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Abstract
We study a continuous facility location problem on a graph where all edges have

unit length and where the facilities may also be positioned in the interior of the

edges. The goal is to position as many facilities as possible subject to the condition

that any two facilities have at least distance d from each other. We investigate the

complexity of this problem in terms of the rational parameter d. The problem is

polynomially solvable, if the numerator of d is 1 or 2, while all other cases turn out

to be NP-hard.
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1 Introduction

A large part of the facility location literature deals with desirable facilities that

people like to have nearby, such as service centers, police departments, fire stations,

and warehouses. However, there also do exist facilities that are undesirable and

obnoxious, such as nuclear reactors, garbage dumps, chemical plants, military

installations, and high security penal institutions. A standard goal in location theory

is to spread out such obnoxious facilities and to avoid their accumulation and

concentration in a small region; see for instance Erkut and Neuman [7] and

Cappanera [3] for comprehensive surveys on this topic.

In this paper, we investigate the location of obnoxious facilities in a metric space

whose topology is determined by a graph. Formally, let G ¼ ðV ;EÞ be an undirected
connected graph, where every edge is rectifiable and has unit length. Let P(G)
denote the continuum set of points on all the edges in E together with all the vertices

in V. For two points p; q 2 PðGÞ, we denote by d(p, q) the length of a shortest path

connecting p and q in the graph. A subset S � PðGÞ is said to be d-dispersed for

some positive real number d, if any two points p; q 2 S with p 6¼ q are at distance

dðp; qÞ� d from each other. Our goal is to compute for a given graph G ¼ ðV ;EÞ
and a given positive real number d a maximum cardinality subset S � PðGÞ that is
d-dispersed. Such a set S is called an optimal d-dispersed set, and |S| is called the d-
dispersion number d-Disp ðGÞ of the graph G.

1.1 Known and Related Results

Obnoxious facility location goes back to the seminal articles of Goldman and

Dearing [11] from 1975 and Church and Garfinkel [4] from 1978. The area actually

covers a wide variety of problem variants and models; some models specify a

geometric setting, while other models use a graph-theoretic setting.

For example, Abravaya and Segal [1] consider a purely geometric variant of

obnoxious facility location, where a maximum cardinality set of obnoxious facilities

has to be placed in a rectangular region, such that their pairwise distance as well as

the distance to a fixed set of demand sites is above a given threshold. Further

geometric variants of obnoxious facility location are analyzed by Ben-Moshe

et al. [2] and Katz et al. [14]. As another example we mention the graph-theoretic

model of Tamir [19], where every edge e 2 E of the underlying graph G ¼ ðV ;EÞ is
rectifiable and has a given edge-dependent length ‘ðeÞ. Tamir discusses the

complexity and approximability of various optimization problems with various

objective functions. One consequence of [19] is that if the graph G is a tree, then the

value d-Disp ðGÞ can be computed in polynomial time. Segal [18] locates a single

obnoxious facility on a network under various objective functions, such as

maximizing the smallest distance from the facility to the clients on the network or

maximizing the total sum of the distances between facility and clients.

Megiddo and Tamir [16] consider the covering problem that is dual to the d-
dispersion packing problem: Given a graph G ¼ ðV;EÞ with rectifiable unit-length

edges, find a minimum cardinality subset S � PðGÞ such that every point in P(G) is
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at distance at most d from one of the facilities in S. Among many other results [16]

shows that this covering problem is NP-hard for d ¼ 2.

1.2 Our Results

We provide a complete picture of the complexity of computing the d-dispersion
number for connected graphs G ¼ ðV ;EÞ and positive rational numbers d.

• If d ¼ 1=b for some integer b, then the d-dispersion number of G can be written

down without really looking at the structure of the graph: If G is a tree then

d-Disp ðGÞ ¼ bjEj þ 1, and if G is not a tree then d-Disp ðGÞ ¼ bjEj.
• If d ¼ 2=b for some integer b, then d-Disp ðGÞ can be computed in polynomial

time. The algorithm uses the Edmonds–Gallai decomposition of G and

reformulates the problem as a submodular optimization problem.

• If d ¼ a=b for integers a and b with a� 3 and gcdða; bÞ ¼ 1, then the

computation of d-Disp ðGÞ is an NP-hard problem.

The rest of the paper is organized as follows. Section 2 summarizes the basic

notations and states several technical observations. Section 3 presents the NP-

hardness results. The reductions are essentially based on routine methods, but need

to resolve certain number-theoretic issues. Our technical main contribution is the

polynomial time algorithm for the case d ¼ 2 as developed in Sect. 4; this result is

heavily based on tools from matching theory. Section 5 summarizes the polyno-

mially solvable special cases and provides additional structural insights. Section 6

completes the paper with a short conclusion.

