
Algorithmica (2021) 83:2063–2095
https://doi.org/10.1007/s00453-021-00819-6

Producing Genomic Sequences after Genome Scaffolding
with Ambiguous Paths: Complexity, Approximation and
Lower Bounds

Tom Davot1 · Annie Chateau1 · Rodolphe Giroudeau1 ·Mathias Weller2 ·
Dorine Tabary3

Received: 16 May 2019 / Accepted: 5 March 2021 / Published online: 2 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Scaffolding is the final step in assembling Next Generation Sequencing data, in which
pre-assembled contiguous regions (”contigs”) are oriented and ordered using infor-
mation that links them (for example, mapping of paired-end reads). As the genome
of some species is highly repetitive, we allow placing some contigs multiple times,
thereby generalizing established computational models for this problem. We study
the subsequent problems induced by the translation of solutions of the model back
to actual sequences, proposing models and analyzing the complexity of the resulting
computational problems. We find both polynomial-time and NP-hard special cases
like planarity or bounded degree. Finally, we propose two polynomial-time approxi-
mation algorithms according to cut/weight score.

B Tom Davot
tom.davot@lirmm.fr

Annie Chateau
annie.chateau@lirmm.fr

Rodolphe Giroudeau
rodolphe.giroudeau@lirmm.fr

Mathias Weller
mathias.weller@u-pem.fr

Dorine Tabary
dorine.tabary@uha.fr

1 LIRMM - CNRS UMR, 5506 Montpellier, France

2 CNRS, LIGM, Paris, France

3 MIPS EA, 2332 Mulhouse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00819-6&domain=pdf
http://orcid.org/0000-0003-4203-5140

2064 Algorithmica (2021) 83:2063–2095

1 Introduction

1.1 Context andMotivation

Genomic data are of major importance in numerous aspects of research and applica-
tions in biology and computational biology. Their production is massively encouraged
by industrial and academic actors, who use them in various ways [26]. These data are
produced by so-called sequencers, who output (typicallymillions of) reads, that is, tiny
subsequences of DNA that need to be “assembled” in order to get the target genome.
The genome, once stabilized, is stored in huge databases and is made available to the
community for further analysis. A high-quality genome is of paramount importance to
the accuracy of further methods (such as genome comparison, gene inference, studies
on the order of given markers, etc). Thus, it is crucial to provide genomes as complete
and error-free as possible.

1.2 Assembly and Scaffolding Steps

The operation consisting in merging reads together to produce longer sequences is
called genome assembly. Many methods and tools propose to assemble Next Genera-
tion Sequencing (NGS) reads into genomes, metagenomes or transcriptomes, most of
them modeling sequences through graphs (assembly graphs, k-mer graphs, A-Bruijn
graphs, etc.) [5,8,21,23–25,27,37]. Those tools are compared and evaluated through
benchmarks of different origins [16,34]. A recent state-of-the art about genome assem-
bly has been compiled by Phillippy [29]. However, assembly software typically has
trouble dealing with repetitive (parts of the) genomes [22,32,33] and, therefore, output
a collection of “contiguous regions” (contigs), that is, large chunks of DNA cover-
ing most of the genome. Unfortunately, nearly all “known” genomes are in a thusly
fragmented state; some mammalian genomes reach hundreds of contigs per chromo-
some [1]. To overcome this issue, an additional step, called scaffolding, intends to
reduce the fragmentation using additional data (paired-end reads, long reads, phylo-
genetic information, etc.). To this end, scaffolding software computes the most likely
order and relative orientation of these contigs along the genome and, if possible, fills
gaps between them [10,12,14,30]. Scaffolding methods are also mainly based on var-
ious models of graphs, representing the way additional data link contigs. However,
as with reads, the target genome may contain multiple (inverted) copies of an entire
contig, like the well-known and described large inverted repeat region in chloroplast
genomes [20], and many scaffolders are incapable of handling these repeats. Recent
techniques use third-generation sequencing data [6] to resolve these repeats, but it
requires resequencing the large amount of available, highly fragmented genomes. A
possible way to solve the problem without resequencing is to deduce multiplicities of
contigs using external information (such as read-coverage) and take this multiplicity
into account when scaffolding.

123

Algorithmica (2021) 83:2063–2095 2065

Fig. 1 Walks in a scaffold graph (not drawn) give a solution graph (drawn) with mul-
tiplicities. Matching edges are bold. The only ambiguous path is (x, y). It is ambigu-
ous because it can be decomposed into {(. . . , u, x, y, z, . . .), (. . . , u, x, y, z, . . .), (. . . , v, x, y)} or
{(. . . , u, x, y), (. . . , u, x, y, z, . . .), (. . . , v, x, y, z, . . .)}. Removing all non-matching edges incident with
x or all non-matching edges incident with y destroys all ambiguous paths

Fig. 2 A schema illustrating solution ambiguity: from the solution graph alone, we cannot tell whether the
target genome contains (1) AATTTTGG and CCTTTAA or (2) AATTTTAA and CCTTTTGG. As methods
“ignore” and “clever” choose one of the two, they may produce wrong sequences. Method “brutal” removes
all four edges incident with the matching edges TTTT and “semi-brutal” removes either the left or the right
pair of edges. Note that this problem does not go away if we require the solution to be represented as a
collection of walks, as this collection will just represent one of the arbitrary choices

1.3 Linearization of the Solution

Scaffolding leads to a set of paths and cycles in a scaffolding graph. When a repeated
contig is involved in several paths corresponding to distinct parts of the genome, it
is impossible to distinguish between the copies, and paths collapse into non-linear
structures (see Figs. 1 and 2, requiring some definitions of Sect. 2). This solution
structure is informative per se and could be used as it comes, but it presents sequences
non-linearly. However, the standard representation of scaffolds are linear sequences
of nucleotides. Thus, we need to linearize the solution graph, that is, resolve the
ambiguities arising from the indistinguishability among the copies of each repeated
contig, This is the main subject of this work. It turns out that the most straight-forward
linearization strategies may produce chimeric sequences, and we show that the ones
avoiding chimeras in a parsimonious way are NP-hard to compute (for reasonable
scoring). In particular, our model is an edge-deletion problem (called Semi- Brutal

Cut) concentrated on extremities of ambiguities in a “solution graph” whose structure
influences the computational tractability of the problem (see Tables 1 and 2 for a
summary).

1.4 Organization of this Article

The next section is devoted to definitions and the descriptions of problems related
to scaffolding and linearization. In Sect. 3, the notion of unambiguous solutions is
explained. In Sect. 4, we describe several reduction rules yielding a simplified version

123

2066 Algorithmica (2021) 83:2063–2095

Table 1 Overview of complexity results for Semi- Brutal Cut

Topologies Type of cut Complexity

Complete bipartite Cut score Linear Theorem 4

Complete Theorem 5

Cobipartite Theorem 6

Trees All Theorem 2

� ≤ 2 Theorem 3

G′1 NP-hard Theorem 7

Supergraphs of G′ Weight score Corollary 2

Split graphs Cut score Theorem 8

No 2o(n) algorithm Corollary 3

(under ET H)

1Bipartite, planar and subcubic

of the linearization problem. The polynomial cases are developed in Sect. 5 whereas
the hardness cases are presented in Sect. 6. The non-approximability results are given
in Sect. 7 and, in the last section, several polynomial-time approximation algorithms
are developed.

2 Obtaining Sequences From Solution Graphs

We consider simple, loopless graphs. Let G be such a graph. We denote by V (G) and
E(G) the set of vertices and edges of G, respectively (or V and E if no ambiguity
occurs). The degree of a vertex v is the number of edges incident to v and is denoted by
degG(v). The set of neighbors of v is denoted by N (v). The maximum degree of G is
�(G). Consider a set of contigs C = {C1, . . . , Cn} and a set of weighted links between
contig extremities (obtained from paired-end reads mapping). This can be represented
by a graph G containing, for each contig Ci , vertices ui and vi representing the
extremities of Ci , an edge uivi representing the contig Ci (contig edge), and weighted
links between contig extremities (non-contig edges). The contig edges form a perfect
matching M∗ in G. In the following of the paper, we refer to them as matching edges.
The weight function ω is defined on non-matching edges and symbolizes, roughly, the
amount of confidence thatwehave in the link.Wecall such a graph a scaffold graph. For
thematching M∗ and a vertex u, we define M∗(u) as the unique vertex vwith uv ∈ M∗.
Slightly abusing notation, we sometimes consider graphs as sets of edges. Then, a
path p isalternatingwith respect to amatching M∗ if, for all verticesu of p, also M∗(u)

is a vertex of p (see Fig. 3a for an example). Then, a linear (circular) chromosome in
the target genome is reflected as an alternating path (cycle) inG. Onemight now ask for
the most parsimonious way (that is, discarding as little weight as possible) of inferring
a given number σp of linear (andσc of circular) chromosomes that, together,make up C.
This problemhas beenmodeled as the following, computationally hard problem [7,35].

123

Algorithmica (2021) 83:2063–2095 2067

Ta
bl
e
2

O
ve
rv
ie
w
of

lo
w
er

an
d
up

pe
r
bo

un
ds

fo
r
S
e
m
i-
B
r
u
t
a
l
C
u
t

To
po

lo
gi
es

Ty
pe

of
C
ut

H
yp

ot
he
si
s

L
ow

er
bo

un
d

U
pp

er
bo

un
d

G′
1

C
ut

sc
or
e

P
�=

N
P

1.
00

00
9…

T
he
or
em

9
4-
ap
pr
ox

T
he
or
em

15

Su
bc
ub

ic
1.
00

04
1…

T
he
or
em

12

�
≤

4
1.
00

69
…

T
he
or
em

14

�
≤

5
1.
01

28
…

�
≤

6
1.
01

38
…

G
en
er
al
,S

pl
it
gr
ap
hs

1.
36

0…
T
he
or
em

13

U
GC

2
−

ε

G
en
er
al

W
ei
gh

ts
co
re

1.
01

88
7…

T
he
or
em

10
2-
ap
pr
ox

T
he
or
em

16

P
�=

N
P

1.
01

51
5…

Su
bc
ub

ic
1.
00

01
7…

T
he
or
em

11

1
B
ip
ar
tit
e,
pl
an
ar

an
d
su
bc
ub

ic

123

2068 Algorithmica (2021) 83:2063–2095

Scaffolding (SCA)
Input: A scaffold graph (G, M∗, ω) and σp, σc, k ∈ N.
Question: Is there some S ⊆ E(G) \ M∗ such that S ∪ M∗ is a collection of

≤ σp alternating paths and ≤ σc alternating cycles and ω(S) ≥ k?

