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Abstract
The compact Genetic Algorithm (cGA) evolves a probability distribution favoring 
optimal solutions in the underlying search space by repeatedly sampling from the 
distribution and updating it according to promising samples. We study the intricate 
dynamics of the cGA on the test function OneMax, and how its performance depends 
on the hypothetical population size K, which determines how quickly decisions 
about promising bit values are fixated in the probabilistic model. It is known that the 
cGA and the Univariate Marginal Distribution Algorithm (UMDA), a related algo-
rithm whose population size is called � , run in expected time O(n log n) when the 
population size is just large enough ( K = �(

√

n log n) and � = �(
√

n log n) , respec-
tively) to avoid wrong decisions being fixated. The UMDA also shows the same per-
formance in a very different regime ( � = �(log n) , equivalent to K = �(log n) in the 
cGA) with much smaller population size, but for very different reasons: many wrong 
decisions are fixated initially, but then reverted efficiently. If the population size is 
even smaller ( o(log n) ), the time is exponential. We show that population sizes in 
between the two optimal regimes are worse as they yield larger runtimes: we prove a 
lower bound of �(K1∕3

n + n log n) for the cGA on OneMax for K = O(
√

n∕ log2 n) . 
For K = �(log3 n) the runtime increases with growing K before dropping again to 
O(K

√

n + n log n) for K = �(
√

n log n) . This suggests that the expected runtime 
for the cGA is a bimodal function in K with two very different optimal regions and 
worse performance in between.
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1 Introduction

Estimation-of-distribution algorithms (EDAs) are general metaheuristics for black-
box optimisation that represent a more recent alternative to classical approaches like 
evolutionary algorithms (EAs). EDAs typically do not directly evolve populations 
of search points but build probabilistic models of promising solutions by repeatedly 
sampling and selecting points from the underlying search space. Hence, information 
about the search can be stored in a relatively compact way, which can make EDAs 
space-efficient.

Recently, there has been significant progress in the theoretical understanding of 
EDAs, which supports their use as an alternative to evolutionary algorithms. It has 
been shown that EDAs are robust to noise [6] and that they have at least comparable 
runtime behaviour to EAs. Different EDAs like the cGA [22], EDA-like ant colony 
optimisers (ACO) [17, 22], and the UMDA [2, 12, 14, 24] have been investigated 
from this perspective.

In this paper, we pick up recent research about the runtime behaviour of the 
compact Genetic Algorithm (cGA) [9]. The behaviour on the theoretical bench-
mark function OneMax (x) ∶=

∑n

i=1
xi is of particular interest since this function 

tests basic hill-climbing properties and serves as a basis for the analysis on more 
complicated functions. Already early analyses of GAs [8] similar to the cGA indi-
cate for OneMax that a population size of �(

√

n) is necessary to prevent premature 
convergence of the system; together with convergence time analyses of such sys-
tems [16] this suggests a runtime that grows not much slower than linear in this case 
( O(n log n) for ideal parameter settings). These analyses rely on simplified models of 
GAs, and they yield good predictions for the behaviour of cGA for some regimes, 
but behave very differently from the cGA in other regimes. In particular, the sim-
plified models do not resemble the cGA in the regime of medium population sizes 
that we consider in this paper, and so the performance of the cGA in this regime 
remained unknown. See also the survey [13] for further results from the theory of 
EDAs in the last 25 years.

Droste [3] was the first to prove rigorously that the cGA is efficient on OneMax 
by providing a bound of O(n1+�) on the runtime. Recently, this bound was refined to 
O(n log n) by Sudholt and Witt [21, 22]. However, this bound only applies to a very 
specific setting of the hypothetical population size K, which is an algorithm-specific 
parameter of the cGA. Parameters equivalent to K exist in other EDAs, including the 
UMDA mentioned above.