2 Notation and Technical Preliminaries

All graphs in this paper are undirected and connected, and all edges have unit

length. Throughout the paper we use the word vertex in the graph-theoretic sense,

and we use the word point to denote the elements of the geometric structure P(G).
For a graph G ¼ ðV ;EÞ and a subset V 0 � V , we denote by G½V 0� the subgraph

induced by V 0. For an integer c� 1, the c-subdivision of G is the graph that results

from G by subdividing every edge in E by c� 1 new vertices into c new edges.

For an edge e ¼ fu; vg and a real number k with 0� k� 1, we denote by

pðu; v; kÞ the point on e that has distance k from vertex u. Note that pðu; v; 0Þ ¼ u
and pðu; v; 1Þ ¼ v, and note that point pðu; v; kÞ coincides with point pðv; u; 1� kÞ;
hence we will sometimes assume without loss of generality that k� 1=2.

Lemma 2.1 Let G be a graph, let c� 1 be an integer, and let G0 be the c-
subdivision of G. Then for every d[ 0, the d-dispersed sets in G are in one-to-one
correspondence with the ðc � dÞ-dispersed sets in G0. In particular,
d-Disp ðGÞ ¼ ðc � dÞ-Disp ðG0Þ.
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Proof Every point pðu; v; kÞ in P(G) translates into a corresponding point in PðG0Þ
that lies on the subdivided edge between u and v and is at distance c � k from vertex

u. h

Lemma 2.1 has many useful consequences, as for instance the following:

Lemma 2.2 Let d[ 0 and let c� 1 be an integer.

• If the problem of computing the d-dispersion number is NP-hard, then also the

problem of computing the ðc � dÞ-dispersion number is NP-hard.

• If the problem of computing the ðc � dÞ-dispersion number is polynomially

solvable, then also the problem of computing the d-dispersion number is

polynomially solvable.

Proof By Lemma 2.1 the c-subdivision of a graph yields a polynomial time

reduction from computing d-dispersions to computing ðc � dÞ-dispersions. h

For integers ‘ and k, the rational number ‘=k is called k- simple. A set S � PðGÞ
is k-simple, if for every point pðu; v; kÞ in S the number k is k-simple.

Lemma 2.3 Let d ¼ a=b with integers a and b, and let G ¼ ðV ;EÞ be a graph. Then
there exists an optimal d-dispersed set S	 that is 2b-simple.

Proof We first handle the cases with b ¼ 1, so that d is integer. Consider an optimal

d-dispersed set S for graph G. Note that for every vertex u, at most one point

pðu; v; kÞ with v 2 V and 0� k\1=2 is in S. For every point p ¼ pðu; v; kÞ with

0� k� 1=2 in S, we put a corresponding point p	 into set S	: If 0� k\1=2 then

p	 ¼ pðu; v; 0Þ, and if k ¼ 1=2 then p	 ¼ pðu; v; 1=2Þ. As all points in the resulting

set S	 are either vertices or midpoints of edges, we get that S	 is 2-simple. We claim

that S	 is still d-dispersed: Consider two distinct points p	 and q	 in S	. Note that

dðp; p	Þ\1=2 and dðq; q	Þ\1=2 by construction.

• If p	 and q	 both are vertices in V, then the distance dðp	; q	Þ is integer. Suppose
for the sake of contradiction that dðp	; q	Þ\d, which by integrality implies

dðp	; q	Þ � d� 1 The triangle inequality yields

dðp; qÞ� dðp; p	Þ þ dðp	; q	Þ þ dðq	; qÞ. The left hand side in this inequality is

at least d, wheras its right hand side is strictly smaller than

ð1=2Þ þ ðd� 1Þ þ ð1=2Þ. This contradiction shows dðp	; q	Þ� d.
• If p	 and q	 both are midpoints of edges, then p ¼ p	 and q ¼ q	 yields

dðp	; q	Þ � d.
• If p	 is the midpoint of some edge and q	 is a vertex, then dðp	; q	Þ ¼ Dþ 1=2

for some integer D. The triangle inequality together with p ¼ p	 implies

d� dðp; qÞ ¼ dðp	; qÞ� dðp	; q	Þ þ dðq	; qÞ\Dþ 1. This implies D� d, so that
the desired dðp	; q	Þ� dþ 1=2 holds.

Since S and S	 have the same cardinality, we conclude that S	 is an optimal d-
dispersed set that is 2-simple, exactly as desired.

In the cases where d ¼ a=b for some integer b� 2, we consider the b-subdivision
G0 of G. By the above discussion, G0 possesses an optimal a-dispersed set S0 that is
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2-simple. Then Lemma 2.1 translates S0 into an optimal d-dispersed set S for G that

is 2b-simple. h

3 NP-Completeness Results

In this section we present our NP-hardness proofs for computing the d-dispersion
number. All proofs are done through polynomial time reductions from the following

NP-hard variant of the independent set problem; see Garey and Johnson [10].

