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Abstract
Let G be an n-node and m-edge positively real-weighted undirected graph. For any
given integer f ≥ 1, we study the problem of designing a sparse f -edge-fault-tolerant
( f -EFT) σ -approximate single-source shortest-path tree (σ -ASPT), namely a sub-
graph of G having as few edges as possible and which, following the failure of a set F
of at most f edges in G, contains paths from a fixed source that are stretched by a fac-
tor of at most σ . To this respect, we provide an algorithm that efficiently computes an
f -EFT (2|F |+1)-ASPT of size O( f n). Our structure improves on a previous related
construction designed for unweighted graphs, having the same size but guaranteeing a
larger stretch factor of 3( f +1), plus an additive term of ( f +1) log n. Then, we show
how to convert our structure into an efficient f -EFT single-source distance oracle,
that can be built in O( f m α(m, n) + f n log3 n) time, has size O( f n log2 n), and in
O(|F |2 log2 n) time is able to report a (2|F |+1)-approximate distance from the source
to any node in G − F . Moreover, our oracle can return a corresponding approximate
path in the same amount of time plus the path’s size. The oracle is obtained by tackling
another fundamental problem, namely that of updating a minimum spanning forest
(MSF) of G following a batch of k simultaneous modification (i.e., edge insertions,
deletions and weight changes). For this problem, we build in O(m log3 n) time an ora-
cle of size O(m log2 n), that reports in O(k2 log2 n) time the (at most 2k) edges either
exiting from or entering into the MSF. Finally, for any integer k ≥ 1, we complement

all our results with a lower bound of �
(
n1+ 1

k

)
to the size of any f -EFT σ -ASPT

with f ≥ log n and σ < 3k+1
k+1 , that holds if the Erdős’ girth conjecture is true.
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1 Introduction

Let G = (V (G), E(G), w) be a positively real-weighted undirected graph of n nodes
and m edges. A shortest-path tree (SPT) of G rooted at a distinguished source vertex,
say s, is one of the most popular structures in communication networks. For example,
it can be used for implementing the fundamental broadcasting operation. However,
the SPT, as any tree-based topology, is highly sensitive to edge/vertex failures, which
cause the undesired effect of disconnecting sets of vertices from the source.

Therefore, a general approach to copewith this scenario is tomake the SPT resistant
against a given number of component failures, by adding to it a set of suitably selected
edges from the underlying graph, so that the resulting subgraph (also referred as struc-
ture in the following) will still contain a SPT of the surviving network. If we prepare
ourselves to resist against a set of at most f failing edges in G, then the corresponding
structure will be named an f-edge-fault-tolerant ( f -EFT) SPT. Unfortunately, even if
f = 1, �(m) additional edges may be needed, also in the case in which m = �(n2)
[12]. Thus, to sparsify such a structure, it makes sense to resort to σ -approximate
shortest paths from the source, i.e., paths that are stretched at most by a factor σ > 1,
for any possible set of failures that has to be handled (see Fig. 1 for an example).

In this paper, we show how to build1 an efficient structure of this sort. Moreover,
we show that it is possible to transform such a structure into an efficient oracle that
will allow to quickly switch to the corresponding approximate replacement paths (or
just to report their length).

1.1 RelatedWork

In the recent past, several single and multiple edge/vertex-fault-tolerant approximate
SPT (ASPT) structures that offer different trade-offs between the guaranteed stretch
and the overall size of the structure have been devised (see [39] for a survey). More
formally, we say that a spanning subgraph H of G is an f -EFT σ -ASPT if it satisfies
the following condition: For each set of edges F ⊆ E(G) of size at most f , all the
distances from the source s in the subgraph H − F = (V (G), E(H) \ F, w) are at
most σ times longer than the corresponding distances in G − F . If a further additive
distortion β is also allowed to the distances, then the structure will be named f -EFT
(σ, β)-ASPT. Similar definitions can be given for the vertex-fault-tolerant (VFT) case
and for unweighted graphs (in this case we use the acronym ABFS instead of ASPT
to stress the fact that we are dealing with unweighted graphs in which SPTs coincide
with breadth-first search trees).

1 Throughout this introduction, all the discussed structures are poly-time computable, even if we may omit
to specify the actual running time.
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Fig. 1 a A graph G on n vertices and �(n2) edges. The edges between vertices in X weight 0, while those
incident to the vertices in Y have weight 1

3 . Each of the sets Y and Z contains �(n) vertices and Y ∪ Z
induces a complete bipartite subgraph. The edges of an SPT of G from s are shown in bold. The only 1-EFT
SPT H of G is G itself since, for i = 1, . . . , k, an SPT of G− (xi , xi−1) contains the unique edge (xi , z) of
weight i together with all other edges incident to z. b A 1-EFT 3

2 -approximate SPT. The bipartite subgraph
can be sparsified by only selecting the edges incident to the two white vertices (one from Y and one from
Z ). In general, if we want a f -EFT 3

2 -approximate SPT, we can still sparsify the bipartite subgraph by
selecting all the edges incident to f vertices from Z and f vertices from Y

A natural counterpart of fault-tolerant SPT structures are fault-tolerant σ -stretched
single-source distance oracles (σ -SSDO in the following), i.e., compact data struc-
tures that can be built with a low preprocessing time, and that are able to quickly return
σ -approximate distances/paths from the source following a set of failures. Converting
a fault-tolerant SPT into a corresponding SSDO with the very same stretch, and addi-
tionally having a small size and a fast query time, is a quite natural process, because
of its practical usage: computing the alternative post-failure distances/paths on the
structure may indeed be very time consuming. However, such a conversion process is
not straightforward, in general, since it requires to exploit distance-related informa-
tion that are instead implicit in the underlying structure, and this has to be done by
optimizing the trade-off between the size and the query time of the oracle.

Turning back our attention to fault-tolerant SPT structures, their study originated in
[6], where the authors showed the existence of a 1-VFT (1+ε)-ABFSwith size O( n

ε3
+

n log n), for any ε > 0, and of a 1-VFT 3-ASPT having size O(n log n). These results
were obtained as byproducts of a 1-VFT 3-SSDO and a 1-VFT (1 + ε)-SSDO of the
same size, both having a distance (resp., path) query time of O(1) (resp., proportional
to the path’s size). Later, in [12], the authors showed the existence of a 1-E/VFT
(1 + ε)-ASPT of size O(

n log n
ε2

), for any ε > 0 (without providing a corresponding

oracle). In [11], the authors designed a (1 + ε)-SSDO of size O(nε−1 log ε−1) and
query time O(log n), for any ε > 0. For the special case ε = 2, they also provided a
simpler construction improving the query time to O(1).

Concerning unweighted graphs, Parter and Peleg [41] presented a 1-E/VFT
Breadth-First Search tree (BFS) of size O(n ·min{ecc(s),√n}), where ecc(s) denotes
the eccentricity of the source vertex s inG, namely a structure containing exact shortest
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paths from the source after a single edge/vertex failure. In the same paper, the authors
also exhibit a corresponding lower bound of �(n3/2) for the size of a 1-E/VFT BFS.
Then, in [42], the same authors presented a set of lower and upper bounds to the size
of (σ, β)-ABFS. More precisely, they showed that for every β ∈ [1, O(log n)], there
exists a graph G and a source vertex s ∈ V (G) such that a corresponding 1-EFT
(1, β)-ABFS requires �(n1+ε(β)) edges, for some function ε(β) ∈ (0, 1). Moreover,
they also constructed a 1-EFT (1, 4)-ABFS of size O(n4/3). Finally, assuming at most
f = O(1) edge failures can take place, they showed the existence of (i) an f -EFT
(3( f + 1), ( f + 1) log n)-ABFS of size O( f n), and (ii) an f -EFT (3 f + 4)-ABFS
of size O( f n log f +1 n). These structures will be exactly our touchstone in this paper,
since they are the only ones concerned with multiple-edge-failure single-source short-
est paths.

