ′
then it must lie below or on the line ̂Luv . Otherwise, w ∈ V \V ′ and by construction
of V ′, w must be a convex vertex. Let u1 ∈ V ′ be the closest such vertex to w such
that u1 ≺ w in T . Similarly, let u2 ∈ V ′ be the closest such vertex to w such that
w ≺ u2 in T . Note that u, v are potential candidates for u1 and u2, respectively and
that u � u1 ≺ u2 � v in T ′. By definition of V ′, u1, w, u2 all belong to a convex
region C of T . By Observation 4, u1 sees u2 in T . Since u1 ≺ w ≺ u2, w lies below
or on the line ̂Lu1u2 . Coming back to the fact that u sees v in T ′ and u � u1 ≺ u2 � v,
the line segment ̂Lu1u2 must lie below or on the line segment ̂Luv . Putting everything
together, we see that w lies below or on the line segment ̂Luv . Thus, u sees v in T . 	

We are now ready to prove Lemma 1.

Proof of Lemma 1 We show that (T = (V , E), k, r) is a yes-instance of Discrete
Terrain Guarding if and only if (T ′ = (V ′, E ′), k, r) is a yes-instance of the
problem. By Observation 8, the reflex vertices of T are reflex vertices of T ′ and vice
versa. Therefore, the number of reflex vertices in both T and T ′ is r .

First, let (T , k, r) be a yes-instance of Discrete Terrain Guarding. Following
from Lemma 2, there is a solution S′ ⊆ S1 ∪ S2 ∪ S3 of size at most k. In particular,
S′ guards all vertices in S1 ∪ S2 ∪ S3. By Observation 9, S′ is a k-sized solution for
(T ′, k, r) and therefore (T ′, k, r) is a yes-instance.

On the other hand, let (T ′, k, r) be a yes-instance ofDiscrete Terrain Guard-

ing. Let S′ be a k-sized solution for (T ′, k, r). By Observation 9, S′ ⊆ S1 ∪ S2 ∪ S3
sees all vertices in S1 ∪ S2 ∪ S3 in the terrain T . Thus, by Lemma 3 S′ is a solution
for (T , k, r) and therefore (T , k, r) is a yes-instance.

Moreover, we can construct (T ′, k, r) in polynomial time. Also fromObservation 7
we have |V ′| ∈ O(k2). This concludes the proof. 	

We are now ready to prove Theorem 1.

Proof of Theorem 1 Let (T , k, r) be an instance of Discrete Terrain Guarding.
Using Lemma 1, in polynomial time we compute an equivalent instance (T ′ =
V ′, E ′), k, r) of Discrete Terrain Guarding with |V ′| ∈ O(r2).

We now construct an instance of Dominating Set (G, k) as follows. We let
V (G) = V ′, and for u, v ∈ V (G), {u, v} ∈ E(G) if and only if u and v see each other
in T ′. Clearly, (G, k) is a yes-instance ofDominating Set if and only if (T ′, k, r) is a
yes-instance ofDiscrete Terrain Guarding. Moreover, (G, k) can be constructed
in polynomial time. Now we can convert the instance (G, k) of Dominating Set in
polynomial time to an equivalent instance ofDiscrete Terrain Guarding using the

123

Algorithmica (2022) 84:961–981 975

NP-hardness reduction from Dominating Set to Discrete Terrain Guarding.
(This can be explicitly achieved for example, by a chain of polynomial time reductions
Dominating Set ≤poly SAT ≤poly 3- SAT ≤poly Planar 3- SAT ≤poly Discrete

Terrain Guarding [5,15,20].) This concludes the proof. 	

Remark RegardingContinuous Terrain GuardingWeend this sectionwith a note
regarding extension of Theorem 1 for Continuous Terrain Guarding. Consider
an instance (̂T , k, r) of Continuous Terrain Guarding, where r is the number of
reflex vertices in T . Using the discretization result of Friedrichs et al. (Section 2, [14]),
in polynomial time we can construct a terrain T = (V , E) by sub-dividing (possibly
multiple times) edges of ̂T , and sets X ,Y , where ̂V ⊆ X ⊆ Y ⊆ V , such that the
following condition is satisfied: (T , k, r) is a yes-instance of Continuous Terrain

Guarding if and only if there is a set S ⊆ X of size at most k that sees each vertex in
Y . Equipped with the above result, we can adapt our marking schemes to consider only
vertices from Y while dealing with visibilities, and marking only vertices from X for
potential guard set. Using this we can obtain an instance of a restricted (NP-complete)
version ofDiscrete Terrain GuardingwithO(r2) vertices in the terrain. Also by
usingNP-hardness ofContinuous Terrain Guarding, we can obtain a polynomial
kernel for the problem.