To work with multiplicities, we consider walks instead of paths. A length-� walk in
a graph G is a sequence (u0, u1, . . . , u�) of vertices in V (G) such that, for each two
consecutive vertices ui and ui+1 in the sequence, we have ui ui+1 ∈ E(G). The walk is
called closed if u0 = u� and it is called alternating with respect to a perfect matching
M∗ in G if (a)ui ui+1 ∈ M∗ if and only if i is even, and (b) � is even if and only if the
walk is closed. We will consider walks as multisets of edges. For any multiset W , let
χW (e) be the number of times that e occurs in W and let ω(W) := ∑

e∈W χW (e)ω(e).
When working with multiplicities, each matching edge e of the scaffold graph has a
multiplicity m′(e). For matching edges, this can be read from the data as described in
the introduction. Then, the scaffolding problem with multiplicities is the following:

Scaffolding with Multiplicities (MSCA)
Input: A scaffold graph (G, M∗, ω, m′) and σp, σc, k ∈ N.
Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed alternating

walks in (G, M∗, ω) such that each e ∈ M∗ occurs exactly m′(e) times in
walks of S and ω(S) ≥ k?

Obtaining solutions for MSCA is not the topic of this work. Instead, we consider a
solution forMSCA, that is, amultiset S of alternatingwalks inG such that each e ∈ M∗
occurs exactly m′(e) times in walks of S. From S, we reconstruct a solution graph 1

sol(S) := (G∗, M∗, ω, m) by “merging” all walks of S, that is, G∗ contains exactly
the edges e of G that occur in walks of S and m(e) = ∑

W∈S χW (e) is the number of
their occurrences. Note that the function m is defined on every edges (contrary to m′
which is only defined on the matching edges) and that for any matching edge e, we
have m(e) = m′(e). We also say that sol(S) is made up of S. This merge translates the
fact that copies of repeated contigs cannot be distinguished using information from
the scaffold graph. Any set of walks making up this solution graph is also a solution
of Scaffolding with Multiplicities with the same optimal score. The solution
graph is, in fact, a manner of representing all the optimal solutions. Any arbitrary
choice between them could lead to chimeric scaffolds.2 Indeed, the problem is that
sol is not necessarily injective. For example, suppose that the edge xy in Fig. 1 is
used in three walks, two of which contain the vertex z. As x is incident to different
non-matching edges, one of the three walks differs from the other two, but it cannot
be determined whether or not it is the same walk that avoids z. See also Fig. 2 for
an example with sequences and Fig. 3 for an example of a scaffold graph leading to
a solution graph with ambiguous sequences. This notion is captured in the following
definition.

1 Solution graphs differ from scaffold graphs in that the multiplicity function is defined on all edges and
not just on matching edges.
2 A sequences is called chimeric if it does not occur in the target genome, but is made up of chunks picked
from different chromosomes or regions of the genome.

123

Algorithmica (2021) 83:2063–2095 2069

(a) (b)

(c) (d)

Fig. 3 Example for a hypothetical genome consisting of the chromosomes ATCTT..CCT..TAA and
CCT..CATG: a scaffold graph (Fig. 3a), a solution graph (Fig. 3b), scaffolds after solving Semi- Brutal

Cut (Fig. 3c), and a direct linearization leading to chimeric solution (Fig. 3d)

Definition 1 Let A be an alternating path between u and v or an alternating cycle in a
solution graph. If all edges of A have the same multiplicity μ (that is, m(e) = μ for
all e ∈ A), then A is called μ-uniform (or simply uniform if μ is unknown). Further,

1. if A is an alternating μ-uniform cycle and μ > 1, or

123

2070 Algorithmica (2021) 83:2063–2095

2. if A is an alternating μ-uniform u-v-path and each of u and v is incident with a
non-matching edge of multiplicity strictly less than μ,

then A is called ambiguous.

An example of ambiguous path is depicted in Fig. 1. Roughly speaking, the problem
is that there aremanyways of pairing up sequences on each end of ambiguous paths and
that the number of cycles is undefined in ambiguous cycles. Interestingly, ambiguous
paths and cycles are enough to characterize ambiguity of solution graphs (proof in
Sect. 3).

Theorem 1 Let G∗ be a solution graph. Then, G∗ is made up of a unique multiset of
alternating walks if and only if G∗ does not contain ambiguous paths or cycles.

For biological applications, the representation as solution graph is not satisfying.
Instead, it is necessary to translate the solution into sequences. However, each solu-
tion S corresponds to a different collection of sequences which, without additional
external knowledge, are equally likely from a biological point of view. For a solution
graph G∗, we let sol−1(G∗) denotes the set of multisets S of walks with sol(S) = G∗.
Theorem 1 states that | sol−1(S)| = 1 if and only if G∗ does not contain ambiguous
paths or cycles. However, if the solution graph does contain ambiguous paths, we
propose the following strategies for its translation into sequences.

Ignore Choose an arbitrary multiset of walks making up G∗. In this case, we preserve
theweight of the solution, but there is noway to distinguish between the elements of
sol−1(G∗) and the arbitrary choice could lead to an erroneous solution, biologically
speaking. Indeed, there is a risk to produce a chimeric sequence, and this strategy
has to be put aside in a bioinformatic context.

Clever Choose walks that optimize some criterion (i.e. N503). This strategy consists
in finding, among all solutions of maximal weight in sol−1(G∗), one which maxi-
mizes this global criterion. Again, this strategy induces a risk to produce chimeric
sequences, and we will not consider it any further.

Brutal Isolate ambiguous paths by removing all non-matching edges incident to their
extremities. Remove one non-matching edge in each ambiguous cycle to transform
it into a uniform path.

Semi-brutal Choose a proper set of endpoints of ambiguous path and remove all non-
matching edges incident to it. Remove one non-matching edge in each ambiguous
cycle to transform it into a uniform path.

Wewill focus onmethods “brutal” and “semi-brutal” as the othermethodsmayproduce
chimeric sequences (See Fig. 2). However, since we remove edges, the final scaffold
may not have maximum weight among all uniquely linearizable solutions, and we
will discuss this point. Method “brutal” can be executed in polynomial time, but it
may decrease the weight of the solution drastically. Method “semi-brutal” forces us
to make a choice each time we encounter an ambiguous path, and we might want to
choose “wisely”, that is, destroy ambiguous paths in a way that optimizes a scoring.
Let v be either an extremity of an ambiguous path or a vertex of an ambiguous cycle,

3 N50 is a statistical measure on contig lengths: given a set of contigs, the N50 is defined as the sequence
length of the shortest contig at 50% of the total genome length.

123

Algorithmica (2021) 83:2063–2095 2071

we sometimes say “to cut v”, by which we mean removing all non-matching edges
incident to it, and in that case v is denoted as a cut. Thus, the following problem arises:

Semi- Brutal Cut (SBC)
Input: A solution graph (G∗, M∗, ω, m) and some k ∈ N.
Question: Is there a set X of cuts of G∗ which destroys all ambiguous paths and

the score of X is at most k?

In Sect. 4, we show how to simplify the problem statement. Notice that separating
Semi- Brutal Cut from Scaffolding with Multiplicities is necessary in order
to avoid the production of a chimeric sequence, as explained in Fig. 3. Several possible
scoring functions seem sensible to optimize:

Cut score. Pay one per cut: score(X) := |X |.
Path score. Pay one for each multiplicity that is cut:

score(X) := ∑{m(uv) | uv ∈ E(G∗) \ M∗ ∧ {u, v} ∩ X �= ∅}.
Weight score. Pay the total weight of edges that are cut:

score(X) := ∑{m(uv) · ω(uv) | uv ∈ E(G∗) \ M∗ ∧ {u, v} ∩ X �= ∅}.
Note that, from the perspective of computational complexity, the path score is a

special case of the weight score, since we can just set ω(e) = 1 for all edges e. Thus,
when saying “both scores” we refer to cut and weight score. Unfortunately, it turns
out that all these variants are NP-hard (see Sect. 6).

3 Unambiguous Solutions

We show in this section that the solution graph G∗ has to be free of ambiguous
paths and cycles in order to be uniquely deconstructable into walks that make up G∗.
To this end, we present a reduction rule whose application does not change unique
deconstructability (indeed, it does not change | sol−1(G∗)|).
Rule 1 Let (u, . . . , v) be aμ-uniform alternating path in
G∗ such that degG∗(u) = 1. Let vw be a non-matching
edge. Then, create the m(vw)-uniform alternating path
(u′, . . . , v′), create the edge v′w with multiplicity
m(vw), remove vw, and decrease the multiplicity of
(u, . . . , v) by m(vw).

u v

w

5
2 u v

w

3

u′ v′
2

2

Weprove the correctness of this rule, that is, the input solution graph can be uniquely
deconstructed if and only if the output solution graph can.

Proof Let G∗
1 be a solution graph and G∗

2 be the solution resulting of the application of
Rule 1 in G∗

1. Consider the function τ mapping multisets W of walks making up G∗
1

to multisets of walks in G∗
2. It works by replacing (u, . . . , v, w) (or (w, v, . . . , u)) in

m(vw)walks by (u′, . . . , v′, w) (or (w, v′, . . . , u′)). Clearly, no twodifferentmultisets
for G∗

1 map to the same multiset for G∗
2 and, thus, τ is injective.

To show that τ is surjective, suppose that there is a multiset W ′ of walks making
up G∗

2 that is not in the image of τ .

123

2072 Algorithmica (2021) 83:2063–2095

Note that any walk W ′ of W ′ containing (u′, . . . , v′) also contains (u′, . . . , v′, w)

(or (w, v′, . . . , u′)) as a sub-walk, as for any edge e in (u′, . . . , v′), m(e) = m(v′w)

and no walk starts with a non-matching edge. Thus, replacing (u′, . . . , v′, w) (or
(w, v′, . . . , u′)) by (u, . . . , v, w) (or (w, v, . . . , u)) in all walks of W ′ yields amultiset
W of walks making up G∗

1 and τ(W) = W ′.
Thus, τ is a bijection implying that the number of different multisets of walks

making up G∗
1 is equal to the number of multisets making up G∗

2.

Theorem 1 Let G∗ be a solution graph. Then, G∗ is made up of a unique multiset of
alternating walks if and only if G∗ does not contain ambiguous paths or cycles.

Proof “⇒”: Suppose that G∗ contains an ambiguous cycle c. Let μ′ > 1 ∈ N such
that c is aμ′-uniform alternating cycle. For each k ∈ N, let ck be the closed alternating
walk which passes k times across the edges of c. The two multisets of walks {cμ′ }
and {c1, cμ′−1} make up c, contradicting the uniqueness of such a multiset. Suppose
that G∗ contains an ambiguous path p = (v,w, . . . , x, y) and let W be a multiset of
walks that make up G∗. Let m ∈ N such that p is μ-uniform and let uv and yz be
non-matching edges incident to v and y, respectively, whose respective multiplicities
are strictly less than m. Thus, μ > 1.