Problem: Independent Set in Cubic Graphs (CUBIC-IND-SET)

Instance: An undirected, connected graph H ¼ ðVH ;EHÞ in which every vertex
is adjacent to exactly three other vertices; an integer bound k.
Question: Does H contain an independent set I with jIj � k vertices?

Throughout this section we consider a fixed rational number d ¼ a=b, where a and b
are positive integers that satisfy gcdða; bÞ ¼ 1 and a� 3. Section 3.1 discusses the

cases with odd numerators a� 3, and Sect. 3.2 discusses the cases with even

numerators a� 4. It is instructive to verify that our arguments do not work for the

cases with a ¼ 1 and a ¼ 2, as our gadgets and our arguments break down at

various places.

3.1 NP-Hard Cases with Odd Numerator

Throughout this section we consider a fixed rational number d ¼ a=b where

gcdða; bÞ ¼ 1 and where a� 3 is an odd integer. For the NP-hardness proof, we first

determine four positive integers x1; y1; x2; y2 that satisfy the following equations (1)

and (2).

2b � x1 � 2a � y1 ¼ a� 1 ð1Þ

b � x2 � a � y2 ¼ 1 ð2Þ

Note that the value a� 1 on the right hand side of Eq. (1) is even, and hence is

divisible by the greatest common divisor gcdð2b; 2aÞ ¼ 2 of the coefficients in the

left hand side. With this, Bézout’s lemma yields the existence of positive integers x1
and y1 that satisfy (1). Bézout’s lemma also yields the existence of positive integers

x2 and y2 in Eq. (2), as the coefficients in the left hand are relatively prime.

Our reduction now starts from an arbitrary instance H ¼ ðVH ;EHÞ and k of

CUBIC-IND-SET, and constructs a corresponding dispersion instance G ¼ ðVG;EGÞ
from it.

• For every vertex v 2 VH , we create a corresponding vertex v	 in VG.

• For every edge e ¼ fu; vg 2 EH , we create a corresponding vertex e	 in VG.

• For every edge e ¼ fu; vg 2 EH , we create (i) a path with x1 edges that connects
vertex u	 to vertex e	, (ii) another path with x1 edges that connects v

	 to e	, and
(iii) a cycle C(e) with x2 edges that runs through vertex e	.
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This completes the description of the graph G ¼ ðVG;EGÞ; see Fig. 1 for an

illustration. We claim that graph H contains an independent set of size k, if and only

if ða=bÞ-Disp ðGÞ� k þ ð2y1 þ y2ÞjEH j.

Lemma 3.1 If graph H contains an independent set of size k, then the (a/b)-
dispersion number of graph G is at least k þ ð2y1 þ y2ÞjEH j.

Proof Let I be an independent set of size k in graph H ¼ ðVH ;EHÞ. We construct

from I a d-dispersed set S � PðGÞ as follows. Let u 2 VH be a vertex, and let

e1; e2; e3 be the three edges in EH that are incident to u.

• If u 2 I, then we put point u	 into S. On each of the three paths that connect

vertex u	 respectively to vertex e	i (i ¼ 1; 2; 3), we select y1 further points for S.
The first selected point is at distance d from u	, and every further selected point

is at distance d ¼ a=b from the preceding selected point. By Eq. (1), on each of

the three paths the distance from the final selected point to point e	i (i ¼ 1; 2; 3)
then equals ða� 1Þ=ð2bÞ.

• If u 62 I, then on each of the three paths between u	 and e	i (i ¼ 1; 2; 3) we select
y1 points for S. The first selected point is at distance d=2 ¼ a=ð2bÞ from u	, and
every further selected point is at distance d from the preceding selected point. By

Eq. (1), the distance from the final selected point to point e	 then equals

ð2a� 1Þ=ð2bÞ.

Furthermore, for every edge e 2 EH we select y2 points from the cycle C(e) for S:

• We start in point e	 and traverse C(e) in clockwise direction. The first selected

point is at distance ðaþ 1Þ=ð2bÞ from point e	, and every further selected point

is at distance d from the preceding selected point. By Eq. (2), the distance from

the final selected point to point e	 then equals ðaþ 1Þ=ð2bÞ.

This completes the construction of set S. Now let us count the points in S. First,
there are the k points u	 2 S for which u 2 I. Furthermore, for every edge e ¼
fu; vg 2 EH there are 2y1 points in S that lie on the two paths from u	 to e	 and from
e	 to v	. Finally, for every edge e 2 EH there are y2 points that lie on the cycle C(e).
Altogether, this yields the desired size k þ ð2y1 þ y2ÞjEH j for S.