4 Algorithm forDiscrete Orthogonal Terrain Guarding

We design a dynamic programming based algorithm for Discrete Orthogonal

Terrain Guarding running in time 4|Min(T)| ·n2|Min(T)|+O(1), where n is the number
of vertices in the input orthogonal terrain. Let (T , k) be an instance of Discrete
Orthogonal Terrain Guarding. Intuitively speaking, in our algorithm the states
for our dynamic programming table are chosen in relation to the minima of T as
follows (see Fig. 8). We will maintain a height, on or above which we can place
guards. With respect to our minima, we will define the notion of valleys. For each
such “valley”, we will have a vertex on its “left slope” in our state of the table, and
we would like to guard all the vertices of the valley that appear in the “left slope”
and lie on or above this vertex. Similarly, we will have such vertices for the “right
slopes”. Towards formalizing the above, we begin by introducing some notations and
preliminary results that will be useful later.

Notations We let R and C denote the set of reflex and convex vertices of T , respec-
tively. (For the sake of simplicity, we include the two endpoints of T in bothR andC).
In the following we state a well-known result from Claim 3.3 and 3.4 of [17], which
states that guarding convex vertices of an orthogonal terrain using guards placed at
reflex vertices is enough to guard the whole terrain. This property will be useful in our
algorithm.

Proposition 2 [17] (T , k) is a yes-instance of Discrete Orthogonal Terrain

Guarding if and only if there is S ⊆ R of size at most k such that S sees each vertex
of C .

123

976 Algorithmica (2022) 84:961–981

Fig. 7 An intuitive illustration of the set of valleys W = {W1,W2,W3,W4} and different vertices in an
orthogonal terrain. (The sets are presented modulo the elements −∞ and +∞.)

Observation 10 For an orthogonal terrain T and vertices u = (xu, yu) ∈ R and
v = (xv, yv) ∈ C , if u sees v, then yv ≤ yu .

Next wewill define the notion of valleys. Roughly speaking, a “valley” is amaximal
region containing at most one minimum and at most two maxima. We will formally
define the notion of valleys in an orthogonal terrain; our definitions will be formulated
in a way to ensure uniqueness of the set of valleys in the given terrain (see Fig. 7).

Definition 4 For an integer i ≥ 1, the i thvalley, denoted by Wi (with its vertex set
denoted by V (Wi)), of the terrain T is an (ordered) set of consecutive vertices of
T that contains the smallest vertex u that is not contained in any valley Wj , where
j < i , and the following vertices.4 Let a < n be the smallest integer (if it exists) such
that (va, va+1) ∈ Max(T) and va, va+1 /∈ ∪ j<i V (Wj). If a does not exist, then Wi

contains all the vertices v where u � v � vn . Otherwise, Wi contains all the vertices
v where u � v � va+1.

We let W = {W1,W2, . . . ,Wt } be the set of valleys in T . Notice that t ≤
|Min(T)| + 2. For a valley Wi = (v f , v f +1, . . . , v�) ∈ W , the vertices f st(i) = v f

and lst(i) = v� denote the first and last vertices of Wi , respectively. For the sake
of notational convenience, we will now define left/right slope convex vertices. We
say that Wi contains a minimum/maximum (va, va+1), if va, va+1 ∈ V (Wi). Note
that by definition, Wi can contain at most one minimum and at most two max-
ima. If Wi has one minimum, say (va, va+1), then the set of left slope vertices
Li , is the set {v f , v f +1, . . . , va} and the set of right slope vertices Ri , is the set
{va+1, va+2, . . . , v�}. Otherwise, the vertices (v f , v f +1, . . . , v�) have either non-
increasing y-coordinates or non-decreasing y-coordinates. If (v f , v f +1, . . . , v�) have
non-increasing y-coordinates, then we have Li = V (Wi) and Ri = ∅. Otherwise,
(v f , v f +1, . . . , v�) have non-decreasing y-coordinates, and we have Ri = V (Wi) and

Li = ∅.We letRi = V (Wi)∩R,C l f t
i = (Li ∩C)∪{−∞},C rht

i = (Ri ∩C)∪{+∞}
(see Figs. 7, 8).5 We let pl f ti be the largest vertex in C

l f t
i . Similarly, we let p̂rhti be

4 The 1st valley contains the vertex v1.
5 We use the convention that −∞ and +∞ are the smallest and largest elements, respectively, which are
added for ease in comparison among vertices of a valley in the dynamic programming routine.

