
Vol.:(0123456789)

Algorithmica (2021) 83:2895–2913
https://doi.org/10.1007/s00453-021-00847-2

1 3

A New Lower Bound for Deterministic Truthful Scheduling

Yiannis Giannakopoulos1 · Alexander Hammerl2 · Diogo Poças3

Received: 14 August 2020 / Accepted: 14 June 2021 / Published online: 23 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We study the problem of truthfully scheduling m tasks to n selfish unrelated
machines, under the objective of makespan minimization, as was introduced in the
seminal work of Nisan and Ronen (in: The 31st Annual ACM symposium on Theory
of Computing (STOC), 1999). Closing the current gap of [2.618, n] on the approxi-
mation ratio of deterministic truthful mechanisms is a notorious open problem in
the field of algorithmic mechanism design. We provide the first such improvement
in more than a decade, since the lower bounds of 2.414 (for n = 3) and 2.618 (for
n → ∞) by Christodoulou et al. (in: Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2007) and Koutsoupias and Vidali (in:
Proceedings of Mathematical Foundations of Computer Science (MFCS), 2007),
respectively. More specifically, we show that the currently best lower bound of
2.618 can be achieved even for just n = 4 machines; for n = 5 we already get the first
improvement, namely 2.711; and allowing the number of machines to grow arbitrar-
ily large we can get a lower bound of 2.755.

A significant part of this work was done while Y. Giannakopoulos and D. Poças were members
of the Operations Research group at TU Munich, supported by the Alexander von Humboldt
Foundation with funds from the German Federal Ministry of Education and Research (BMBF). D.
Poças was also supported by FCT via LASIGE Research Unit, ref. UIDB/00408/2020. A preliminary
version of this paper appeared in SAGT 2020 [17]

 * Diogo Poças
 dmpocas@fc.ul.pt

 Yiannis Giannakopoulos
 yiannis.giannakopoulos@fau.de

 Alexander Hammerl
 alexander.hammerl@tum.de

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
2 TU Munich, Munich, Germany
3 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

http://orcid.org/0000-0003-2382-1779
http://orcid.org/0000-0002-5474-3614
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00847-2&domain=pdf

2896 Algorithmica (2021) 83:2895–2913

1 3

1 Introduction

Truthful scheduling of unrelated parallel machines is a prototypical problem in algo-
rithmic mechanism design, introduced in the seminal paper of Nisan and Ronen [32]
that essentially initiated this field of research. It is an extension of the classical com-
binatorial problem for the makespan minimization objective (see, e.g., [36, Ch. 17]
or [20, Sect. 1.4]), with the added twist that now machines are rational, strategic
agents that would not hesitate to lie about their actual processing times for each job,
if this can reduce their personal cost, i.e., their own completion time. The goal is to
design a scheduling mechanism, using payments as incentives for the machines to
truthfully report their true processing costs, that allocates all jobs in order to mini-
mize the makespan, i.e., the maximum completion time across machines.

Nisan and Ronen [33] showed right away that no such truthful deterministic
mechanism can achieve an approximation better than 2 to the optimum makespan;
this is true even for just n = 2 machines. It is worth emphasizing that this lower
bound is not conditioned on any computational complexity assumptions; it is
purely a direct consequence of the added truthfulness requirement and holds even
for mechanisms that have unbounded computational capabilities. It is interesting to
compare this with the classical (i.e., non-strategic) algorithmic setting where we do
know [26] that a 2-approximate polynomial-time algorithm does exist and that it is
NP-hard to approximate the minimum makespan within a factor smaller than 3

2
 . On

the positive side, it is also shown in [33] that the mechanism that myopically allo-
cates each job to the machine with the fastest reported time for it, and compensates
her with a payment equal to the report of the second-fastest machine, achieves an
approximation ratio of n (where n is the number of machines); this mechanism is
truthful and corresponds to the paradigmatic VCG mechanism (see, e.g., [31]).

Based on these, Nisan and Ronen [33, Conjecture 4.9] made the bold conjec-
ture that their upper bound of n is actually the tight answer to the approximation
ratio of deterministic scheduling; more than 20 years after the first conference ver-
sion of their paper [32] though, very little progress has been made in closing their
gap of [2, n]. Thus, the Nisan-Ronen conjecture remains up to this day one of the
most important open questions in algorithmic mechanism design. Christodoulou
et al. [10] improved the lower bound to 1 +

√
2 ≈ 2.414 , even for instances with

only n = 3 machines and, soon after, Koutsoupias and Vidali [22] showed that by
allowing n → ∞ the lower bound can be increased to 1 + � ≈ 2.618 . The journal
versions of these papers can be found at [11] and [23], respectively. In our paper we
provide the first improvement on this lower bound in well over a decade.1

Another line of work tries to provide better lower bounds by imposing further
assumptions on the mechanism, in addition to truthfulness. Most notably, Ashlagi
et al. [1] were actually able to resolve the Nisan-Ronen conjecture for the impor-
tant special case of anonymous mechanisms, by providing a lower bound of n. The

1 After the conference version of our paper [17], Dobzinski and Shaulker [13] and Christodoulou
et al. [9] uploaded manuscripts improving this lower bound to 3 and

√
n − 1 + 1 , respectively. The latter

result is remarkably the first superconstant lower bound for this problem.

2897

1 3

Algorithmica (2021) 83:2895–2913

same can be shown for mechanisms with strongly-monotone allocation rules [30,
Sect. 3.2] and for mechanisms with additive or local payment rules [33, Sect. 4.3.3].

Better bounds have also been achieved by modifying the scheduling model itself.
For example, Lavi and Swamy [25] showed that if the processing times of all jobs
can take only two values (“high” and “low”) then there exists a 2-approximate truth-
ful mechanism; they also give a lower bound of 11

10
 . Very recently, Christodoulou

et al. [8] showed a lower bound of �(

√
n) for a slightly generalized model where the

completion times of machines are allowed to be submodular functions (of the costs
of the jobs assigned to them) instead of additive in the standard setting.

Although in this paper we focus exclusively on deterministic mechanisms, ran-
domization is also of great interest and has attracted a significant amount of atten-
tion [30, 33, 38], in particular the two-machine case [4, 24, 27–29]. The currently
best general lower bound on the approximation ratio of randomized (universally)
truthful mechanisms is 2 − 1

n
 [30], while the upper one is 0.837n [28]. For the more

relaxed notion of truthfulness in expectation, the upper bound is n+5
2

 [29]. Related to
the randomized case is also the fractional model, where mechanisms (but also the
optimum makespan itself) are allowed to split jobs among machines. For this case,
[7] prove lower and upper bounds of 2 − 1

n
 and n+1

2
 , respectively; the latter is also

shown to be tight for task-independent mechanisms.
Other variants of the strategic unrelated machine scheduling problem that have

been studied include the Bayesian model [5, 14, 18] (where job costs are drawn
from probability distributions), scheduling without payments [19, 21] or with veri-
fication [33, 34, 37], and strategic behaviour beyond (dominant-strategy) truthful-
ness [16]. The related machines model, which is essentially a single-dimensional
mechanism design variant of our problem, has of course also been well-studied (see,
e.g., [2, 3, 12]) and a deterministic PTAS exists [6, 15].