It remains to verify that the point set S is d-dispersed. By construction, the points

selected from each path are at distance at least d from each other, and the same

Fig. 1 The edge e ¼ fu; vg in the instance of CUBIC-IND-SET translates into three vertices u	, e	, v	 in the
dispersion instance, together with two paths and one cycle
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holds for the points selected from each cycle. If vertex u	 is in S, then all selected

points on the three incident paths are at distance at least d from u	. If vertex u	 is not
in S, then the first selected point on every path is at distance d=2 from u	, so that

these points are pairwise at distance at least d from each other. Hence the only

potential trouble could arise in the neighborhood of point e	, where paths and cycles
are glued together. Every selected point on C(e) is at distance at least ðaþ 1Þ=ð2bÞ
from point e	. Every selected point on some path from u	 to e	 is at distance at least
ða� 1Þ=ð2bÞ from e	 if u 2 I and is at distance at least ð2a� 1Þ=ð2bÞ if u 62 I. Since
for any edge e ¼ fu; vg 2 EH at most one of the end vertices u and v is in I, at most

one selected point can be at distance ða� 1Þ=ð2bÞ from e	, and all other points are

at distance at least ðaþ 1Þ=ð2bÞ from e	. Hence S is indeed d-dispersed. h

Lemma 3.2 If the (a/b)-dispersion number of graph G is at least
k þ ð2y1 þ y2ÞjEH j, then graph H contains an independent set of size k.

Proof Let S be an (a/b)-dispersed set of size k þ ð2y1 þ y2ÞjEH j. By Lemma 2.3 we

assume that for every point pðu; v; kÞ in S, the denominator of the rational number k
is 2b.

For an edge e ¼ fu; vg 2 EH , let us consider its corresponding path p on x1 edges
that connects vertex u	 to vertex e	. Suppose that there is some point p in S \ p with

dðp; e	Þ � ða� 2Þ=ð2bÞ. Then by Eq. (2), set S will contain at most y2 � 1 points

from the cycle C(e). In this case we restructure S as follows: We remove point p
together with the at most y2 � 1 points on cycle C(e) from S, and instead insert y2
points into S that are d-dispersed on C(e) and that all are at distance at least

ðaþ 1Þ=ð2bÞ from e	. As this restructuring does not decrease the size of S, we will

from now on assume without loss of generality that dðp; e	Þ� ða� 1Þ=ð2bÞ holds

for every point p 2 S \ p.
Now let us take a closer look at the points in S \ p. Equation (1) can be rewritten

into x1 ¼ y1dþ ða� 1Þ=ð2bÞ, which yields jS \ pj � y1 þ 1.

• In the equality case jS \ pj ¼ y1 þ 1, we must have u	 2 S and also the point on

p at distance ða� 1Þ=ð2bÞ from e	 must be in S.
• In case jS \ pj � y1, there is ample space for picking y1 points from p that are d-

dispersed and that are at distance at least d=2 from u	 and at distance at least d=2
from e	. Hence we will from now on assume jS \ pj ¼ y1 in these cases.

Now let us count: Set S contains exactly y1 interior points from every path p, and
altogether there are 2jEH j such paths. Set S contains exactly y2 points from every

cycle C(e), and altogether there are jEH j such cycles. Since jSj � k þ ð2y1 þ y2ÞjEH j,
this means that S must contain at least k further points on vertices u	 with u 2 VH .

The corresponding subset of VH is called I.
Finally, we claim that this set I with jIj � k forms an independent set in graph H.

Suppose for the sake of contradiction that there is an edge e ¼ fu; vg 2 EH with

u 2 I and v 2 I. Consider the two paths that connect e	 to u	 and v	. By the above

discussion, S then contains two points at distance ða� 1Þ=ð2bÞ from e	. As these

two points are then at distance at most ða� 1Þ=b\d from each other, we arrive at

the desired contradiction. h
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The statements in Lemma 3.1 and in 3.2 yield the following theorem.

Theorem 3.3 Let a and b be positive integers with gcdða; bÞ ¼ 1 and odd a� 3.
Then it is NP-hard to compute the (a/b)-dispersion number of a graph G.

3.2 NP-Hard Cases with Even Numerator

In this section we consider a fixed rational number d ¼ a=b where gcdða; bÞ ¼ 1 and

where a� 4 is an even integer. The NP-hardness argument is essentially a minor

variation of the argument in Sect. 3.1 for the cases with odd numerators. Therefore,

we will only explain the modifications, and leave all further details to the reader.

The NP-hardness proof in Sect. 3.1 is centered around the four positive integers

x1; y1; x2; y2 introduced in Eqs. (1) and (2). We perform the same reduction from

CUBIC-IND-SET as in Sect. 3.1 but with positive integers x1; y1; x2; y2 that satisfy the

following Eqs. (3) and (4).