Note that no walk W of W starts or ends with an inner edge e ∈ M∗ of p, since
otherwise, e is incident with a non-matching edge of p that is traversed strictly less
than μ times, as no walk of W starts or ends with a non-matching edge.

Thus, each time a walk of W traverses vw, it also traverses p.
Consider the graph G∗

W on the vertex set {(W1, W2) | (W1, p, W2) ∈ W} and
G∗
W contains an edge {(W1, W2), (W ′

1, W ′
2)} if and only if W1 = W ′

1 (“blue edge”) or
W2 = W ′

2 (“red edge”).
Note that sub-walks can be empty and no edge is blue and red at the same time,

as otherwise, its endpoints are equal (but there are no self-loops in G∗
W). Also note

that the blue edges form a transitive subgraph of G∗
W and, by symmetry, so do the red

edges. Since the multiplicity of uv in G∗ is non-zero and different from that of vw,
we know that G∗

W does not entirely consist of blue edges and, by symmetry, the same
can be said for red edges.

Thus, G∗
W is not a clique and, therefore, there are pairs (W1, W2) and (W ′

1, W ′
2)

such that (a) W = (W1, p, W2) and W ′ = (W ′
1, p, W ′

2) are (not necessarily distinct)
walks inW and (b) W1 �= W ′

1 and W2 �= W ′
2. If W �= W ′, then the result of removing

W and W ′ fromW and inserting (W1, p, W ′
2) and (W ′

1, p, W2) is another multiset of
walks making up G∗. Thus, W ′ = W = (X1, p, X2, p, X3) for walks X1, X2, X3 in
G∗. But then, the result of removing W from W and inserting (X1, p, X3) and the
closed walk consisting of p and X2 is another multiset of walks making up G∗. In
both cases, W is not unique.

“⇐”: Let G∗ be free of ambiguous paths or cycles. We suppose that Rule 1 is
applied on G∗. If G∗ is empty, then G∗ has a unique multiset of walks making it
up. If G∗ contains a uniform alternating cycle c, then since c is not ambiguous, c
is 1-uniform. Hence, the unique multiset making up c is {c}. Otherwise, let μ ∈ N

and let p = (u, . . . , v) be a maximal, μ-uniform, alternating path in G∗ (as p may
consist of a single edge and G∗ is not empty, p exists). Note that all inner vertices
of p have degree two in G∗ and suppose without loss of generality that degGS(u) ≤

123

Algorithmica (2021) 83:2063–2095 2073

degG∗(v). If degG∗(u) = 1 and degG∗(v) ≥ 2, then Rule 1 applies. Thus, suppose
degG∗(u) > 1 and degG∗(v) > 1. Then, by maximality of p, both u and v are incident
to a non-matching edgewithmultiplicity strictly less thanm and, thus, p is ambiguous,
contradicting the assumption that G∗ is free of ambiguous paths. Hence, degG∗(u) = 1
and degG∗(v) = 1, and p is isolated. The multiset consisting of μ (u, . . . , v)-walks is
the unique multiset making up p.

4 Reduction Rules

In this section, we present a set of reduction rules that simplify instances of Semi-
Brutal Cut. First, let us deal with some trivial cases to remove them from
consideration.

Rule 2 Let c be an isolated,μ-uniform cycle in (G∗, M∗, ω, m). Ifμ = 1, then remove
c. Otherwise, cut a vertex incident to the lightest non-matching edge of c.

Rule 3 Remove all isolated, uniform, alternating paths from (G∗, M∗, ω, m).

Rule 4 Let uv ∈ M∗ be a matching edge that does not occur in ambiguous paths and
let u and v have degree at least two.

Then, remove uv, add new vertices u′ and v′ and add the matching edges uv′ and
vu′ with multiplicity m(uv).

Correctness of Rule 4 follows immediately from the fact that no ambiguous path
is changed, created or destroyed by applying the rule. Furthermore, since both u′ and
v′ have degree one in the result G ′ of applying the rule, all solutions X for G ′ avoid
them and, since all scoring functions only depend on the non-matching edges incident
to the solution, all solutions maintain their scores.

Rule 5 Let μ ∈ N and let p = (u, . . . , v) be a
μ-uniform, alternating path in G∗. If uv is a non-
matching edge of G∗, then create two matching edges
u1u2 and v1v2 with multiplicity m(uv), add the non-
matching edges uu1 and vv1 with weight 0 and mul-
tiplicity m(uv), and remove uv (and, for the weight
score, decrease k by ω(uv)). In any case, remove all
inner vertices of p and create a matching edge uv with
multiplicity μ.

u x y v

3 3 3

1

u2 u1 v1 v2

1 1

u v

31 1

Proof (Correctness of Rule 5) First, since no inner vertex of p can be cut, replacing p
by a single matching edge does not change the score (cut- or weight-) of a solution. It
remains to show correctness for the case that uv exists in G∗. Then m(uv) < μ since
the input graph does not contain isolated cycles and, thus, p is ambiguous. Thus, any
solution X for G∗ contains u or v. In the output graph, p is still ambiguous and either
u1u or v1v must be removed in any solution. Further, u1 and v1 can be replaced by

123

2074 Algorithmica (2021) 83:2063–2095

u and v, respectively, in any solution for the output graph. Thus, X is a solution in
the input graph if and only if it is a solution in the output graph. X has the same cut
score in both input and output graph. Under the weight score, score(X) decreases by
ω(uv).

Finally, note that all reduction rules can be applied in linear time. Further, it turns
out that all matching edges of G∗ either occur in ambiguous paths or are incident with
a degree-one vertex. In the latter case, we call the matching edge clean.

Proposition 1 Let (G∗, M∗, ω, m) be reduced with respect to the presented reduction
rules. Then, it is free of ambiguous paths if and only if all its edges are clean.

Proof “⇒”: To show the contraposition, let uv be an edge that is not clean, that is, u
has a neighbor x �= v and v has a neighbor r �= u. If m(ux), m(vr) < m(uv), then
uv is an ambiguous path, proving the claim. Otherwise, since m(vx), m(ur) ≤ m(uv)

by definition of solution graph, m(vx) = m(uv) or m(ur) = m(uv). By symmetry,
suppose that m(vx) = m(uv) and let y := M∗(x). By definition of solution graph,
m(xy) ≥ m(vx). If m(xy) = m(vx), then p = (y, x, v, u) is an m(uv)-uniform,
alternating path inG∗, contradicting reducednesswith respect toRule 5. Thus, suppose
m(xy) > m(vx). But then, any ambiguous path containing uv must end at v and, since
v is not incident to an edge of multiplicity strictly less than m(uv), we know that uv

is not contained in any ambiguous paths, contradicting reducedness with respect to
Rule 4.

“⇐”: To show the contraposition, let p = (u, . . . , v) be an ambiguous path in G∗
and note that both u and v are incident to a non-matching edge. But then, clearly,
uM∗(u) cannot be clean in G∗.

Given Proposition 1, the multiplicity function is no longer important since the
presence of a vertex of degree one in a matching edge suffices to determine if the
matching edge is ambiguous. Semi- Brutal Cut can be now described as follows.

Semi- Brutal Cut (SBC)
Input: A solution graph (G∗, M∗, ω) and some k ∈ N.
Question: Is there a set X of cuts of G∗ which makes all the matching edge

clean and the score of X is at most k?

5 Polynomial Cases

In the following, we consider special solution graphs for which Semi- Brutal Cut

can be solved in polynomial time for all of the presented scoring functions. Recall that
the goal is to clean all matching edges in G∗ (see Proposition 1).

5.1 Sparse Graphs

We first show that SBC is polynomial for both scores into some classes of sparse
graphs. First, we consider the class of trees. We suppose that the tree G∗ is rooted in

123

Algorithmica (2021) 83:2063–2095 2075

an extremity of an ambiguous edge. Under the weight score, we can thus formulate
the following dynamic program.

Let x be a vertex, Tx is the subgraph induced by the subtree rooted at x and M∗(x).
For any vertex x , a table entry c(x) represents the minimum score of a solution below
x in which x has degree one in Tx and c̄(x) represents the minimum score of a solution
below x in which M∗(x) has degree one in Tx . For convenience, we set ω(e) = 0
for all matching edge e. If x is a leaf of G∗ then, clearly, c(x) = c̄(x) = 0. For any
non-leaf x , we set

c(x) =
∑

y∈Children(x)

min(c̄(y), c(y)) + ω(xy)

c̄(x) =
∑

y∈Children(x)

{
c(y) if y = M∗(x)

min(c̄(y), c(y) + ω(xy)) otherwise

Lemma 1 Those costs c(x) and c̄(x) represent respectively the minimum weight score
of a semi-brutal cut in the subtree rooted at x when x or M∗(x) has degree one in Tx .

Notice that it may hapend that both extremities of a matching edge have degree one
in an optimal solution, and in this case, we have c(x) = c̄(x).

Proof We prove it by induction on the subtree’s height. Let x be any vertex in the tree.
Let h(x) denote the height of the subtree rooted at x . When h(x) = 0, x is a leaf and
a solution of Semi- Brutal Cut in Tx consists in cutting nothing, thus the cost is
zero. Suppose now that for any vertex x ′ with height h(x ′) < h(x), c(x ′) and c̄(x ′)
satisfy the lemma’s property. We prove that:

1. any solution X of Semi- Brutal Cut in Tx has score(X) ≥ c(x) if x has degree
one in Tx after applying X , or score(X) ≥ c̄(x) if M∗(x) has degree one in Tx ,
and

2. there exists a solution Sx reaching the costs c(x) and c̄(x).

1. Let X be a solution of Semi- Brutal Cut in Tx . We denote by X y the restriction
of X to Ty , for any children y of x . X y is trivially a solution of Semi- Brutal
Cut in Ty , whose height is strictly less than h(x). By induction hypothesis,
score(X y) ≥ c(y) if all non-matching edges incident to y in Ty are removed
in X y , or score(X y) ≥ c̄(y) otherwise.

– Suppose that all non-matching edges incident to x in Tx are removed in X .
Thus, the weight score of X contains the total weight of these non-matching
edges plus the score of any subsolution X y :

score(X) =
∑

y∈Children(x)}
score(X y) + ω(xy)

Using the previous equation and induction hypothesis, we have score(X) ≥
c(x).