1.1 Our Results and Techniques

We present new lower bounds on the approximation ratio of deterministic truthful
mechanisms for the prototypical problem of scheduling unrelated parallel machines,
under the makespan minimization objective, introduced in the seminal work of
Nisan and Ronen [33]. Our main result (Theorem 2) is a bound of � ≈ 2.755 , where
� is the solution of the cubic equation (6). This improves upon the lower bound of
1 + � ≈ 2.618 by Koutsoupias and Vidali [23] which appeared well over a decade
ago [22]. Similar to [23], we use a family of instances with the number of machines
growing arbitrarily large (n → ∞).

Furthermore, our construction (see Sect. 3.4) provides improved lower bounds
also pointwise, as a function of the number of machines n that we are allowed to use.
More specifically, for n = 3 we recover the bound of 1 +

√
2 ≈ 2.414 by [11]. For

n = 4 we can already match the 2.618 bound that [23] could achieve only in the limit
as n → ∞ . The first strict improvement, namely 2.711, comes for n = 5 . As the num-
ber of machines grows, our bound converges to 2.755. Our results are summarized
in Table 1.

2898 Algorithmica (2021) 83:2895–2913

1 3

A central feature of our approach is the formulation of our lower bound as
the solution to a (non-linear) optimization programme (NLP); we then provide
optimal, analytic solutions to it for all values of n ≥ 3 (Lemma 3). It is important
to clarify here that, in principle, just giving feasible solutions to this programme
would still suffice to provide valid lower bounds for our problem. However, the
fact that we pin down and use the actual optimal ones gives rise to an interest-
ing implication: our lower bounds are provably the best ones that can be derived
using our construction.

There are two key elements that allow us to derive our improved bounds,
compared to the approach in previous related works [11, 23]. First, we deploy
the weak-monotonicity (Theorem 1) characterization of truthfulness in a
slightly more delicate way; see Lemma 1. This gives us better control and flex-
ibility in considering deviating strategies for the machines (see our case-anal-
ysis in Sect. 3). Secondly, we consider more involved instances, with two aux-
iliary parameters (namely r and a; see, e.g., (3) and (4)) instead of just one.
On the one hand, this increases the complexity of the solution, which now has
to be expressed in an implicit way via the aforementioned optimization pro-
gramme (NLP). But at the same time, fine-tuning the optimal choice of the var-
iables allows us to (provably) push our technique to its limits. Finally, let us
mention that, for a small number of machines (n = 3, 4, 5) we get r = 1∕a in an
optimal choice of parameters. Under r = 1∕a , we end up with a as the only free
parameter, and our construction becomes closer to that of [11, 23]; in fact, for 3
machines it is essentially the same construction as in [11] (which explains why
we recover the same lower bound). However, for n ≥ 6 machines we need a more
delicate choice of r.

2 Notation and Preliminaries

Before we go into the construction of our lower bound (Sect. 3), we use this sec-
tion to introduce basic notation and recall the notions of mechanism, truthful-
ness, monotonicity, and approximation ratio. We also provide a technical tool
(Lemma 1) that is a consequence of weak monotonicity (Theorem 1); this lemma
will be used several times in the proof of our main result.

Table 1 Lower bounds on the approximation ratio of deterministic truthful scheduling, as a function of
the number of machines n, given by our Theorem 2 (bottom line)

The previous tate-of-the-art is given in the line above and first appeared in [10] (n = 3) and [22] (n ≥ 4).
The case with n = 2 machines was completely resolved in [32], with an approximation ratio of 2

n 3 4 5 6 7 8 … ∞

Previous work 2.414 2.465 2.534 2.570 2.590 2.601 … 2.618
This paper 2.414 2.618 2.711 2.739 2.746 2.750 … 2.755

2899

1 3

Algorithmica (2021) 83:2895–2913

2.1 Unrelated Machine Scheduling

In the unrelated machine scheduling setting, we have a number n of machines and
a number m of tasks to allocate to these machines. These tasks can be performed
in any order, and each task has to be assigned to exactly one machine; machine
i requires tij units of time to process task j. Hence, the complete description of a
problem instance can be given by a n × m cost matrix of the values tij , which we
denote by t . In this matrix, row i, denoted by ti , represents the processing times
for machine i (on the different tasks) and column j represents the processing times
for task j (on the different machines). These values tij are assumed to be nonnega-
tive real quantities, tij ∈ ℝ

+
.

Applying the methodology of mechanism design, we assume that the process-
ing times for machine i are known only by machine i herself. Moreover, machines
are selfish agents; in particular, they are not interested in running a task unless
they receive some compensation for doing so. They may also lie about their pro-
cessing times if this would benefit them. This leads us to consider the central
notion of (direct-revelation) mechanisms: each machine reports her values, and a
mechanism decides on an allocation of tasks to machines, as well as correspond-
ing payments, based on the reported values.

Definition 1 (Allocation rule, payment rule, mechanism) Given n machines and m
tasks,

• a (deterministic) allocation rule is a function that describes the allocation of
tasks to machines for each problem instance. Formally, it is represented as a
function a ∶ ℝ

n×m
+

→ {0, 1}n×m such that, for every t = (tij) ∈ ℝ
n×m
+

 and every
task j = 1,… ,m , there is exactly one machine i with aij(t) = 1 , that is,

• a payment rule is a function that describes the payments to machines for each
problem instance. Formally, it is represented as a function p ∶ ℝ

n×m
+

→ ℝ
n;

• a (direct-revelation, deterministic) mechanism is a pair (a, p) consisting of an
allocation and payment rules.

By a feasible allocation, we mean a matrix a = (aij) ∈ {0, 1}n×m satisfying (1).
Given a feasible allocation a , we let ai denote its row i, that is, the allocation to
machine i. Similarly, given a payment vector p ∈ ℝ

n , we let pi denote the pay-
ment to machine i; note that the payments represent an amount of money given
to the machine, which is somewhat the opposite situation compared to other
mechanism design frameworks (such as auctions, where payments are done by the
agents to the mechanism designer).

(1)
n∑
i=1

aij(t) = 1;

2900 Algorithmica (2021) 83:2895–2913

1 3

2.2 Truthfulness and Monotonicity

Whenever a mechanism assigns an allocation ai and a payment pi to machine i,
this machine incurs a quasi-linear utility equal to her payment minus the sum of
processing times of the tasks allocated to her,

Note that the above quantity depends on the machine’s both true and reported pro-
cessing times, which in principle might differ. As already explained, machines
behave selfishly. Thus, from the point of view of a mechanism designer, we wish
to ensure a predictable behaviour of all parties involved. In particular, we are only
interested in mechanisms that encourage agents to report their true valuations.

