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Abstract
Amaximal common subsequence (MCS) between two strings X and Y is an inclusion-
maximal subsequence of both X and Y . MCSs are a natural generalization of the
classical concept of longest common subsequence (LCS), which can be seen as a
longestMCS.We study the problem of efficiently listing all the distinctMCSs between
two strings. As discussed in the paper, this problem is algorithmically challenging as
the same MCS cannot be listed multiple times: for example, dynamic programming
[Fraser et al., CPM1998] incurs in an exponential waste of time, and a recent algorithm
for finding anMCS [Sakai, CPM2018] does not seem to immediately extend to listing.
We follow an alternative and novel graph-based approach, proposing the first output-
sensitive algorithm for this problem: it takes polynomial time in n per MCS found,
where n = max{|X |, |Y |}, with polynomial preprocessing time and space.

Keywords Maximal common subsequence · Subsequence · LCS · Enumeration ·
Polynomial-delay

1 Introduction

Thewidely known longest common subsequence (LCS) is a special case of the general
notion of (inclusion-)maximal common subsequence (MCS) between two strings X
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and Y . Defined formally below, theMCS is a subsequence S of both X and Y such that
inserting any character at any position of S no longer yields a common subsequence.
We believe that the enumeration of the distinct MCSs is an intriguing problem from
the point of view of string algorithms, for which we offer a novel graph-theoretic
approach in this paper.

1.1 Problem Definition

Let � be an alphabet of size σ . A string S over � is a concatenation of any number of
its characters. A string S is a subsequence of a string X , denoted S ⊂ X , if there exist
indices 0 ≤ i0 < · · · < i|S|−1 < |X | such that X [ik] = S[k] for all k ∈ [0, |S| − 1].
Definition 1 Given two strings X ,Y , a string S is a maximal common subsequence of
X and Y , denoted S ∈ MCS(X ,Y ), if

1. S ⊂ X and S ⊂ Y ; that is, S is a common subsequence;
2. there is no other string W satisfying the above condition 1 such that S ⊂ W ,

namely, S is inclusion-maximal as a common subsequence.

Example 1 Consider X = TCACAG and Y = GTACTA, where MCS(X ,Y ) =
{TACA,G}. A greedy left-to-right common sequence is not necessarily an MCS: read-
ing X from left to right and keeping the left-most matching character in Y when
possible gives W = TCA, which is not in MCS(X ,Y ) as TCA ⊂ TACA.

The focus of this paper is on the enumeration of MCS(X ,Y ) between two strings
X and Y , stated formally below.

Problem 1 (MCS enumeration) Given two strings X ,Y such that n = max{|X |, |Y |}
over an alphabet� of sizeσ , list allmaximal common subsequences S ∈ MCS(X ,Y ).

In enumeration algorithms, the aim is to list all objects of a given set. The time
complexity of these type of algorithms depends on the cardinality of the set, which is
often exponential in the size of the input. This motivates the need to define a different
complexity class, based on the time required to output one solution.

Definition 2 An enumeration algorithm is polynomial delay if it generates the solu-
tions one after the other, in such a way that the delay between the output of any two
consecutive solutions is bounded by a polynomial in the input size.

Our aim will be to provide a polynomial delay MCS enumeration algorithm, more
specifically we will prove the following result.

Theorem 1 There is a O(σn log n)-delay enumeration algorithm for Problem 1, with
O(σn2 log n) preprocessing time and O(n2) space.

1.2 Motivation and Relation to PreviousWork

Maximal common subsequences were first introduced in the mid-90s by Fraser et al.
[9]. Here, the concept of MCS was a stepping stone for one of the main problems
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Fig. 1 On the top, a simplified representation of two genomes for whom 6 potential anchors have been
identified. On the bottom, a possible colinear alignment of the anchors. A different colinear alignment
would be given for instance by 2, 3, 4, 6. (Picture inspired by Fig. 3 from Delcher et al. [8].)

addressed by the authors: the computation of the length of the shortest maximal com-
mon subsequence (SMCS) (i.e. the shortest string length in MCS(X ,Y )), introduced
in the context of LCS approximation. For this, a dynamic programming algorithmwas
given to find the length of a SMCS of two strings in cubic time.

While LCSs [4,10,18,22] have thoroughly been studied in a plethora of string
comparison application domains, like spelling error correction, molecular biology,
and plagiarism detection, to name a few, little is known for MCSs. In general, LCSs
only provide us with information about the longest possible alignment between two
strings, while MCSs offer a different range of information, possibly revealing slightly
smaller but alternative alignments. Thus, MCS could in principle provide helpful
information in all the applications where LCS are used.

Furthermore, a direct application for the different alignments highlighted byMCSs
can be found in the field of comparative genomics. Because of the sheer size of the
input, comparative genomics requires more specific tools than general string compar-
isons, thus branching into a field of its own. Some of the tools employed for genome
comparison solve problems akin to the MCS problem, relying on anchor-based meth-
ods [5,8,16]. Given two genomes, thesemethods first look for potential anchors, which
are long meaningful chunks of the genomes that are considered to be matching (see
Fig. 1). Final anchors are extracted from these by computing a colinear (i.e. occurring
in the same order in both genomes) sequence of non-overlapping potential anchors;
eventual small gaps between the anchors are then filled separately. If we interpret the
two sequences of potential anchors as strings, finding MCS between these helps find
the optimal colinear alignment to later extract the anchors, and run the final alignment
methods. An efficient algorithm to find MCS could therefore be employed to speed
up these time-consuming comparison tools.

A drawback of LCS is that there is a quadratic conditional lower bound for their
computation, based on the Strong Exponential Time Hypothesis [1].1 On the other

1 The Strong Exponential Time Hypothesis (SETH) [13] states that limk→∞ sk = 1, where sk = inf{δ |
k-SAT can be solved in O(2δn) time}. It is widely believed to be true, and it has been used to prove condi-
tional lower bounds for a variety of problems (see [2] for some examples).
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Fig. 2 Visual representation of
Sakai’s characterization
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hand, no quadratic bound exists forMCS: in fact, a recent paper by Sakai [20] presents
an algorithm that deterministically finds oneMCS between two strings of length O(n)

in O(n log log n) time, which he later improved to O(n
√
log n/ log log n) time in

[21]. These algorithms can also be used to extend a given sequence to a maximal
one in the same time. Furthermore, O(n)-time algorithms to check whether a given
subsequence is maximal are described in the papers. To this end, in [20] the author
gives a neat characterization ofMCSs, which will be useful later, as stated in Lemma 1
and illustrated in Fig. 2.

Lemma 1 (MCS Characterization [20]) Given a common subsequence W of X and
Y , we define Xk (resp. Yk) as the remaining substring obtained from X (resp. Y ) by
deleting both the shortest prefix containing W [0, k), and the shortest suffix containing
W [k, |W |). Substrings Xk,Yk are called the k-th interspaces. With this notion, W is
maximal if and only if for all k ∈ [0, |W |], Xk and Yk are disjoint (that is, they share
no common characters).

In what follows, we will showcase some pitfalls that arise when trying to trivially
extend the aforementioned results to MCS enumeration. It is worth noting that even
though there are a few more different approaches in the literature to find LCS or
common subsequences with some kind of constraints (e.g. common subsequence trees
[11], common subsequence automata [7]), the approaches described in this section are
the only ones which directly deal with MCS. Thus, for space and clarity reasons, we
will only focus on these latter approaches, and the pitfalls arising from their extensions.
Still, to the best of our knowledge, other approaches in the literature do not immediately
extend to efficient MCS enumeration either.

1.3 Strategic Pitfalls

The aforementioned results by Fraser et al. and Sakai seem to be of little help in
our case, as neither of the two can be directly employed to obtain a polynomial-delay
enumeration algorithm to solve Problem 1, which poses a quite natural question.

Consider the dynamic programming approach in [9]: even if the dynamic pro-
gramming table can be modified to list the lengths of all MCS in polynomial time,
this result cannot be easily generalized to Problem 1. Indeed we show below that any
incremental approach, including dynamic programming, leads to an exponential-delay
enumeration algorithm.

Example 2 Consider X = TAATAATAAT, Z = TATATATATAT and Y = Z Z . Since
X ⊂ Y , the only string in MCS(X ,Y ) is the whole X . But if we were to proceed
incrementally overY , at halfwaywewould computeMCS(X , Z), which can be shown
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to have size O(exp(|X |)). This means that it would require time exponential in the
size of the input to provide just a single solution as output.