123

2076 Algorithmica (2021) 83:2063–2095

– Suppose that all non-matching edges incident to M∗(x) in Tx are removed
after applying X . For any child y, the weight score of X contains the score of
X y plus ω(xy) if y belongs to X y :

score(X) =
∑

y∈Children(x)

{
score(X y) + ω(xy) if y ∈ X y

score(X y) otherwise

We distinguish M∗(x) amongst children of x .
– If M∗(x) is in Children(x), then necessarily all incident edges to it has
to be removed. In this case, score(X M∗(x)) ≥ c(M∗(x)), by induction
hypothesis.

– For any other children y of x , either y has degree one in X y , yielding a
cost c(y) + ω(xy), or M∗(y) has degree one in X y , yielding a cost c̄(y).

Hence, using the previous equation and induction hypothesis, we have
score(X) ≥ c̄(x).

2. Now we show that is possible to build two solutions Xx and X̄x of Semi- Brutal
Cut in Tx with weight c(x) and c̄(x), respectively. Considering a child y of x , we
denote by X y a solution of Semi- Brutal Cut in Ty , where all non-matching
edge incident to y in Ty are remoed, with weight score c(y), and X̄ y a solution
of Semi- Brutal Cut in Ty , where all non-matching edge incident to M∗(y)

are removed in Ty , with weight score c̄(y). Such solutions do exist, by induction
hypothesis.

– We define the set Xx by:

Xx = {x} ∪
⋃

y∈Children(x)

{
X y if c(y) < c̄(y)

X̄ y otherwise.

Since X y and X̄ y are solutions of Semi- Brutal Cut in Ty , they clean all
ambiguous edges below y. Removing all non-matching edges incident to x
cleans the ambiguous edge x M∗(x) in Tx . Thus, Xx is a solution of Semi-
Brutal Cut in Tx , with weight score c(x).

– We define the set X̄x by:

X̄x =
⋃

y∈Children(x)

{
X y if c(y) + ω(xy) ≤ c̄(y) or y = M∗(x)

X̄ y otherwise

Since the X y and X̄ y are solutions of Semi- Brutal Cut in Ty , they clean
all ambiguous edges below y. If M∗(x) is below x , a solution removing all
non-matching edges incident to M∗(x) in TM∗(x) cleans x M∗(x). For any other
children of x , either y belongs to Xx or M∗(y) has degree one, thus Xx cleans
yM∗(y) in Tx . Thus X̄x is a solution of Semi- Brutal Cut in Tx , with weight
score c̄.

123

Algorithmica (2021) 83:2063–2095 2077

Fig. 4 Example of an application of the dynamic programming algorithm with matching edges (bold, gray
if already clean) and weights (numbers in boxes). Left: the input solution graph G∗. Middle: costs (c̄, c)
after the bottom-up step. Bold figures indicate the backtracking path. For example, the minimal cost at the
root is a non-cutting cost 11, which comes from the cutting cost 11 of its matching-child and non-cutting
costs or cutting costs of non-matching children. Right: resulting solution graph after the backtracking step,
which is made up of six paths

Corollary 1 Using a bottom-up step computing these costs, setting the score of the root
as the minimum between c(r) and c̄(r) and backtracking those costs to decide which
vertices should be cut leads to an optimal solution in linear time and space.

An example of the application of this dynamic program can be found in Fig. 4. While
presented here for the weight score, we remark that this dynamic program can be
modified to work for the cut score. For that we add a third table entry representing the
fact x is not cut and all neighbors of x except M∗(x) are in the solution. Hence, the
formulation of the dynamic program is the following with n(x) = 0 if x is a leaf of
G∗.

c(x) =
∑

y∈Children(x)

min(c̄(y), c(y), n(y)) + 1

c̄(x) =
∑

y∈Children(x)

{
min(c(y), n(y)) if y = M∗(x)

min(c̄(y), c(y)) otherwise

n(x) =
∑

y∈Children(x)

{
c̄(y) if y = M∗(x)

c(y) otherwise

Since we can easily adapt the proof of Lemma 1 to the cut score formulation, we
let the reader check the correctness of this dynamic program.

Theorem 2 On trees, Semi- Brutal Cut can be solved in linear time and space for
both scoring functions.

As a side note, we remark that Semi- Brutal Cut can be solved in linear time
if �(G∗) = 2. To this end, we just need to check the two possibilities of removing
every second non-matching edge in every cycle. Since each cycle can be worked on

123

2078 Algorithmica (2021) 83:2063–2095

individually and independently, this can be done in linear time. What remains can be
solved in linear time with Theorem 2.

Theorem 3 Semi- Brutal Cut can be solved in linear time on a collection of paths
and cycles (�(G∗) = 2) under both scores.

5.2 Dense Graphs

In some classes of dense graphs, we can show that SBC is polynomial under the cut
score. Concerning the weight score, Corollary 2 states that SBC is NP-complete for
most dense classes (Sect. 6.1). For the following proofs, note that any graph can be
solved with |M∗| cuts by simply cutting an arbitrary extremity of all matching edges.

Theorem 4 Semi- Brutal Cut can be solved in linear time for cut score on complete
bipartite graphs.

Proof Note that, if G∗ is bipartite, both cells of the partition have equal size since M∗
is a bijection between the two. Let Kn,n be a complete bipartite graph (with n := |M∗|
and suppose that n ≥ 2 as, otherwise, matching edges are already clean.

Then, it is sufficient to cut all but one vertex of any of the two cells of the bipartition
to turn all matching edges clean.

To show that n − 1 cuts are also necessary, assume that there is a solution X with
cut score n −2. Since there are n matching edges in G∗, there are two matching edges
uv and xy that do not intersect X . Since G∗ is complete bipartite, (u, v, x, y) forms
an alternating cycle in G∗, so neither uv nor xy are clean.

Theorem 5 Semi- Brutal Cut can be solved in linear time under cut score on com-
plete graphs.

Proof If any solution does not contain a cut in a matching edge uv, then either all
neighbors of u or all neighbors v are cut, which implies a solution with a cut score of
|V (G∗)| − 2 > |M∗|. Hence, |M∗| cuts are necessary.
Theorem 6 Semi- Brutal Cut can be solved in linear time under cut score on co-
bipartite4 graphs.

Proof In this proof, suppose that |M∗| > 2 as, otherwise, the claim trivially holds. Let
(V1, V2) denote a bipartition of the vertices of G∗ into two cliques.

First, assume that (G∗, M∗, ω) has a solution X with |X | = |M∗| − 2 cuts. Then,
there are matching edges uv and xy that avoid X . If either V1 or V2 intersects uvxy
in at least three vertices, say u, v, and x , then uv is not clean. Thus, uvxy intersects
both cells in exactly two vertices.

If one cell contains ux and the other vy, then uvxy induces a cycle, and neither uv

nor xy are clean. Thus, without loss of generality, let uv ⊆ V1 and xy ⊆ V2. But then,
all other vertices have to be cut, implying |X | ≥ 2(|M∗| − 2) > |M∗| − 2.

Since we know that no solution X with |X | ≤ |M∗| − 2 exists and a solution X
with |X | = |M∗| is trivial, we just have to check if G∗ contains a matching edge uv

such that we can cut the vertices of N (u) − v instead of cutting u or v. We show

4 A graph is co-bipartite if its vertices can be partitioned into two cliques.

123

Algorithmica (2021) 83:2063–2095 2079

Fig. 5 Matching edges are bold. Left: variable gadget cxi linked to the clause gadgets q1, q3 and qm , m /∈
{1, 3}, where xi occurs positively in C1 and C3 and negatively in Cm . Right: clause gadget corresponding
to the clause C� =(x1 ∨ x2 ∨ x3)

that G∗ can be solved with |M∗| − 1 cuts if and only if there is a matching edge uv

with |N (u)| ≤ |M∗| and there are no matching edges xy ⊆ N (u). Since this can be
checked in linear time, the theorem follows.

“⇒”: If there is a solution X for G∗ with |X | = |M∗| − 1, then there is a matching
edge uv avoiding X and all other matching edges intersect X in exactly one extremity.
By symmetry, let N (u) − v ⊆ X , implying |N (u)| ≤ |M∗| and, as each matching
edge except uv contains only a single cut, no matching edge xy is included in X and,
thus, in N (u).

“⇐”: Let Q be a set containing an arbitrary extremity of each xy ∈ M∗ with
xy ∩ N (u) = ∅ and let X := Q ∪ N (u) − v. Then, |Q| = |M∗| − |N (u)| and
|X | = |Q| + |N (u)| − 1 = |M∗| − 1. Towards a contradiction, assume that X is not a
solution, that is, some matching edge xy ∈ M∗ is not clean. Then, xy = uv since all
other matching edges contain a cut. But uv is clean since N (u) − v ⊆ X .

6 Computational Hardness

6.1 Hardness in Sparse Graphs

While Semi- Brutal Cut is known to be NP-complete for both cut and weight
score [36], we extend the cut-score hardness to planar, bipartite, subcubic graphs.

Theorem 7 Semi- Brutal Cut is NP-complete under both scores, even if the graph
is planar, bipartite and subcubic.

To this end, we reduce the classic NP-complete 3- SAT [13] problem to SBC.

3- Satisfiability (3- SAT)
Input: A boolean formula ϕ in conjunctive normal form where each clause

contains exactly three literals.
Question: Is there a satisfying assignment β for ϕ?

123

2080 Algorithmica (2021) 83:2063–2095

Construction 1 Let ϕ be an instance of 3- SAT with n variables x1, . . . , xn and m
clauses C1, . . . , Cm. For each variable xi , let ψi be the list of indices � such that C�

contains xi and |ψi | is the number of occurrences of xi in ϕ. We construct the following
solution graph (G∗, M∗, ω) with a proper 2-coloring of G∗ (see Fig. 5).

– For each xi , we construct a cycle ci on the vertex set
⋃

j≤|ψi |{ui
j , ui

j , v
i
j , v

i
j } such

that, for all j ≤ |ψi |,
– ui

j u
i
j , v

i
jv

i
j ∈ M∗, and

– the vertices ui
j and vi

j are blue and the vertices ui
j and vi

j are red.

– For each C�, we construct an alternating 6-cycle q� on the vertex set
⋃

j≤3{r�
j , b�

j }
such that, for all j ≤ 3, {r�

j , b�
j } ∈ M∗, and r�

j is red and b�
j is blue.

– For each clause C� and each j ≤ 3, let xi be the j th literal of C� and let t be such
that C� is the t th clause in which xi occurs. Then,

– create two singles matching edges ai
t ai

t and ci
t c

i
t , where ai

t and ci
t are blue and

ai
t and ci

t are red,
– if xi is a positive literal, introduce the edges r�

j ui
t , b�

j a
i
t and ui

t c
i
t , and

– if xi is a negative literal, introduce the edges b�
j u

i
t , r�

j a
�
j and ui

t c
i
t .