The choice of the parameter K is crucial for EDAs. It governs the speed at which 
the probabilistic model is adjusted towards the structure of recently sampled good 
solutions; more precisely, at hypothetical population size  K the algorithm makes 
steps of size 1/K. If this step size is too large, the adjustment is too greedy, it is too 
likely to adapt to incorrect parts of sampled solutions and the system behaves chaoti-
cally. If it is too small, adaptation takes very long. However, the dependency of the 
runtime of the cGA and the UMDA on the population size is very subtle1. For both 

1 Unfortunately, our understanding of these algorithms is somewhat fragmented, since some results 
are proven only for the cGA and some are proven only for the UMDA. However, despite their different 
appearances, the cGA and the UMDA have been shown to be closely related, and where results for both 
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the cGA and the UMDA, it is possible to pick some small step size that leads to opti-
mal performance where with high probability all decisions are made correctly, but 
still as fast as possible. For the UMDA it was shown that there is another, much big-
ger step size (corresponding to smaller population size) that allows incorrect deci-
sions to be reflected in the probabilistic model for a while, but this is compensated 
by faster updates.

More concretely, the results from [22] show that for K ≥ c
√

n log n , where c is 
an appropriate constant, the cGA and the UMDA (with K being replaced by the cor-
responding parameter � ) optimise OneMax efficiently since for all marginal prob-
abilities of the model, the so-called frequencies, the probabilities of sampling a one 
increase smoothly towards their optimal value because of the small step size 1/K. 
The same holds for the UMDA, leading to runtime bounds O(�n) and O(�

√

n) , 
respectively [2, 24]—where for some parameter ranges the results rely on the addi-
tional assumption � = (1 + �(1))� . In these regimes the dynamics of the algorithm 
can also be well described by gambler’s ruin dynamics [8, 9]. At K = c

√

n log n 
(resp. � = c

√

n log n ) both algorithms optimise OneMax in expected time O(n log n) . 
For smaller step sizes (larger K), at least for the cGA it is known that the runtime 
increases as �(K

√

n) [22].
On the other hand, it has been independently shown in [2, 14] and [23, 24] that 

the UMDA achieves the same runtime O(n log n) for � = c� log n for a suitable con-
stant c′ . The analysis of these very large step sizes indicates that the search dynamics 
proceed very differently from the dynamics at small step sizes. Namely, for many 
frequencies the model first learns incorrectly that the optimal value is  0 and then 
efficiently corrects this decision. The results in [2] and [24] show a general runtime 
bound of O(�n) for all � ≥ c′ log n and � = o(

√

n log n) (if the additional assumption 
� = �(�) is made for � = �(

√

�) . We call this regime the medium step size regime, 
and it is separated from other regimes by two phase transitions: one for small step 
sizes, corresponding to K > c

√

n log n as discussed above, and one for even larger 
step sizes, corresponding to K = o(log n) , where the system behaves so chaotically 
that correct decisions are regularly forgotten and the expected runtime on OneMax 
becomes exponential2.

We also know that the runtime of the cGA is �(n log n) for all K [22]. However, 
it remained an open question whether the runtime is �(n log n) throughout the whole 
medium step size regime, or whether the runtime increases with K as suggested by 
the upper bound O(�n) for the UMDA.

Here we show that the runtime of the cGA does indeed increase, where we for-
mally define runtime as the number of function evaluations until the optimum is sam-
pled for the first time. To simplify the presentation, we assume throughout the paper 

2 We define the term “exponential” as 2n�(1) . This second phase transition has been made explicit in [17] 
with respect to an ACO algorithm that in fact represents a simple EDA, similar to the cGA. We present a 
rigorous and slightly stronger statement as part of Theorem 1.

algorithms exist, they coincide. Thus we take results for the UMDA as strong indication for analogous 
behaviour of the cGA, and vice versa.

Footnote 1 (continued)



1099

1 3

Algorithmica (2021) 83:1096–1137 

that K is in the set K ∶= {i(1∕2 − 1∕n) ∣ i ∈ ℕ} so that the state space of frequencies 
is restricted to pi,t ∈ {1∕n, 1∕n + 1∕K,… , 1∕2,… , 1 − 1∕n − 1∕K, 1 − 1∕n} . Then 
our main result is as follows.

Theorem 1 Let K ∈ K.

If K ≤ 0.3 log n then the runtime of the cGA  on OneMax  is exponential with 
overwhelming probability3 and in expectation.

If K = O(n1∕2∕(log(n) log log n)) then the runtime is  �(K1∕3n + n log n) with 
probability 1 − o(1) and in expectation.