1.2 Our Results

In this paper, we present the following main results:

– An f -EFT (2|F |+1)-ASPT of size O( f n) that is able to handle the failure of any
set F ⊆ E(G) of at most f edges. This considerably improves w.r.t. to its direct
competitors, namely the structures presented in [42]: our structure has a size that is
never worse, a lower stretch, works on weighted graphs, and handles an arbitrary
(i.e., even non-constant) number of failures. Moreover, our construction is simpler
and can be computed quickly in O( f m α(m, n)) time, where α is the inverse of
the Ackermann’s function.

– A corresponding f -EFT (2|F | + 1)-SSDO of size O( f n log2 n), that can be built
in O( f m α(m, n)+ f n log3 n) time, has a distance query time of O(|F |2 log2 n),
and is also able to report the corresponding path in the same time plus the path’s
size. Moreover, if one is willing to use O(m log2 n) space, then our oracle can
handle any number of edge failures (i.e., up to m).

Interestingly enough, the former result is obtained by posing a simple yet surprising
relationship between the structure of the replacement paths and theminimum spanning
forest (MSF) of an ad-hoc auxiliary graph. This approach is also useful to develop
the latter result, that is indeed obtained through an efficient updating of an MSF after
that a batch of any number k of edge modifications (i.e., edge insertions, deletions and
weight changes) are simultaneously performed. For this problem indeed we provide
the following result:

– a (multiple-update) MSF sensitivity oracle2 of size O(m log2 n), that can be built
in O(m log3 n) time, and is able to report in O(k2 log2 n) time the (at most 2k)
edges either exiting from or entering into the MSF. As a result of independent
interest, it is worth noticing that our oracle can be used to efficiently maintain
a MSF under relatively short sequences of non-simultaneous updates. Indeed,
observe that a sequence λ = 〈λ1, . . . , λh〉 of updates can be managed through h
sequential queries to the oracle, where the i-th query will involve themodifications

2 Weuse this terminology for the oracle in accordancewith its functionality of only reporting the topological
changes in the MSF.
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to the starting MSF induced by the batch of the first i updates. This way, we
spend O(h2 log2 n) time to handle each single update. Hence, as the fastest long-
standing algorithm for the classic (and clearly more general) fully-dynamic MSF
problem has a worst-case cost of O(

√
n) per update [25], it follows that for h =

o( 4
√
n/ log n), our oracle should be preferred, since it will manage each update

in o(
√
n) time. Notice also that a comparison with other known online/offline

algorithms for maintaining an MSF that are more efficient in an amortized sense,
like for instance those given in [24,33,34], is unfeasible. Indeed these algorithms
need to start from an empty graph to guarantee their bounds or they need long
sequences of updates to become efficient. Thus, when starting from an arbitrary
graph, as it happens in our setting, a single update operation could even cost them
�(n) time!

Finally, for any integer k ≥ 1, we prove a lower bound of �(n1+ 1
k ) on the size

of any f -EFT σ -ASPT with f ≥ log n and σ < 3k+1
k+1 , that holds if the Erdős’ girth

conjecture is true. Our lower bound shows that, in contrast to the single-edge failure
case, it is not possible to obtain a stretch arbitrary close to 1 with size Õ(n)3 when the
number of faults is more than log n. We look at the problem of understanding whether
this can be done for constant f > 1 as an interesting open problem.

1.3 Other RelatedWork on Fault-Tolerant Sourced Structures/Oracles

A vast body of literature deals with structures and oracles that tolerate single/multiple
failures in single-source shortest paths. An early work on the topic is [37], where the
authors were concerned with the computation of best swap edges (w.r.t. several swap
functions) for the failure of each and every edge in a SPT. As a by-product of their
results, it can be easily seen that by adding to a SPT the (at most) n − 1 best swap
edges w.r.t. to the new distance from s to the root of the subtree disconnected from s
after an edge failure, then a 1-EFT 3-ASPT is obtained. Interestingly, such a structure
can be easily converted into a 1-EFT 3-SSDO of size O(n) and query time O(1). In
[21], the authors faced the special case of shortest-path failures, in which the failure
of a set F of at most f adjacent edges along any source-leaf path has to be tolerated.
They proposed an f -EFT (2k − 1)(2|F |+ 1)-ASPT of size O(kn f 1+1/k), where |F |
denotes the size of the actual failing path, and k ≥ 1 is a parameter of choice. Notice
that this result is subsumed by ours. Moreover, they also provided a conversion to a
corresponding oracle, and for the special case of f = 2, they gave an ad-hoc solution
of size O(n log n) and with stretch 3. For directed graphs with integer positive edge
weights bounded byM , in [28] the authors showed how to build efficiently in Õ(Mnω)

time a randomized 1-EFT 1-SSDO of size �(n2) and with O(1) query time, where
returned distances are exact w.h.p., and ω < 2.373 denotes the matrix multiplication
exponent.

Concerning unweighted graphs, in [12] the authors showed that an ordinary (i.e.,
non fault-tolerant) (σ, β)-spanner (i.e., where distances/paths between arbitrary pairs
of nodes are at most (σ, β)-stretched) of size O(g(n)) can be used to build a 1-EFT
(resp., VFT) (σ, β)-ABFS of the same size (resp., of size O(g(n) + n log n)). This

3 The Õ notation hides poly-logarithmic factors in n.
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result is useful for building sparse 1-VFT (1, β)-ABFS structures by making use of
the vast literature on additive (1, β)-spanners (e.g., [7,18]). In [38], Parter presented
a 2-EFT BFS having O(n5/3) edges, which is tight.

Another research stream related to our work is that on multi-source fault-tolerant
structures,4 forwhichwe look at distances/paths froma set S ⊆ V (G)of sources.Here,
results are known only for unweighted graphs. For f = 1, [41] shows how to compute
a 1-EFT MSBFS of size O(

√|S| n3/2), which is tight and has been converted, among
other results, to an oracle having size Õ(

√|S| n3/2) that is able to report post-failure
shortest-paths in O(1) time per edge [9]. In [30], Gupta and Singh showed that post-
failure distance queries can be answered in time O(polylogn) without increasing the
oracle’s size. For f = 2 the construction of [38] can be generalized to yield a 2-E/VFT

MSBFS of size O(|S| 13 n 5
3 ), also for the case of directed graphs [29]. For large values

of f , [13] shows how to build a f -E/VFTMSBFS of size Õ( f ·|S|1/2 f
n2−1/2 f

), which
quickly approaches �(n2) even in the single-source case. As the authors show, this is
unavoidable: for any fixed ε > 0, there is a large enough value f (depending on ε) for
which all f -E/VFT BFS constructions must use �(n2−ε) edges in the worst case, and
this is true even if a constant additive error is allowed. In [12], it was shown that an
ordinary (σ, β)-spanner of size O(g(n)) can be used to build a 1-EFT (σ, β)-AMSBFS
of size O(g(n)+|S| n), and similarly for the vertex case of size O(g(n)+|S| n log n).

1.4 More RelatedWork on (Fault-Tolerant) Spanners/Oracles

For the sake of completeness, we also give some hints on the large body of literature
on the related topic of (fault-tolerant) spanners and distance oracles.

As far as spanners are concerned, on weighted graphs the current best known
construction is, for any f ≥ 1 and any integer parameter k ≥ 1, the f -E/VFT (2k−1)-

spanner of size O( f 1− 1
k n1+ 1

k ) given in [14]. For a comparison, the sparsest known
(2k − 1)-multiplicative ordinary spanner has size O(n1+1/k) [3], and this is believed
to be asymptotically tight due to the girth conjecture of Erdős [26]. In [4] the authors
introduced the related concept of 1-EFT resilient spanners, i.e., spanners that approx-
imately preserve the multiplicative increment in distances following an edge failure.
In unweighted graphs, fault-tolerant additive spanners were also considered. In par-
ticular, Braunshvig et al. [15] proposed the following general approach to build an
f -EFT additive spanner: Let A be an f -EFT σ -spanner, and let B be an ordinary
(1, β)-spanner. Then H = A ∪ B is an f -EFT (1, 2 f (2β + σ − 1) + β)-spanner.
The corresponding analysis has been refined in [10] yielding a better additive bound
of 2 f (β + σ − 1) + β.