2b � x1 � 2a � y1 ¼a� 2 ð3Þ

b � x2 � a � y2 ¼2 ð4Þ

In (3), the right hand side a� 2 is even and divisible by the greatest common divisor

of the coefficients in the left hand side. In (4), the coefficients in the left hand are

relatively prime. Therefore Bézout’s lemma can be applied to both equations.

The graph G ¼ ðVG;EGÞ is defined as before, with a vertex v	 for every v 2 VH

and a vertex e	 for every e 2 EH , with paths on x1 edges and cycles C(e) on x2
edges. The arguments in Lemmas 3.1 and 3.2 can easily be adapted and yield the

following theorem.

Theorem 3.4 Let a and b be positive integers with gcdða; bÞ ¼ 1 and even a� 4.
Then it is NP-hard to compute the (a/b)-dispersion number of a graph G.

3.3 Containment in NP

In this section we consider the decision version of d-dispersion: ‘‘ For a given graph
G ¼ ðV;EÞ, a positive real d, and a bound k, decide whether d-Disp ðGÞ� k.’’ Our
NP-certificate specifies the following partial information on a d-dispersed set S in a

graph G ¼ ðV ;EÞ:
• The certificate specifies the set W :¼ V \ S of vertices in S.
• For every edge e 2 E, the certificate specifies the number ne of facilities that are

located in the interior of e.

As every edge accommodates at most 1=d points from S, the encoding length of our

certificate is polynomially bounded in the instance size. For verifying the certificate,

we introduce for every vertex u and for every incident edge e ¼ fu; vg 2 E with

ne [ 0 a corresponding real variable x(u, e), which models the distance between

vertex u and the closest point from S in the interior of edge e. Finally, we introduce
the following linear constraints:
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• The non-negativity constraints xðu; eÞ� 0.

• For every edge e ¼ fu; vg 2 E, the inequality xðu; eÞ þ ðne � 1Þdþ xðv; eÞ� 1.

• For all u; v 2 W with u 6¼ v, the inequality dðu; vÞ� d.
• For all w 2 W and e ¼ fu; vg 2 E, the inequality xðu; eÞ þ dðu;wÞ� d.
• For all e ¼ fu; vg 2 E and e0 ¼ fu0; v0g 2 E, the inequality

xðu; eÞ þ dðu; u0Þ þ xðu0; e0Þ � d.

These inequalities enforce that on every edge the variables properly work together,

and that the underlying point set indeed is d-dispersed. For verifying the certificate,

we simply check in polynomial time whether the resulting linear program has a

feasible solution, and whether jW j þ
P

e2E ne � k holds.

Theorem 3.5 The decision version of d-dispersion lies in NP, even if the value d is
given as part of the input. h

4 The Polynomial Time Result for d= 2

This section derives a polynomial time algorithm for computing the 2-dispersion

number of a graph. This algorithm is heavily based on tools from matching theory,

as for instance developed in the book by Lovász and Plummer [15]. As usual, the

size of a maximum cardinality matching in graph G is denoted by mðGÞ.

Lemma 4.1 Every graph G ¼ ðV ;EÞ satisfies 2-Disp ðGÞ� mðGÞ.

Proof The midpoints of the edges in every matching form a 2-dispersed set. h

A 2-dispersed set is in canonical form, if it entirely consists of vertices and of

midpoints of edges. Recall that by Lemma 2.3 every graph G ¼ ðV;EÞ possesses an
optimal 2-dispersed set in canonical form. Throughout this section, we will consider

2-dispersed (but not necessarily optimal) sets S	 in canonical form; we always let V	

denote the set of vertices in S	, and we let E	 denote the set of edges whose

midpoints are in S	. Finally, N	 � V denotes the set of vertices in V � V	 that have
a neighbor in V	. As S	 is 2-dispersed, the vertex set V	 forms an independent set in

G, and the edge set E	 forms a matching in G. Furthermore, the vertex set N	

separates the vertices in V	 from the edges in E	; in particular, no edge in E	 covers
any vertex in N	. We start with two technical lemmas that will be useful in later

arguments.

Lemma 4.2 Let G ¼ ðV ;EÞ be a graph with a perfect matching, and let S	 be some
2-dispersed set in canonical form in G. Then jS	j � mðGÞ.

Proof Let M � E denote a perfect matching in G, and for every vertex v 2 V let

e(v) denote its incident edge in matching M. Consider the vertex set V	 and the edge

set E	 that correspond to set S	. Then E	 together with the edges e(v) with v 2 V	

forms another matching M0 of cardinality jE	j þ jV	j ¼ jS	j in G. Now jS	j ¼
jM0j � mðGÞ yields the desired inequality. h
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A graph G is factor-critical [15], if for every vertex x 2 V there exists a matching

that covers all vertices except x. A near-perfect matching in a graph covers all

vertices in V except one. Note that the statement in the following lemma cannot be

extended to graphs that consist of a single vertex.