123

Algorithmica (2022) 84:961–981 977

the smallest vertex in C rht
i . We will now define the set of heights H of guards in

the terrain, which will be used in defining the states of our dynamic programming
routine: H = {y | v = (x, y) ∈ R} ∪ {+∞}. For y ∈ H\{+∞}, by prv(y)
we denote the smallest element y′ ∈ H such that y′ > y. (For the largest ele-
ment, say y∗ ∈ H\{+∞}, we have prv(y∗) = +∞.) Finally for i ∈ [t], we let
Si = C

l f t
i × C rht

i .
We state some useful observations that will be useful in our algorithm. We will

move to the description of the states of our dynamic programming table after the
stating few simple but useful observations below.

Observation 11 Consider i ∈ [t]. For a vertex v j = (x j , y j) ∈ C
l f t
i , if v� =

(x�, y�) ∈ R sees v j and � < j , then � = j − 1. Similarly, a vertex v j = (x j , y j) ∈
C rht
i , if v� = (x�, y�) ∈ R sees v j and j < �, then � = j + 1.

Observation 12 Consider i ∈ [t], and vertices v j1 = (x j1 , y j1), v j2 = (x j2 , y j2) ∈
C

l f t
i , where j1 < j2. If v� = (x�, y�) ∈ R sees v j2 , where j2 < �, and y j1 ≤ y�, then

v� sees v j1 .

We define the set of heights of guards in a valley, which will be useful in stating
the states of our dynamic programming routine. For i ∈ [t], we let Hgt(i) = {ya |
va = (xa, ya) ∈ Ri } ∪ {+∞}. Moreover, for ya ∈ Hgt(i)\{+∞}, by prvi (ya) we
denote the smallest element ya′ ∈ Hgt(i) such that ya′ > ya . (For the largest element,
say y∗

a ∈ Hgt(i)\{+∞}, we have prvi (ya) = +∞.) Finally for i ∈ [t], we let

Si = C
l f t
i × C rht

i × Hgt(i).

We let Rl f t
i = (Rl f t ∩ V (Wi)) ∪ {+∞}, Rrht

i = (Rrht ∩ V (Wi)) ∪ {−∞},
C

l f t
i = (C l f t ∩ V (Wi))∪ {−∞} and C rht

i = (C rht ∩ V (Wi))∪ {+∞}. Furthermore,

we let Si = C
l f t
i × C rht

i × Rrht
i × R

l f t
i .

We are now ready to define the states of our dynamic programming algorithm. For
each valley we will have the following in our dynamic programming states. Firstly,
we have a pair of vertices from each valley, one from the left-side and other from the
right-side of the valley. These two vertices tell us “what” vertices must be guarded
(see Fig. 8 for an illustration). Intuitively speaking, we want to guard all the left (resp.
right) convex vertices in the valley that are on or above the left-side (resp. right-side)
vertex for this valley in the state of our dynamic programming table. Additionally,
we have a number denoting the height, on or above which we are allowed to place
the guards. Apart from these, we will have a number k′ ≤ k denoting the number of
guards that we are allowed to use in our “partial” solution.

States of the Dynamic Programming Table and Their Interpretation Consider τ =
(τ1, τ2, . . . , τt) ∈ S1 × S2 × · · · × St , where for i ∈ [t], τi = (pi , p̂i) ∈ Si , h ∈ H ,
and an integer k′ ∈ {0, 1, 2, . . . , k}. For each such triple we have an entry in our
dynamic programming table denoted by �(τ, h, k′). For interpreting �(τ, h, k′), we
will define �(τ, h, k′); the goal of the algorithm will be to compute �(τ, h, k′), so as
to mimic �(τ, h, k′), for every triple.