If K = O(n1∕2∕(log(n) log log n)) and K = �(log3 n)  then for a suitable constant 
𝜉 < 1, even the time to create a solution with fitness at least �n is �(K1∕3n) with 
probability 1 − o(1) and in expectation.

This result suggests that the runtime and the underlying search dynamics depend 
in an astonishingly complex way on the step size: as long as the step size is in the 
large regime ( K ≤ 0.3 log n ), the expected runtime is exponential. Assuming that the 
upper bound for the UMDA also holds for the cGA, it then decreases to O(n log n) at 
the point where the medium regime is entered. Then the runtime grows with K in the 
medium regime, where it grows up to �(n7∕6∕ log n) . Before entering the small step 
size regime ( K = c

√

n log n ) the runtime drops again to O(n log n) [22]. For even 
smaller step sizes (larger K) the runtime increases again [22]. See Fig. 1 for a simpli-
fied illustration of Theorem  1, highlighting the different runtime regimes studied. 
Experiments conducted for different values of n and K in Sect. 6 confirm that the 
runtime indeed shows this complex bimodal behaviour.

In addition, the last statement in Theorem 1 shows that even finding a solution 
within a linear Hamming distance to the optimum takes time �(K1∕3n) . This is 
remarkable as many other lower bounds, like the general �(n log n) bound [22] rely 
on the fact that optimising the final few incorrect frequencies takes the claimed time 
(cf. the coupon collector’s theorem).

K
0 logn √

n logn

runtime

ex
p
on

en
ti
al

Ω(K
1/3 n)

and
O(Kn)

Θ(K
√
n)

Fig. 1  The runtime landscape of the cGA on OneMax (simplified)

3 A probability p is called overwhelming if 1∕(1 − p) is exponential.
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The proof of our main theorem is technically demanding but insightful: we obtain 
insights into the probabilistic process governing the cGA through careful drift analy-
sis. In very rough terms, we analyse the drift of a potential function that measures 
the distance of the current sampling distribution to the optimal distribution. How-
ever, the drift depends on the sampling variance, which is a random variable as well. 
This leads to a complex feedback system between sampling variance and drift of 
potential function that tends to self-balance. We are confident that the approach and 
the tools used here yield insights that will prove useful for analysing other stochastic 
processes where the drift is changing over time.

This paper is structured as follows. Section 2 defines the cGA and presents fun-
damental properties of its search dynamics. Section 3 elaborates on the intriguing 
search dynamics of the cGA in the medium parameter range, including a proof of 
the fact that many probabilities in the model initially are learnt incorrectly. Section 4 
is the heart of our analysis and presents the so-called Stabilisation Lemma, proving 
that the sampling variance and, thereby, the drift of the potential approach a steady 
state during the optimisation. It starts with a general road map for the proof. Sec-
tion 5 puts the whole machinery together to prove the main result. Finally, Sect. 6 
contains experiments showing the average runtime across the whole parameter range 
for K.

2  The Compact Genetic Algorithm and Its Search Dynamics

The cGA, defined in Algorithm 1, uses marginal probabilities (which, as mentioned 
above, are also known as frequencies) pi,t that correspond to the probability of set-
ting bit i to 1 in iteration t. In each iteration two solutions x and y are being created 
independently using the sampling distribution p1,t,… , pn,t . Then the fitter offspring 
amongst x and y is determined, and the frequencies are adjusted by a step size of 
±1∕K in the direction of the better offspring for bits where both offspring differ. 
Here K determines the strength of the update of the probabilistic model.

The frequencies are always restricted to the interval [1∕n, 1 − 1∕n] to avoid fixa-
tion at 0 or 1. This ensures that there is always a positive probability of reaching a 
global optimum. Throughout the paper, we refer to 1/n and 1 − 1∕n as (lower and 
upper) borders. We call frequencies off-border if they do not take one of the two 
border values, i.e., they are not in {1∕n, 1 − 1∕n} . 
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Algorithm 1: Compact Genetic Algorithm (cGA)
t ← 0 and p1,t ← p2,t ← · · · ← pn,t ← 1/2
while termination criterion not met do