Definition 2 A mechanism (a, p) is truthful if every machine maximizes their utility
by reporting truthfully, regardless of the reports by the other machines. Formally, for
every machine i, every ti, t�i ∈ ℝ

m
+
 , t

−i ∈ R
(n−1)×m
+

 , we have that

In (TR), we “freeze” the reports of all machines other than i. The left hand side
corresponds to the utility achieved by machine i when her processing times cor-
respond to ti and she truthfully reports ti . The right hand side corresponds to the
utility achieved if machine i lies and reports t′

i
.

The most important example of a truthful mechanism in this setting is the VCG
mechanism that assigns each task independently to the machine that can perform
it fastest, and paying that machine (for that task) a value equal to the second-
lowest processing time. Note that this is somewhat the equivalent of second-price
auctions (that sell each item independently) for the scheduling setting.

A fundamental result in the theory of mechanism design is a very useful prop-
erty of truthful mechanisms, in terms of “local” monotonicity of the allocation
function with respect to single-machine deviations.

Theorem 1 (Weak monotonicity [25, 33]) Let t be a cost matrix, i be a machine, and
t′
i
 another report from machine i. Let ai be the allocation of i for cost matrix t and
a′
i
 be the allocation of i for cost matrix (t�

i
, t
−i) . Then, if the mechanism is truthful, it

must be that

As a matter of fact, (WMON) is also a sufficient condition for truthfulness,
thus providing an exact characterization of truthfulness [35]. However, for our
purposes in this paper we will only need the direction in the statement of Theo-
rem 1 as stated above. We will make use of the following lemma, which exploits
the notion of weak monotonicity in a straightforward way. The second part of

pi − ai ⋅ ti = pi −

m∑
j=1

aijtij.

(TR)pi(ti, t−i) − ai(ti, t−i) ⋅ ti ≥ pi(t
�

i
, t
−i) − ai(t

�

i
, t
−i) ⋅ ti.

(WMON)(ai − a
�

i
) ⋅ (ti − t

�

i
) ≤ 0.

2901

1 3

Algorithmica (2021) 83:2895–2913

this lemma can be understood as a refinement of a technical lemma that appeared
before in [11, Lemma 2] (see also [23, Lemma 1]).

Lemma 1 Suppose that machine i changes her report from t to t′ , and that a
truthful mechanism correspondingly changes her allocation from ai to a′

i
. Let

{1,… ,m} = S ∪ T ∪ V be a partition of the tasks into three disjoint sets.

1. Suppose that (a) the costs of i on V do not change, that is, ti,V = t�
i,V

 and (b) the
allocation of i on S does not change, that is, ai,S = a�

i,S
 . Then

2. Suppose additionally that (c) the costs of i strictly decrease on her allocated tasks
in T and strictly increase on her unallocated tasks in T. Then her allocation on T
does not change, that is, ai,T = a�

i,T
.

Proof To prove the first point, simply apply (WMON) and split the sum into the
three sets of tasks,

since ti,V = t�
i,V

 and ai,S = a�
i,S

 , the result follows.
To prove the second point, we look at each term appearing in the inner product

(ai,T − a�
i,T
) ⋅ (ti,T − t�

i,T
) . Let j ∈ T be a task which was originally allocated to

machine i; then, ai,j = 1 and, by assumption, ti,j > t′
i,j

 . Since a′
i,j

 is either 1 or 0, it fol-
lows that (ai,j − a�

i,j
)(ti,j − t�

i,j
) is either 0 (if the allocation does not change) or

ti,j − t�
i,j
> 0 (if the allocation changes). Similarly, assume now that j ∈ T was origi-

nally not allocated to machine i; then, ai,j = 0 and, by assumption, ti,j < t′
i,j

 . Since a′
i,j

is either 0 or 1, it follows that (ai,j − a�

i,j
)(ti,j − t�

i,j
) is either 0 (if the allocation does

not change) or (−1) ⋅ (ti,j − t�
i,j
) > 0 (if the allocation changes). By the first point, the

sum over all these terms must be non-positive. We conclude that all these terms
must be zero, and hence, the allocation of machine i for tasks on T must not change.
 ◻

2.3 Approximation ratio

One of the main open questions in the theory of algorithmic mechanism design is to
figure out what is the “best” possible truthful mechanism, with respect to the objec-
tive of makespan minimization. This can be quantified in terms of the approximation
ratio of a mechanism.

Definition 3 Given n machines and m tasks:

(ai,T − a
�

i,T
) ⋅ (ti,T − t

�

i,T
) ≤ 0.

0 ≥ (ai − a
�

i
) ⋅ (ti − t

�

i
)

= (ai,S − a
�

i,S
) ⋅ (ti,S − t

�

i,S
) + (ai,T − a

�

i,T
) ⋅ (ti,T − t

�

i,T
) + (ai,V − a

�

i,V
) ⋅ (ti,V − t

�

i,V
);

2902 Algorithmica (2021) 83:2895–2913

1 3

• Let a be a feasible allocation and t a problem instance. The makespan of a on t
is defined as the quantity

• Let t be a problem instance. The optimal makespan is defined as the quantity

 where the minimum ranges over all feasible allocations.
• Let a be an allocation rule. We say that a has approximation ratio � ≥ 1 if, for

any problem instance t , we have that

 if no such quantity � exists, we say that a has infinite approximation ratio.

As shown in [33], the VCG mechanism has an approximation ratio of n, the
number of machines. The long-standing conjecture by Nisan and Ronen states
that this mechanism is essentially the best one; any truthful mechanism is
believed to attain a worst-case approximation ratio of at least n (for sufficiently
many tasks). In this paper, we prove lower bounds on the approximation ratio of
any truthful mechanism (Table 1 and Theorem 2); our bounds converge to 2.755
as n → ∞.

3 Lower Bound

To prove our lower bound, from here on we assume n ≥ 3 machines, since the
case n = 1 is trivial and the case n = 2 is resolved by [32] (with an approximation
ratio of 2). Our construction will be made with the choice of two parameters r, a,
such that a > 1 > r > 0 . Later we will optimize the choices of r and a in order to
achieve the best lower bound possible by our construction.

We will use Ln to denote the n × n matrix with 0 in its diagonal and ∞ elsewhere,

We should mention here that allowing tij = ∞ is a technical convenience. If only
finite values are allowed, we can replace ∞ by an arbitrarily high value. We also fol-
low the usual convention, and use an asterisk ∗ to denote a full or partial allocation.
Our lower bound begins with the following cost matrix for n machines and 2n − 1
tasks:

makespan (a, t) = max
i=1,…,n

m∑
j=1

aijtij.

OPT (t) = min
a

makespan (a, t),

makespan (a(t), t) ≤ �OPT (t);

Ln =

⎡
⎢⎢⎢⎣

0 ∞ ⋯ ∞

∞ 0 ⋯ ∞

⋮ ⋮ ⋱ ⋮

∞ ∞ ⋯ 0

⎤
⎥⎥⎥⎦
.