As for the approach in [20], the algorithm cannot be easily generalized to solve
Problem 1, since the specific choices it makes are crucial to ensure maximality of the
output, and the direct iterated application of Lemma 1 does not lead to an efficient
algorithm for Problem 1, as shown next.

Example 3 For a given common subsequence W to start with, first find all values of
k ≤ |W | such that Xk and Yk are not disjoint, that is, they have some characters
in common. Then, for these values, compute all distinct characters c which occur
in both Xk and Yk , and for each of these recur on the extended sequences W ′ =
W [0, . . . , k − 1] c W [k, . . . , |W | − 1]. For instance, given the strings X = ACACA
and Y = ACACACA with starting sequences W = A and W = C, this algorithm
would recur on almost every subsequence of X , just to end up outputting the single
MCS(X ,Y ) = {X} an exponential (in the size of X ) number of times.

Lastly, the refined approach given in [21] also seems to not have an immediate
extension to the enumeration of MCS. This latter approach builds a stringW by going
from left to right in the input strings, and adding common characters toW in a greedy
way, like in Example 1. Once it gets to the end of the strings, it can identify whether a
character is surely the last one for some MCS. Fixing this character as the last for W ,
it recursively looks for an MCS in the prefixes of the strings up to the last occurrences
of the selected character, adding more letters to W whenever possible, to finally yield
an MCS.

Example 4 Consider strings X = GATAGAC and Y = AGATACAGA, with MCS given
by {GATAGA,GATAC}. First note that, to adapt the algorithm to enumeration, we
need to consider multiple starting characters, as otherwise we could miss some MCS
in which the chosen starting letter does not appear. Reasonably, we choose all letters
that do not have an insertion before them: in our example we would start with A and
G. Further note that choosing different starting characters is not enough, as otherwise
the algorithm would deterministically only find at most |�| MCS. Thus, to perform
enumeration based on this algorithmwe need to choose all possible insertions, at every
step, when going left to right. This is equivalent to a greedy left-to-right approach,
which may yield the same sequence multiple times: in our example, string GATAGA
is output 6 times, and string GATAC 3 times.

Getting polynomial-delay enumeration is therefore an intriguing question. The fact
that one maximal solution can be found in polynomial time does not directly imply
an enumeration algorithm: there are cases where this is possible, but the existence of
an output-sensitive enumeration algorithm is an open problem [14], or would imply
P = N P [17]. As we will see, solving Problem 1 can lead to further pitfalls that we
circumvent in this paper.

Our Approach. The approach that will finally lead us to our result is a prefix-
incremental one: given P a prefix of anMCS, we will be able to identify all characters
c such that P c is still a prefix of some MCS. As we will see in the next section, this
task is highly non-trivial, and leads to several more pitfalls of its own.

123



762 Algorithmica (2022) 84:757–783

1.4 Overview

In the rest of the paper, we start by showing how to interpret the MCS problem as
a graph problem, in Sect. 2. This change of perspective will lead us to our central
combinatorial result, Theorem 2, which will be the basis of our prefix-incremental
algorithm; its involved proof will be detailed in Sect. 3. The theorem will lead us
naively into our first polynomial-delay enumeration algorithm, introduced in Sect. 4.
Lastly, Sect. 5 will present a refinement of the initial algorithm, allowing us to finally
reach the bounds described in Theorem 1.

2 MCS as a Graph Problem

As a starting point, we reduce Problem 1 to a graph problem in order to give a theoretic
characterization and to get some insight on how to combine MCS. Afterward, this
characterization will be reformulated in an operative way, leading to an algorithm for
MCS enumeration.

2.1 String Bipartite Graph

Definition 3 Given two strings X ,Y , their string bipartite graph G(X ,Y ) has vertex
set V = {x0, . . . , x|X |−1, y0, . . . , y|Y |−1}, where xi , y j represent respectively the i-th
position of X and the j-th position of Y , and edge set E = {(xi , y j ) | X [i] = Y [ j]}.
Each edge, called pairwise occurrence, connects positions with the same character in
different strings. Wherever it is clear from the context, we will denote edge (xi , y j )
simply as (i, j).

Definition 4 A mapping of G(X ,Y ) is a subset P of its edges such that for any two
edges (i, j), (h, k) ∈ P we have i < h iff j < k. That is, a mapping is a non-crossing
matching of the string graph. Amapping that is inclusion-maximal is called amaximal
mapping.

Each mapping of the string graph spells a common subsequence. Vice versa,
each common subsequence has at least one corresponding mapping. Thus one might
incorrectly think that MCS correspond to inclusion-maximal mappings; as a coun-
terexample consider X = AGG and Y = AGAG, with MCS(X ,Y ) = {AGG}. G(X ,Y )

has an inclusion-maximal mapping corresponding to AG /∈ MCS(X ,Y ).
For a string S, let nextS(i) be the smallest j > i with S[ j] = S[i] (if any), and

nextS(i) = |S| − 1 otherwise; we use the shorthand IS(i) = S[i + 1, . . . , nextS(i)].
Definition 5 A mapping of G(X ,Y ) is called rightmost if for each edge (i, j) of the
mapping, corresponding to character c ∈ �, the next edge (i ′, j ′) of the mapping is
such that nextX (i) ≥ i ′ and nextY ( j) ≥ j ′. That is, there are no occurrences of c in
X [i + 1, . . . , i ′ − 1] and Y [ j + 1, . . . , j ′ − 1], the portions between edges (i, j) and
(i ′, j ′). We can symmetrically define a leftmost mapping.
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Fig. 3 For their concatenation to
be an MCS, P has to be
maximal in the red dashed part
and C in the orange dotted one
(color figure online) LP RC
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Remark 1 Given any common subsequence S = s0 · · · sN of X ,Y , we can always
build its unique rightmost mapping as follows. Start at sN , and let iN = max{i |
X [i] = sN } and jN = max{ j | Y [ j] = sN }; consider then for every N > h ≥ 0,
ih = max{i < ih+1 | X [i] = sh} and jh = max{ j < jh+1 | Y [ j] = sh}. Edges
(i0, j0), . . . , (iN , jN ) form a rightmost mapping spelling S. Symmetrically, we can
always build the unique leftmost mapping of S.

In order to design an efficient and correct enumeration algorithm that uses also
Definition 5, we first need to study how MCS(X ,Y ) and MCS(X ′,Y ′) relate to
MCS(X X ′,Y Y ′) for any two pairs of strings X ,Y and X ′,Y ′. This will help us
develop a prefix-expanding strategy for MCS(X X ′,Y Y ′), as we can consider P ∈
MCS(X ,Y ) as a prefix, and the first characters of strings in MCS(X ′,Y ′) as its
extensions.

Remark 2 A simple concatenation of the pairwise MCS fails: consider for exam-
ple X = AGA, X ′ = TGA, Y = TAG and Y ′ = GAT, with MCS(X X ′,Y Y ′) =
{AGGA,AGAT,TGA}. We have MCS(X ,Y ) = {AG} and MCS(X ′,Y ′) = {GA,T}.
Combining the latter two sets we find the sequence AGGA, which is in fact maximal,
but also AGT, which is not maximal as AGT ⊂ AGAT.

The correct condition for combining MCS is a bit more sophisticated, as stated in
Theorem 2. Here, for a position i of a string S, we denote by S<i the prefix of S up to
position i − 1, and by S>i the suffix of S from position i + 1.

Theorem 2 (MCS Combination) Let P and C be common subsequences of X ,Y . Let
(l,m) be the last edge of the leftmost mapping LP of P, and (i, j) be the first edge of
the rightmost mapping RC of C (see Fig. 3). Then

P C ∈ MCS(X ,Y ) iff P ∈ MCS(X<i ,Y< j ) and C ∈ MCS(X>l ,Y>m).

Proof To ensure the equivalence, it is sufficient to show that Sakai’s interspaces for
string P C over X ,Y are the same as the ones for either P over X<i ,Y< j , or for C
over X>l ,Y>m . Let P = p1 · · · ps , C = c1 · · · cr , and let us study the k-th interspace
for the subsequence P C .