for i ∈ {1, . . . , n} do
xi ← 1 with prob. pi,t and xi ← 0 otherwise
yi ← 1 with prob. pi,t and yi ← 0 otherwise

if f(x) < f(y) then swap x and y;
for i ∈ {1, . . . , n} do

if xi > yi then pi,t+1 ← pi,t + 1/K;
if xi < yi then pi,t+1 ← pi,t − 1/K;
if xi = yi then pi,t+1 ← pi,t;
pi,t+1 ← min{max{1/n, pi,t+1}, 1− 1/n}

t ← t+ 1

Overall, we are interested in the cGA ’s number of function evaluations until 
the optimum is sampled; this number is typically called runtime or optimisation 
time. Note that the runtime is twice the number of iterations until the optimum is 
sampled.

The behaviour of the cGA is governed by Vt ∶=
∑n

i=1
pi,t(1 − pi,t) , the sampling 

variance at time  t. We know from previous work [17, 22] that Vt plays a crucial 
role in the drift of the frequencies. The following lemma makes this precise by 
stating transition probabilities and showing that the expected drift towards higher 
pi,t values is proportional to 1∕

√

Vt  . Recall that all results in this paper tacitly 
assume K ∈ K.

Lemma 2 Consider the cGA  on OneMax. Then pi,t+1 = min{max{1∕n, p�
i,t+1

}, 1 − 1∕n} 
where

This implies

where the lower bound requires pi,t < 1 − 1∕n and the upper bound requires 
pi,t > 1∕n.

Proof Note that p�
i,t+1

≠ pi,t only if the offspring are sampled differently on bit  i, 
which happens with probability 2pi,t(1 − pi,t) . This implies pi,t+1 = pi,t with proba-
bility 1 − 2pi,t(1 − pi,t) . We only need to bound the probability for p�

i,t+1
= pi,t + 1∕K 

as it implies the symmetric bound on the probability for p�
i,t+1

= pi,t − 1∕K.
Consider the fitness difference Di,t =

∑

j≠i(xj − yj) on all other bits. If |Di,t| ≥ 2 
then bit i does not affect the decision whether to update with respect to x or y. Thus 
we have a conditional probability Pr

(

p�
i,t+1

= pi,t + 1∕K ∣ |Di,t| ≥ 2
)

= pi,t(1 − pi,t) 

(1)p�
i,t+1

=

⎧

⎪

⎨

⎪

⎩

pi,t, with probability 1 − 2pi,t(1 − pi,1)

pi,t +
1

K
,with probability

�

1

2
+ �

�

1∕
√

Vt

��

2pi,t(1 − pi,1)

pi,t −
1

K
,with probability

�

1

2
− �

�

1∕
√

Vt

��

2pi,t(1 − pi,1)

E[pi,t+1 − pi,t ∣ pi,t] = �(1) ⋅
pi,t(1 − pi,t)

K
√

Vt
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as pi,t increases if and only if bit i is set to 1 in the fitter individual and to 0 in the 
other. Such steps are called random walk steps (rw-steps) in [22].

If Di,t = 0 then there is a higher probability for increasing pi,t . In that case, and if 
xi ≠ yi , then bit  i does determine the decision whether to update with respect to x 
or y: the offspring with a bit value of 1 will be chosen for the update, leading to a 
conditional probability of Pr

(

p�
i,t+1

= pi,t + 1∕K ∣ Di,t = 0
)

= 2pi,t(1 − pi,t) . In this 
scenario, selection between x and y yields a bias towards increasing pi,t . Such steps 
are called biased steps (b-steps) in [22].

In [17, proof of Lemma 1] it was shown that

In order to bound Pr
(

Dt = 0
)

 from above, imagine that the cGA first creates all bits 
xj for j ≠ i , such that these bits are given and yj for j ≠ i are random variables. Then 
Dt = 0 is equivalent to 

∑

j≠i yj =
∑

j≠i xj . Note that 
∑

j≠i yj is a Poisson-Binomial dis-
tribution on n − 1 bits. Using the general probability bound for such distributions 
from [1] (see Theorem 3.2 in [14]), for any fixed k,

the second inequality following from ∑j≠i pj,t(1 − pj,t) ≥ (n − 1) ⋅ 1∕n ⋅ (1 − 1∕n) ≥ 1∕4 and 
pi,t(1 − pi,t) ≤ 1∕2 ⋅ 1∕2 = 1∕4.