– Each non-matching edge has weight one, except the edges ui
t c

i
t and ui

t c
i
t which

have weight zero.

Note that each matching edge except the a�
i a�

i and ci
t c

i
t is ambiguous. Clearly,

Construction 1 can be carried out in polynomial time. Further, the resulting graph G∗
is bipartite and �(G∗) = 3. We first use Construction 1 on a restricted subcase of 3-
SAT defined below.

Monotone 3- Satisfiability (Monotone 3- SAT)
Input: A boolean formula ϕ in conjunctive normal form where

each clause contains exactly three positive literals or three
negative literals.

Question: Is there a satisfying assignment β for ϕ?

In order to prove Theorem 7, we use the following properties of Construction 1,
yielding a “canonical” set of cuts, if the input formula is monotone.

Lemma 2 Let X ⊆ V (G∗) be a set of cuts cleaning all ambiguous edges in
(G∗, M∗, ω), let ci be a variable gadget and let q� be a clause gadget. Let s = 1
under the cut score and s = 2 under the weight score. We suppose that we start by
cutting the vertices in the variable gadgets, and then we cut the vertices in the clause
gadgets. There is a set X ′ of cuts with score(X ′) ≤ score(X) that also cleans all
ambiguous edges and

(a) score(X ′ ∩ V (ci)) ≥ s|ψi | and score(X ′ ∩ V (q�)) ≥ 2,
(b) if score(X ′∩V (ci)) = s|ψi |, then X ′∩V (ci) is either

⋃
j≤|ψi |{ui

j } or
⋃

j≤|ψi |{ui
j }

(in X ′, cuts are only on positive sides or only on negative sides),

123

Algorithmica (2021) 83:2063–2095 2081

Fig. 6 A cut of size two in q�

when one incident edge to q� is
cut. Dashed edges and vertices
are part of the cut

(c) score(X ′ ∩V (q�)) = 2 if and only if X ′ contains a vertex adjacent to q� (the score
is two in a clause gadget iff it has been isolated by a cut in an adjacent variable
gadget, meaning that the variable satisfies the clause).

Proof (a): For each j ≤ |ψi |, we need to remove two edges to clean the ambigu-
ous edges {ui

j , ui
j }, which can be done only by cutting at least one vertex among

{vi
j−1, ui

j , ui
j , v

i
j }. Thus, we need to remove at least 2|ψi | edges with at least |ψi |

cuts, that is score(X ′ ∩ V (ci)) ≥ s|ψ j |. In the clause q�, we need to remove at least
two edges in the inner cycles, which can be done by cutting at least two vertices. Thus,
we have score(X ′ ∩ V (q�)) ≥ 2.
(b): Note that cutting all vertices in either

⋃
j≤|ψi |{ui

j } or
⋃

j≤|ψi |{ui
j } suffices to

remove all ambiguous path in ci . In that case, we have score(X ′ ∩ V (ci)) = s|ψi |. If
X contains some ui

j and does not contain ui
j+1 for some j , then we need a extra cut

to linearize {vi
j , v

i
j } (and analogously for ui

j) which will increase the score by one.

Hence, if |X ∩ V (ci)| = s|ψi |, we can suppose that X contains either
⋃

j≤|ψi |{ui
j } or⋃

j≤|ψi |{ui
j }. If X contains a cut in some vi

j or some vi
j , then since the edge {vi

j , v
i
j }

is already clean by a cut in {ui
j , ui

j+1}, we can can remove the cut in X ′.
(c): We need to remove at least two non-zero weighted edges from the inner cycle

of C�. Suppose that all literals of C� occurs positively. Suppose by symmetry that
{b�

1, b�
2} ∈ X ′. If the leaving edge incident to r�

3 is cut, then all ambiguous edges of C�

are destroyed. Otherwise, we need to remove one more non-zero weighted edge from
q� which must add another cut (see Fig. 6).

We are now able to prove Theorem 7.

Proof of Theorem 7 Recall that Monotone 3- SAT remains NP-complete if the
input formula is planar [2] and, in this case, since each gadget is planar and the
edges between the clause gadget and the variable gadget can be placed in any order on
the gadgets, the graph produced by Construction 1 can also be assumed to be planar.
Since, clearly, Semi- Brutal Cut ∈ NP , it remains to show that Construction 1 is
correct, that is ϕ is satisfiable if and only if the solution graph (G∗, M∗, ω) resulting
from Construction 1 can be linearized with a score of (3s + 2)m.

“⇒”: Let β be a satisfying assignment for ϕ. Then, for each variable xi and for
all j ≤ |ψi |, we cut the vertices ui

j if β(xi) = 1 and the vertices ui
j otherwise. As

123

2082 Algorithmica (2021) 83:2063–2095

β is satisfying, this removes at least one edge adjacent to each clause gadget. Thus,
according to Lemma 2(c), we can clean the matching edges in each clause gadget q j

with a score of two. Since we also cut either the vertices ui
j or the vertices ui

j for each
vertex gadget, we conclude that all matching edges of the result are clean, and we have
a score of 2m + ∑

i s|ψi | = (2 + 3s)m.
“⇐”: Let X ⊆ V be the set of vertices such that cutting each vertex of X destroys

all ambiguous paths in (G∗, M∗, ω) and score(X) = (3s + 2)m. According to
Lemma 2(a), each variable gadget has a score of s|ψi | and each clause gadget has
a score of two. Moreover, by Lemma 2(b), for each variable gadget ci , we can sup-
pose that X ∩ V (ci) equals

⋃
j≤|ψi |{ui

j } or
⋃

j≤|ψi |{ui
j }. In the former case, we set

β(xi) = 1 and, in the latter, we set β(xi) = 0.
To show that β satisfies ϕ, assume that there is a clause C� that is not satisfied by

β. Then, none of the edges incident to q� is cut which, by Lemma 2(c), contradicts the
fact that the score of q� is equal to two.

6.2 Hardness in Dense Graphs

We can see that if we add some zero weighted non-matching edges on a solution graph,
it does not change the weight score of an optimal solution. This observation leads to
the following result.

Corollary 2 Let G be a class of graphs such that, for any planar, subcubic, bipartite
graph G, G contains a supergraph of G. Then, Semi- Brutal Cut is NP-complete
on G under the weight score.

Concerning the cut score, in some classes of dense graphs, SBC can be solved
in polynomial time (see Sect. 5.2). However, we show in this part an exam-
ple of a class of dense graphs where computing an optimal solution for SBC
is NP-hard under the cut score. A graph G is a split graph if we can parti-
tion its vertices into two sets I and C inducing an independent set and a clique,
respectively. We show that SBC is hard to compute in split graphs by doing
a reduction from the well-known Vertex Cover problem, defined below.

Vertex Cover (VC)
Input: An undirected graph G and a number k ∈ N.
Question: Is there a V ′ ⊆ V (G) with |V ′| ≤ k intersecting all e ∈ E(G)?

Construction 2 Let G be an instance of Vertex Cover, we suppose that G is con-
nected. We construct the following solution graph G∗ as follows:

1. for each vertex v of G, construct a matching edge v1v2,
2. for each edge uv of G, add the non-matching edges v1u2 and u1v2, and
3. for each pair of vertices (u, v), add the edge u1v1.

The set of v1 (resp. v2) vertices form a clique (resp. is independent). Thus, G∗ is a
split graph. Note that all matching edges are ambiguous.

Theorem 8 Semi- Brutal Cut is NP-hard under the cut score on split graphs.

123

Algorithmica (2021) 83:2063–2095 2083

Fig. 7 Construction 2 transforms left instance into right instance, where gray vertices form an independent
set and white vertices form a clique

Proof We show that G has a size-k vertex cover if and only if using k cuts suffices to
clean all matching edges in G∗.

“⇒”: Let V ′ be a vertex cover of G. For each vertex v ∈ V ′, cut the vertex v1 in
G∗. Suppose that there is a matching edge v1v2 that is not clean. There is an edge v2u1
that is not removed by a cut. Then, neither of the two vertices u and v belong to V ′
and the edge uv is not covered in G, contradicting the fact that V ′ is a vertex cover.

“⇐”: Let X be a solution of SBC under the cut score for G∗. For each v ∈ V (G),
suppose that v2 /∈ X , since otherwise, X ′ = (X \ {v2}) ∪ {v1} is also a solution and
|X ′| ≤ |X |. For each vertex v1 ∈ X , add the vertex v in the vertex cover of G. If
there is an edge uv that is not covered, then {u1, u2, v1, v2} ∪ X = ∅, and since
(u1, u2, v1, v2) is a cycle, the matching edges u1u2 and v1v2 are not clean.

Recall that Vertex Cover cannot be solved in 2o(n) time unless ETH5 fails [17].
Since Construction 2 is linear on vertices and edges, we obtain the following result.

Corollary 3 There is no algorithm solving Semi- Brutal Cut with cut score in 2o(n)

in split graphs.

7 Non-approximability

In this section, we prove approximation lower bounds for Semi- Brutal Cut. First
recall the definition of L-reduction between two hard problems � and �′, described
by Papadimitriou and Yannakakis [28]. This reduction consists of polynomial-time
computable functions f and g such that, for each instance x of �, f (x) is an instance
of �′ and for each feasible solution y′ for f (x), g(y′) is a feasible solution for x .
Moreover, let �′′ ∈ {�,�′}, we denote by O PT�′′ the value of an optimal solution
of �′′ and by val�′′(y′′) the value of a solution y′′ of an instance of �′′. There are
constants α, β > 0 such that:

1. O PT�′(f (x)) ≤ αO PT�(x) and
2. |val�(g(y′)) − O PT�(x)| ≤ β|val�′(y′) − O PT�′(f (x))|.

5 The (widely believed) “Exponential Time Hypothesis” (ETH) states that the boolean satisfyability prob-
lem (SAT) cannot be solved in 2o(n) time, where n is the number of variables of the input formula.

123

2084 Algorithmica (2021) 83:2063–2095

Fig. 8 Matching edges are bold. Example of variable gadget ri which occurs two times positively and two
times negatively in Construction 1 (Left) and Construction 3 (Right). The cut-vertices are dashed. We can
see that we need to add a cut in Construction 3 in order to remove all the edges leaving the gadget

7.1 Reduction fromMAX 3-SAT(4)

In the following, we present an L-reduction from the classical problemMax 3-SAT(4)
to Semi- Brutal Cut under the cut score.

Max 3-SAT(4)
Input: A boolean formula ϕ in exact

3-CNF where every variable occurs
in four clauses.