2903

1 3

Algorithmica (2021) 83:2895–2913

The tasks of cost matrix A0 can be partitioned in two groups. The first n tasks (i.e.,
the ones corresponding to the Ln submatrix) will be called dummy tasks. Machine i
has a cost of 0 for dummy task i and a cost of ∞ for all other dummy tasks. The sec-
ond group of tasks, numbered n + 1,… , 2n − 1 , will be called proper tasks. Notice
that machines 1 and 2 have the same costs for proper tasks; they both need time 1 to
execute task n + 1 and time a−j+2 to execute task n + j , for all j = 2,… n − 1 . Finally
for i ≥ 3 , machine i has a cost of a−i+3 on proper task n + i − 1 and ∞ cost for all
other proper tasks.

In order for a mechanism to have a finite approximation ratio, it must not assign
any tasks with unbounded costs. In particular, each dummy task must be assigned
to the unique machine that completes it in time 0; and proper task n + 1 must be
assigned to either machine 1 or 2. Since the costs of machines 1 and 2 are the same
on all proper tasks, we can without loss assume that machine 1 receives proper task
n + 1 . Hence, the allocation on A0 should be as (designated by an asterisk) in (2).

Next, we reduce the costs of all proper tasks for machine 1, and get the cost
matrix

Under the new matrix A1 , the cost of machine 1 for proper task n + 1 is reduced from
1 to r; and her cost for any other proper task n + j , j = 2,… , n − 1 , is reduced by a
factor of a, that is, from a−j+2 to a−j+1 . The key idea in this step is the following: we
want to impose a constraint on r and a that ensures that at least one of the proper
tasks n + 1, n + 2 is still allocated to machine 1. Using the properties of truthfulness,
this can be achieved via the following lemma:

Lemma 2 Consider a truthful scheduling mechanism that, on cost matrix A0 , assigns
proper task n + 1 to machine 1. Suppose also that

Then, on cost matrix A1 , machine 1 must receive at least one of the proper tasks
n + 1, n + 2.

(2)A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗1 1 a−1 a−2 ⋯ a−n+3

1 1 a−1 a−2 ⋯ a−n+3

∞ 1 ∞ ∞ ⋯ ∞

Ln ∞ ∞ a−1 ∞ ⋯ ∞

∞ ∞ ∞ a−2 ⋯ ∞

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

∞ ∞ ∞ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r a−1 a−2 a−3 ⋯ a−n+2

1 1 a−1 a−2 ⋯ a−n+3

∞ 1 ∞ ∞ ⋯ ∞

Ln ∞ ∞ a−1 ∞ ⋯ ∞

∞ ∞ ∞ a−2 ⋯ ∞

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

∞ ∞ ∞ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)1 − r > a−1 − a−n+2.

2904 Algorithmica (2021) 83:2895–2913

1 3

Proof We apply part 1 of Lemma 1, taking S = � , V as the set of dummy tasks, and
T as the set of proper tasks. If a1 , a′1 denote the allocations of machine 1 for cost
matrices A0 , A1 respectively, we get that

Assume further, for the sake of obtaining a contradiction, that on cost matrix A1 ,
machine 1 does not get either task n + 1 or n + 2 ; that is, a�

1,n+1
= a�

1,n+2
= 0 . Notice

that a1,n+1 = 1 (since machine 1 gets task n + 1 on cost matrix A0) and we have the
lower bounds a1,n+2 ≥ 0 as well as a1,n+j − a�

1,n+j
≥ −1 for j = 3,… , n − 1 . Combin-

ing all these, we get

where in the last step we observe that the terms for tasks n + 3,… , 2n − 1 form a
telescoping sum. Thus, we obtain that 1 − r ≤ a−1 − a−n+2 , which contradicts our
original assumption (4). ◻

For the remainder of our construction, we assume that r and a are such that (4)
is satisfied. Next, we split the analysis depending on the allocation of the proper
tasks n + 1,… 2n − 1 to machine 1 on cost matrix A1 , as restricted by Lemma 2.

3.1 Case 1: Machine 1 gets all proper tasks

In this case, we perform the following changes in machine 1’s tasks, obtaining a
new cost matrix B1 . We increase the cost of dummy task 1, from 0 to 1, and we
decrease the costs of all her proper tasks by an arbitrarily small amount. Notice
that

• for the mechanism to achieve a finite approximation ratio, it must still allocate
the dummy task 1 to machine 1;

• given that the mechanism does not change the allocation on dummy task 1,
and that machine 1 only decreases the completion times of her proper tasks,
part 2 of Lemma 1 implies that machine 1 still gets all proper tasks.

Thus, the allocation must be as shown below (for ease of exposition, in the cost
matrices that follow we omit the “arbitrarily small” amounts by which we change
allocated / unallocated tasks):

(a1,T − a
�

1,T
) ⋅ (t1,T − t

�

1,T
) ≤ 0.

0 ≥ (a1,T − a
�

1,T
) ⋅ (t1,T − t

�

1,T
)

= (a1,n+1 − a�
1,n+1

)(t1,n+1 − t�
1,n+1

) + (a1,n+2 − a�
1,n+2

)(t1,n+2 − t�
1,n+2

)

+ (a1,n+3 − a�
1,n+3

)(t1,n+3 − t�
1,n+3

) +⋯ + (a1,2n−1 − a�
1,2n−1

)(t1,2n−1 − t�
1,2n−1

)

≥ 1 ⋅ (1 − r) + 0 ⋅ (1 − a−1) + (−1) ⋅ (a−1 − a−2) +⋯ + (−1) ⋅ (a−n+3 − a−n+2)

= 1 − r − a−1 + a−n+2,

2905

1 3

Algorithmica (2021) 83:2895–2913

This allocation achieves a makespan of 1 + r + a−1 +⋯ + a−n+2 , while a makespan
of 1 can be achieved by assigning each proper task n + j to machine j + 1 . Hence,
this case yields an approximation ratio of at least 1 + r + a−1 +⋯ + a−n+2.