Case k < s: the shortest suffixes of X ,Y containing pk+1, . . . , ps, c1, . . . , cr
as a subsequence are unchanged from the shortest suffixes of X<i ,Y< j containing
pk+1, . . . , ps , since C is already in rightmost form starting exactly at (i, j). Let
X<u+1,Y<v+1 be the shortest prefixes of X ,Y containing p1, . . . , pk as a subse-
quence. Then, by definition of leftmost mapping, (u, v) must be the k-th edge of the
leftmost mapping of P , which occurs before edge (i, j) by hypothesis. The shortest
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Fig. 4 The possibility for insertion is not sufficient to discard a character as a valid extension: edge (i, j)
corresponds to valid character C even though both its endpoints can be re-mapped (dashed) to allow for
insertions (see Remark 3)

prefixes of X ,Y containing p1, . . . , pk are thus also unchanged from the ones for
X<i ,Y< j . Therefore, the interspaces for the whole strings are unchanged from the
interspaces for P over X<i ,Y< j .

Case k > s: this case is symmetrical to the previous one: the interspaces for the
whole strings are unchanged from the interspaces for C over X>l ,Y>m .

Case k = s: The last interspaces for P and the first for C coincide, and they are
X [l + 1, . . . , i − 1] and Y [m + 1, . . . , j − 1]. Since P is in leftmost form ending at
(l,m) and C is in rightmost form beginning at (i, j), these two strings also coincide
with the k-th interspaces for P C . 
�

Theorem 2 gives a precise characterization on how to combine maximal subse-
quences, but it cannot be blindly employed to design an enumeration algorithm for a
number of reasons.

Let a string P be called a valid prefix if there existsW ∈ MCS(X ,Y ) such that P is
a prefix ofW . Suppose that the leftmost mapping for P ends with the edge (l,m), and
that we want to expand P by appending characters to it so that it remains valid. These
characters correspond to the edges (i, j) related to (l,m) as stated by Theorem 2,
for some maximal sequence C . The rest of the paper describes how to perform the
following task without explicitly knowing C : given a valid prefix P with leftmost
mapping ending at (l,m), find the edges (i, j) whose corresponding characters yield
a valid prefix when used to extend P .

Remark 3 Note that, when looking for edge (i, j), the occurrence of an insertion
when moving its endpoints is not enough to discard the candidate. Consider as an
example X = ATAGCTC and Y = ATTCGC, with valid prefix P = AT ending at
(l,m) = (1, 1). Consider edge (i, j) = (4, 3); clearly P ∈ MCS(X<i ,Y< j ). Also,
(i, j) can be moved in both strings to allow for insertions of characters G and T.
Nonetheless, its corresponding character C still generates the valid prefix ATC. This
is illustrated in Fig. 4. Along the same lines, Sakai’s algorithm cannot help here. It
generates an MCS that contains P as a subsequence, but not necessarily as a prefix.
Therefore, it cannot be easily employed to identify the edges (i, j).

We need a more in-depth study of the properties of graph G(X ,Y ) to characterize
the relationship between (l,m) and (i, j). First, we give the notion of unshiftable
edges, and show that edge (i, j) needs to be unshiftable. Second, as being unshiftable
is only a necessary condition, we discuss how to single out the (i, j)’s suitable for our
given (l,m).
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2.2 Unshiftable Edges

Definition 6 An edge (i, j) of the bipartite graph G(X ,Y ) is called unshiftable if it
belongs to at least one maximal rightmost mapping ofG(X ,Y ). The set of unshiftable
edges is denoted U . An edge is called shiftable if it is not unshiftable.

Example 5 Consider X = ACCGTTA and Y = TAAGGACTG with MCS(X ,Y ) =
{ACG,ACT,AGA,AGT,TA,TT}. The unshiftable edges for these two strings are the
following ones:

A C C G T T A

T A A G G A C T G

A symmetric definition of left-unshiftable edges could be given by considering
maximal leftmost mappings, and these are related to k-dominant edges, a concept
introduced in 1985 by Apostolico [3]: k-dominant edges turn out to be a subset of
left-unshiftable edges.2

Unshiftable edges can also be characterizedmore directly, as stated in Proposition 1.

Proposition 1 An edge (i, j) is unshiftable if and only if either (1) it corresponds to
the rightmost pairwise occurrence of X [i] = Y [ j] in the strings, or (2) there is at
least one unshiftable edge in the subgraph G(IX (i), IY ( j)).

Proof ( �⇒ ) Let (i, j) ∈ U , then by definition there exists a maximal rightmost
mapping R = r1, . . . , rN such that (i, j) = rp for some 1 ≤ p ≤ N . If p = N ,
by definition of rightmost mapping, rN corresponds to the last pairwise occurrence of
some character, thus it satisfies (1). Consider now p < N , and let rp correspond to
some character c. By definition of unshiftability, rp+1 ∈ U . By definition of rightmost
maximal mapping, there can be no occurrences of c between rp and rp+1; therefore
the unshiftable edge rp+1 belongs to the subgraph G(IX (i), IY ( j)).
( ⇐� )Let (i, j) satisfy oneof the twoconditions. If it satisfies thebase case, then (i, j)
is in rightmost form, and we can extend it to the left to a rightmost maximal mapping.
On the other hand, let (i, j) satisfy the second condition. Then, there is an edge (h, k) ∈
U that belongs to the subgraph G(IX (i), IY ( j)). Consider the rightmost maximal
mapping R that contains (h, k); if it also contains (i, j) we are done. Otherwise, let
R′ ⊂ R be the restriction that only contains (h, k) and subsequent edges. Consider
the rightmost mapping (i, j) ∪ R′; we can extend it to the left until it is rightmost
maximal. In any case, we have obtained a rightmost maximal mapping containing
(i, j), which is then unshiftable. 
�

An immediate consequence of Proposition 1 is the following fact, which will give
us an operative way of finding the set of unshiftable edges:

2 The author employs these edges to improve the Hunt–Szymansky algorithm [12], which extracts one LCS
of two strings of length n in O((r + n) log n), where r is the total number of ordered pairs of positions at
which the two sequences match, that is, the number of edges in the string bipartite graph.
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Fig. 5 Graphical representation
of the cross 〈e, f 〉 for edge
(l,m), drawn in purple:
e = (e1, e2), f = ( f1, f2) are
the first unshiftable edges soon
after (l,m) (color figure online)

l e1 f1

m f2 e2

Fact 1 Let (i, j) ∈ U and c ∈ �. If i ′, j ′ are the rightmost occurrences of c respectively
in X<i and Y< j , then edge (i ′, j ′) is also unshiftable.

Remark 4 Although everyMCS has a corresponding rightmost maximal mapping, and
the edges in the latter are unshiftable by Definition 6, it is incorrect to conclude that
the opposite holds too. Not all rightmost maximal mappings give MCS: consider for
example X = AAGAAG and Y = AAGA. In G(X ,Y ) we have a maximal rightmost
mapping for AAG, but AAG ⊂ AAGA ∈ MCS(X ,Y ).

Remark 5 Unshiftable edges can be dense in G(X ,Y ). For example, consider X =
An(CA)n and Y = AnCn : every A of Y has out-degree of unshiftable edges equal to the
number of Cs in X , that is O(n). The total number of unshiftable edges is therefore
|U | = O(n · n) = O(n2).

2.3 Candidate Extensions

We finalize the characterization of the relationship between edges (l,m) and (i, j)
of Theorem 2, where (l,m) is the last edge of the leftmost mapping in G(X ,Y ) of a
valid prefix P . We would like to single out a priori the corresponding possible (i, j)’s,
without explicitly knowing theirCs. This in turn will lead to the incremental discovery
of such C’s one character c at a time.

Specifically, we look for edges (i, j) corresponding to the characters c ∈ � such
that P c is still a valid prefix.

Definition 7 Given an edge (l,m), its cross χ(l,m) = 〈e, f 〉 (see Fig. 5) is given by (at
most) two unshiftable edges e = (e1, e2), f = ( f1, f2) such that

e1 = min{h1 > l | ∃h2 > m : (h1, h2) ∈ U} and e2 = min{h2 > m : (e1, h2) ∈ U},
f2 = min{h2 > m | ∃h1 > l : (h1, h2) ∈ U} and f1 = min{h1 > l : (h1, f2) ∈ U}.