Task: Find an assignment that satisfies
a maximum number of clauses.

Our goal is to reuse Construction 1 to reduceMax 3-SAT(4), such that each unsat-
isfied clause in φ causes an additional cut in G∗. Indeed, if there is no optimal solution
with a score of 5m in G∗ (that is, if ϕ can not be satisfied), thenwe can spend an “extra”
cut per unsatisfied clause to solve G∗. The inverse, however, does not hold if there
is a variable xi that occurs two times positively and two times negatively. Indeed, by
cutting five vertices in Ci , we may be able to satisfy the four clauses where xi occurs
(see Fig. 8). Thus, in the following, we modify Construction 1 slightly.

Construction 3 We reuse Construction 1 and change some variable gadgets. Let xi be
a variable which two times positively and two times negatively. Before building the
gadget ci , we modify the clauses order in ψi by interleaving positive and negative
clauses. Other variable gadgets remain unchanged.

The resulting graph G∗ is bipartite and subcubic. An example of a variable gadget
defined in Construction 3 is given in Fig. 8. Notice that, if we do not take in account
the weight on the edges, all clauses are symmetric. Thus, the properties (a) and (c) of
Lemma 2 hold. We can add the following property:

Lemma 3 Let X ⊆ V (G∗) be an optimal set of cuts that cleans all matching edges in
(G∗, M∗, ω), let ci be a variable gadget. There is a set X ′ of cuts with score(X ′) =
score(X) that also clean all matching edges, and X ′ ∩ V (ci) is either

⋃
j≤|ψi |{ui

j } or
⋃

j≤|ψi |{ui
j }.

123

Algorithmica (2021) 83:2063–2095 2085

Proof Recall that X covers the edges of M∗ and, by Lemma 2(a), score(X ∩V (ci)) ≥
|ψi |. By symmetry, suppose that xi occurs mostly positively in ϕ.

If xi occurs four times positively, then replacing X ∩ V (ci) by
⋃

j≤|ψi |{ui
j } in X

yields a solution X ′ as sought.
Thus, suppose that xi occurs three times positively. Let C� be the clause where xi

occurs negatively and let z denote the neighbor of ui
j in c�. If score(X ∩V (ci)) > |ψi |,

then replacing X ∩ ci by
⋃

j≤|ψi |{ui
j } plus z yields a solution X ′ as sought.

Finally, if score(X∩V (ci)) = |ψi |, then X already corresponds to X ′ as, otherwise,
some ambiguous edge vi

jv
i
j is not clean.

Suppose now that xi occurs two times positively and two times negatively. Note that
one cut in ri ′ is not enough to clean all ambiguous edges and cutting either the vertices
{ui ′

1 , ui ′
2 } or the vertices {ui ′

1 , ui ′
2 } cleans all matching edges in the variable gadget.

Further if X cuts {vi ′
1 , vi ′

2 } or {vi ′
1 , vi ′

2 }, then we can instead cut {ui ′
1 , ui ′

2 } or {ui ′
1 , ui ′

2 },
respectively, without creating ambiguous edges. Suppose without loss of generality
that {ui ′

1 , ui ′
2 } ⊆ X . Suppose further that there is some u ∈ X ∩ V (ri ′) \ {ui ′

1 , ui ′
2 }.

Then, there is some clause gadget qn linked to u since, otherwise, X \ {u} is also a
solution, contradicting optimality of X . Since all matching edges of ri ′ are already
clean, the cut can only remove the edge between u and qn . Let z be the neighbor of u
in qn . In X , the two non-matching edges incident to z must be removed, otherwise it
contradicts the optimality of X . Thus, we can replace u by its neighbor in qn without
changing the score of X . By swapping the one or two cuts in X ∩ V (ri ′) \ {ui ′

1 , ui ′
2 },

we obtain X ′ ∩ V (r j) = {ui ′
1 , ui ′

2 }.
Theorem 9 It is NP-hard to approximate Semi- Brutal Cut to any factor better than
1 + 7(ε4−1)

41·ε4 under the cut score, even on subcubic bipartite graphs.

Proof. First, note that it is NP-hard to approximate Max 3-SAT(4) to any factor
ε4 ≤ 1.00052, unless P = NP [4]. Recall that in an optimal solution of Max

3-SAT(4), at least 7/8 of the clauses are satisfied [15], yielding

O PT (ϕ) ≥ 7m/8. (1)

To show that Construction 3 constitutes an L-reduction, let f be a function transform-
ing any instance ϕ of Max 3-SAT(4) into an instance I of Semi- Brutal Cut as
above, let X be a feasible solution for I corresponding to the properties of Lemma 2(a),
Lemma 2(c) and Lemma 3, and let g be the function that transforms X into an assign-
ment as constructed in the proof of Theorem 7: each variable xi is set to true if X cuts
ui

j for all j , and false, otherwise. By Lemma 3, for each clause gadget q� without an
adjacent vertex in X , the “extra” cut occurs in q�.

Hence, we can linearize I with onemore cut for each of the atmost p[m/8 unsatisfied
clauses in ϕ. Thus,

O PT (I) ≤ 5m + m/8
(1)≤ 41/7O PT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not enough
for Theorem 9) is that an approximate solution to SBC might spend extra cuts in vari-

123

2086 Algorithmica (2021) 83:2063–2095

able gadgets in order to “change the assignment” of a variable xi mid-way. However,
since each variable occurs at most four times, this only happens for variables that
occur two times positively and two times negatively.

Now, with our modification to Construction 1 and by Lemma 3, we can observe
that each extra cut occurs in an unsatisfied clause gadget. Thus, the number of satisfied
clauses of ϕ and the clause gadgets in which we have to spend extra cuts add up to m.
Hence,

6m = val(g(X)) + val(X) = O PT (I) + O PT (ϕ) (3)

Thus, we constructed an L-reduction with α = 41/7, β = 1 and,
since ε4 · val(g(X)) ≤ O PT (ϕ), we conclude

val(X)
(3)= O PT (I) + O PT (ϕ) − val(g(X))

≥ O PT (I) + (1 − 1/ε4) · O PT (I)

(2)≥
(

1 + 7 (ε4 − 1)

41 · ε4

)

· O PT (I)

Note that, by losing the bipartition property, we can use Construction 3 to show
that it is hard to approximate SBC on subcubic graphs to any factor better than
(7(ε4−1))/(65·ε4)) ≈ 1.000056 using [31]. However, we show in the next subsection
how to obtain a better lower bound under the weight score for such graphs.

7.2 Reduction fromMAX 2-SAT

We now present an L-reductions from the classical problem MAX 2- SAT to Semi-

Brutal Cut under both scores.

MAX 2- SAT (Max 2-SAT)
Input: A boolean formula ϕ in conjunctive

normal form where each clause Ci contains
exactly two variables.

Question: Find an assignment maximizing the
number of satisfied clauses.

Let ϕ be an instance of MAX 2- SAT with n variables x1, . . . , xn and m clauses
C1, . . . , Cm . For each variable xi , let ψi be the list of indices � such that C� contains
xi . Let (G∗, M∗, ω) be a solution graph and u be a vertex of G∗, we denote by ω(u)

the sum of the weight of the non-matching edges incident to u.

Construction 4 Let ϕ be an instance of MAX 2- SAT. We construct the following
solution graph (G∗, M∗, ω).

1. For each xi , construct a matching edge ui ui (variable edge).
2. For each clause C j , construct a matching edge v1j v

2
j (clause edge).

123

Algorithmica (2021) 83:2063–2095 2087

Fig. 9 The graph produced by
Construction 4 and on input
ϕ = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧
(¬x1 ∨ ¬x2). Matching edges
are bold and all non-matching
edges have weight one

3. For each clause C j , let xk be the t th variable of the clause. If xk occurs positively
in the clause, then add the edge vt

j uk and ω(vt
j uk) = 1. Otherwise, add the edge

vt
j uk with ω(vt

j uk) = 1.

4. Finally, for each variable matching edge ui ui , add a matching edge si
1si

2. Ifω(ui) <

ω(ui), add an edge si
1u1 with ω(si

1u1) = ω(ui) − ω(ui). If ω(ui) > ω(ui), add
an edge si

1u1 with ω(si
1u1) = ω(ui) − ω(ui).

Wecan suppose that no variable occurs exclusively positively or exclusively negatively
in the formula, thus each matching edge except the si

1si
2 is ambiguous. An example

of a graph produced by Construction 4 is given in Fig. 9. A normalized solution is
a solution that contains exactly one cut per ambiguous edge. The following lemma
shows that we can transform any solution into a normalized solution with the same
weight score.

Lemma 4 Let X be a solution of a solution graph (G∗, M∗, ω). There is a normalized
solution X ′ with score(X ′) ≤ score(X) under the weight score.

Proof Since X is a solution of SBC, after removing all non-matching edges incident
to a cut, all ambiguous edges are clean. We construct X ′ by choosing one degree-one
vertex per ambiguous edge. Clearly, X ′ is a solution and since each edge removed by
X ′ is also removed by X , we have score(X ′) ≤ score(X).

In this, we suppose that each solution is normalized under the weight score. If a
cut in a clause edge v1j v

2
j is adjacent to a cut in a variable edge, then we say that the

clause edge v1j v
2
j is satisfied. If no extremity of a clause edge v1j v

2
j is adjacent to a cut

in a variable edge, we say that the clause edge v1j v
2
j is unsatisfied.

Definition 2 Letϕ be aMAX 2- SAT instance, let (G∗, M∗, ω) be the graph produced
by Construction 4, and let X be a normalized solution for it. An assignment S for ϕ

corresponds to X if, for all matching edges ui ui , we have ui ∈ X ⇒ S(xi) = 1 and
ui ∈ X ⇒ S(xi) = 0.

Lemma 5 Let X be a normalized solution for (G∗, M∗, ω), produced by Construc-
tion 4 and let S be its corresponding assignment. Let m′ be the number of unsatisfied
clauses in S. There is a solution X ′ such that score(X ′) = 2m + m′ ≤ score(X) and
S is the corresponding assignment of X ′.

Proof Suppose there is a clause edge v1j v
2
j that is neither satisfied nor unsatisfied.

Thus, there is a cut vertex adjacent to v1j v
2
j that is not adjacent to the cut vertex of

123

2088 Algorithmica (2021) 83:2063–2095

v1j v
2
j . Suppose that the cut vertex in v1j v

2
j is v1j . We can take X ′ = X ∪ {v2j } − v1j .

Since the edge incident to v2j is already removed, we have score(X ′) ≤ score(X). S
is the corresponding assignment of X ′ since we do not change the cuts in the variable
edges. Hence, we can suppose that X ′ does not contain any clause edge that is neither
satisfied nor unsatisfied.