Lemma 4.3 Every 2-dispersed set S	 in a factor-critical graph G ¼ ðV ;EÞ with
jVj � 3 satisfies jS	j � mðGÞ.

Proof Without loss of generality we assume that S	 is in canonical form, and we let

V	 and E	 denote the underlying vertex set and edge set, respectively. If V	 is

empty, we have jS	j ¼ jE	j � mðGÞ since E	 is a matching. If V	 is non-empty, we

consider a near-perfect matching M, and we let e(v) denote the edge incident to

v 2 V in matching M (here we use the condition jVj � 3). Then E	 together with the

edges e(v) with v 2 V	 forms another matching M0 of cardinality jE	j þ jV	j ¼ jS	j
in G. The claim follows from jS	j ¼ jM0j � mðGÞ. h

The following theorem goes back to Edmonds [6] and Gallai [8, 9]; see also

Lovász and Plummer [15]. Figure 2 gives an illustration.

Theorem 4.4 (Edmonds–Gallai structure theorem) Let G ¼ ðV;EÞ be a graph. The
following decomposition of V into three sets X, Y, Z can be computed in polynomial
time.

X ¼fv 2 V j there exists a maximum matching that misses vg
Y ¼fv 2 V j v 62 X and v is adjacent to some vertex in Xg
Z ¼V � ðX [ YÞ

The Edmonds–Gallai decomposition has the following properties:

• G[X] is the union of the odd-sized components of G� Y ; every such odd-sized

component is factor-critical. G[Z] is the union of the even-sized components of

G� Y .

Fig. 2 An illustration for the Edmonds–Gallai structure theorem. A maximum matching is shown with fat
edges, and the non-matching edges are dashed
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• Every maximum matching in G induces a perfect matching on every (even-

sized) component of G[Z] and a near-perfect matching on every (odd-sized)

component of G[X]. Furthermore, the matching matches the vertices in Y to

vertices that belong to |Y| different components of G[X]. h

We further subdivide the set X in the Edmonds–Gallai decomposition into two

parts: Set X1 contains the vertices of X that belong to components of size 1, and set

X� 3 contains the vertices that belong to (odd-sized) components of size at least 3.

The vicinity vicðvÞ of a vertex v 2 V consists of vertex v itself and of the midpoints

of all edges incident to v.

Lemma 4.5 There exists an optimal 2-dispersed set S	 in canonical form (with
underlying edge set E	) that additionally satisfies the following three properties.

P1. In every component of G½X� 3�, the set E	 induces a near-perfect matching.

P2. For every vertex y 2 Y , the set vicðyÞ \ S	 is either empty or consists of the

midpoint of some edge between X and Y.
P3. In every component of G[Z], the set E	 induces a perfect matching.

Proof We start from an arbitrary optimal 2-dispersed set S	 (in canonical form,

with corresponding sets V	 and E	) and transform it in two steps into an optimal

2-dispersed set of the desired form.

In the first transformation step, we exploit a matching M between sets Y and X
that matches every vertex y 2 Y to some vertexM(y), so that for y1 6¼ y2 the vertices
Mðy1Þ and Mðy2Þ belong to different components of G[X]; see Theorem 4.4. A

vertex y 2 Y is called blocked, if it is adjacent to some x 2 X1 \ S	. As for a blocked
vertex the set vicðyÞ \ S	 is already empty (and hence already satisfies property P2),

we will not touch it at the moment. We transform S	 in the following way.

• For every non-blocked vertex y 2 Y , the set vicðyÞ \ S	 contains at most one

point. We remove this point from S	, and we insert instead the midpoint of the

edge between y and M(y) into S	. These operations cannot decrease the size of

S	.
• Every (odd-sized) component C of G½X� 3� contains at most one point M(y) with

y 2 Y . We compute a near-perfect matching MC for C that misses this vertex

M(y) (and if no such vertex is in C, matching MC misses an arbitrary vertex of

C). We remove all points in C from S	, and we insert instead the midpoints of the

edges in MC. As by Lemma 4.3 we remove at most mðCÞ points and as we insert

exactly mðCÞ points, these operations will not decrease the size of S	.

The resulting set S	 is of course again in canonical form, and it is also easy to see

that S	 is still 2-dispersed. Furthermore, S	 now satisfies properties P1 and P2.