Definition 8 Given an edge (l,m), let χ(l,m) = 〈e, f 〉 be its cross. We define the set
of its mikado edges as the unshiftable edges of G(X [e1, . . . , f1],Y [ f2, . . . , e2]),

Mk(l,m) = {(i, j) ∈ U | e1 ≤ i ≤ f1 and f2 ≤ j ≤ e2},

and the subset of candidate extensions for (l,m) as

Ext(l,m) = {(i, j) ∈ Mk(l,m) | �(h, k) ∈ Mk(l,m)\(i, j) such that h ≤ i and k ≤ j}.
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l e1 f1

m f2 e2

LP

l e1 f1

m f2 e2

LP

Fig. 6 Extraction of Ext(l,m) from the set Mk(l,m), pictured on the left. The edges belonging to
Mk(l,m)\Ext(l,m) are dashed

It follows immediately from the definition that no two edges in Ext(l,m) have a common
endpoint, and thus |Ext(l,m)| ≤ n.

Definitions 7 and 8 find their application in identifying a valid prefix extension, as
shown in Fig. 6 and discussed next.

2.4 Valid Prefix Extensions

Let P be a valid prefix with leftmost mapping LP ending with the edge (l,m). We
use shorthands for MkP = Mk(l,m) and ExtP = Ext(l,m). The candidates in ExtP ⊆
MkP are the unshiftable edges soon after LP such that no other unshiftable edge lies
completely delimited between LP and any of them, as illustrated in Fig. 6.

We thus are ready to give our algorithmic characterization of valid extensions of
prefixes to relate edges (l,m) and (i, j) from Theorem 2.

Theorem 3 Let P be a valid prefix of some M ∈ MCS(X ,Y ), with leftmost mapping
LP ending with the edge (l,m). Then P c is a valid prefix if and only if the following
two conditions hold.
(1) There exists (i, j) ∈ ExtP corresponding to character c, and
(2) P ∈ MCS(X<i ,Y< j ).

The proof of Theorem 3 is quite involved, and thus postponed to Sect. 3. This result
is crucial for our polynomial-delay binary partition algorithm, as the latter recursively
enumerates MCS(X ,Y ) by building increasingly long valid prefixes and avoiding
unfruitful recursive calls.

3 Proof of Theorem 3

In this section, we finalize the proof of Theorem 3, at the heart of our results. We
introduce the concept of certificate edges, and use it to show sufficiency and necessity
of the two conditions (1) and (2) in Theorem 3.

3.1 Certificate Edges

Given an edge, we call its certificate edges the unshiftable edges that occur right after
the edge in question and before the next pairwise occurrences of the corresponding
character, with no other unshiftable in between.
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Fig. 7 The only certificate for
the green bold edge
corresponding to character c is
drawn in solid blue (all dashed
edges are unshiftable)

c c

c c

Recalling that IX (i) = X [i + 1, . . . , nextX (i)], certificate edges are defined as
follows, and illustrated in Fig. 7.

Definition 9 An edge (i ′, j ′) ∈ U is a certificate for another edge (i, j) if (i ′, j ′) ∈
G(IX (i), IY ( j)) and no (x, y) ∈ U\{(i ′, j ′)} has x ∈ (i, i ′], y ∈ ( j, j ′].

In this case, we say that (i ′, j ′) certifies (i, j). We denote with C(i, j) the set of
certificates of edge (i, j). An edge (i, j) ∈ U is called a root iff C(i, j) = ∅.

Certificates are given this name as they certify the unshiftability of the edge, as
detailed in the following:

Remark 6 Note that if C(i, j) �= ∅, then (i, j) ∈ U . In fact, let (i ′, j ′) ∈ C(i, j); then,
by definition of certificate, (i, j) are the rightmost occurrences of its corresponding
character c in X<i ′ and Y< j ′ . Thus, by Fact 1, (i, j) ∈ U .

Definition 10 A certificate mapping is a mapping in which the rightmost edge is a
root, and each edge except the leftmost is a certificate for the one to its left.

Using certificate edges, we can prove the following sufficient condition that will
help us identify MCSs.

Lemma 2 Let M = {r1, . . . , rN } be a maximal certificate mapping in G(X ′,Y ′) of a
common subsequence S = S1 · · · SN between X ′ and Y ′, where r1 = (i1, j1). Then:

1. M is a rightmost maximal mapping of unshiftable edges in G(X ′,Y ′), and
2. if G(X ′≤i1

,Y ′≤ j1
) ∩ U = {r1}, then M ∈ MCS(X ′,Y ′).

Proof 1. By contradiction, assume that M is not rightmost. This means that there
exists at least one edge ri , corresponding to some c ∈ �, such that c occurs
between ri and ri+1 in either one of X ′ or Y ′. Therefore, ri+1 is not a certificate
of ri : contradiction.

2. Assume that G(X ′≤i1
,Y ′≤ j1

) ∩ U = {r1}. By contradiction, let M not be maximal:
let k be the minimum index such that we can insert a character c between Sk
and Sk+1. If k = 0 (insertion at beginning), then there is a pairwise occurrence
of c before r1; let (i, j) be the rightmost such pairwise occurrence. Then, r1 is
a certificate for (i, j), and therefore by Remark 6, (i, j) ∈ G(X ′≤i1

,Y ′≤ j1
) ∩ U :

contradiction. We can therefore suppose k > 0. If we can insert c between Sk
and Sk+1, it means that the k-th interspace is non-empty and contains c. This
is equivalent to saying that we can find an edge corresponding to character c in
the substrings between the leftmost mapping of Sk and the rightmost mapping of
Sk+1. Since the latter is already in rightmost form, we will perform a re-mapping
of just Sk . First, note that when remapping Sk in any way, we can only shift one
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Fig. 8 The red edge
corresponding to character c is
the insertion that takes place
between edges lk and rk+1.
Solid orange edges l1, . . . , lk are
the minimal leftward re-map of
edges r1, . . . , rk , shown dashed
in blue (color figure online)

l1 l2 · · · lk c

r1 r2 · · · rk c rk+1 · · ·

Fig. 9 Without loss of
generality, we can consider the
leftmost insertion given by edge
(i, j) · · ·

lk i c

rk j c rk+1

· · ·

endpoint per edge. This is because shifting both endpoints would mean that we
have a character match, and therefore an insertion , which is impossible before
the k-th edge by hypothesis. Let l1, . . . , lk be the minimal leftward re-map of the
edges r1, . . . , rk that allows for the insertion of c between lk and rk+1. That is,
the endpoints of l1, . . . , lk are the rightmost that allow for insertion. Note that in
such a minimal re-map, the edges’ endpoints that get re-mapped always belong to
the same string, as otherwise we would either have crossing edges, and thus not
a valid mapping, or have a superfluous re-map, contradicting minimality. Such a
re-map is illustrated in Fig. 8.

Let (i, j) corresponding to some character c be the rightmost insertion that can
occur between edge lk and edge rk+1. Then, (i, j) is an unshiftable edge, since it has
edge rk+1 as a certificate. It is possible that we can insert a string of characters ending
with c between lk and rk+1 , as illustrated in Fig. 9. In this case, let us choose for
each of these characters the edge corresponding to its rightmost pairwise occurrence
before the edge for the next character. All of these edges are unshiftable since each
one is a certificate for the previous, starting with the one for c. The following proof
can proceed considering without loss of generality the leftmost of these insertions as
edge (i, j).

By choosing the edge in this fashion, we guarantee that there aren’t any more
unshiftable edges ( or even regular edges) between lk and (i, j). Furthermore, since
lk was the minimal leftward re-map, there are no occurrences of its corresponding
character between itself and (i, j), and so we find that lk is certified by (i, j). Edge lk
is then also unshiftable. This nowpropagates backward for every h: let lh−1 correspond
to character a, and assume that lh is unshiftable. Then, there can be no occurrence
of a between lh−1 and lh : (1) there are no occurrences of a between lh−1 and rh−1
because the re-map was minimal; (2) there can be no occurrence of a between rh−1
and rh because they belonged to a rightmost mapping (see Fig. 10).

Thus, lh−1 is unshiftable. Once we get to l1, we obtain an unshiftable edge different
from r1 in the subgraph G(X ′≤i1

,Y ′≤ j1
): contradiction. 
�

We now define the findR procedure, used to generate certificate mappings. This
procedure implicitly finds the C from Theorem 2. Given an unshiftable edge, findR
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a rh−1 rh

a lh

(1) (2)

(2)

lh−1

Fig. 10 Propagation of unshiftability for lh−1. Edges lh−1, lh are shown in solid orange, while their
rightmost counterparts rh−1, rh are dashed blue. Edge lh−1 corresponds to character a, which cannot
appear in either (1) or (2): the former because of the minimality of the re-mapping, the latter because rh−1
is rightmost in the original mapping (color figure online)

chooses one of its certificates and recurs until it gets to a root edge.

findR(i, j) = {(i, j)} ∪
(
∪(h,k)∈C(i, j)findR(h, k)

)

Proposition 2 Let (l,m) be any edge of the graph, and (i, j) ∈ Ext(l,m) in the set
of extensions of (l,m). Then findR(i, j) returns a certificate mapping having as first
edge (i, j), such that the corresponding subsequence is M ∈ MCS(X>l ,Y>m).