Let ui ui be a variable edge. We have ω(ui) = ω(ui) = |ψi |. Thus, the sum of the
weight removed by the cuts in the variable edges is equal to

∑
i≤n |ψi | = 2m. Let

v1j v
2
j be a clause edge. If v1j v

2
j is satisfied, then its cut does not increase the weight of

X ′ since the non-matching edge incident to this cut is already removed by the cut in the
variable edge. If v1j v

2
j is unsatisfied, then the cut in {v1j , v2j } increases by one theweight

of X ′. Since the sum of weight removed by the cuts in the unsatisfied clause-edges
correspond to the number of unsatisfied clause, we have score(X ′) = 2m + m′.

Theorem 10 Semi- Brutal Cut cannot be approximated to any factor better than
1 + ε2−1

3·ε2 under the weight score.

We have ε2 ≈ 1.06, if the Unique Game Conjecture is true [19] and ε2 = 22/21,
if P �= NP [15].

Proof. First, we can see that a randomassignment satisfies each clausewith probability
3/4 and hence it is not hard to find an assignment that satisfies 3m/4 clauses, yielding

O PT (ϕ) ≥ 3m/4. (4)

Similarly to proof of Theorem 9, we show that Construction 4 constitutes an L-
reduction. Let f be a function transforming any instance ϕ of MAX 2- SAT into an
instance I of Semi- Brutal Cut as above. Let X be a feasible normalized solution for
I corresponding to the property of Lemma 5. And let g be the function that construct
the assignment of ϕ which corresponds to X . Hence,

O PT (I) ≤ 2m + m/4
(4)≤ 3 · O PT (ϕ), (5)

and by Lemma 5, we have

3m = val(g(X)) + val(X) = O PT (I) + O PT (ϕ). (6)

Thus, we constructed an L-reduction with α = 3 and β = 1. Since ε2 · val(g(X)) <

O PT (ϕ), we conclude

val(X) ≥
(

1 + ε2 − 1

3 · ε2

)

· O PT (I)

MAX 2- SAT(3) is restricted subproblem of MAX 2- SAT where the number
of occurrences of the variable is bounded by three. Berman and Karpinski [3] show
that MAX 2- SAT(3) cannot be approximated to a factor better than ε′

2 ≤ 2012/2011

123

Algorithmica (2021) 83:2063–2095 2089

unless P = NP . In that subproblem, the maximum degree of the graph provided by
Construction 4 is restricted to three. Using the same arguments as for Theorem 10, we
obtain:

Theorem 11 It isNP-hard to approximateSemi- Brutal Cutwithin any ratio better

than (1 + ε′
2−1
3·ε′

2
) under the weight score, even on subcubic graphs.

Samewise, we can use the inapproximability result on MAX 2- SAT(3) to build a
L-reduction to Semi- Brutal Cut under the cut score on subcubic graphs.

Theorem 12 It isNP-hard to approximateSemi- Brutal Cutwithin any ratio better

than (1 + 9(ε′
2−1)

11·ε′
2

) under the cut score, even on subcubic graphs.

Proof. Let (G∗, M∗, ω) be a solution graph produced by Construction 4 and let X
be an optimal solution in (G∗, M∗, ω) for SBC under the cut score. Let ui ui be a
variable edge, suppose by symmetry that xi occurs two times positively and one time
negatively. Suppose that ui ui does not contain a cut. If the neighbor vt ′

j ′ of ui belongs

to X , thenwe can swap vt ′
j ′ and ui in X . Otherwise, the two neighbors vt

j and vt ′
j ′ belong

to X and then the set of cuts X ′ = X ∪ {ui } \ {vt
j , v

t ′
j ′ } is also a solution of SBC and

|X ′| < |X |, contradicting the optimality of X . Thus, each variable edge contains at
least one cut. Each cut in a variable edge can clean up to two clause edges. If a variable
edge contains two cuts, then one of these cuts only serves to clean one clause edge
v1j v

2
j , and then we can transfer this cut into v1j v

2
j . Hence, we can suppose that each

variable edge contains exactly one cut. Then, the number of cuts in the clause edges
corresponds to the number of unsatisfied clauses in the corresponding assignment of
X . Note that, if a set of cuts is not optimal, it is easy to transform it into another set
with a better cut-score and such that each variable edge contains exactly one cut. The
number of variables in a MAX 2- SAT(3) is equal to 2m/3. Let f denote the function
that transforms any instance ϕ of MAX 2- SAT(3) into an instance of Semi- Brutal
Cut as in Construction 4. Let X be a solution of SBC in I that contains exactly one cut
per variable edge and let g be the function that construct the assignment of ϕ which
corresponds to X . We have,

O PT (I) ≤ 2m/3 + m/4
(4)≤ 11/9 · O PT (ϕ), (7)

and

5m

3
= val(g(X)) + val(X) = O PT (I) + O PT (ϕ). (8)

We constructed an L-reduction with α = 11/9 and β = 1 and we obtain:

val(X) ≥
(

1 + 9
(
ε′
2 − 1

)

11 · ε′
2

)

· O PT (I)

123

2090 Algorithmica (2021) 83:2063–2095

7.3 Strict Reduction fromVERTEX COVER

Strict-reduction is the simplest type of approximation-preserving reduction [9]. In a
strict reduction, the approximation ratio ρ�′ of a solution y to an instance f (x) of a
problem�′ must be atmost as good as the approximation ratioρ� of the corresponding
solution g(y) to instance x of problem �. In other words:

ρ�′(f (x), y) ≤ ρ�(x, g(y)).

The proof of Theorem 8 shows that Construction 2 is a strict reduction from Vertex

Cover, which leads to the following result.

Theorem 13 If Vertex Cover can not be approximated to a ratio better than ρ,
then neither can Semi- Brutal Cut on split graphs under the cut score.

In order to find an inapproximability result on the general case for SBC under the
cut score, we reduce Vertex Cover problem, defined in Sect. 6.2 and we use the
following construction.

Construction 5 Let G be an instance of VC, create a solution graph G∗ as follows: for
each v ∈ V (G), add a new path vv1v2v3 and set vv1, v2v3 ∈ M∗. Call the resulting
graph G∗ and note that E(G∗) ⊇ E(G) and the ambiguous edges of G∗ are exactly
the edges vv1 and �(G∗) = �(G) + 1.

Theorem 14 If Vertex Cover can not be approximated to a ratio better than ρ on
graphs with bounded degree �, then neither can Semi- Brutal Cut on graph with
bounded degree � + 1 under the cut score.

Proof We show that G has a size-k vertex cover if and only if using k cuts suffices to
clean all matching edges in G∗.

“⇒”: Let V ′ be a vertex-cover of G. Then, cutting all vertices of V ′ in G∗ leaves
no edge of E(G). The remaining graph is a collection of alternating paths of length
three and, thus, all matching edges are clean.

“⇐”: Let X be a solution of SBC under the cut score for G∗.
Let Y := {v | {v, v1, v2, v3} ∩ X �= ∅} and note that |Y | ≤ |X |. Now, if Y is not

a vertex cover of G, then there is an edge uv ∈ E(G) such that Y ∩ uv = ∅. Then,
none of {u3, u2, u1, u, v, v1, v2, v3} is cut, implying that neither uu1 nor vv1 is clean,
contradicting the fact that X is a solution of SBC.

Hence, Construction 5 is a strict reduction, transferring non-approximability results
of Vertex Cover to Semi- Brutal Cut under the cut score.

Vertex Cover is also non-approximable within a factor of 1.3606 under NP �=
P [11] and within a factor 2− ε, ε > 0 under UGC [18]. Let G be an instance of VC,
the maximum degree of the graph produced by Construction 5 is equal to �(G) + 1.
Berman andKarpinski [3] show that if the instance ofVChas amaximumdegree three,
four or five, thenVC can note be approximated to a ratio better than 145/144, 79/78, 74/73,
respectively. Thus, this results hold for SBC under the cut score, for solution graphs
with maximum degree four, five and six, respectively.

123

Algorithmica (2021) 83:2063–2095 2091

Fig. 10 A forbidden path xuvy (left) and the result of cutting all its vertices (right)

8 Approximable Cases

In this section, we propose one greedy approximation algorithm for each score.
Cut score: Our approximation algorithm works similarly to the well-known classical
2-approximation for Vertex Cover that just returns the extremities of any maximal
matching. Contrary to Vertex Cover, our forbidden structures are not edges, but
ambiguous edges. Thus, we have to consider length-four paths containing an ambigu-
ous edge, and we will cut all four of their vertices. In the following, we call a path
xuvy forbidden if xu and vy are non-matching edges and uv is an ambiguous edge
(see Fig. 10).

Lemma 6 Let Q be a maximal packing of vertex-disjoint forbidden paths in (G∗, M∗,
ω), let X be any solution for SBC under the cut score on (G∗, M∗, ω).

Then, (a) cutting all vertices of Q cleans all ambiguous edges in G∗and (b) X ∩ p �=
∅ for all p ∈ Q.

Proof (a): Let H be the result of cutting all vertices of Q in G∗. Towards a contra-
diction, assume that H contains an ambiguous edge uv. By definition, there are two
non-matching edges xu and vy in H . But then, the path xuvy is a forbidden path,
contradicting the maximality of Q.

(b): Let H be the result of cutting all vertices of X in G∗. Let xuvy ∈ Q be a
forbidden path in (G∗, M∗, ω) and assume towards a contradiction that X∩xuvy = ∅.
Then, none of the edges of xuvy are removed when cutting the vertices of X , that is,
xuvy survives in H . Then, however, uv is ambiguous in H , contradicting X being a
solution for (G∗, M∗, ω).

With Lemma 6, we can show that any maximal packing of forbidden paths constitutes
a 4-approximation for Semi- Brutal Cut under the cut score.

Theorem 15 A 4-approximate solution to Semi- Brutal Cut under the cut score can
be computed in linear time. This ratio is tight.

Proof A packing of forbidden paths in (G∗, M∗, ω) can be computed by scanning all
matching edges uv and, if uv is ambiguous, then xuvy is a forbidden path for any
non-matching edges xu and vy. By removing x , u, v, and y from G∗, we make sure
that the resulting packing is vertex-disjoint. Thus, such a packing can be produced in
linear time.