Definition 5 For τ = (τ1, τ2, . . . , τt) ∈ S1 × S2 × · · · × St , where for i ∈ [t], τi =
(pi , p̂i) ∈ Si , h ∈ H , and an integer k′ ∈ {0, 1, 2, . . . , k}, we have �(τ, h, k′) = 1 if

123

978 Algorithmica (2022) 84:961–981

Fig. 8 An intuition of states of our dynamic programming algorithm

and only if there is a set S ⊆ R of size at most k′ such that the following conditions
are satisfied (see Fig. 8):

1. All the guards placed are at height at least h. That is, for each v = (x, y) ∈ S, we
have y ≥ h.

2. Each vertex in C
l f t
i that is pi or above it, is seen by a guard in S. Similarly, each

vertex in C rht
i that is p̂i or above it, is seen by a guard in S. So, for each i ∈ [t]

and u ∈ C
l f t
i ∪ C rht

i , such that either f st(i) � u � pi or p̂i � u � lst(i), there
is w ∈ S that sees u.

In the above, the set S is called a solution for (τ, h, k′).

Let h∗ = min{y ∈ H}, and τ ∗
i = (pl f ti , p̂rhti), for each i ∈ [t]. (In the above, for

i ∈ [t], as −∞ ∈ C
l f t
i and +∞ ∈ C rht

i , pl f ti and p̂rhti can never be undefined.) From
Proposition 2 we can obtain that (T , k) is a yes-instance of Discrete Orthogonal

Terrain Guarding if and only if �(τ ∗
1 , τ ∗

2 , . . . , τ ∗
t , h∗, k) = 1.

Order ofComputation of EntriesWedescribe the order inwhichwe compute the entries
of our dynamic programming table. We will use a modified form of “lexicographic”
ordering for the table entries as follows. To this end we first describe how we order the
vertices in the “left” and “right” sides of our valleys. For i ∈ [t], the vertices in C

l f t
i

are ordered as per the ordering given by T , whereas, the vertices in C rht
i are reverse

ordered compared to the ordering given by T . (We need to do the above because when
are going down the valley from right side, the vertices are decreasing.) We order the
elements of H in decreasing order (with +∞ being the first element in this ordering).
Finally, the overall ordering is obtained by using (lexicographic) ordering of H , the
ordering of vertices in C

l f t
i , and the ordering of vertices in C rht

i , with increasing
values of i , and k′ (increasing).

Next we will describe how we (recursively) compute the entries of the table. Con-
sider τ = (τ1, τ2, . . . , τt) ∈ S1 × S2 × · · · × St , where for i ∈ [t], τi = (pi , p̂i),
h ∈ H , and an integer k′ ∈ {0, 1, 2, . . . , k}. We compute �(τ, h, k′) as follows.

Base Cases The base cases occur in the following scenarios, applied in the given order.

123

Algorithmica (2022) 84:961–981 979

1. If for each i ∈ [t], we have pi = −∞ and p̂i = +∞, then �(τ, h, k′) = 1.
2. If k = 0 and for some i ∈ [t], pi �= −∞ or p̂i �= +∞, then �(τ, h, k′) = 0.
3. If h = +∞ and for some j ∈ [t], p j �= −∞ or p̂ j �= +∞, then �(τ, h, k′) = 0.

The correctness of the base cases directly follows from their description. Next
we describe the recursive formula for computing the other entries of our dynamic
programming table.

Recursive Formula Intuitively, wewill compute an entry by taking “or” of the solutions
for already computed entries, where the entries we query are based on where and at
what vertices we place the lowest height guards in the partial solution.

Let Ah = {v = (x, y) ∈ R | and y = h}. As Item 1 of Base Case is not
applicable, we need to place at least one guard, thus we can obtain that H �= ∅. Notice
that |Ah | ≤ 2t , as for each valley, we can have at most two vertices from R that are
at height h. For every A ⊆ Ah , we will compute ρA, which (intuitively speaking)
corresponds to the solution S for (τ, h, k′), where S ∩ Ah = A, i.e., A is the set of
(vertex) guards at height h in the solution. (We will have ρA = 1 if and only if there
is a solution S for (τ, h, k′) such that S ∩ Ah = A.)