3.2 Case 2: Machine 1 gets task n + 1 , but does not get all proper tasks

That is, at least one of tasks n + 2,… 2n − 1 is not assigned to machine 1. Suppose that
task n + j is the lowest indexed proper task that is not allocated to her. We decrease the
costs of her allocated proper tasks n + 1,… , n + j − 1 to 0, while increasing the cost
a−j+1 of her (unallocated) proper task n + j by an arbitrarily small amount. By Lemma
1, the allocation of machine 1 on the proper tasks n + 1,… , n + j does not change.
Hence we get a cost matrix of the form

Since task n + j is not allocated to machine 1, and the mechanism has finite approxi-
mation ratio, it must be allocated to either machine 2 or machine j + 1 . In either
case, we increase the cost of the dummy task of this machine from 0 to a−j+1 , while
decreasing the cost of her proper task n + j by an arbitrarily small amount. For
example, if machine 2 got task n + j , we would end up with

Similarly to the previous Case 1, the mechanism must still allocate the dummy task
to this machine, and given that the allocation does not change on the dummy task,
Lemma 1 implies that the allocation must also remain unchanged on the proper task
n + j . Finally, observe that the present allocation achieves a makespan of at least

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗1 ∞ ∞ ∞ ⋯ ∞
∗r ∗a−1∗a−2 ⋯∗a−n+2

∞
∗0 ∞ ∞ ⋯ ∞ 1 1 a−1 ⋯ a−n+3

∞ ∞
∗0 ∞ ⋯ ∞ ∞ 1 ∞ ⋯ ∞

∞ ∞ ∞
∗0 ⋯ ∞ ∞ ∞ a−1 ⋯ ∞

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

∞ ∞ ∞ ∞ ⋯ ∗0 ∞ ∞ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗0 ∗0 ⋯ a−j+1 ⋯ a−n+2

1 1 ⋯ a−j+2 ⋯ a−n+3

∞ 1 ⋯ ∞ ⋯ ∞

Ln ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

∞ ∞ ⋯ a−j+2 ⋯ ∞

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

∞ ∞ ⋯ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗0 ∞ ∞ ⋯ ∞ ⋯ ∞ 0 0 ⋯ a−j+1 ⋯ a−n+2

∞
∗a−j+1 ∞ ⋯ ∞ ⋯ ∞ 1 1 ⋯∗a−j+2 ⋯ a−n+3

∞ ∞
∗0 ⋯ ∞ ⋯ ∞ ∞ 1 ⋯ ∞ ⋯ ∞

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

∞ ∞ ∞ ⋯ ∗0 ⋯ ∞ ∞ ∞ ⋯ a−j+2 ⋯ ∞

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

∞ ∞ ∞ ⋯ ∞ ⋯ ∗0 ∞ ∞ ⋯ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

2906 Algorithmica (2021) 83:2895–2913

1 3

a−j+1 + a−j+2 , while a makespan of a−j+1 can be achieved by assigning proper task
n + j to machine 1 and proper task n + j� to machine j� + 1 , for j′ > j . Hence, this
case yields an approximation ratio of at least

3.3 Case 3: Machine 1 does not get task n + 1

By Lemma 2, machine 1 must receive proper task n + 2 . In this case, we decrease the
cost of her task n + 2 , from a−1 to 0, while increasing the cost r of her (unallocated) task
n + 1 by an arbitrarily small amount. Since by truthfulness, the allocation of machine 1
for these two tasks does not change, the allocation must be as below:

Since task n + 1 is not allocated to machine 1, and the mechanism has finite approxi-
mation ratio, it must be allocated to machine 2. We now increase the cost of the
dummy task of machine 2 from 0 to max{r, a−1} , while decreasing the cost of her
proper task n + 1 by an arbitrarily small amount. Similarly to Cases 1 and 2, the
mechanism must still allocate the dummy task to machine 2, and preserve the alloca-
tion of machine 2 on the proper task n + 1 . Thus, we get the allocation shown below:

This allocation achieves a makespan of at least 1 +max{r, a−1} , while a makespan
of max{r, a−1} can be achieved by assigning proper tasks n + 1, n + 2 to machine
1 and proper task n + j� to machine j� + 1 , for all j′ > 2 . Hence, this case yields an
approximation ratio of at least

a−j+1 + a−j+2

a−j+1
= 1 + a.

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

r ∗0 a−2 ⋯ a−n+2

∗1 1 a−1 ⋯ a−n+3

∞ 1 ∞ ⋯ ∞

Ln ∞ ∞ a−1 ⋯ ∞

⋮ ⋮ ⋮ ⋱ ⋮

∞ ∞ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗0 ∞ ∞ ∞ ⋯ ∞ r 0 a−2 ⋯ a−n+2

∞
∗ max{r, a−1} ∞ ∞ ⋯ ∞

∗1 1 a−1 ⋯ a−n+3

∞ ∞
∗0 ∞ ⋯ ⋮ ∞ 1 ∞ ⋯ ∞

∞ ∞ ∞
∗0 ⋯ ∞ ∞ ∞ a−1 ⋯ ∞

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

∞ ∞ ∞ ∞ ⋯ ∗0 ∞ ∞ ∞ ⋯ a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

1 +max{r, a−1}

max{r, a−1}
= 1 +min{r−1, a}.

2907

1 3

Algorithmica (2021) 83:2895–2913

3.4 Main Result

The three cases considered above give rise to possibly different approximation
ratios; our construction will then yield a lower bound equal to the smallest of
these ratios. First notice that Case 3 always gives a worse bound than Case 2: the
approximation ratio for the former is 1 +min{r−1, a} , whereas for the latter it is
1 + a . Thus we only have to consider the minimum between Cases 1 and 3.

Our goal then is to find a choice of r and a that achieves the largest possible
such value. We can formulate this as a nonlinear optimization problem on the
variables r and a. To simplify the exposition, we also consider an auxiliary vari-
able � , which will be set to the minimum of the approximation ratios:

This can be enforced by the constraints � ≤ 1 + r + a−1 +⋯ + a−n+2 , � ≤ 1 + r−1
and � ≤ 1 + a . Thus, our optimization problem becomes

Notice that any feasible solution of (NLP) gives rise to a lower bound on the approx-
imation ratio of truthful machine scheduling. In our next lemma, we characterize the
limiting optimal solution of the above optimization problem. Thus, the lower bound
achieved corresponds to the best possible lower bound using the general construc-
tion in this paper.

Lemma 3 An optimal solution to the optimization problem given by (NLP) is as
follows.

1. For n = 3, 4, 5 , choose � = 1 + a , r = 1

a
 , and a as the positive solution of the equa-

tion

� = min
{
1 + r + a−1 +⋯ + a−n+2, 1 +min{r−1, a}

}

= min
{
1 + r + a−1 +⋯ + a−n+2, 1 + r−1, 1 + a

}
.

(NLP)

sup 𝜌

s.t. 𝜌 ≤ 1 + r + a−1 +⋯ + a−n+2

𝜌 ≤ 1 + r−1

𝜌 ≤ 1 + a

0 < r < 1 < a

1 − r > a−1 − a−n+2

2

a
= a, for n = 3;

2

a
+

1

a2
= a, for n = 4;

2

a
+

1

a2
+

1

a3
= a, for n = 5.

2908 Algorithmica (2021) 83:2895–2913

1 3

2. For n ≥ 6 , choose � = 1 + a , r = 1 −
1

a
+

1

an−2
 , and a as the positive solution of

the equation

We defer the (admittedly technical) proof of Lemma 3 to Sect. 3.5 below; for the
time being, we show how this lemma allows us to prove our main result.

Theorem 2 No deterministic truthful mechanism for unrelated machine scheduling
can have an approximation ratio better than � ≈ 2.755 , where � is the (unique real)
solution of equation

For a restricted number of machines the lower bounds can be seen in Table 1.