Proof The procedure findR(i, j) generates a certificate mapping starting with edge
(i, j) by definition. Since (i, j) ∈ Ext(l,m), there cannot be any unshiftable edges in
the subgraph G(X [l + 1, . . . , i],Y [m + 1, . . . , j]), except for (i, j) itself. By setting
X ′ = X>l and Y ′ = Y>m in Lemma 2, M ∈ MCS(X>l ,Y>m) and is rightmost. 
�

3.2 Necessary and Sufficient Conditions

Necessity. First of all, we will prove that conditions (1) and (2) of Theorem 3 are
necessary. Let P c be a valid prefix of some W ∈ MCS(X ,Y ).

First, we show that condition (1) holds, namely, there exists (i, j) ∈ ExtP cor-
responding to character c. We do so by supposing that none of the edges in ExtP
correspond to c, and showing that this leads to a contradiction. By Sakai’s characteri-
zation of maximality, for all indices k ≤ |W | we have that Xk and Yk are disjoint, that
is, they share no common characters. Let k̂ = |P|, and thus W = P W

>k̂ and W
>k̂

starts with c because P c is a valid prefix of W . By definition, Xk̂ and Yk̂ are disjoint,
where Xk̂ and Yk̂ are given by the parts of the strings between the leftmost mapping
LP of P and the rightmost mapping of W

>k̂ . The first edge of the latter mapping
is (i, j) ∈ U corresponding to character c as W

>k̂ starts with c. By contradiction,
suppose (i, j) /∈ ExtP . We now have two cases:

– Case (i, j) /∈ MkP : this implies that i > f1 or j > e2, where f1 and e1 are those
given in Definition 8. Therefore Xk̂ and Yk̂ cannot be disjoint, as there would be
at least the character corresponding respectively to f or e. This is a contradiction.

– Case (i, j) ∈ MkP\Ext P : this implies that ∃(h, k) ∈ MkP\(i, j) such that h ≤ i
and k ≤ j . Then Xk̂ and Yk̂ are not disjoint, as we would have the edge (h, k) in
G(Xk̂,Yk̂), giving a contradiction.
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Second, we prove the necessity of condition (2), namely, P ∈ MCS(X<i ,Y< j ). To
this end, we need a brief remark on the restriction of maximals: let W ∈ MCS(X ,Y )

and {(x1, y1), . . . , (x|W |, y|W |)} any mapping spellingW in the two strings. Given any
k ≤ |W |, we have W<k ∈ MCS(X<xk ,Y<yk ).

Let P c be a valid prefix of some W ∈ MCS(X ,Y ), and k̂ = |P|. In the first part
of the proof we have shown that the first edge of the rightmost mapping of W

>k̂ is
some (i, j) ∈ ExtP corresponding to c. Therefore, let us consider the mapping for
W consisting of P in leftmost form, and W

>k̂ in rightmost form. Applying the above

remark for k = k̂ + 1 we get W
<k̂+1 = P ∈ MCS(X<i ,Y< j ).

Sufficiency.Suppose that conditions (1) and (2)ofTheorem3hold.ByProposition 2,
findR(i, j) = C ∈ MCS(X>l ,Y>m). Since P ∈ MCS(X<i ,Y< j ) by hypothesis,
we have P C ∈ MCS(X ,Y ) by Theorem 2. The latter string starts with P c, which is
therefore a good prefix.

4 Baseline Algorithm for Polynomial-DelayMCS Enumeration

The characterization given in Theorem 3 immediately gives the “prefix-expanding”
enumeration Algorithm 1, which progressively augments prefixes with characters that
keep them valid, until whole MCSs are recursively generated. In this section, we will
describe this baseline algorithm, and prove that it has polynomial-delay. It is worth
noting that Theorem 3 guarantees that each recursive call yields at least one MCS;
moreover, all the MCSs are listed once as different recursive calls originating from
the same prefix P are performed by appending distinct characters.

Algorithmoverview.Algorithm1 employs a binary partition scheme.3 First, it builds
the necessary data structures (Sect. 4.1), and it finds the set of unshiftable edges in a
polynomial preprocessing phase, using FindUnshiftables as described in detail in
Sect. 4.2. Then, it begins a recursive computation BinaryPartition where, at each
step, it considers the enumeration of the MCSs that start with some valid prefix P .
The partition is made over characters c ∈ � such that P c is valid, which is ensured
by checking the two conditions of Theorem 3.

For convenience, we add a dummy character # /∈ � at the beginning of both
strings; i.e. at positions (−1,−1). The recursive computation then starts with P = #,
and leftmost mapping LP = {(−1,−1)}. At each step, the procedure finds the valid
extensions ExtP for the given prefix P using the unshiftable edges from U . If ExtP
is empty, then P is an MCS, and is returned. Otherwise, for each character c ∈ �

the procedure loops over the edges of ExtP corresponding to c (i.e. condition (1) of
Theorem 3), to check whether any of these edges satisfy condition (2) of Theorem 3.
If the check has positive answer for one of the edges, it means that P c is a valid prefix:
given the last edge (l,m) of LP , the algorithm finds the leftmost mapping (lc,mc) for
character c in G(X>l ,Y>m), as to update LP c = LP ∪ (lc,mc). Then, it partitions the
MCSs to enumerate into the ones that have P c as a prefix, and recursively proceeds on

3 To be precise, each recursive node has up to σ child nodes; the binary partition is seen by the fact that each
recursive call corresponds to “using the edge (lc,mc)” and the continuation after backtracking corresponds
to “not using the edge (lc,mc)”.
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Algorithm 1 (Polynomial-Delay Enumeration Algorithm for MCS)
Input: two strings X , Y over given alphabet �
Output: MCS(X , Y )

1: procedure EnumerateMCS(X , Y , �)
2: U = FindUnshiftables((|X |, |Y |))
3: BinaryPartition(#, {(−1,−1)})
4: end procedure

Input: a valid prefix P and its leftmost mapping LP
Output: all strings in MCS(X , Y ) having P as prefix

5: procedure BinaryPartition(P , LP )
6: compute the set of extensions ExtP using U
7: if ExtP = ∅ then output P
8: else
9: for c ∈ � do
10: for (i, j) ∈ ExtP corresponding to c do
11: if P ∈ MCS(X<i , Y< j ) then
12: let (l,m) be the last edge of LP
13: find leftmost mapping of edge (lc,mc) for c in G(X>l , Y>m )

14: BinaryPartition(P c, LP ∪ (lc,mc))
15: break � Exit the for loop of line 11, as it has already recurred with c
16: end if
17: end for
18: end for
19: end if
20: end procedure

Input: an edge (i, j) of a string bipartite graph of two strings X , Y
Output: set of unshiftable edges of X<i , Y< j

21: procedure FindUnshiftables((i, j))
22: U = ∅
23: for c ∈ � do
24: lX ← the rightmost occurrence of c in X<i
25: lY ← the rightmost occurrence of c in Y< j
26: if lX �= −1 and lY �= −1 and (lX , lY ) /∈ U then
27: add (lX , lY ) to U
28: U = U ∪ FindUnshiftables((lX , lY ))
29: end if
30: end for
31: output U
32: end procedure

P c and LP c. After the recursive call, the next character needs to be considered, and
thus the algorithms breaks from the loop of line 10. The correctness of Algorithm 1
immediately follows from Theorem 3.