The remaining cases Di,t = −1 and Di,t = +1 fall in one of the above cases and 
can be handled in the same way. Together, Pr

�

p�
i,t+1

= pi,t + 1∕K
�

= pi,t(1 − pi,t) ⋅ (1 + �(1∕
√

Vt)) , 
which proves the claimed probability bounds.

The statement on the expectation follows easily from the probability bounds and 
verifying the statement for boundary values, noting that K ∈ K .   ◻

Remark 1 A statement very similar to Lemma 2 also holds for the UMDA on One-
Max, even though the latter algorithm uses a sampling and update procedure that is 
rather different from the cGA as it can in principle lead to large changes in a single 
iteration. However, the expected change of a frequency follows the same principle as 
for the cGA. Roughly speaking, the results from [12] and [23] together show that the 
UMDA ’s frequencies evolve according to

Pr
�

Di,t = 0
�

≥
1

11
�

∑

j≠i pj,t(1 − pj,t)

≥
1

11
�

∑n

j=1
pj,t(1 − pj,t)

=
1

11
√

Vt

.

Pr

�

�

j≠i

yj = k

�

≤ O(1) ⋅

�

�

j≠i

pj,t(1 − pj,t)

�−1∕2

≤ O(1) ⋅
1

2

� n
�

j=1

pj,t(1 − pj,t)

�−1∕2

= O(1∕(
√

Vt)),
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Note that this drift is by a factor of K larger than in the cGA. However, since each 
iteration of the UMDA entails � fitness evaluations, where � is a parameter that can 
be compared to K in the cGA, the overall runtime is the same for both algorithms.

The progress of the cGA can be measured by considering a natural potential 
function: the function �t ∶=

∑n

i=1
(1 − pi,t) measures the distance to the “ideal” 

distribution where all pi,t are  1. While the drift on individual frequencies is 
inversely proportional to the root of the sampling variance, 

√

Vt  , the following 
lemma shows that the drift of the potential is proportional to 

√

Vt  . It also provides 
a tail bound for the change of the potential.

Lemma 3 Let �t ∶=
∑n

i=1
(1 − pi,t), then E[�t − �t+1 ∣ �t] = O(

√

Vt∕K) .  Moreover, 
for all t  such that Vt = O(K2),

Proof Note that E[pi,t+1 − pi,t ∣ pi,t] = O(1) ⋅
pi,t(1−pi,t)

K
√

Vt

 by Lemma 2 if pi,t > 1∕n . Oth-
erwise, it is bounded by O(1/(nK)) as at least one offspring needs to be sampled at 1. 
In both cases, the drift for one frequency is bounded by O(1) ⋅

�

1

nK
+

pi,t(1−pi,t)

K
√

Vt

�

 , 
hence

where the last step used Vt ≥ 1 − 1∕n , hence 
√

Vt + 1 = O(
√

Vt).
To bound the step size in one iteration, note that �t can only be changed by fre-

quencies that are sampled differently in both offspring, and in that case �t is changed 
by at most 1/K. Hence |�t − �t+1| is stochastically dominated by the sum of indicator 
variables for each frequency  i that take on value 1/K with probability 2pi,t(1 − pi,t) 
and 0 otherwise. These variables are independent (not identically distributed) and 
their sum’s expectation is 2Vt∕K.

We estimate the contribution of off-border frequencies to |�t − �t+1| separately 
from the contribution of frequencies at a border, showing that both quantities are at 
most (

√

Vt log n)∕2 with the claimed probability. Let m denote the number of off-
border frequencies at time  t. Frequencies at a border only change with probability 
2(1 − 1∕n)∕n . The expected number of frequencies that change is 
2(1 − 1∕n)(n − m)∕n ≤ 2(1 − 1∕n) and the probability that at least 
(1 − 1∕n)K∕2 ⋅ log n frequencies at borders change is at most 
(K log n)−�(K log n) ≤ n−�(K log log n) , which follows from the well-known Chernoff 

E[pi,t+1 − pi,t ∣ pi,t] = �(1) ⋅ pi,t(1 − pi,t)∕
√

Vt

Pr
�

��t − �t+1� ≥
√

Vt log n ∣ �t

�

≤ n−�(K log log n).