Proof For n large enough we can use Case 2 of Lemma 3. In particular, taking the
limit of (5) as n → ∞ , we can ensure a lower bound of � = a + 1 , where a is the
(unique) real solution of equation

Performing the transformation a = � − 1 , and multiplying throughout by
(� − 1)(� − 2) , we get exactly (6).

For a fixed number of machines n, we can directly solve the equations given
by either Case 1 (n = 3, 4, 5) or Case 2 of Lemma 3 to derive the corresponding
value of a, for a lower bound of � = a + 1 . In particular, for n = 3, 4, 5 one gets
a =

√
2 ≈ 1.414 , a = � ≈ 1.618 (i.e., the golden ratio) and a ≈ 1.711 , respectively.

The values of � for up to n = 8 machines are given in Table 1. ◻

3.5 Proof of Lemma 3

For the remainder of the paper we focus on proving Lemma 3, that is, we character-
ize the limiting optimal solution of (NLP). We begin by introducing a new variable
z = a−1 , and restate the problem in terms of r, z, �.

(5)1 +
1

a2
+⋯ +

1

an−3
+

2

an−2
= a.

(6)(� − 1)(� − 2)2 = 1.

1 +

∞∑
i=2

1

ai
= 1 +

1

a(a − 1)
= a.

2909

1 3

Algorithmica (2021) 83:2895–2913

Notice that the function (r, z) ↦ min{1 + r + z +⋯ + zn−2, 1 + r−1, 1 + z−1} , defined
in the feasibility domain D = {(r, z) ∶ 0 < r, z < 1andr < 1 − z + zn−2} , has a con-
tinuous extension to the closure D̄ = {(r, z) ∶ 0 ≤ r, z ≤ 1 andr ≤ 1 − z + zn−2} ,
which is a compact set. By the extreme value theorem, the continuous extension
must achieve its supremum at some point in D̄ ; that is to say, the supremum of (7)
corresponds to the maximum of the relaxed problem,

which always exists.
Let (r, z, �) be an optimal solution. Our next step is to prove that � = 1 + z−1 . Sup-

pose otherwise; then, since � = min{1 + r + z +⋯ + zn−2, 1 + r−1, 1 + z−1} , one
must have that either

We will show that, under such circumstances, we could find a perturbed (r̃, z̃, �̃�) with
a strictly better objective value, thus yielding a contradiction. Our analysis proceeds
in three cases.

Case 1: r = 0 . This implies that 1 + r−1 = ∞ , and thus
𝜌 = 1 + r + z +⋯ + zn−2 < 1 + z−1 ≤ 1 + r−1 Also, since 1 − z + zn−2 > 0 for
0 ≤ z ≤ 1 , (8) is not tight, that is to say, r < 1 − z + zn−2 . Thus, we can increase r
by an arbitrarily small 𝜀 > 0 , thus yielding a feasible solution (r + �, z, � + �) with a
strictly better objective value.

Case 2: r > 0 and z = 1 . This cannot occur, since it would imply both

which would contradict (9).
Case 3: r > 0 and z < 1 . Take 𝜀 > 0 sufficiently small and perturb (r, z) to a

new pair (r − �, z + �) , so that r − 𝜀 > 0 , z + 𝜀 < 1 , and (9) remains valid. Notice
that, under this perturbation, r decreases, z increases, and r + z remains constant.
Hence, we do not leave the feasibility region; in particular, (8) can be written

(7)

sup 𝜌

s.t. 𝜌 ≤ 1 + r + z +⋯ + zn−2

𝜌 ≤ 1 + r−1

𝜌 ≤ 1 + z−1

0 < r, z < 1

r < 1 − z + zn−2

(8)

max �

s.t. � ≤ 1 + r + z +⋯ + zn−2

� ≤ 1 + r−1

� ≤ 1 + z−1

0 ≤ r, z ≤ 1

r ≤ 1 − z + zn−2

(9)1 + r + z +⋯ + zn−2 < 1 + z−1 or 1 + r−1 < 1 + z−1.

1 + r + z +⋯ + zn−2 ≥ 1 + z−1 and 1 + r−1 ≥ 1 + z−1,

2910 Algorithmica (2021) 83:2895–2913

1 3

as r + z ≤ 1 + zn−2 , and this inequality can only remain valid after the perturba-
tion. Finally, the perturbation increases both left-hand sides and decreases both
right-hand sides of (9). Therefore, the perturbed (r̃, z̃) gives rise to a strictly better
objective value.

We have thus deduced that � = 1 + z−1 in an optimal solution. This allows us to
restate the optimization problem,

Further rearranging, and removing unnecessary inequalities, yields

Next observe that we can remove the dependency on r by setting
r = min{z, 1 − z + zn−2} , as long as a feasible choice of r exists. Thus, we end up
with

Notice that (12) is redundant from 0 ≤ z ≤ 1 , and can be removed. Also, we can
rewrite (10) and (11) as

In both of the above inequalities, the left hand side is decreasing in z, from ∞ as
z → 0 to 1 at z = 1 , whereas the right hand side is increasing in z, from either 0 or 1

max 1 + z−1

s.t. 1 + z−1 ≤ 1 + r + z +⋯ + zn−2

1 + z−1 ≤ 1 + r−1

0 ≤ r, z ≤ 1

r ≤ 1 − z + zn−2

max 1 + z−1

s.t. r ≥ z−1 − z −⋯ − zn−2

r ≥ 0

r ≤ z

r ≤ 1 − z + zn−2

0 ≤ z ≤ 1

max 1 + z−1

(10)s.t. z−1 − z −⋯ − zn−2 ≤ z

(11)z−1 − z −⋯ − zn−2 ≤ 1 − z + zn−2

0 ≤ z ≤ 1

(12)0 ≤ 1 − z + zn−2

(13)
z−1 ≤ 2z + z2 +⋯ + zn−3 + zn−2, z−1 ≤ 1 + z2 +⋯ + zn−3 + 2zn−2.

2911

1 3

Algorithmica (2021) 83:2895–2913

at z = 0 to n − 1 at z = 1 . Hence, there are unique positive solutions zn,1 , zn,2 to the
equations

and moreover, (10) and (11) are equivalent to z ≥ zn,1 and z ≥ zn,2 , respectively. By
substituting z = 1 in the right hand sides of (13), we get n − 1 , which is strictly larger
than z−1 = 1 for n ≥ 3 . Therefore, we deduce that zn,1, zn,2 < 1 . Our goal is to maxi-
mize 1 + z−1 , which is the same as minimizing z. Since (10) and (11) are equivalent
to z ≥ zn,1 and z ≥ zn,2 , the minimum z is obtained by taking the maximum of zn,1 ,
zn,2.