Polynomial-delay complexity.Recall that unshiftable edges are polynomial (quadratic)
in size (Remark 5). We will show that their extraction in the preprocessing phase, as
well as the computation of the ExtP set at line 6 are polynomial-time. Then, the
algorithm loops over each character of the alphabet, and checks whether the edges
in Ext corresponding to it satisfy condition (2) of Theorem 3 (line 11). For a given
edge, this check is also polynomial-time, as we could e.g. employ Sakai’s algorithm
[21]. Before recurring, the algorithm then updates the leftmost mapping by adding the
new edge, which is once again a polynomial-time operation. Since every operation
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is polynomial-time, and every loop is over polynomial-size sets, each recursive call
requires polynomial time. The working space is also polynomial. As for the final delay
complexity, note that the height of the recursive binary partition tree is at most the
length of the longest MCS, which is bounded by n, and that each leaf corresponds to
a distinct solution. The delay of BinaryPartition is the cost of a root-to-leaf path
in the recursion tree; since every step is polynomial-time, and the height of the tree is
bounded by n, we obtain the following for Algorithm 1.

Theorem 4 There is a polynomial-delay algorithm for Problem 1, which has
polynomial-time preprocessing and uses polynomial space.

In the rest of the section, we will describe the preprocessing phase and present the
data structures in detail, in order to analyse the complexity of the baseline Algorithm 1.
Specifically, we will prove.

Theorem 5 There is a O(σn3)-delay algorithm for Problem 1, with O(σn2 log n)

preprocessing time and O(n2) space.

4.1 Data Structures

We start by describing the data structures that will be employed by Algorithm 1,
allowing for fast queries over the strings X ,Y and over the unshiftable edges set U .

String data structures. The main operation that we perform multiple times during
the execution of the algorithm is the computation of previous and next occurrences of
a given character in the two strings X and Y . To be able to perform these operations in
constant time, for each string we employ σ bitarrays of the same length as the string.
These arrays B(X)

1 , . . . , B(X)
σ (analogously for Y ) are such that

B(X)
i [ j] = 1 ⇐⇒ X [ j] = ci ; B(Y )

i [ j] = 1 ⇐⇒ Y [ j] = ci .

On these bitarrays we can implement rank and select directories in a succinct way:
we need only n + o(n) bits per array to do so, where n is the length of the array. With
these directories, rank and select operations can be performed in O(1) time [19]. That
is, we can retrieve next and previous occurrences of any characters with respect to
any positions of the strings in O(1). The total time and space required to build these
structures is O(nσ).

Unshiftable data structures. For subsequent operations, we need to also store the
unshiftable edges in different data structures, specifically in two arrays of arrays uX
and uY . Each of these arrays gives priority to one of the two strings. Entry uX [i] stores
unshiftable edges (wedges) (i, j1), . . . , (i, js) as a sorted array of Y values j1, . . . , js
as shown in Fig. 11. uY is built symmetrically with respect to Y .

To build these arrays we will consider the following strict orders

(i, j) <uX (h, k) ⇐⇒ i < h or i = h and j < k;
(i, j) <uY (h, k) ⇐⇒ j < k or j = k and i < j .
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i

j1 j2 · · · js

−→

uX i

↓
j1

j2
...
js

Fig. 11 For each node of X , wedges are sorted arrays of positions of Y

Given these arrays, we can check whether an edge (i, j) is unshiftable in O(log n)

time by performing a binary search for j (or i) in the sorted array uX [i] (or uY [ j]),
since |uX [i]|, |uY [ j]| ≤ n. With the same procedure, we can also find, given i and
j ′, the first unshiftable (i, j) such that j > j ′. These arrays are constructed and filled
during the FindUnshiftables procedure, which we will describe next.

4.2 Finding Unshiftable Edges

During the preprocessing phase of the algorithm, we initialize the data structures
and we compute the set of unshiftable edges with FindUnshiftables. We compute
unshiftable edges by going backwards in the strings X and Y , exploiting Fact 1, which
states that if (i ′, j ′) corresponds to the rightmost occurrences of a character c right
before an unshiftable edge, then (i ′, j ′) is also unshiftable. We can thus start from
the last pairwise occurrences of every character, then for every unshiftable edge (i, j)
already found and for every character c, we can compute the rightmost occurrences
of c in X<i and Y< j , and mark the corresponding edge as unshiftable. Once we get to
the beginning of the strings, we have correctly identified all unshiftable edges.

Analogously aswe do for BinaryPartition, let us add a special character $ /∈ � at
the end of both strings, as to obtain an unshiftable edge at the last positions (|X |, |Y |).
Starting from this edge, we have a natural recursive visiting procedure that finds
unshiftable edges based on Fact 1. For each character c ∈ �, candidate unshiftable
edges are found by taking the rightmost occurrences of c before the current edge in
both strings. Then, we recur in these new edges, unless already visited. This originates
our FindUnshiftables procedure, whose pseudocode is shown in Algorithm 1.

All unshiftable edges are found in this fashion. In fact, the last pairwise occurrences
of every character are visited from edge (|X |, |Y |). If an unshiftable edge (i, j) is not
the last pairwise occurrence, then by Proposition 1 there is at least one unshiftable
edge in G(IX (i), IY ( j)). Edge (i, j) will then surely be visited from the leftmost of
these edges, and therefore it will be correctly marked as unshiftable.

Auxiliary data structures and complexity. During the FindUnshiftables proce-
dure, we will need some intermediate support data structures to quickly check for
membership and perform insertions. Since U is static after its creation, these data
structures are only needed during the preprocessing phase: at the end of the proce-
dure, they will be used to build the final arrays uX and uY , and then they will be
deleted. First of all, in the FindUnshiftables procedure we need to ensure that no
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edge is visited twice. To this end, we employ two self-balancing binary search trees
TX , TY (for example, AVL or red-black trees), respectively storing the unshiftable
edges with respect to orders <uX ,<uY . Such trees allow for membership testing and
insertion in O(log |U |) time, and require O(|U |) space [15, Section 6.2.3]. The proce-
dure considers each unshiftable edge exactly once. For each edge it goes through every
character and finds its previous pairwise occurrences; then it checks for membership
in the trees, and performs insertion if the edge is not found (see Line 26). Note that
edge insertions are always performed for both trees. With the described data struc-
tures, looking for pairwise occurrences of the character requires constant time (using
the string data structure), and membership tests and insertion for edges are performed
in logarithmic time, leading to O(σ |U | log |U |) total time and O(|U |) space. Once the
whole strings have been processed, each tree contains a sorted copy of the unshiftable
edges, with respect to the corresponding order. Arrays uX , uY are created, and they
can be filled with one more pass of the already sorted trees.

Recalling Remark 5, we have |U | = O(n2), and thus the FindUnshiftable
procedure can be performed in O(σ |U | log |U | + |U |) = O(σn2 log n) time, and
O(|U |) = O(n2) space in the worst case.

4.3 Complexity Analysis

We now show that Algorithm 1 satisfies the complexity bounds of Theorem 5.
As detailed in Sects. 4.1–4.2, the preprocessing phase, which encompasses build-

ing the data structures and finding the set of unshiftable edges, can be performed in
O(σn2 log n + nσ) = O(σn2 log n) time and quadratic space.

Let us now study the complexity of a recursive call of theBinaryPartition proce-
dure. The first operation at each step consists in computing the set ExtP : by scanning
the unshiftable edges we can trivially find the cross in O(|U |) = O(n2) time, and
by another scan we find the mikado and ExtP set. When it is nonempty, we loop
over every character, finding its corresponding edges of ExtP ; for every such edge we
perform the maximality check for P , which takes O(n) time by employing Sakai’s
maximality test [20]. If the test is positive, we only need to perform a leftward re-map
of the new edge, which can be done in constant time using the string data structure,
and we move on to the next character. Thus, recalling that |ExtP | = O(n), the total
time for one recursive call amounts to O(|U | + σ |ExtP | · n) = O(σn2) time.

Overall, the delay of BinaryPartition is given by the cost of a recursive call,
times the height of the recursion tree. This leads to a polynomial-delay algorithm
with delay O(σn3) and a polynomial-time preprocessing cost of O(σn2 log n). The
space required is O(n2), as we need to store the set ExtP for all recursive calls in a
root-to-leaf path, plus the set of unshiftable edges U . Theorem 5 is thus proved.

While this is sufficient to prove the main result of the paper, i.e., that there exists a
polynomial-delay and polynomial-space algorithm for theMCS enumeration problem,
in the next section we focus on how to further improve its performance.
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5 Improving the Delay in the Baseline Algorithm

In this section, we will describe a refinement of Algorithm 1, allowing us to achieve
the bounds given in Theorem 1:

An ideal method would yield each distinct MCS in time proportional to its length:
as the latter can be �(n), this would take time linear in n. In our refined algorithm
we only spend a further logarithmic time factor per solution when the alphabet has
constant size, so it is quite close to the ideal method in that instance. As for space and
preprocessing time, the quadratic factor is unavoidable when employing the possibly
quadratic unshiftable edges in U .