As far as distance oracles are concerned, ordinary (i.e., fault-free) all-pairs distance
oracles (APDO) on weigthed graphs were introduced in a seminal work by Thorup
and Zwick [44] (who also coined the term oracle), followed by a sequel of papers
(among the others, we mention [19,23] for the currently best bounds). In a fault-
tolerant setting, in [8] the authors built (on directed graphs) a 1-E/VFT 1-APDO of
size Õ(n2) and with query time O(1). For two failures, in [22] the authors built, still

4 These structures are also known as sourcewise spanners. We will write MSBFS and MSABFS in place
of multi-source BFS and multi-source ABFS, respectively.
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on directed graphs, a 2-E/VFT 1-APDO of size Õ(n2) and with query time O(log n).
Concerning multiple-edge failures, in [20] the authors built, for any integer k ≥ 1,
an f -EFT (8k − 2)( f + 1)-APDO of size O( f k n1+1/k log(nW )), where W is the
ratio of the maximum to the minimum edge weight in G. The query time of the oracle
is Õ(|F | log log d), where F is the actual set of failing edges, and d is the distance
between the queried pair of nodes in G − F .

Finally, for other results on single edge/vertex failures spanners/oracles, we refer
the reader to [6,9,10,16,40] and to [1] for a survey.

1.5 Structure of the Paper

The paper is organized as follows. First of all, in Sect. 2 we present theMSF sensitivity
oracle, that will be instrumental to obtain our efficient oracle. Then, in Sect. 3, we
introduce the algorithm for building our structure, and the associated oracle, while
in Sect. 4 we present the claimed lower bound. Finally, in Sect. 5 we provide some
concluding remarks and hints for possible future works.

2 AMinimum Spanning Tree k-Sensitivity Oracle

In this section we present an oracle that, given a real-weighted graph G, along with
any minimum spanning tree (MST) T of G,5 is able to answer queries of the form:

Given a set F of k edge updates on G (i.e., edge insertions, deletions and weight
modifications), let T ′ be a new MST of G. What are the edges in the symmetric
difference of E(T ) and E(T ′)?

In other words, the oracle can report all the edges of T that leave the MST as a
consequence of the updates, along with all the new edges in T ′ that enter the MST
in their place. The oracle has a size of O(m log2 n) and can be built in O(m log2 n)

space and O(m log3 n) time, while a query involving k updates can be answered in
O(k2 log2 n) time and space.

Our oracle exploits the fact that, when few updates are to be handled, the changes
in the resulting MST will be small. This implies that large portions of T and T ′ will
coincide, hence finding and reusing these portions allows us to save a considerable
amount of work compared to the time needed to recompute T ′ from scratch. To this
aim, we build a structure that maintains a set of connected subtrees of T at different
levels of granularity.

A high-level description of our approach is the following. First of all, notice that
since a weight modification can be simulated by a deletion followed by an insertion,
and since insertions can be managed in O(log n) time using known data structures

5 For the sake of avoiding technicalities, in the following we assume that each edge is subject to at most
a single update and we also assume that the graph G always remains connected, so that we simply talk
about a MST instead of a MSF of G. For instance, this can be easily guaranteed by adding a dummy vertex
x /∈ V (G) that is connected to all the vertices of V (G) with edges of large weights.
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(details can be found in 2.3), it turns out that the difficulty of the problem lies in
handling deletions. For them, we perform the following two preprocessing steps:

(i) We compute a hierarchical clustering of the vertices of T ;
(ii) We associate with each pair of clusters, say C,C ′, a set of crossing edges, namely

edges of G having one endvertex in C and the other in C ′.

Then,whenever a query involving a set F of edge updates is carried out on the oracle,
we build an auxiliary graph G̃ whose vertices correspond to the preprocessed clusters,
and whose edges are suitably selected from the set of crossing edges – depending on
which edges were removed in F . Finally, we compute a MST of G̃, from which the
query associated with F will be answered.

In the following section, we present the building blocks of our approach step by
step.

2.1 Building the Clustering

Let 
 be the maximum degree of a vertex in the given MST T of G.6 Our clustering
C is a laminar family over V (T ), i.e., a collection of clusters (i.e., subsets of V (T ))
such that any two clusters from C are either disjoint or one is contained in the other.
Moreover, C will guarantee the following properties:

P1. V (T ) ∈ C, ∅ /∈ C and, for each v ∈ V (T ), {v} ∈ C .
P2. Each cluster C ∈ C with |C | > 1 can be partitioned into at least 2 and at most


 + 1 other clusters from C.
P3. If C,C ′ ∈ C and C ⊂ C ′ then 2|C | ≤ |C ′|.
P4. The vertices in each cluster induce a connected component of T ;

From P3 and the fact that C is a laminar family it follows that the number of clusters
C ∈ C containing any single vertex v are at most log n. Figure 2a shows an example
of such a clustering C. We can represent C with a tree T in which each vertex is a
cluster. The tree T is rooted in the cluster V (T ), its leaves are the singleton clusters in
C, and the children of each internal node C are the maximal clusters C ′ ∈ C such that
C ′ ⊂ C (see Fig. 2b).7 Notice that, since each internal vertex has at least two children
(by P2) and the number of leaves is n, we immediately have |C| = |V (T )| = O(n).

We now show describe a recursive algorithm that computes a clustering of T sat-
isfying properties P1–P4. A generic invocation of our algorithm receives a subtree T ′
of T as its input and adds a clustering of T ′ to a global clustering C of T , which is
initially empty. The algorithm begins by adding V (T ′) to C and then checks whether
T ′ consists of a single vertex. If this is the case we are done, otherwise we com-
pute a centroid8 v of T ′ and we invoke the algorithm recursively on each of the trees
T1, T2, . . . , Tk of the forest obtained by deleting v from T . Our clustering C is the

6 Since T is an unrooted tree, we define the degree of a vertex v in T to be the number of edges that are
incident v.
7 A cluster C ′ is maximal if there is no other cluster C ′′ ∈ C such that C ′ ⊂ C ′′ ⊂ C .
8 A centroid v of a tree T ′ is a vertex v such that each tree in the forest T ′ − v has at most |V (T ′)|/2
vertices. Each tree has either one or two centroids [35,36].
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Fig. 2 a The MST T , along with the set of edges of T (dashed) which are deleted in F (for the sake
of readability, the remaining edges of G are not depicted); the picture shows all the sets of C, which are
numbered. b the tree T associated with the hierarchical clustering C. c the set of vertices of G̃ computed
by Algorithm 1. The dashed edges in c correspond to the deletions in F , so they do not belong to G̃; solid
lines represent edges of T that will appear in G̃. The remaining edges of G̃ are selected from the set of
crossing edges and are not shown

result of the execution of the above algorithm with input T . Observe that the tree T
associated with C is closely related to a centroid decomposition of T .

The following lemma bounds the time complexity of our recursive algorithm.

Lemma 1 The above algorithm for computing C requires time O(n log n).

Proof We start by noticing that the centroid of a tree can be found in linear time in the
number of the tree’s vertices. We let c > 0 be a large enough constant such that (i) the
non-recursive part of the algorithm can be executed in time at most cn when the input
tree has n vertices (the non-recursive part includes the computation of the centroid),
and (ii) the overall time required by the algorithm when the input tree has at most 3
vertices is at most c.

We now prove by induction on n ≥ 4 that the worst-case time S(n) required by the
algorithmwhen the input tree T has n vertices is at most cn log n. Let v be the centroid
of T , let k ≤ D be the degree of v in T , let T1, . . . , Tk be the trees of the forest T − v,
and denote by ni the number of vertices in Ti . By the properties of the centroid, we
know that each ni is atmost n2 . If ni ≤ 3 then T (ni ) ≤ c ≤ cni (log n−1) by our choice
of c, otherwise we can invoke the induction hypothesis to write T (ni ) ≤ cni log ni ≤
cni (log n − 1). Since the time spent by the algorithm is at most cn + ∑k

i=1 T (ni ), we
have: cn + ∑k

i=1 T (ni ) ≤ cn + c(log n − 1)
∑k

i=1 ni = cn + c(log n − 1)(n − 1) <

cn log n. �

2.2 Computing the Crossing Edges

In order to build the auxiliary graph that will be incorporated in our oracle, we need to
map the edges of G onto the clustering described above, as explained in the following.