We remark that h �= +∞, as the base cases are not applicable. Consider A ⊆ Ah .
If some a ∈ A sees pi , then we let pi [A] be the largest vertex in C

l f t
i that is not

seen by any vertex in A. (If pi [A] does not exists, it is set to −∞.) Otherwise, no
a ∈ A sees pi , and we set pi [A] = pi . Similarly, if some a ∈ A sees p̂i , we let
p̂i [A] be the smallest vertex in C rht

i that is not seen by any a ∈ A. (If p̂i [A] does
not exists, it is set to +∞.) Otherwise, no a ∈ A sees p̂i , and we set p̂i [A] = p̂i .
Let τi [A] = (pi [A], p̂i [A]). Finally, we let τ [A] = (τ1[A], τ2[A], . . . , τt [A]). Notice
that (τ [A], prv(h), k′ − |A|) is smaller in order compared to (τ, h, k), and thus the
entry corresponding to it in our dynamic programming table is already computed. We
let ρA = �(τ [A], prv(h), k′ − |A|). Finally, we set �(τ, h, k′) = ∨A⊆AhρA.

Lemma 4 The recursive formula for computation of the entries is correct.

Proof To establish the correctness it is enough to show that �(τ, h, k′) = 1 if and only
if there is A ⊆ Ah , such that ρA = �(τ [A], prv(h), k′ − |A|) = 1.

For the forward direction suppose that �(τ, h, k′) = 1, and S ⊆ R be a solution
for (τ, h, k′). We let A∗ = S ∩ Ah and S∗ = S\A∗. We will show that ρA∗ =
�(τ [A∗], prv(h), k′−|A∗|) = 1.Wewill show that�(τ [A∗], prv(h), k′−|A∗|) = 1,
by proving that S∗ is a solution for (τ [A∗], prv(h), k′ − |A∗|). As S is a solution
for (τ, h, k′), for each v = (x, y) ∈ S, we have y ≥ h. The above together with
the construction of S∗ (and Ah) implies that for each v = (x, y) ∈ S∗, we have
y ≥ prv(h), and |S∗| ≤ k′ − |A∗|. Now it remains to prove Item 2 of Definition 5,
to show that S∗ is a solution for (τ [A∗], prv(h), k′ − |A∗|). Consider i ∈ [t]. We
will show that for each u ∈ Ci , such that either f st(i) � u � pi [A∗] or p̂i [A∗] �
u � lst(i), there is some s ∈ S∗ that sees u. We will only prove the above statement
for the case when f st(i) � u � pi [A∗]. (We can obtain the proof for the case when
p̂i [A∗] � u � lst(i), by following similar arguments.) Let u = (xu, yu) ∈ C

l f t
i be the

largest vertex such that f st(i) � u � pi [A∗] and u is not seen by any vertex in S∗. (If
such a vertex u does not exist, then the claim trivially follows.) Since S is a solution for

123

980 Algorithmica (2022) 84:961–981

(τ, h, k′) and (by construction) pi [A∗] ≤ pi , there exists s = (x, h) ∈ S\S∗ = A∗,
such that s sees u. Furthermore, there is s′ = (x ′, y′) ∈ S∗, where h < y′, such that
s′ sees pi [A∗]. From the above we can obtain that all of u, pi [A∗], s, s′ are distinct
and u ≺ pi [A∗]. From Observation 10 we have yu ≤ h. This together with the fact
that h < y′ implies that yu < y′. If pi [A∗] ≺ s′, then using Observation 12 we can
conclude that s′ sees u. This contradicts the choice of u that no vertex in S∗ sees it.
Now consider the case when s′ ≺ pi [A∗]. In this case, using Observation 11 we can
obtain that u ≺ s′ ≺ pi [A∗]. Thus, we have yu ≥ y′. As y′ > h, using Observation 10
we can obtain a contradiction to our assumption that s = (x, h) sees u. This concludes
the proof of the forward direction.