Let Q be any maximal vertex-disjoint packing of forbidden paths in (G∗, M∗, ω).
By Lemma 6(a), the vertices of Q form a solution for SBC. To show that this solution

123

2092 Algorithmica (2021) 83:2063–2095

Fig. 11 Tightness of the
approximation ratio for the
cut-score greedy algorithm.
Matching edges are bold. The
approximation algorithm for the
cut score provides a solution
{v1, v2, u2, u3} whereas an
optimal solution is {v2} u1

v1

u2

v2

u3

v3

Algorithm 1: Greedy Algorithm for the weight score
Data: A solution graph (G∗, M∗, ω).
Result: A set X ⊆ E \ M∗ whose removal cleans all matching edges.

1 X ← ∅ ;
2 A ← list of extremities of ambiguous edges;
3 while A �= ∅ do
4 u ← argminx∈A ωX (x);
5 remove the two extremities of the ambiguous edge containing u from A;
6 add all non-matching edges incident with u to X ;

7 return X ;

x y u v

Fig. 12 Tightness of the approximation ratio for the weight-score greedy algorithm. Edges are bold (∈ M∗),
solid (∈ Xopt) or dashed (∈ X) and all edges have weight one. Thus, ω(X) = 2 and ω(Xopt) = 1

is 4-approximate, consider any optimal solution X for (G∗, M∗, ω). By Lemma 6(b),
X intersects each path in Q. Since the paths in Q are mutually vertex disjoint and
each of them contains exactly four vertices, we conclude that Q contains at most four
times as many vertices as X . The ratio is tight, as shown by Fig. 11.

Weight score: Let (G∗, M∗, ω) be a solution graph and let X ⊆ E \ M∗ be a set of
non-matching edges. For a vertex v, we let ωX (v) denote the sum of the weights of
all non-matching edges incident with v that are not in X . More formally, we define
ωX (v) := ∑

e∈E\(M∗∪X) ω(e) · χe(v), where χe(v) := |e ∩ {x}| is the characteristic
function of e. The principle of our algorithm is to successively visit each ambiguous
edge and cut the edges incident to the extremity with the lowest value of wS , where S
contains all previously cut edges.

Theorem 16 In O((|V | + |E |) log |V |) time, Algorithm 1 computes a solution for
Semi- Brutal Cut under the weight score with an approximation ratio of 2 and this
ratio is tight.

Proof Since each time some extremities are removed from A, the ambiguous edge
they belonged to has been cleaned, there are no more ambiguous edge remaining
when A = ∅. Thus, the set X that is returned is indeed a solution.

Let Xopt be an optimal solution. Letuv denote the ambiguous edge ofG∗ considered
in step i of Algorithm 1, let Xi be the set of edges added to X in step i . If Xopt

contains all non-matching edges incident to u, then let Qi contains them. Otherwise,
Xopt contains all non-matching edges incident to v, and we let Qi contain those.

123

Algorithmica (2021) 83:2063–2095 2093

Then, ω(Xi) ≤ ω(Qi) for all i and, thus, ω(X) ≤ ∑
i ω(Qi). Further,

⋃
i Qi =

Xopt and, since each edge of G∗ occurs in at most two sets Qi , we conclude∑
i ω(Qi) ≤ 2ω(Xopt). The claimed approximation factor of two follows and, by

Fig. 12, it is tight.
Concerning the running time, the list of ambiguous edges is build in O(|E | +

|V |) with a depth-first search algorithm. The sorting of this list can be done in
O(|V | log |V |). Maintaining the sorting of the list at each cut yields a O((|V | +
|E |) log |V |).
Corollary 4 Semi- Brutal Cut is APX -complete under both scores.

9 Conclusion

In this paper, we present complexity and approximation results obtained for a theoret-
ical problem occurring in modern-day production of genomic sequences. We consider
two variants of the problem, depending on the optimality criterion (number of cuts vs.
weight of cuts). We show that the complexity of both variants depend heavily on the
input topology. To this end, we explore the demarcation line between polynomial-time
computability andNP-hard cases for sparse and dense classes of graphs. Finally, we
present simple constant-factor approximation algorithms for both optimization goals.
Interesting openquestions include the existence anddesign of efficient FPTalgorithms,
and/or kernel techniques.

Acknowledgements This work was partially supported by the Région Occitanie.

References

1. Anselmetti, Y., Berry, V., Chauve, C., Chateau, A., Tannier, E., Bérard, S.: Ancestral gene synteny
reconstruction improves extant species scaffolding. BMC Genom. 16(10), S11 (2015)

2. Berg, M.D., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput.
Geom. Appl. 22(3), 187–206 (2012)

3. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Proceed-
ings of the 26th International Colloquium on Automata, Languages and Programming, pp. 200–209
(1999)

4. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability of bounded occur-
rence instances of SAT. In: Electronic Colloquium on Computational Complexity (ECCC) 10(022)
(2003)

5. Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., Shendure, J.: Chromosome-scale
scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31,
1119–1125 (2013)

6. Cao, M.D., Nguyen, S.H., Ganesamoorthy, D., Elliott, A.G., Cooper, M.A., Coin, L.J.M.: Scaffolding
and completing genome assemblies in real-time with nanopore sequencing. Nat. Commun. 8, 14515
(2017)

7. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the maximization scaf-
folding problem. Theor. Comput. Sci. 595, 92–106 (2015)

8. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a bloom filter.
Algorithms Mol. Biol. 8, 22 (2013)

9. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceedings of the Twelfth
Annual IEEEConference onComputationalComplexity,Ulm,Germany, 24–27 June 1997, pp 262–273
(1997)

123

2094 Algorithmica (2021) 83:2063–2095

10. Dayarian, A., Michael, T.P., Sengupta, A.M.: SOPRA: Scaffolding algorithm for paired reads via
statistical optimization. BMC Bioinform. 11, 345 (2010)

11. Dinur, I., Safra, S.: On the hardness of approximation minimum vertex cover. Ann. Math. 162(1),
439–485 (2005)

12. Donmez, N., Brudno, M.L.: SCARPA: scaffolding reads with practical algorithms. Bioinformatics
29(4), 428–434 (2013)

13. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York (1979)

14. Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J.T., de Ridder, D.: GRASS: a generic algorithm for
scaffolding next-generation sequencing assemblies. Bioinformatics 28(11), 1429–1437 (2012)

15. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
16. Hunt, M., Newbold, C., Berriman, M., Otto, T.: A comprehensive evaluation of assembly scaffolding

tools. Genome Biol. 15(3), 42 (2014)
17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-

put. Syst. Sci. 63(4), 512–530 (2001)
18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst.

Sci. 74(3), 335–349 (2008)
19. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT

and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)
20. Kolodner, R., Tewari, K.K.: Inverted repeats in chloroplast DNA from higher plants*. Proc. Natl. Acad.

Sci. U. S. A. 76(1), 41–45 (1979)
21. Koren, S., Treangen, T.J., Pop,M.: Bambus 2: scaffoldingmetagenomes. Bioinformatics 27(21), 2964–

2971 (2011)
22. Lerat, E.: Identifying repeats and transposable elements in sequenced genomes: how to find your way

through the dense forest of programs. Heredity 104(6), 520–533 (2010)
23. Mandric, I., Zelikovsky, A.: ScaffMatch: scaffolding algorithm based on maximum weight matching.

Bioinformatics 31(16), 2632–2638 (2015)
24. Mandric, I., Lindsay, J., Măndoiu, I.I., Zelikovsky, A.: Scaffolding algorithms, chap 5. In: Măndoiu,

I., Zelikovsky, A. (eds.) Computational Methods for Next Generation Sequencing Data Analysis, pp.
107–132. Wiley, Hoboken (2016)

25. Miller, J.R.,Koren, S., Sutton,G.:Assembly algorithms for next-generation sequencing data.Genomics
95(6), 315–327 (2010)

26. Morey, M., Fernández-Marmiesse, A., Castiñeiras, D., Fraga, J.M., Couce, M.L., Cocho, J.A.: A
glimpse into past, present, and future DNA sequencing. Mol. Genet. Metab. 110(1), 3–24 (2013).
(Special Issue: Diagnosis)

27. Mostovoy, Y., Levy-Sakin, M., Lam, J., Lam, E.T., Hastie, A.R., Marks, P., Lee, J., Chu, C., Lin,
C., Dzakula, Z., Cao, H., Schlebusch, S.A., Giorda, K., Schnall-Levin, M., Wall, J.D., Kwok, P.Y.:
A hybrid approach for de novo human genome sequence assembly and phasing. Nat. Meth. 13(7),
587–590 (2016)

28. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Com-
put. Syst. Sci. 43(3), 425–440 (1991)

29. Phillippy, A.M.: New advances in sequence assembly. Genome Res. 27(5), 11–13 (2017)
30. Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J., Arvestad, L.: BESST—efficient scaffolding of large

fragmented assemblies. BMC Bioinform. 15(1), 281 (2014)
31. Tabary, D., Davot, T., Weller, M., Chateau, A., Giroudeau, R.: New results about the linearization

of scaffolds sharing repeated contigs. In: Combinatorial Optimization and Applications—12th Inter-
national Conference, COCOA 2018, Atlanta, GA, USA, 15–17 Dec 2018, Proceedings, pp 94–107
(2018)

32. Tang, H.: Genome assembly, rearrangement, and repeats. Chem. Rev. 107(8), 3391–3406 (2007)
33. Treangen, T.J., Salzberg, S.L.: Repetitive DNA and next-generation sequencing: computational chal-

lenges and solutions. Nat. Rev. Genet. 13(1), 36–46 (2012)
34. Vezzi, F., Narzisi, G., Mishra, B.: Reevaluating assembly evaluations with feature response curves:

GAGE and assemblathons. PLoS ONE 7(12), 52210 (2012)
35. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinform. 16(Suppl

14), S2 (2015)
36. Weller, M., Chateau, A., Giroudeau, R.: On the linearization of scaffolds sharing repeated contigs. In:

Proceedings of the 11th COCOA’17, pp 509–517 (2017)

123

Algorithmica (2021) 83:2063–2095 2095

37. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Genome Res. 18(5), 821–829 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Producing Genomic Sequences after Genome Scaffolding with Ambiguous Paths: Complexity, Approximation and Lower Bounds
	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Assembly and Scaffolding Steps
	1.3 Linearization of the Solution
	1.4 Organization of this Article

	2 Obtaining Sequences From Solution Graphs
	3 Unambiguous Solutions
	4 Reduction Rules
	5 Polynomial Cases
	5.1 Sparse Graphs
	5.2 Dense Graphs

	6 Computational Hardness
	6.1 Hardness in Sparse Graphs
	6.2 Hardness in Dense Graphs

	7 Non-approximability
	7.1 Reduction from Max 3-SAT(4)
	7.2 Reduction from MAX 2-SAT
	7.3 Strict Reduction from Vertex Cover

	8 Approximable Cases
	9 Conclusion
	Acknowledgements
	References