More in detail, we associate with each pair of clusters C,C ′ with C �= C ′ a list
E(C,C ′) containing all the edges of E(G) with one endpoint in C and the other in
C ′. This list is ordered according to edge weights in a non-decreasing fashion. Let
C(u) = {C ∈ C : u ∈ C} be the set of clusters that contain vertex u. As we already
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observed, we must have |C(u)| = O(log n), therefore each edge (u, v) ∈ E(G)

appears in at most |C(u)| · |C(v)| = O(log2 n) clusters showing that the overall
number of elements in the lists is at most O(m log2 n). We now show that these lists
can be built in time O(m log3 n) and stored in a way that allows the list associated
with a given pair of clusters to be accessed in O(1) time (which will guarantee the
promised query time of our oracle).

Our construction maintains a dictionary D, whose keys will be unordered pair
of clusters and whose values will be pointers to the corresponding lists of edges.
Initially D is empty. We first sort all the edges of G in non-decreasing order of weight,
prioritizing the edges in T whenever ties arise, and we examine one edge at a time.
When e = (u, v) is considered,weuse the treeT to find all the clustersC1

u ,C
2
u , . . . ,C

h
u

(resp. C1
v ,C2

v , . . . ,C�
v) that contain u but not v (resp. v but not u). In order to do so,

we compute the lowest common ancestor (LCA) x of the clusters {u} and {v} in
T . Then, C1

u ,C
2
u , . . . (resp. C1

v ,C2
v , . . . ) are exactly the vertices in the unique path

from {u} (resp. {v}) to x (excluded) in T . For each pair {Ci
u,C

j
v }, with i = 1, . . . , h

and j = 1, . . . , �, we query D: if the key {Ci
u,C

j
v } exists, then we add e to the

corresponding list, otherwise we create a new list E(Ci
u,C

j
v ) containing e and we add

to D a new element with {Ci
u,C

j
v } as its key, and a pointer to E(Ci

u,C
j
v ) as its value.

The above procedure requires O(m log3 n) time, as each edge belongs to
O(log2 n) pairs of clusters, as observed before, and a query on D requires O(log n)

time. However, for efficiency reasons, we will need for our oracle to have a constant
access time to the list associated with a given pair of clusters. This can be obtained by
building a static version of the dictionary D. This can be done in O(η log η) time by
using the approach given in [31], where η is the number of elements in the original
dictionary. In our case η = O(m log2 n), hence the overall time needed to handle the
crossing edges remains O(m log3 n), using O(m log2 n) space.

2.3 Answering a Query

Weare now ready to describe how a query can be answered. In order to do so, it is useful
to split each weight update operation involving an edge e into two separate operations,
namely the deletion of e followed by its reinsertion with the new (updated) weight. By
doing so, all the operations in F are now either insertions or deletions. For the sake of
clarity, we first consider the case in which all the updates F are edge deletions, and we
will show later how this can be extended to deal also with edge insertions. Moreover,
we initially provide a solution whose size and query time depend on the degree of T ,
and then we show how this dependence can be avoided, yielding the claimed result.

Handling Edge Deletions In order to handle deletions, we use Algorithm 1 to
construct an auxiliary graph G̃ whose vertices are clusters. The algorithm computes a
set R of clusters of T that coincides with V (G̃). Initially R contains the unique cluster
in V (T ) ∈ C that is the root of T and represents the whole tree T . At each time, the
set of clusters in R will always form a partition of the vertices in V . The algorithm
proceeds iteratively, by considering one after the other the edges of F = {e1, . . . , ek}.
When an edge ei = (u, v) is considered, if ei ∈ E(T ) and u and v belong to the same
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Algorithm 1: Algorithm for computing the set of vertices (i.e., clusters) of G̃.
1 R ← {V (T )}
2 for (u, v) ∈ F do
3 if (u, v) ∈ E(T ) then
4 while rootT ({u}) = rootT ({v}) do
5 C ← rootT ({u})
6 R ← (R \ {C}) ∪ childrenT (C) // Split C
7 T ← Delete C from T
8 return R

cluster C of R, we split C , i.e., we remove C from T and R, and we add to R all the
maximal clusters of C that are strictly contained in C , i.e, the former children of C in
T . In this way T is always a forest and R contains the roots of the trees in T . In the
pseudocode of Algorithm 1 we use rootT (C ′) to denote the root of the tree in T that
contains cluster C ′, and childrenT (C ′) to denote the set of children of C ′ in T .

In the end, G̃ is such that all the edges in F have their endvertices into different
clusters of V (G̃). Moreover, by P4, the clusters in V (G̃) are associated with connected
fragments of T . Since each edge in F can cause at most O(log n) splits (as this is also
an upper bound on the height of T ), and each split operation can increase the number
of vertices by at most 
 (by P2 and the definition of T ), we have that G̃ contains at
most O(|F |
 log n) = O(k
 log n) vertices (see Fig. 2c). Notice that, given a failing
edge (u, v) ∈ E(T ), the clusters of T that need to be split are those in the unique
path from the root of T to the lowest common ancestor of (the singleton clusters
containing) u and v. Therefore such clusters can be found in O(k log n) time and an
efficient implementation of Algorithm 2 requires O(k
 log n) time.

To construct the set E(G̃) we consider all the pairs C,C ′ of vertices in V (G̃). For
each of these O(
2 k2 log2 n) pairs, we examine the edges in E(C,C ′), in order, and
we select the first edge e so that e /∈ F , if any. Then, if e exists, we add the edge (C,C ′)
to G̃ with weight w(e). Notice that e is an edge of minimum weight among those in
G − F that have one endvertex in C and the other in C ′. Moreover, thanks to the static
dictionary, all the above edges can be found in O(k+
2 k2 log2 n) = O(
2 k2 log2 n)

time (the additional additive term k accounts for the edges in the lists that belong to
F).

We can now compute aMST T̃ of G̃ in time O(
2 k2 log2 n) by using any standard
MST algorithm. We claim that once that the vertices (i.e., clusters) of T̃ are expanded
to their MST fragments, the resulting structure is exactly a MST of G − F . Indeed,
by the cut property of MSTs, we know that all the edges of T − F (which are a
superset of the intra-cluster edges) also belong to an MST of G − F . It is well-known
that contracting edges from an MST and computing an MST of the resulting graph
yields an MST of the original graph [43, Ch. 11.5.2]. In our case we are contracting
all intra-cluster edges and the resulting graph is exactly G̃. Then, we look at the edges
of T̃ and we answer the query by returning the edges of G corresponding to those in
E(T̃ ) that are not in E(T ).

123



48 Algorithmica (2022) 84:37–59

Notice that once the MST T̃ of the auxiliary graph G̃ has been computed, it can be
used to answer the following additional query q(u, v) in O(
2 k2 log2 n) time. These
queries will be needed by our oracle of Sect. 3.1.

Given a set F of at most f edge failures in G, and given a pair of nodes u, v ∈
V (G), report all the new edges (and their weights) w.r.t. T on the unique path
from u to v in a new MST of G, in order.

Indeed, these new edges can be detected by simply checking the path in T̃ between
the corresponding clusters containing u and v.

Handling General EdgeUpdates It turns out that the difficulty of the problem lies in
handling the edge-deletion operations. Indeed, once this has been done, the remaining
edge-insertion operations can be easily performed. To this aim, we reorganize the
batch F (of size k) by first performing all the deletion operations, and we make use
of a top-tree [2], i.e., a data structure that dynamically maintains a (weighted) forest
under edge-insertion (link) and edge-deletion (cut) operations. Moreover, given two
vertices u and v, top-trees are able to report the heaviest edge that lies on the path
between u and v in the current forest. Each of these operations can be performed in
O(log η) time where η is the number of vertices of the forest.