E[�t − �t+1 ∣ �t] ≤
n
�

i=1

O(1) ⋅

�

1

nK
+

pi,t(1 − pi,t)

K
√

Vt

�

= O

�

1

K
+

Vt

K
√

Vt

�

= O

�
√

Vt + 1

K

�

= O

�
√

Vt

K

�
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bound Pr(X ≥ (1 + �)E[X]) ≤
(

e�

(1+�)1+�

)E[X]

 with 1 + � ∶= K(log n)∕4 . As 
Vt ≥ 1 − 1∕n and 

√

Vt ≥ 1 − 1∕n , with overwhelming probability fewer than 
(1 − 1∕n)K∕2 ⋅ log n ≤ (

√

Vt log n)K∕2 frequencies at borders change. Since every 
change alters �t by ±1∕K , the total contribution of frequencies at borders to 
|�t − �t+1| is at most (

√

Vt log n)∕2.
For the m off-border frequencies we note that every such frequency contributes 

at least 1∕K ⋅ (1 − 1∕K) to Vt , hence Vt = �(m∕K) . Recall from above that the sum 
of all variables leads to an expectation of 2Vt∕K , hence the expectation of just the 
off-border frequencies is at most 2Vt∕K . Using the assumption Vt = O(K2) , which is 
equivalent to 

√

Vt = O(K) , we have 2Vt∕K = 2
√

Vt ⋅
√

Vt∕K = O(
√

Vt) . We apply 
Chernoff-Hoeffding bounds (Lemma 23) with 

∑

i b
2
i
= m∕K2 and a deviation from 

the expectation of (
√

Vt log n)∕2 − O(
√

Vt) = �(
√

Vt log n) . Denoting by X the con-
tribution of frequencies that are off-border at time t to |�t − �t+1| , we have

Taking the union bound over all failure probabilities completes the proof.   ◻

3  Dynamics with Medium Step Sizes

As described in the introduction, the cGA in the medium step size regime, cor-
responding to K = o(

√

n log n) and K = �(log n) , will behave less stable than in 
the small step size regime. In particular, many frequencies will be reinforced in 
the wrong way and will walk to the lower border before the optimum is found, 
resulting in an expected runtime of �(n log n) [22]. With respect to the UMDA it 
is known [23] that such wrong decisions can be “unlearned” efficiently, more pre-
cisely the potential �t improves by an expected value of �(1) per iteration. This 
implies the upper bound O(�n) in the medium regime, which becomes minimal 
for � = �(log n) . Even though formally we have no upper bounds on the runt-
ime of the cGA on OneMax in the medium regime, we conjecture strongly that 
it exhibits the same behaviour as the UMDA and has expected runtime O(Kn). 
We finally recall the first statement of Theorem 1: for extremely large step sizes, 
K ≤ 0.3 log n , the runtime becomes exponential. This statement will be shown in 
Sect. 5; the main reason for the exponential time is that the system contains too 
few states to build a reliable probabilistic model.

The following lemma shows that a linear number of frequencies tends to reach 
the upper and lower borders in the initial phase of a run.

Lemma 4 Consider the cGA  with K ≤
√

n. Then with probability  1 − e−�(
√

n) at 
least �(n) frequencies reach the lower border and at least �(n) frequencies reach 
the upper border within the first O(K2) iterations.

Pr
�

X ≥ (
√

Vt log n)∕2 ∣ �t

�

≤ 2e−�((K2Vt log
2 n)∕m) ≤ 2e−�(K log2 n) = n−�(K log n).
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A proof of Lemma  4 is given in the “appendix” as it repeats many arguments 
from the proof of Theorem 8 in [22], where calculations can be simplified because 
of the assumption on K.

Frequencies at any border tend to remain there for a long time. The following 
statement shows that in an epoch of length r = o(n) the fraction of frequencies at a 
border only changes slightly.

Definition 1 Let �(t) denote the fraction of frequencies at the lower border at time t.