We can finally convert back to a = z−1 . Since 0 < z < 1 , 1 < a < ∞ . We recover
r via r = min{z, 1 − z + zn−2} = min{a−1, 1 − a−1 + a−n+2} . Also, the reciprocals of
zn,1 , zn,2 correspond to the unique positive solutions an,1 , an,2 to the equations

and the maximum of zn,1 , zn,2 corresponds to the minimum of an,1 , an,2.
Now, for n = 3, 4, 5 , one can numerically check that an,1 < an,2 : we have

Thus, for n = 3, 4, 5 , the optimal solution corresponds to taking a such that
a = 2a−1 + a−2 +⋯ + a−n+2 ; and therefore, (10) is tight, so that r = a−1 . On the
other hand, for n = 6 , we have an,1 ≈ 1.755 > 1.739 ≈ an,2 ; and moreover, as we
increment n, the right hand side of (14) increases by an extra term a−n+2 whereas
the right hand side of (15) increases by 2a−n+2 − a−n+3 = a−n+2(2 − a) , which is
nonnegative: by plugging a = 2 in (15) we see that an,2 < 2 . Hence, the sequences
an,1 and an,2 are both increasing, and in particular an,2 converges to some value a

∞,2
which is the solution of

We can directly check that a
∞,2 = a6,1 ≈ 1.755 , by comparing the respective

equations:

z−1 = 2z + z2 +⋯ + zn−3 + zn−2;

z−1 = 1 + z2 +⋯ + zn−3 + 2zn−2;

(14)a = 2a−1 + a−2 +⋯ + a−n+2;

(15)a = 1 + a−2 +⋯ + a−n+3 + 2a−n+2;

a3,1 ≈ 1.414 a4,1 ≈ 1.618 a5,1 ≈ 1.711

a3,2 ≈ 1.618 a4,2 ≈ 1.696 a5,2 ≈ 1.725

a = 1 +

∞∑
i=2

1

ai
= 1 +

1

a(a − 1)
.

2912 Algorithmica (2021) 83:2895–2913

1 3

Thus, for n ≥ 6 , we have that an,2 < a
∞,2 = a6,1 ≤ an,1 . We conclude that the optimal

solution corresponds to taking a such that a = 1 + a−2 +⋯ + a−n+3 + 2a−n+2 ; this
means that (11) is tight, so that r = 1 − a−1 + a−n+2 . This finishes the proof.

References

 1. Ashlagi, I., Dobzinski, S., Lavi, R.: Optimal lower bounds for anonymous scheduling mechanisms.
Math. Oper. Res. 37(2), 244–258 (2012). https:// doi. org/ 10. 1287/ moor. 1110. 0534

 2. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verification for one-parameter agents.
J. Comput. Syst. Sci. 75(3), 190–211 (2009). https:// doi. org/ 10. 1016/j. jcss. 2008. 10. 001

 3. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proceedings of the 42nd
IEEE symposium on Foundations of Computer Science (FOCS), pp. 482–491, (2001). https:// doi. org/
10. 1109/ sfcs. 2001. 959924

 4. Chen, X., Donglei, D., Zuluaga, L.F.: Copula-based randomized mechanisms for truthful scheduling
on two unrelated machines. Theory Comput. Syst. 57(3), 753–781 (2015). https:// doi. org/ 10. 1007/
s00224- 014- 9601-5

 5. Chawla, S., Hartline, J.D., Malec, D., Sivan B.: Prior-independent mechanisms for scheduling. In: Pro-
ceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pp. 51–60, (2013).
https:// doi. org/ 10. 1145/ 24886 08. 24886 16

 6. Christodoulou, G., Kovács, A.: A deterministic truthful PTAS for scheduling related machines. SIAM
J. Comput. 42(4), 1572–1595 (2013). https:// doi. org/ 10. 1137/ 12086 6038

 7. Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional scheduling on unre-
lated machines. ACM Trans. Algorithms 6(2), 1–18 (2010). https:// doi. org/ 10. 1145/ 17218 37. 17218 54

 8. Christodoulou, G., Koutsoupias, E., Kovács A.: On the Nisan-Ronen conjecture for submodular val-
uations. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 1086–1096, (2020). https:// doi. org/ 10. 1145/ 33577 13. 33842 99

 9. Christodoulou, G., Koutsoupias, E., Kovács, A.: On the Nisan-Ronen conjecture. CoRR,
abs/2011.14434, 2020. [arXiv: 2011. 14434 v3]

 10. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. In: Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1163–
1170, (2007). https:// doi. org/ 10. 5555/ 12833 83. 12835 08

 11. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. Algorith-
mica 55(4), 729–740 (2009). https:// doi. org/ 10. 1007/ s00453- 008- 9165-3

 12. Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for
single-parameter agents. SIAM J. Comput. 40(3), 915–933 (2011). https:// doi. org/ 10. 1137/ 08074 4992

 13. Dobzinski, S., Shaulker, A.: Improved lower bounds for truthful scheduling. abs/2007.04362, 2020.
[arXiv: 2007. 04362 v2]

 14. Daskalakis, C., Weinberg, S.M.: Bayesian truthful mechanisms for job scheduling from bi-criterion
approximation algorithms. In: Proceedings of the 26th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1934–1952, (2015). https:// doi. org/ 10. 1137/1. 97816 11973 730. 130

 15. Epstein, L., Levin, A., Van Stee, R.: A unified approach to truthful scheduling on related machines.
Math. Oper. Res. 41(1), 332–351 (2016). https:// doi. org/ 10. 1287/ moor. 2015. 0730

 16. Filos-Ratsikas, A., Giannakopoulos, Y., Lazos, P.: The Pareto frontier of inefficiency in mechanism
design. In: Proceedings of the 15th Conference on Web and Internet Economics (WINE). pp. 186–199,
(2019). https:// doi. org/ 10. 1007/ 978-3- 030- 35389-6_ 14

a
∞,2 = 1 +

1

a
∞,2(a∞,2 − 1)

⇒ a
∞,2(a∞,2 − 1)2 = 1

⇒ a3
∞,2

− 2a2
∞,2

+ a
∞,2 − 1 = 0;

a6,1 = 2a−1
6,1

+ a−2
6,1

+ a−3
6,1

+ a−4
6,1

⇒ a5
6,1

− 2a3
6,1

− a2
6,1

− a6,1 = 1

⇒ (a3
6,1

− 2a2
6,1

+ a6,1 − 1)(a6,1 + 1)2 = 0.

https://doi.org/10.1287/moor.1110.0534
https://doi.org/10.1016/j.jcss.2008.10.001
https://doi.org/10.1109/sfcs.2001.959924
https://doi.org/10.1109/sfcs.2001.959924
https://doi.org/10.1007/s00224-014-9601-5
https://doi.org/10.1007/s00224-014-9601-5
https://doi.org/10.1145/2488608.2488616
https://doi.org/10.1137/120866038
https://doi.org/10.1145/1721837.1721854
https://doi.org/10.1145/3357713.3384299
http://arxiv.org/abs/2011.14434v3
https://doi.org/10.5555/1283383.1283508
https://doi.org/10.1007/s00453-008-9165-3
https://doi.org/10.1137/080744992
http://arxiv.org/abs/2007.04362v2
https://doi.org/10.1137/1.9781611973730.130
https://doi.org/10.1287/moor.2015.0730
https://doi.org/10.1007/978-3-030-35389-6_14