The idea is to maintain the current MST T ′ by using a top-tree that is initialized
when the oracle is built to represent the tree T . This takes O(n log n) time. Then, we
perform all the edge-deletion operations (as already described), while updating the
top-tree accordingly (this requires only O(k log n) additional time since the number
of needed link and cut operations is O(k)).

Now we handle the insertions one by one. In order to insert a new edge e = (u, v),
we search for the heaviest edge e′ of the path connecting u and v in T ′. If e′ is heavier
than e, we cut e′ from T ′ and we link the two resulting components by adding the edge
e. It is easy to see that this procedure requires an overall time of O(k log n).

Bykeeping trackof all theO(k)updates in theMSTT ′,we can easily answer a query
consisting of both edge-insertion and edge-deletion operations in O(
2 k2 log2 n)

time, by reporting all the edges in the symmetric difference of T and T ′.
Reducing the Degree of T So far, the complexity of our MST oracle depends on

the maximum degree 
 of the vertices in T . However, using standard techniques (see,
e.g., [27]), we now show that the updates on the original graph G and its MST T can
be mapped onto an auxiliary graph Ĝ with weight function ŵ and a corresponding
MST T̂ , such that Ĝ has asymptotically the same size of G, and each vertex of Ĝ has
a degree at most 3 in T̂ .

Initially Ĝ, ŵ, and T̂ coincide with G, w, and T , respectively. We root T̂ in an
arbitrary vertex, we iteratively search for a vertex u in T̂ that has more than 2 children,
and we lower its degree. We let v1, . . . , vh be the children of u in T̂ , and we proceed
as follows: we remove all the edges in {(u, vi ) : 1 ≤ i ≤ h} from both Ĝ and T̂ ,
then we add to both Ĝ and T̂ a binary tree whose root coincides with u, and that
has exactly h leaves x1, . . . , xh . We assign weight ŵ(e) = −∞ to all the edges e
of this tree.9 Finally, we add to Ĝ and T̂ an edge (xi , vi ) for each 1 ≤ i ≤ h, we

9 Here we use +∞ (resp., −∞) to denote a special edge weight that is always considered to be larger
(resp., smaller) than any other edge weight.
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vi

u

vi

xi

(a) (b)

Ĝ

u

G

Fig. 3 Reducing the degree of vertices in T : on the left side, the tree T (solid edges) embedded in G, on
the right side the superimposition of the binary tree to T in order to get a maximum degree of 3. Thin solid
edges have weight 0, while the weight of (xi , vi ) is w(u.vi )

set ŵ(xi , vi ) = w(u, vi ), and we label (xi , vi ) with μ((xi , vi )) = (u, vi ). For all the
edges e of Ĝ not affected by this transformation (i.e., the ones that also belong to G)
we set μ(e) = e. An example of such a transformation is shown in Fig. 3. Let Z be
the set of all the edges of weight −∞ added to Ĝ by this procedure.

Each time we have to perform a weight update or delete operation on an edge
(u, vi ) of G, we instead perform it on the corresponding edge (xi , vi ) = μ−1(u, vi ).
Insertions and operations involving edges in E(G) \ E(T ) do not require any special
care. In a similar way, whenever the answer of a query contains an edge (xi , vi ), we
replace it with the corresponding edge (u, vi ). Clearly, O(n) vertices and edges are
added by this process, and hence |V (G)| = �(|V (Ĝ)|) and |E(G)| = �(|E(Ĝ)|).

For the sake of completeness we now formally prove that a MST of Ĝ induces a
MST of G even after performing a (possibly empty) set of update operations on both
G and Ĝ. To this aim it will be helpful to think of both G and Ĝ as complete graphs
where the functions w and ŵ assigning weight +∞ to all the edges that are not in the
original graphs. By doing so, applying a set of updates to G and Ĝ can be seen as a
replacing the old weight functions with new ones, say w′ and ŵ′, respectively. Notice
also that, by doing so, for each edge e ∈ Z we have ŵ′(e) = ŵ(e) = −∞ while both
ŵ′(e) > −∞ and ŵ(e) > −∞ if e /∈ Z .

Fact 1 Let M ′ be a MST of Ĝ w.r.t. ŵ′. The edges in E(M ′) \ Z induce a MST of G
w.r.t. w′.

Proof In the rest of the proof, we assume that whenever ties arise they will be broken
in a consistent way. Notice that the edges in Z form a forest in Ĝ containing n trees,
moreover as they are the only edges of weight −∞ w.r.t. ŵ′ we must have Z ⊆ E(M)

and |E(M ′) \ Z | = n − 1. Let M be a MST of G w.r.t. w′ and e = (u, v) be an
edge in E(M ′) \ Z , we now show that μ(e) must belong to M . Let C ′ be the cut-
set containing the edges of Ĝ whose endpoints lie in two different components of
M − {e}. Clearly e is the lightest among the edges in C ′, and since ŵ′(e) > −∞ we
have that C ′ ∩ Z = ∅. Let C = {μ( f ) : f ∈ C ′} and notice that C is a cut-set for G.
Since ŵ′( f ) = w′(μ( f ))∀ f ∈ C , it follows that μ(e) is also the lightest edge in C
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and hence it belongs to M . The claim follows from the fact that, by construction, the
function μ is injective. �

Once the maximum degree of the tree has been reduced to a constant, the query
time of our oracle becomes O(k2 log2 n). Thus, we have finally proven the following
result:

Theorem 1 Given a MST T of a real-weighted n-vertex and m-edge graph G, there
exists a sensitivity oracle for T of size O(m log2 n). The oracle can be built in
O(m log3 n) time and, for any batch consisting of an arbitrary number k of modi-
fications to the edges of G, it is able to report in O(k2 log2 n) time the (at most 2k)
edges either exiting from or entering into the MST.

An immediate consequence of this result is that the additional query q(u, v) can
then be answered in O(k2 log2 n) time.

3 An f -EFT (2|F| + 1)-ASPT and a Corresponding Oracle

In this section we show how to compute an f -EFT (2|F | + 1)-ASPT H of G, i.e., a
subgraph H of G which contains an SPT of G, and such that dH−F (s, v) ≤ (2|F | +
1)dG−F (s, v) for every v ∈ V (G) and for every subset F ⊆ E(G) of at most f failed
edges.

Since up to f edges can fail, we can observe that whenever G is ( f + 1)-edge-
connected, H must contain �( f n) edges even if we are only interested in preserving
the connectivity of G. Indeed, the degree of each vertex v in H must be at least
f + 1 since otherwise v could become disconnected in H − F . Here we show that
|E(H)| = O( f n) edges also suffice if we aim to preserve distances that are at most
(2 f + 1)-stretched w.r.t. the surviving part of G.

Let dX (u, u′) andπX (u, u′) denote the distance and the shortest path between nodes
u and u′ in any subgraph X of G, respectively. When u = s, we will simply write
dX (u′) and πX (u′). If π is a path, π [u, u′] will denote the subpath of π between
u, u′ ∈ V (π).

For any given integer f , Algorithm 2 returns an f -EFT (2|F | + 1)-ASPT of G.
First, it computes a SPT T of G that is used to assign a weight to the edges of an
auxiliary graph G ′ = (V (G), E(G), w′). More precisely, the weight of an edge e of
G ′ is 0 if e is also in T , otherwise it is equal to the sum of the corresponding edge
weight in G and the distances in T between s and the endpoints of e. Then, f + 1
MSFs M0, . . . , M f of G ′ are iteratively computed: when we compute the i-th forest,
we remove its edges Mi from G ′ before computing the (i + 1)-th forest, so that the
sets Mi are pairwise disjoint. The sought subgraph H contains all the edges of the sets
Mi , and has therefore size O( f n). Notice that M0 coincides with E(T ).