In the second transformation step, we note that the current S	 does neither contain
vertices from Y nor midpoints of edges between Y and Z. For every (even-sized)

component C of G[Z], we compute a perfect matching MC. We remove all points in
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C from S	, and we insert instead the midpoints of the edges in MC. As by

Lemma 4.3 we remove at most mðCÞ points and as we insert exactly mðCÞ points,

these operations will not decrease the size of S	. The resulting set S	 is 2-dispersed
and satisfies properties P1, P2, and P3. h

The optimal 2-dispersed sets in Lemma 4.5 are strongly structured and fairly

easy to understand: The perfect matchings in set Z contribute exactly |Z|/2 points to

S	. Every (odd-sized) component C in G½X� 3� contributes exactly ðjCj � 1Þ=2
points to S	. The only remaining open decisions concern the points in X1 and the

midpoints of the edges fy;MðyÞg for y 2 Y . So let us consider the set T :¼ S	 \ X1,

and let CðTÞ � Y denote the vertices in Y that are adjacent to some vertex in T. Then
every vertex y 2 Y � CðTÞ contributes the midpoint of fy;MðyÞg to S	, and every

vertex x 2 T contributes itself to S	.
Hence the remaining optimization problem boils down to finding a subset T � X1

that maximizes the function value f ðTÞ :¼ jY � CðTÞj þ jTj, which is equivalent to

minimizing the function value

gðTÞ :¼ jCðTÞj � jTj: ð5Þ

The set function g(T) in (5) is a submodular function, as it satisfies gðAÞ þ
gðBÞ� gðA [ BÞ þ gðA \ BÞ for all A;B � X1; see for instance Grötschel, Lovász

and Schrijver [12]. Therefore, the minimum value of g(T) can be determined in

polynomial time by the ellipsoid method [12], or by Cunningham’s combinatorial

algorithm [5].

We also describe another way of minimizing the function g(T) in polynomial

time, that avoids the heavy machinery of submodular optimization and that

formulates the problem as a minimum s-t-cut computation in a weighted directed

auxiliary graph. The auxiliary graph is defined as follows.

• Its vertex set contains a source s and a sink t, together with all the vertices in X1

and all the vertices in Y.
• For every x 2 X1, there is an arc (s, x) of weight wðs; xÞ ¼ 1 from the source to x.

For every y 2 Y , there is an arc (y, t) of weight wðy; tÞ ¼ 1 from y to the sink.

Whenever the vertices x 2 X1 and y 2 Y are adjacent in the original graph G, the
auxiliary graph contains the arc (x, y) of weight wðx; yÞ ¼ þ1.

Now let us consider some s-t-cut of finite weight, which is induced by some vertex

set U in the auxiliary graph with s 2 U and t 62 U. As all arcs from set X1 to set Y
have infinite weights, whenever U contains some vertex x 2 X1 then U must also

contain all the neighbors of x in Y. By setting T :¼ X1 \ U, we get that the value of

the cut equals jX1 � T j þ jCðTÞj; hence the minimizer for (5) can be read off the

minimizing cut in the auxiliary graph.

We finally summarize all our insights and formulate the main result of this

section.

Theorem 4.6 The 2-dispersion number of a graph G ¼ ðV;EÞ can be computed in
polynomial time O(|V||E|).
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Proof It only remains to justify the time complexity. The Edmonds–Gallai

decomposition of G can be computed in O(|V||E|) time by using the blossom

algorithm; see for instance Schrijver [17]. The weighted directed auxiliary graph is

easily computed in OðjVj þ jEjÞ time, and the final minimum s-t-cut computation

costs O(|V||E|) time [17]. h

5 The Polynomially Solvable Cases

Theorem 4.6 and Lemma 2.2 together imply that for every rational number d ¼ a=b
with numerator a� 2, the d-dispersion number of a graph can be computed in

polynomial time. We now present some results that provide additional structural

insights into these cases. The cases where the numerator is a ¼ 1 are structurally

trivial, and the value of the corresponding d-dispersion number can be written down

with the sole knowledge of |V| and |E|.

Lemma 5.1 Let d ¼ 1=b for some integer b, and let G ¼ ðV ;EÞ be a connected
graph.

• If G is a tree then d-Disp ðGÞ ¼ bjEj þ 1.

• If G is not a tree then d-Disp ðGÞ ¼ bjEj.

Proof If G is a tree, we use a d-dispersed set S that contains all vertices in V and

that for every edge e ¼ fu; vg contains all points p(u, v, i/b) with i ¼ 1; . . .; b� 1.

Clearly jSj ¼ bjEj þ 1. If G is not a tree, set S contains for every edge e ¼ fu; vg all

the points pðu; v; ð2i� 1Þ=ð2bÞÞ with i ¼ 1; . . .; b. Clearly jSj ¼ bjEj.
It remains to show that there are no d-dispersed sets of larger cardinality. If G is a

tree, we root it at an arbitrary vertex so that it becomes an out-tree. We partition

P(G) into jEj þ 1 regions: one region consists of the root, and all other regions

consist of the interior points on some edge together with the sink vertex of that edge.