Now we consider the reverse direction. Consider A∗ ⊆ Ah , such that ρA∗ =
�(τ [A∗], prv(h), k′ − |A∗|) = 1, and let S∗ be a solution for (τ [A∗], prv(h),

k′ − |A∗|). Let S = S∗ ∪ A∗. Clearly, |S| ≤ k′, and for each v = (x, y) ∈ S,
we have y ≥ h. Also, for i ∈ [t], by the construction of pi [A∗] and p̂i [A∗], and the
fact that S∗ is a solution for (τ [A∗], prv(h), k′ − |A∗|), we can conclude that for each
u ∈ C

l f t
i ∪ C rht

i , such that either f st(i) � u � pi or p̂i � u � lst(i), there is s ∈ S
that sees u. From the above discussions we can obtain that S is a solution for (τ, h, k′),
and thus we have �(τ, h, k′) = 1. This concludes the proof. 	

Note that t , the number of valleys, is bounded |Min(T)|+2. The number of entries
in our dynamic programming table is bounded by n2t+O(1). The entries in our base
cases can be computed inO(1) time. The recursive formula per entry can be computed
in time bounded by 22t · nO(1), as |Ah | ≤ 2t , for each h ∈ H . Thus we obtain the
proof of Theorem 2.

Acknowledgements The second author would like to thank Prof. Mark de Berg for very insightful prelim-
inary discussions for the second problem. The first and third authors are thankful to Prof. Saket Saurabh
for helpful discussions.

References

1. Agrawal, A., Knudsen, K.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: The parameterized complexity
of guarding almost convex polygons. In: 36th International Symposium on Computational Geometry
(SoCG), vol. 164, pp. 3:1–3:16 (2020)

2. Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for terrain guarding. ACM
Trans. Algorithms 14(2), 25:1–25:20 (2018)

3. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal
1.5d terrain guarding. SIAM J. Comput. 36(6), 1631–1647 (2007)

4. Bonnet, É., Giannopoulos, P.: Orthogonal terrain guarding is NP-complete. In: Symposium on Com-
putational Geometry, SoCG 2018, pp. 11:1–11:15 (2018)

5. Bonnet, É., Giannopoulos, P.: Orthogonal terrain guarding is NP-complete. JoCG 10(2), 21–44 (2019)
6. Bonnet, É., Miltzow, T.: Parameterized hardness of art gallery problems. ACM Trans. Algorithms

16(4), 42:1-42:23 (2020)
7. Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and monotone chains. In:

Proceedings of the 7th Canadian Conference on Computational Geometry, CCCG, pp. 133–138 (1995)
8. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Dis-

crete Comput. Geom. 37(1), 43–58 (2007)
9. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer, Berlin (2015)

123

Algorithmica (2022) 84:961–981 981

10. Diestel, R.: Graph Theory, 4th Edition, volume 173 of Graduate Texts inMathematics. Springer, Berlin
(2012)

11. Downey, R., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
12. Durocher, S., Li, P.C., Mehrabi, S.: Guarding orthogonal terrains. In: Proceedings of the 27th Canadian

Conference on Computational Geometry, CCCG (2015)
13. Elbassioni, M.K., Krohn, E., Matijevic, D., Mestre, J., Severdija, D.: Improved approximations for

guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–463 (2011)
14. Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain guarding problem:

discretization, optimal solutions, and PTAS. JoCG 7(1), 256–284 (2016)
15. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W.H. Freeman, New York (1979)
16. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local search. JoCG 5(1),

168–178 (2014)
17. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comput. Geom. 39(3),

219–228 (2008)
18. Khodakarami, F., Didehvar, F., Mohades, A.: A fixed-parameter algorithm for guarding 1.5D terrains.

Theor. Comput. Sci. 595, 130–142 (2015)
19. King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Proceedings of the

7th Latin American Symposium on Theoretical Informatics, LATIN, vol. 3887, pp. 629–640 (2006)
20. King, J., Krohn, E.: Terrain guarding is np-hard. SIAM J. Comput. 40(5), 1316–1339 (2011)
21. Lyu, Y., Üngör, A.: A fast 2-approximation algorithm for guarding orthogonal terrains. In: Proceedings

of the 28th Canadian Conference on Computational Geometry, CCCG, pp. 161–167 (2016)
22. Mehrabi, S.: Guarding the vertices of an orthogonal terrain using vertex guards (2015).

arXiv:1512.08292
23. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc., Oxford (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1512.08292

	Parameter Analysis for Guarding Terrains
	Abstract
	1 Introduction
	2 Preliminaries
	3 Polynomial Kernel for Discrete Terrain Guarding
	4 Algorithm for Discrete Orthogonal Terrain Guarding
	Acknowledgements
	References