We now argue that H is indeed an f -EFT (2|F |+1)-ASPT ofG. Our proof strategy
is as follows: we first show that, when the weight function w′ is considered, any MSF
of H − F is also an MFS of G − F (Lemma 2). This allows us to upper bound the
length of a shortest-path π ′ from s to t in H − F as a function of dG(t) and the
weights w′(e′) of the edges e′ in π ′ (Lemma 3). Next, Lemma 4 bounds each of these
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Algorithm 2: Algorithm for computing an f -EFT (2|F | + 1)-ASPT of G.
1 T ← compute a SPT of G
2 for (u, v) ∈ E(G) do
3 if (u, v) ∈ E(T ) then w′(u, v) ← 0 else w′(u, v) ← dT (u) + w(u, v) + dT (v)

4 G′ ← (V (G), E(G), w′)
5 G0 ← G′
6 for i = 0, . . . , f do
7 Mi ← edges of a MSF of Gi (w.r.t. w

′)
8 Gi+1 ← Gi − Mi

9 H ← subgraph of G containing the edges in
⋃ f

i=0 Mi
10 return H

weights w′(e′) by the largest edge weight w′(e) of some edge e in πG−F (t). Finally,
our definition of w′ provides the desired bound on the length of π ′ (see Lemma 5).

Fix a vertex t and let π = πG−F (t) be the shortest path from s to t in the surviving
graph G − F .10 The path π contains (a subset of) the vertices from several trees in
the forest T − F . We say that an edge is new if its endpoints belong to two different
trees in T − F . Let N be the set of new edges in π .

Now consider a MSF M of the graph H − F (w.r.t. w′). This is also a MSF of the
graph G ′ − F (w.r.t. w′) as shown by the following lemma.

Lemma 2 For every F ⊆ E(G) with |F | ≤ f , any MSF M of H − F (w.r.t. w′) is
also a MSF of G ′ − F (w.r.t. w′).

Proof In what follows, whenever ties arise we break them by prioritizing the edges in
H . First we show that, given any cut-set11 C of G ′, H contains the min{|C |, f + 1}
lightest edges of C . Indeed, for any set Mi , consider the set Ci = C \∪i−1

j=0Mj . Either
Ci is non empty, and therefore Mi contains the lightest edge in Ci , or Ci = ∅ which
means that each edge in C belongs to some set Mj and hence to H .

Let M ′ be a MSF of G ′ − F . We prove the claim by showing that each edge
e ∈ E(M ′) must also belong to M . Let C ′ be the cut-set of G ′ that contains e and
every edge e′ ∈ E(G ′) that forms a cycle with e inM ′∪{e′}. Since e is the lightest edge
of C ′ \ F , it is within the f +1 lightest edges of C ′. As a consequence e ∈ E(H − F),
and it also belongs to M as it is the lightest edge in C ′ ∩ E(H − F). �

Let π ′ = πM (s, t) and notice that π ′ traverses each tree of the forest T − F at most
once since the edges in E(T ) have weight 0 in H . Once again, let N ′ be the set of
new edges of π ′. By using the path π ′, we now provide an upper bound to the distance
dH−F (t):

Lemma 3 dH−F (t) ≤ w(π ′) ≤ ∑
e∈N ′ w′(e) + dG(t).

10 We assume that such a path exists, as otherwise dG−F (t) = +∞ which implies dH−F (t) = +∞, and
we are done.
11 A cut-set of a graph X is a subset of E(X)whose removal increases the number of connected components
of X .
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Proof Let M be a MSF of the graph H − F (w.r.t. w′). The first inequality is trivial
as π ′ = πM (s, t) is a path (not necessarily shortest) between s and t in (a subgraph
of) H − F , hence we focus on proving the second inequality.

Let T0, . . . , Th be the trees of T −F traversed byπ ′, in order, and let e′
i = (vi−1, ui )

be the new edge in π ′ connecting a vertex vi−1 of Ti−1 to a vertex ui of Ti . Thus, we
have N ′ = {e′

1, . . . , e
′
h}. We call ri the vertex in V (Ti ) ∩ V (π ′) that has the lowest

depth in Ti .12

According to this definition, r0 coincides with s, rh is the LCA in Th between uh
and t , and ri is the LCA in Ti between ui and vi , for every 0 < i < h.

We prove by induction on i that w(π ′[s, ri ]) ≤ ∑i
j=1 w′(e′

j ). The base case i = 0
is trivially true. Now suppose that the inductive hypothesis holds for i , we prove it
also for i + 1:

w(π ′[s, ri+1]) = w(π ′[s, ri ]) + dTi (ri , vi ) + w(e′
i+1) + dTi+1(ui+1, ri+1)

≤
i∑

j=1

w′(e′
j ) + dT (vi ) + w(e′

i+1) + dT (ui+1)

≤
i∑

j=1

w′(e′
j ) + w′(e′

i+1) =
i+1∑
j=1

w′(e′
j ).

We now use the fact that dTh (rh, t) = dT (rh, t) = dG(rh, t) to prove the claim:

w(π ′) = w(π ′[s, rh]) + w(π ′[rh, t]) ≤
h∑
j=1

w′(e′
j ) + dTh (rh, t)≤

h∑
j=1

w′(e′
j ) + dG(t).

�
Next lemma shows that the weights of the new edges of π ′ are, in turn, upper

bounded by the weight of some new edge of the path π .

Lemma 4 For each e′ ∈ N ′, we have w′(e′) ≤ maxe∈N w′(e).

Proof Let e′ = (x, y) be an arbitrary edge in N ′. W.l.o.g., we assume that the path
π ′ traverses the vertices s, x , y, t in this order. We recall that the path π ′ traverses
each tree in T − F at most once, i.e., all the vertices of π ′ that belong to the same
tree in T − F must be contiguous in π ′. Moreover, as e′ is new, x and y belong to two
different trees in T − F .

Let Z be the set of trees of the forest T − F that are traversed by the path π . Let u′
be the last vertex of π ′[s, x] that belongs to a tree, say Tu , in Z (see Fig. 4). Observe
that u′ is always defined since s belongs to some tree of Z . In a similar way, let v′ be
the first vertex of π ′[y, t] that belongs to a tree, say Tv , in Z . Again, observe that v′
is always defined as t belongs to some tree of Z other than that containing s, hence
Tu �= Tv , and finally notice that e′ ∈ E(π ′[u′, v′]). By our choice of Tu and Tv , we

12 We think of Ti as rooted in the vertex of V (Ti ) which is closest to s in T .
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Fig. 4 The forest T − F
obtained by deleting the failed
edges in F from T . The path π

is the shortest path between s
and t in G − F , while π ′ (in
bold) is the unique path in M
between the same vertices. Gray
trees contain a vertex of π and
are therefore in Z . Edges having
endpoints in different trees are
new

π π′

s

e′
v′

u′

u

v
x

y

know that π encounters both a vertex of Tu and a vertex of Tv (in some order), so
we let π∗ be the minimal (w.r.t. inclusion) subpath of π with one endpoint, say u, in
V (Tu), and the other endpoint, say v, in V (Tv).

Let N∗ = E(π∗)∩N be the set of new edges inπ∗. Notice that N∗ �= ∅ as Tu �= Tv ,
and that adding the edges in N∗ (weighted according to w′) to M forms (at least) one
cycle C containing both e′ and an edge in N∗, say e∗. Since M is a MSF of G ′ − F ,
as shown by Lemma 2, we have that w′(e′) ≤ w′(e∗) ≤ maxe∈N w′(e). �

Finally, next lemma relates the weights w′ of the new edges of π to distances in
the surviving graph G − F .

Lemma 5 For e ∈ N, w′(e) ≤ 2dG−F (t).

Proof Let e = (u, v) with dG−F (u) ≤ dG−F (v). Since e lies on the shortest path
π = πG−F (s, t), we can write:

w′(e) = dT (u) + w(e) + dT (v) ≤ dG−F (v) + dT (v) ≤ 2dG−F (v) ≤ 2dG−F (t).