2913

1 3

Algorithmica (2021) 83:2895–2913

 17. Giannakopoulos, Y., Hammerl, A., Poças, D.: A new lower bound for deterministic truthful schedul-
ing. In: Proceedings of the 13th symposium on algorithmic game theory (SAGT), (2020). https:// doi.
org/ 10. 1007/ 978-3- 030- 57980-7_ 15

 18. Giannakopoulos, Y., Kyropoulou, M.: The VCG mechanism for Bayesian scheduling. ACM Trans.
Econ. Comput. 5(4), 19:1-19:16 (2017). https:// doi. org/ 10. 1145/ 31059 68

 19. Giannakopoulos, Y., Koutsoupias, E., Kyropoulou, M.: The anarchy of scheduling without money.
Theor. Comput. Sci 778, 19–32 (2019). https:// doi. org/ 10. 1016/j. tcs. 2019. 01. 022

 20. Hall, L.A.: Approximation algorithms for scheduling. In: Hochbaum, D.S. (ed.) Approximation Algo-
rithms for NP-hard Problems, pp. 1–45. PWS Publishing Company, Boston (1997)

 21. Koutsoupias, E.: Scheduling without payments. Theory Comput. Syst. 54(3), 375–387 (2014). https://
doi. org/ 10. 1007/ s00224- 013- 9473-0

 22. Koutsoupias, E., Vidali, A.: A lower bound of 1 + � for truthful scheduling mechanisms. In: Proceed-
ings of Mathematical Foundations of Computer Science (MFCS), pp. 454–464, (2007). https:// doi. org/
10. 1007/ 978-3- 540- 74456-6_ 41

 23. Koutsoupias, E., Vidali, A.: A lower bound of 1+� for truthful scheduling mechanisms. Algorithmica
66(1), 211–223 (2013). https:// doi. org/ 10. 1007/ s00453- 012- 9634-6

 24. Kuryatnikova, O., Vera, J.C.: New bounds for truthful scheduling on two unrelated selfish machines.
Theory Comput. Syst. 64(2), 199–226 (2019). https:// doi. org/ 10. 1007/ s00224- 019- 09927-x

 25. Lavi, R., Swamy, C.: Truthful mechanism design for multidimensional scheduling via cycle monoto-
nicity. Games Econ. Behav. 67(1), 99–124 (2009). https:// doi. org/ 10. 1016/j. geb. 2008. 08. 001

 26. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel
machines. Math. Program. 46(1), 259–271 (1990). https:// doi. org/ 10. 1007/ bf015 85745

 27. Lu P.: On 2-player randomized mechanisms for scheduling. In: Proceedings of the 5th international
workshop on internet and network economics (WINE), pp. 30–41, (2009). https:// doi. org/ 10. 1007/
978-3- 642- 10841-9_5

 28. Lu, P., Yu, C.: An improved randomized truthful mechanism for scheduling unrelated machines. In:
Proceedings of the 25th international symposium on theoretical aspects of computer science (STACS),
pp. 527–538, (2008). https:// doi. org/ 10. 4230/ LIPIcs. STACS. 2008. 1314

 29. Lu, P., Yu, C.: Randomized truthful mechanisms for scheduling unrelated machines. In: Proceedings
of the 4th International Workshop on Internet and Network Economics (WINE), pp. 402–413, (2008).
https:// doi. org/ 10. 1007/ 978-3- 540- 92185-1_ 46

 30. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. Games Econ. Behav. 110, 174–193
(2018). https:// doi. org/ 10. 1016/j. geb. 2018. 02. 001

 31. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan, N., Roughgarden,
T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory, chapter 9. Cambridge University Press,
Cambridge (2007). https:// doi. org/ 10. 1017/ cbo97 80511 800481. 011

 32. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: The 31st Annual ACM
symposium on Theory of Computing (STOC), pp. 129–140, (1999)

 33. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1/2), 166–196 (2001).
https:// doi. org/ 10. 1006/ game. 1999. 0790

 34. Penna, P., Ventre, C.: Optimal collusion-resistant mechanisms with verification. Games Econ. Behav.
86, 491–509 (2014). https:// doi. org/ 10. 1016/j. geb. 2012. 09. 002

 35. Saks M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings of
the 6th ACM Conference on Electronic Commerce (EC), pp. 286–293, (2005). https:// doi. org/ 10. 1145/
10640 09. 10640 40

 36. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2003). https:// doi. org/ 10. 1007/
978-3- 662- 04565-7

 37. Ventre, C.: Truthful optimization using mechanisms with verification. Theor. Comput. Sci. 518, 64–79
(2014). https:// doi. org/ 10. 1016/j. tcs. 2013. 07. 034

 38. Yu, C.: Truthful mechanisms for two-range-values variant of unrelated scheduling. Theor. Comput.
Sci. 410(21–23), 2196–2206 (2009). https:// doi. org/ 10. 1016/j. tcs. 2009. 02. 001

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-57980-7_15
https://doi.org/10.1007/978-3-030-57980-7_15
https://doi.org/10.1145/3105968
https://doi.org/10.1016/j.tcs.2019.01.022
https://doi.org/10.1007/s00224-013-9473-0
https://doi.org/10.1007/s00224-013-9473-0
https://doi.org/10.1007/978-3-540-74456-6_41
https://doi.org/10.1007/978-3-540-74456-6_41
https://doi.org/10.1007/s00453-012-9634-6
https://doi.org/10.1007/s00224-019-09927-x
https://doi.org/10.1016/j.geb.2008.08.001
https://doi.org/10.1007/bf01585745
https://doi.org/10.1007/978-3-642-10841-9_5
https://doi.org/10.1007/978-3-642-10841-9_5
https://doi.org/10.4230/LIPIcs.STACS.2008.1314
https://doi.org/10.1007/978-3-540-92185-1_46
https://doi.org/10.1016/j.geb.2018.02.001
https://doi.org/10.1017/cbo9780511800481.011
https://doi.org/10.1006/game.1999.0790
https://doi.org/10.1016/j.geb.2012.09.002
https://doi.org/10.1145/1064009.1064040
https://doi.org/10.1145/1064009.1064040
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1016/j.tcs.2013.07.034
https://doi.org/10.1016/j.tcs.2009.02.001

	A New Lower Bound for Deterministic Truthful Scheduling
	Abstract
	1 Introduction
	1.1 Our Results and Techniques

	2 Notation and Preliminaries
	2.1 Unrelated Machine Scheduling
	2.2 Truthfulness and Monotonicity
	2.3 Approximation ratio

	3 Lower Bound
	3.1 Case 1: Machine 1 gets all proper tasks
	3.2 Case 2: Machine 1 gets task  , but does not get all proper tasks
	3.3 Case 3: Machine 1 does not get task
	3.4 Main Result
	3.5 Proof of Lemma 3

	References