There are twomain refinements to the original algorithm: first, we will show how to
quickly extract the Ext set at line 6 in time O(σ log n), instead of the original O(n2);
then, we will provide a way to perform the maximality check of line 11 in constant
time, without needing to employ the linear algorithm by Sakai.

5.1 Computing the Candidates for Extensions

We start by presenting a faster way to find characters corresponding to edges in ExtP .
This refinement will allow us to extract the ExtP set in logarithmic time, speeding up
line 6 of Algorithm 1. In what follows, let f irstS(c) and lastS(c) be, respectively, the
indices corresponding to the first and last occurrences of character c in the string S.

Remark 7 Let (l,m) be the last edge of the leftmost mapping for P . Then, for each
edge (h, k) ∈ ExtP corresponding to some character c, either h = f irstX>l (c) or
k = f irstY>m (c). That is, at least one of the endpoints of (h, k) is the first occurrence
of c after the leftmost mapping. This follows directly from the definition of the ExtP
set.

Given a leftmost mapping for P ending with the edge (l,m), for every c ∈ �

consider the two edges

uc = (i x, j x) such that

{
i x = f irstX>l (c)

j x = min{ j > m | (i x, j) ∈ U}

vc = (iy, j y) such that

{
iy = min{i > l | (i, j y) ∈ U}
j y = f irstY>m (c).

These two edges, represented in Fig. 12, are the first unshiftable edges completely
after (l,m) that stem from the first occurrences of c respectively in X and Y after edge
(l,m). Note that we can have uc = vc.

At this point, letA = {uc, vc | c ∈ �} be the set of all such edges, and consider its
subset given by

E = {(i, j) ∈ A | �(h, k) ∈ A\(i, j) with l < h ≤ i and m < k ≤ j}.
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Fig. 12 Graphical representation
of the edges uc, vc , shown
respectively in bold purple and
blue. The red dashed edges are
other unshiftable edges
stemming from i x , j y that are
discarded since their other
endpoint is out of bounds (color
figure online)
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Algorithm 2 (Finding the Extension Set of a Mapping)
Input: the last edge (l,m) of the leftmost mapping of a prefix P
Output: ExtP

1: procedure FindExtensions((l,m))
2: E = ∅
3: for c ∈ � do
4: let i x = f irstX>l (c), j y = f irstY>m (c)
5: j x ← min{ j > m | (i x, j) ∈ U}
6: iy ← min{i > l | (i, j y) ∈ U}
7: add (i x, j x), (iy, j y) to E
8: end for
9: remove from E edges that have another element completely before them
10: output E
11: end procedure

As in the extraction of Ext from Mk, we have removed from A the edges that have
another unshiftable completely before them. Note that |E | ≤ |A| ≤ 2σ , by definition.

Proposition 3

E = ExtP

Proof We have seen in Remark 7 that ExtP ⊆ A. By definition of ExtP , in the
reduction from A to E none of its edges will be removed. Therefore, ExtP ⊂ E .
Specifically, edges χ(l,m) = 〈e, f 〉 are in E . Let us now consider the other inclusion.
By contradiction, let (i, j) ∈ E\ExtP . That is, either (i, j) /∈ MkP , or there is an
unshiftable edge completely between the leftmost mapping for P and (i, j). The latter
condition is impossible by definition of E , therefore (i, j) /∈ MkP . This means that
either i > f1 or j > e2. Both of these immediately lead to a contradiction: one of the
edges f ∈ A or e ∈ A is completely before edge (i, j) ∈ E . 
�

From this characterization, we have a simple procedure FindExtensions (Algo-
rithm 2) that finds all candidates for extension. We restrict ourselves to X>l ,Y>m , and
for every character we find its first occurrences in both strings, which correspond to
i x, j y. For every pair of occurrences, we compute the corresponding j x, iy by looking
at the leftmost unshiftable edges in X>l ,Y>m which stem respectively from i x, j y.
We then refine the set of edges we found by removing the ones that are preceded by
another element of the set. The edges we obtain at the end of these steps are the Ext
set.
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Complexity analysis. InAlgorithm2,wefirst computeuc = (i x, j x), vc = (iy, j y)
for every character c, inserting them into a list A. To compute i x and j y we need to
find the first occurrences of c in X>l and Y>m , respectively, which can be done in
constant time using the string data structure. Computing j x (resp. iy) is a bit more
involved, as we need to find the leftmost unshiftable edge stemming from i x (resp. j y)
and falling to the right of m (resp. l). To this end, we employ the unshiftable edges’
arrays uX , uY : we look for (i x, j) with j greater than m (and the symmetric for j y),
which can be done in O(log n). The worst-case total time for these steps is therefore
O(σ log n). The only thing left to do to have our candidate edges is to extract E from
A. We first sort the list A according to <uX , which takes O(|A| log |A|) time, e.g.,
using merge sort. At this point, we only need to go through the sorted elements once:
for each (i, j) <uX (h, k) we discard (h, k) if j < k. In this way, we remove the
unwanted edges in O(|A|) time.

Since |A| = O(σ ), we have a time complexity of O(σ log σ) for the extraction
of E . Thus, when using procedure FindExtensions at line 6 instead of the naive
computation, the time required for finding candidates for extension is improved from
O(n2) to

O(σ log n + σ log σ) = O(σ log n).

5.2 Maximality Check with Swings

The other major refinement of the algorithm concerns the maximality check P ∈
MCS(X<i ,Y< j ) at line 11 of Algorithm 1. Instead of using Sakai’s method every
time, we want to carry on information that allows us to decide immediately whether
an extension is valid. To this end we now introduce the notion of swing.

Definition 11 Let L be a leftmost mapping for some string P , ending with edge (l,m).
The swing of mapping L is a pair of integers �(L) = (�T (L), �B(L)) called respec-
tively top and bottom swings, given by:

�T (L) = min{i > l | P /∈ MCS(X≤i ,Y≤m)};
�B(L) = min{ j > m | P /∈ MCS(X≤l ,Y≤ j )}.

Equivalently, �T (L) = max{i > l | P ∈ MCS(X<i ,Y≤m)}, �B(L) = max{ j >

m | P ∈ MCS(X≤l ,Y< j )}. Simply put, swings indicate how much we are allowed to
move our edge while guaranteeing no insertions in the previous parts of the strings.
Figure 13 gives a visual representation of the concept of swings.

With this notion, the maximality check becomes immediate:

Lemma 3 Let P be a valid prefix, L P its leftmost mapping, ending with the edge
(l,m), and let (�T (LP ), �B(LP )) be its swings. Furthermore, let (i, j) ∈ ExtP be
a candidate edge. Then:

P ∈ MCS(X<i ,Y< j ) ⇐⇒ i ≤ �T (LP ) and j ≤ �B(LP ). (1)

123



Algorithmica (2022) 84:757–783 779

l T

m B

Fig. 13 The swings for the blue mapping are drawn in green; the thick red edge is the insertion resulting
from the top swing; more specifically, it is the insertion possible if the character corresponding to edge
(l,m) is re-mapped into the green top swing and the previous blue edge is re-mapped into the dashed edge
(color figure online)

Proof If P ∈ MCS(X<i ,Y< j ), then in particular P ∈ MCS(X<i ,Y≤m) as m < j ,
and thus the swing �B(LP ) must occur at a position greater than j by Definition 11;
symmetrically P ∈ MCS(X≤l ,Y< j ) as l < i , and the swing �T (LP ) must occur
at positions greater than or equal to i . On the other hand, assume that (i, j) satisfies
the right hand side, and let by contradiction P /∈ MCS(X<i ,Y< j ). By definition
of swings, P ∈ MCS(X<i ,Y≤m) and P ∈ MCS(X≤l ,Y< j ), which means that we
cannot re-map and perform insertions in these two pairs of strings. Thus, the only way
for P to not be in MCS(X<i ,Y< j ) is inserting an edge (p, q) between edges (l,m)

and (i, j), i.e., with l < p < i and m < q < j , but this directly contradicts the fact
that (i, j) ∈ ExtP . 
�

Thus, if we can quickly update the swings of the growing prefixes (specifically,
of their leftmost mappings), then we only only require constant additional time to
perform our maximality check. In practice, the swing of a leftmost mapping can be
computed inductively in the following fashion, leading to procedureComputeSwings
(Algorithm 3):

– (Base case) Let L = (i, j) be a single-edged mapping corresponding to some
character d; we want to find �((i, j)). For each character c in Y< j , we compute
rc = f irstX>i (c); that is, rc is the next occurrence of c after i in X : this corresponds
to a possible insertion of c before d if we move i after rc. Consider thus r =
minc∈�{rc}. At this point, the first occurrence of d in X after r (i.e. f irstX>r (d))
is the top swing for themapping. Computation of the bottom swing is symmetrical.