�
We are now ready to prove the main result of this section:

Theorem 2 The graph H returned by Algorithm 2 is an f -EFT (2|F | + 1)-ASPT of
G of size O( f n). Moreover, Algorithm 2 requires O( f m α(m, n)) time and O(m)

space.

Proof First, observe that π ′ = πM (s, t) contains at most |F | new edges. Indeed
all the edges in T − F have weight 0, while the remaining edges have a positive
weight. This means that E(T − F) ⊆ E(M). As T − F has no more than |F | + 1
connected components, we have that at most |F | other edges—in addition to the ones
in E(T − F)—can belong to M .

By using the above fact in conjunction with Lemmas 3–5, we can write:

dH−F (t) ≤ w(π ′) ≤
∑
e∈N ′

w′(e) + dG(t) ≤ |F |max
e∈N ′ w

′(e) + dG(t)

≤ |F |max
e∈N w′(e) + dG(t) ≤ 2|F |dG−F (t) + dG−F (t)

= (2|F | + 1)dG−F (t).

(1)
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We recall that this holds for every vertex t ∈ V (G). Concerning the computational
complexity of Algorithm 2, we make use of Chazelle’s algorithm [17]—that com-
putes a MSF in O(m α(m, n)) time and linear space—to compute the f + 1 MSFs
M0, . . . , M f . �

3.1 A Corresponding Path/Distance Reporting Oracle

In this section we show how to build an oracle that, given a positively real-weighted
graph G and a distinguished source vertex s, is able to answer queries of the form:

“Given a set F of at most f edge failures in G, and a destination node t in G,
report a (2|F | + 1)-approximate path/distance from s to t in G − F .”

We first compute a SPT T of G and an f -EFT (2|F |+ 1)-ASPT H of G, as shown
in the previous section. Then, the oracle is composed of three ingredients:

– The tree T and all the distances dT (v) = dG(v) from s to any vertex v ∈ V (G);
– A MSF sensitivity oracle Q for T w.r.t. H with weights w′, built as shown in
Sect. 2. According to Theorem 1, this oracle has size O( f n log2 n) and can be
built in O( f n log3 n) time;

– An oracle to answer LCA queries between two vertices in T . Such an oracle can
be built in linear time and has a constant query time, as shown in [32].

The resulting size is therefore O( f n log2 n), and the time required to build our oracle
is O( f m α(m, n) + f n log3 n). Interestingly, if we do not fix in advance the value
of f , we can build in O(m log3 n) time an oracle of size O(m log2 n) that is able to
report (2|F | + 1) approximate paths/distances, for any number |F | of faults. Indeed,
the number of edges in H is upper bounded by m, i.e., the number of edges of G.

In the following, we analyze the query time of the oracle, by first facing a path-
reporting query, and then a simpler distance query.

Answering a Path-Reporting Query
To return a (2|F | + 1)-approximate path between s and t , it suffices to report the

path π ′ = πM (s, t), as shown by Eq. (1).
To this aim, we first query the MSF oracle Q through the additional query q(s, t),

which will return all the new edges on the unique path from s to t in the updated MSF.
Let 〈e′

1, . . . , e
′
h〉 be these new edges, in order, with e′

i = (vi−1, ui ). For 0 < i < h, let
ri be the LCA in Ti between ui and vi , and let rh be the LCA in Th between uh and
t . We now have all the pieces needed to reconstruct and return the path π ′. Indeed, if
we let π ′

i = πT (ui , ri ) ◦ πT (ri , vi ), the following holds:

π ′ = πT (s, v0) ◦ e′
1 ◦ π ′

1 ◦ e′
2 ◦ π ′

2 ◦ · · · ◦ π ′
h−1 ◦ e′

h ◦ πT (uh, rh) ◦ πT (rh, t) (2)

where each subpath is entirely in T and all the endpoints are known. The whole
procedure requires O(|F |2 log2 n) time to perform the query q(s, t) on Q (as observed
at the end of Sect. 2), O(|F |) time for the LCAqueries, and O(|π ′|) time to reconstruct
the path. The overall query time is therefore O(|F |2 log2 n + |π ′|).

Answering a Distance Query To report the length of a (2|F |+1)-approximate path
from s to t , we can replace each subpath in Eq. (2) with the corresponding distance,
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in order to obtain:

w(π ′) = dT (v0) +
h−1∑
i=1

(
w(e′

i ) + dT (ui , ri ) + dT (ri , vi ) + w(e′
i+1)

)

+ dT (uh, rh) + dT (rh, t).

The above quantity can be computed in O(h) = O(|F |) time, once we know the edges
e1, . . . , eh and we notice thatw(e′

i ) = w′(e′
i )−dT (vi−1)−dT (ui ), and moreover that

if x is a descendant of ri in T , then dT (ri , x) = dT (x) − dT (ri ). The overall query
time is thus O(|F |2 log2 n).

Summarizing, we can give the following:

Theorem 3 Given a positively real-weighted n-vertex and m-edge graph G, and given
a distinguished source vertex s of G, there exists an f -EFT SSDOof G that can be built
in O( f m α(m, n)+ f n log3 n) time. The oracle has size O( f n log2 n) and, for any set
F of failures, it is able to report (2|F |−1)-approximate distances (resp., approximate
shortest paths) from s in G − F in O(|F |2 log2 n) time (resp., O(|F |2 log2 n) time
plus the size of the reported path).

4 A Lower Bound to the Size of a (logn)-EFT �-ASPT

In this section we show that, if the long-standing girth conjecture of Erdős [26] is
true, then, for any integer k ≥ 1, any f -EFT σ -ASPT with f ≥ log n and σ < 3k+1

k+1

requires �(n1+ 1
k ) edges. In particular, this implies that if we want to build a structure

which is resistant to at least log n edge failures and has stretch less than 2, then it
must contain �(n2) edges. Very recently, in [5], Baswana et al. showed that a similar
construction implies a lower bound of �(2 f n) edges for any structure preserving
connectivity on directed graphs when up to f edges can fail.

Theorem 4 There are graphs G for which any f -EFT σ -ASPT with f ≥ log n and

σ < 3k+1
k+1 contains �(n1+ 1

k ) edges.

Proof Let G be a graph on η vertices with girth g = 2k + 2 and �(η1+ 1
k ) edges

(according to the girth conjecture, such a graph always exists).We construct aweighted
graph G ′ in the following way (see Fig. 5): we add to G a binary tree T rooted in s
with η leaves and height h = �log η�, and we further add an edge from each leaf of T
to a distinct vertex of V (G), in an arbitrary way. The weights of E(G) and E(T ) will
be set to 1 and 0, respectively, while the remaining additional edges will have weight
x = g

2 − 1. Observe that the total number of vertices of G ′ is n = 3η − 1, hence

|E(G ′)| = �(n1+ 1
k ).

Let H be any f -EFT σ -ASPT of G ′ rooted in s, with f ≥ log n and σ < 3k+1
k+1 . We

will show that H must contain all the edges of E(G). Indeed, suppose that an edge
e = (u, v) ∈ E(G) is missing from H , and let u′ be the unique leaf of the T such
that (u, u′) ∈ E(G ′). We let 〈s = u0, u1, . . . , uk〉 be the sequence of internal vertices
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Fig. 5 Graph G′ used in the
lower bound construction. The
dashed edge e does not belong to
H while the dotted edges belong
to F . Bold edges have weight 1,
tree edges have weight 0, and the
remaining edges—connecting
the leaves of T to the vertices in
G—have weight x

G

Ts

e

u

v

u′

of T traversed by πT (s, u′), and let ei be the edge incident to ui other than that in
E(πT (s, u′)). We choose F = {e0, e1, . . . , ek} as shown in Fig. 5. It is easy to see that
|F | ≤ h = �log η� ≤ log η + 1 ≤ log n, and that each path from s to any vertex of
V (G) in G ′ − F has the path π = πT (s, u′) ◦ (u′, u) as a prefix, hence the same must
hold in H − F . Therefore, we know that πH−F (s, v) = π ◦πH−F (u, v). Observe that
either πH−F (u, v) passes through a vertex in V (T ) or not. In the former case, it must
contain at least an edge ofweight 1 and twoedges ofweight x , hencew(πH−F (u, v)) ≥
2x + 1 = g − 1. Otherwise, since the girth of G is g, w(πH−F (u, v)) ≥ g − 1. In
both cases we have that dH−F (v) = w(πH−F (s, v)) = w(π) + w(πH−F (u, v)) ≥
g
2 −1+g−1 = 3