A d-dispersed set contains at most b points from every edge-region and at most one

point from the root region. If G is not a tree, we similarly partition P(G) into |E|
regions: Every region either consists of the interior points of some edge, or of the

interior points of an edge together with one of its incident vertices. A d-dispersed set
contains at most b points from every such region. h

The following lemma derives an explicit (and very simple) connection between

the 2-dispersion number and the (2/b)-dispersion number (with odd denominator b)
of a graph. The lemma also implies directly that for every odd b, the computation of

(2/b)-dispersion numbers is polynomial time equivalent to the computation of

2-dispersion numbers.

Lemma 5.2 Let G ¼ ðV;EÞ be a graph, let z� 1 be an integer, and let
d ¼ 2=ð2zþ 1Þ. Then the dispersion numbers satisfy
d-Disp ðGÞ ¼ 2-Disp ðGÞ þ zjEj.

Proof We first show that d-Disp ðGÞ� 2-Disp ðGÞ þ zjEj. Indeed, let S2 denote an
optimal 2-dispersed set for G. By Lemma 2.3 we assume that S2 is in canonical form
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and hence entirely consists of vertices and of midpoints of edges. We partition the

edge set E into three parts: Part E1 contains the edges, for which one end vertex is in

S2. Part E1=2 contains the edges whose midpoint lies in S2. Part E0 contains the

remaining edges (which hence are disjoint from S2). We construct a point set

Sd � PðGÞ as follows:
• For every edge fu; vg 2 E1 with u 2 S2, we put point u together with the z points

pðu; v; idÞ with i ¼ 1; . . .; z into Sd.
• For every edge fu; vg 2 E1=2, we put the zþ 1 points pðu; v; ð4i� 3Þd=4Þ with

i ¼ 1; . . .; zþ 1 into Sd.
• For every fu; vg 2 E0, we put the z points pðu; v; ð4i� 1Þd=4Þ with i ¼ 1; . . .; z

into Sd.

It is easily verified that the resulting set Sd is d-dispersed and contains jS2j þ zjEj
points.

Next, we show that d-Disp ðGÞ� 2-Disp ðGÞ þ zjEj. Let Sd denote an optimal d-
dispersed set for G. By Lemma 2.3 we assume that for every point pðu; v; kÞ in Sd,
the denominator of the rational number k is 2ð2zþ 1Þ. Our first goal is to bring the

points in Sd into a particularly simple constellation.

• As long as there exist edges e ¼ fu; vg 2 E with u; v 2 Sd, we remove all points

on e from Sd and replace them by the zþ 1 points pðu; v; ð4i� 3Þd=4Þ with

i ¼ 1; . . .; zþ 1.

• Next, for every edge e ¼ fu; vg 2 E with u 2 Sd and v 62 Sd, we remove all

points on e from Sd and replace them by the zþ 1 points pðu; v; idÞ with

i ¼ 1; . . .; z.
• Finally, for every edge e ¼ fu; vg 2 E with u; v 62 Sd we remove all points on e

from Sd and replace them by the z points pðu; v; ð4i� 1Þd=4Þ with i ¼ 1; . . .; z.

It can be seen that these transformations do not decrease the cardinality of Sd, and
that the resulting set is still d-dispersed. Finally, we construct the following set S2
from Sd: First, S2 contains all points in V \ Sd, Secondly, whenever Sd contains

zþ 1 points from the interior of some edge e 2 E, then we put the midpoint of e into
S2. It can be shown that the resulting set S2 is 2-dispersed and has the desired

cardinality. h

6 Conclusions

We have investigated the d-dispersion number of an input graph G, and we have

fully classified the computational complexity of d-dispersion for all rational values
of d: The problem is easy if the numerator of d is 1 or 2, and all other cases have

turned out to be NP-complete. The cases with irrational values of d remain open.

By modifying the techniques from Sect. 3.3, one can show that for every irrational

algebraic d[ 0 the d-dispersion problem is contained in the complexity class NP.

Furthermore, by modifying the hardness arguments from Sect. 3, one can show that

the d-dispersion problem is NP-hard for d ¼
ffiffiffi
2

p
(and for certain other algebraic
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numbers that allow nice Diophantine approximations). We conjecture that the d-
dispersion problem actually is NP-complete for every irrational algebraic d[ 0, and

as an open problem we pose to prove or to disprove this conjecture.

Finally we mention a closely related line of research on d-covering of graphs,

where the objective is kind of dual to the dispersion objective: Place as few facilities

as possible on the graph, subject to the condition that every point in P(G) is at

distance at most d from one of the facilities. In other words, the objective in d-
covering is not to pack the facilities, but to cover the set P(G) with them. Hartmann,

Lendl and Woeginger [13] have shown that d-covering is easy if the numerator of

the rational number d is 1, wheras all other cases with rational d turn out to be NP-

complete.
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