– (Inductive case) Given a leftmost mapping L = l1, . . . , lN with its swings �(L),
we want to compute the swings for a leftmost mapping of the kind L ∪ (i, j) =
l1, . . . , lN , (i, j). We first need to compute the personal swing of the new edge
(i, j) with respect to L , and compare it with the cumulative swing �(L) of the
previous mapping. Let lN = (l,m); the personal swing of edge (i, j) with respect
to L , denoted with�L((i, j)), is the swing of mapping {(i, j)} performed over the
strings X>l ,Y>m , instead of over the whole strings X ,Y . This swing tells us the
change in the endpoints necessary to insert something between lN and (i, j), and
is analogous to the base case. The cumulative swing is simply the swing �(L).
At this point, the swing of the new mapping is given by the minimums of the two
swings:

�(L ∪ (i, j)) = (min{�T (L), �L
T ((i, j))},min{�B(L), �L

B((i, j))}).
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Algorithm 3 (Updating the Swings of a Mapping)
Input: a leftmost mapping L, its swings �(L) and an edge (i, j) in leftmost form
Output: the swings (�T , �B ) of mapping L ∪ (i, j)

1: procedure ComputeSwings(L, �(L), (i, j))
2: let (l,m) be the last edge of mapping L
3: for c ∈ � occurring in both Y>m and Y< j do
4: rc ← f irstX>i (c)
5: end for
6: for c ∈ � occurring in both X>l and X<i do
7: sc ← f irstY> j (c)
8: end for
9: r ← minc∈� tc
10: s ← minc∈� bc
11: Let (i, j) correspond to character d
12: t ← f irstX>r (d)

13: b ← f irstY>s (d)

14: output (min{�T (L), t},min{�B (L), b})
15: end procedure

Procedure ComputeSwings performs the described operations, updating the
swings of a mapping when an edge is added. We will adopt the convention that all left-
most mappings start with edge (−1,−1), which by itself has swing (|X |, |Y |). With
this convention, the base case occurs when L = {(−1,−1)}: in this case we have
(l,m) = (−1,−1), which ensures that rc, sc are computed over the whole strings
X>−1 = X ,Y>−1 = Y (lines 3, 6), and �(L) = (|X |, |Y |), in turn ensuring that at
line 14 the personal swing of (i, j) is returned.

Complexity analysis Every step of the procedure requires either O(σ ) (when we
iterate over the alphabet), or constant time (looking for the first occurrences of a
character in a string). Thus, the total complexity for updating the swings is of O(σ ).

5.3 Refined Algorithm for MCS Enumeration

We are now ready to present our refined enumeration algorithm (Algorithm 4). The
algorithm implements the two improvements described in Sects. 5.1–5.2, employ-
ing the two procedures FindExtensions, ComputeSwings. Furthermore, one more
refinement is given by lines 8–13, where the set of characters which correspond to at
least one edge of ExtP is computed. The recursive calls will be performed looping
over this set, instead of the Ext set, ensuring in a more efficient way that no two
recursive calls are performed with respect to the same character.

Just like its unrefined counterpart, Algorithm 4 employs a binary partition scheme
over the characters that extend the current prefix in a valid way. The preprocessing
phase is identical to the original one, as both the data structures and the Find-
Unshiftables procedure are unchanged. The recursive computation is performed
by the procedure RefinedBinaryPartition, this time also keeping track of the
swing of the mapping LP of the current prefix P . Once again, we add the char-
acter # /∈ � at positions (−1,−1); the first recursive call is then performed with
P = #, and leftmost mapping LP = {(−1,−1)}, with swing given by the last posi-
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Algorithm 4 (Refined MCS enumeration)
Input: two strings X , Y over given alphabet �
Output: MCS(X , Y )

1: procedure RefinedMCS(X , Y , �)
2: U = FindUnshiftables((|X |, |Y |))
3: RefinedBinaryPartition(#, {(−1,−1)}, (|X |, |Y |))
4: end procedure

Input: a valid prefix P, its leftmost mapping LP , and its swing �(LP )

Output: all strings in MCS(X , Y ) having P as prefix
5: procedure RefinedBinaryPartition(P , LP , �(LP ))
6: (l,m) ← last edge of LP
7: E = FindExtensions((l,m))
8: V = ∅
9: for (i, j) ∈ E do
10: if i ≤ �T (LP ) and j ≤ �B (LP ) then
11: add the character corresponding to (i, j) to V
12: end if
13: end for
14: if V = ∅ then return P
15: else
16: for c ∈ V do
17: i ← f irstX>l (c)
18: j ← f irstY>m (c)
19: � = ComputeSwings(LP , �(LP ), (i, j))
20: RefinedBinaryPartition(P c, LP ∪ (i, j), �)
21: end for
22: end if
23: end procedure

tions of the strings (|X |, |Y |). This is considered the starting swing because trivially
P = # ∈ MCS(X ,Y≤−1), MCS(X≤−1,Y ).

At each step, the procedure finds the set of valid extensions E by calling procedure
FindExtensions (Algorithm 2). Then, at lines 8–13 it directly extracts the set V
of valid characters that satisfy both conditions of Theorem 3. To this end, it loops
over all edges of E checking for maximality through the swing property of Eq. (1).
If the maximality condition is satisfied, the corresponding character is added to V .
If V is empty, then P has no valid extensions, and it is returned as it must be an
MCS; otherwise, every character it contains produces a valid extension of P , and will
thus produce a recursive call: for every character in V , the procedure computes its
first pairwise occurrences (i, j) after the mapping, updates the swings of LP ∪ (i, j)
by calling procedure ComputeSwings (Algorithm 3), and performs the recursive
call corresponding to prefix P c by passing on the new mapping L ∪ (i, j) and its
updated swing. Being a refinement of Algorithm 1, the correctness of RefinedMCS
is immediate.

Complexity analysis.The procedure starts by computing the extension set E , by call-
ing the O(σ log n)-time procedure FindExtensions. Then, it computes setV by going
through each of the O(σ ) elements of E , and performing the constant-timemaximality
check of Eq. (1) (line 19). Thus, computing V requires O(σ ) time overall. Afterwards,
for every element of V , its first pairwise occurrences in X>l ,Y>m are computed. Once
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again, this can be performed in O(1) time, using the string data structure. Lastly,
before recurring, the O(σ )-time procedure ComputeSwings is called to update the
swings of the new mapping. Thus, the time required to perform one recursive call of
RefinedBinaryPartition is O(σ log n + σ 2). However, we can further improve
this with the following observation: every time line 19 is executed, a new recursive call
is immediately generated. We can thus simply attribute the cost of ComputeSwings
to this call (as if the computation was performed in it), meaning that each recursive
call will only have to pay the cost of a single ComputeSwings procedure, i.e., O(σ )

time instead of O(σ 2) time, for a total time cost of

O(σ log n + σ) = O(σ log n).

As before, the delay of the final algorithm RefinedMCS is given by the cost of one
recursive call times the height of the partition tree, which in our case is O(n). Thus,
algorithm RefinedMCS has a delay of

O(σn log n)

and requires O(σn2 log n) time for preprocessing. Regarding space complexity, in
addition to the aforementioned data structures, we need to store other data for each
recursive call in a root-to-leaf path in the partition tree. Namely, we store the sets E
and V , the last edge of the current leftmost mapping, and the values of the swings,
leading to an additional O(nσ) total space. The total space employed by the algorithm
is therefore O(nσ + |U | + n) = O(n2), and Theorem 1 is proved.

Specifically,with a constant-sized alphabet, our algorithm enumerates allMCSwith
delay O(n log n), preprocessing time O(n2 log n), and quadratic space complexity.

6 Conclusions and Acknowledgements

In this paper we have studied the Maximal Common Subsequences (MCSs), and
investigated their combinatorial nature by familiarizing with some of their properties.
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graph problem.
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