2g−2. At the same time, it holds dG ′−F (v) = w(π ◦(u, v)) = g
2 . This

implies that the stretch factor of H would be at least 3− 4
g = 3k+1

k+1 , a contradiction. �

5 Conclusions and Open Problems

In this paper we have shown how to build an f -EFT (2|F |+ 1)-ASPT of size O( f n),
thus providing a substantial improvement over the previously known structure of [42].
Such a structure has an (asymptotically) optimal size, as�( f n) edges are needed even
to preserve connectivity between the source vertex and the other vertices of the graph
when f edge failures can happen. It is not clear, however, whether the stretch can be

improved without increasing the size of the structure. The lower bound of �(n1+ 1
k )

edges to the size of any f -EFT ASPT shown in Sect. 4 only works for more than
log n failures, and for a fixed size of �( f n) edges only implies a lower bound to the
stretch of at most 3, hence we look at the problem of closing this gap as an interesting
challenge. Nonetheless, we point out that this already shows that it is not possible to
obtain a stretch arbitrarily close to 1 with a quasi-linear number edges, as it happens
for the single-failure case. To this respect, it would be worthy to understand if the
lower bound can be extended to work—even if in some weaker form—for a constant
number of edge failures.

Furthermore, we have also shown how to convert our f -EFT (2|F |+1)-ASPT into
an f -EFT (2|F | + 1)-SSDO of size O( f n log2 n) than can answer distance queries
in time O(|F |2 log2 n). This oracle is also able to report the path corresponding to a
query by using an additional time proportional to the number of edges of the path itself
(i.e., constant time per edge). To obtain this latter result we developed a sensitivity
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oracle of size O(m log2 n) that is able to report in O(k2 log2 n) time the changing
edges of a MSF of a graph following the insertion/deletion/weight-update of k edges
of the graph. This provides the current best worst-case solution to the fully-dynamic
MSF problem for relatively short sequences of updates when the starting graph is
arbitrary. Notice that a lower-bound of �(m) edges to the size of any MSF sensitivity
oracle trivially holds when k = �(m), since storing the whole graph G is required.
It would therefore be interesting to understand whether it is possible to shave off the
polylogarithmic factors from the size of our constructions and from the query time.
The latter improvement would also result in a query time that is a function of only the
number of changing edges, i.e., it is constant as soon as k = O(1).

Fudning The fund was grant by Ministero dell’Istruzione, dell’Università e della Ricerca, Algorithms for
(fault-tolerant) pairwise spanners and distance oracles.
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26. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36
(1964)

27. Frederickson, G.N.: Data structures for on-line updating ofminimum spanning trees, with applications.
SIAM J. Comput. 14(4), 781–798 (1985). https://doi.org/10.1137/0214055

28. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement
paths. In: FOCS, pp. 748–757 (2012)

29. Gupta, M., Khan, S.: Multiple source dual fault tolerant BFS trees. In: 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pp.
127:1–127:15 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.127

30. Gupta, M., Singh, A.: Generic single edge fault tolerant exact distance oracle. In: 45th International
ColloquiumonAutomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pp. 72:1–72:15 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.72

31. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algorithms 41(1), 69–85 (2001).
https://doi.org/10.1006/jagm.2001.1171

32. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2),
338–355 (1984). https://doi.org/10.1137/0213024

33. Henzinger, M.R., King, V.: Maintaining minimum spanning forests in dynamic graphs. SIAM J. Com-
put. 31(2), 364–374 (2001). https://doi.org/10.1137/S0097539797327209

34. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001).
https://doi.org/10.1145/502090.502095

35. Jordan, C.: Sur les assemblages de lignes. (1869)
36. Knuth, D.E.: The art of computer programming, Volume I: Fundamental Algorithms, 3rd Edition.

Addison-Wesley (1997). https://www.worldcat.org/oclc/312910844
37. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree

is good and fast. Algorithmica 35(1), 56–74 (2003)
38. Parter, M.: Dual failure resilient BFS structure. In: PODC, pp. 481–490 (2015)
39. Parter, M.: Fault-tolerant logical network structures. Bulletin of the EATCS 118 (2016). http://eatcs.

org/beatcs/index.php/beatcs/article/view/403
40. Parter, M.: Vertex fault tolerant additive spanners. Distrib. Comput. 30(5), 357–372 (2017). https://

doi.org/10.1007/s00446-015-0252-9

123

https://doi.org/10.1016/j.tcs.2015.02.036
https://doi.org/10.1137/1.9781611975482.127
https://doi.org/10.1137/1.9781611975482.127
https://doi.org/10.1145/355541.355562
https://doi.org/10.1137/1.9781611973105.36
https://doi.org/10.1137/1.9781611973105.36
https://doi.org/10.1145/2591796.2591801
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/978-3-319-25258-2_16
https://doi.org/10.1007/978-3-319-25258-2_16
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1145/2888397
https://doi.org/10.1006/jagm.1994.1033
https://doi.org/10.1145/265910.265914
https://doi.org/10.1137/0214055
https://doi.org/10.4230/LIPIcs.ICALP.2017.127
https://doi.org/10.4230/LIPIcs.ICALP.2018.72
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1137/0213024
https://doi.org/10.1137/S0097539797327209
https://doi.org/10.1145/502090.502095
https://www.worldcat.org/oclc/312910844
http://eatcs.org/beatcs/index.php/beatcs/article/view/403
http://eatcs.org/beatcs/index.php/beatcs/article/view/403
https://doi.org/10.1007/s00446-015-0252-9
https://doi.org/10.1007/s00446-015-0252-9


Algorithmica (2022) 84:37–59 59

41. Parter, M., Peleg, D.: Sparse fault-tolerant BFS structures. ACM Trans. Algorithms 13(1), 11:1-11:24
(2016). https://doi.org/10.1145/2976741

42. Parter, M., Peleg, D.: Fault-tolerant approximate BFS structures. ACM Trans. Algorithms 14(1), 10:1-
10:15 (2018). https://doi.org/10.1145/3022730

43. Sanders, P., Mehlhorn, K., Dietzfelbinger, M., Dementiev, R.: Sequential and parallel algorithms and
data structures: the basic toolbox. Springer (2019). https://doi.org/10.1007/978-3-030-25209-0

44. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005). https://doi.org/10.
1145/1044731.1044732

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Davide Bilò1 · Luciano Gualà2 · Stefano Leucci3 · Guido Proietti3,4

B Stefano Leucci
stefano.leucci@univaq.it

Davide Bilò
davide.bilo@uniss.it

Luciano Gualà
guala@mat.uniroma2.it

Guido Proietti
guido.proietti@univaq.it

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Sassari, Italy

2 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”, Rome, Italy

3 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi
dell’Aquila, L’Aquila, Italy

4 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Rome, Italy

123

https://doi.org/10.1145/2976741
https://doi.org/10.1145/3022730
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732
http://orcid.org/0000-0002-8848-7006

	Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Other Related Work on Fault-Tolerant Sourced Structures/Oracles
	1.4 More Related Work on (Fault-Tolerant) Spanners/Oracles
	1.5 Structure of the Paper

	2 A Minimum Spanning Tree k-Sensitivity Oracle
	2.1 Building the Clustering
	2.2 Computing the Crossing Edges
	2.3 Answering a Query

	3 An f-EFT (2|F|+1)-ASPT and a Corresponding Oracle
	3.1 A Corresponding Path/Distance Reporting Oracle

	4 A Lower Bound to the Size of a (log n)-EFT sigma-ASPT
	5 Conclusions and Open Problems
	References