Lemma 5 Consider the cGA  with K ≤
√

n. For every r = o(n) and every iteration 
t ≤ t� ≤ t + r with probability 1 − e−�(r) − e−�(

√

n) we have �(t�) ≥ �(t) − O(r∕n).  
With probability 1 − e−�(r) − e−�(

√

n) there is a time t0 = O(K2) such that 
�0 ∶= �(t0) = �(1).

Both statements also hold for the fraction of frequencies at the upper border.

Proof The first statement follows from the fact that a frequency at a border has to 
sample the opposite value in one offspring to leave its respective border. Taking a 
union bound over two created search points, the probability for leaving the border 
is at most 2/n, hence the expected number of frequencies leaving a border during 
r steps is at most 2r. The probability that at least 4r frequencies leave the border is 
e−�(r) by Chernoff bounds. This implies the first inequality.

The statement regarding �0 follows from Lemma 4 and the first statement: �(n) 
frequencies will hit the lower and the upper border, respectively, within the first 
t0 = O(K2) steps with probability 1 − 2−�(n) and, for frequencies hitting a border 
before time t0 with probability 1 − e−�(r) less than 4r = o(n) frequencies will leave 
the border before time t0 .   ◻

We now show that with high probability, every off-border frequency will hit one 
of the borders after a short number of iterations. The proof of the following lemma 
uses that the probability of increasing a frequency is always at least the probability 
of decreasing it. Hence, if every iteration was actually changing the probability, the 
time bound O(K2) would follow by standard arguments on the fair random walk on 
K states. However, the probability of changing the state is only pi,t(1 − pi,t) and the 
additional logK-factor covers that the process has to travel through states with a low 
probability of movement before hitting a border.

Lemma 6 Consider the frequency pi,t of a bit  i of the cGA  with  K = �(1) on 
OneMax. Let T be the first time when pi,t ∈ {1∕n, 1 − 1∕n}. Then for every initial 
value pi,0 and all  r ≥ 8 , E[T ∣ pi,0] ≤ 4K2 lnK and Pr (T ≥ rK2 lnK ∣ pi,0) ≤ 2−⌊r∕8⌋.

Proof We consider the process Xt , t ≥ 0 , on the state space {q(0), q(1),… , q(K�)} 
where q(i) = 1∕n + i∕K and K� = K(1 − 2∕n) ; note that K′ is an integer since 
K ∈ K . Obviously, T equals the first hitting time of q(0) or q(K�) for the Xt-process. 
To analyze T, we only use that Xt is stochastically at least as large as a fair random 
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walk with self-loop probability 1 − 2q(i)(1 − q(i)) at state  q(i). More precisely, it 
holds for Xt = q(i) , where i ∈ {1,… ,K� − 1} that

The aim is to show that state q(0) or q(K�) is reached by random fluctuations due 
to the variance of the process even in the case that the transition probabilities are 
completely fair in both directions. Since we do not have a lower bound on the prob-
ability of going from  i to i − 1 in the actual process, it may happen that the actual 
process is unable to hit state q(0) whereas the general class of processes considered 
here may well be able to hit this state. Therefore, we make state q(0) reflecting by 
defining Pr (Xt+1 = q(1) ∣ Xt = q(0)) ∶= 1 . Then we estimate the first hitting time of 
state q(K�) for the process modified in this way. Since hitting state q(0) is included in 
the stop event, we can only overestimate T by this modification.

We introduce the potential function g on {0,… ,K�} defined through g(0) ∶= 0 , 
g(1) ∶= 1 and recursively g(i + 1) − g(i) ∶= g(i) − g(i − 1) +

1

q(i)(1−q(i))
 for i ≥ 1 , and 

analyze the process Yt ∶= g(K(Xt − 1∕n)) through drift analysis. To this end, we 
need an upper bound on g(K�) and a lower bound on the drift.

By expanding the recursive definition, we note that for i ≥ 1

and therefore, representing g(K�) − g(0) as a telescoping sum,

where the first inequality estimated q(i) ≥ i∕(2K�) ≥ i∕(2K) and 1 − q(i) ≥ 1∕2 for 
i ≤ K�∕2 and symmetrically for i > K�∕2 . The last inequality holds if K is larger than 
some constant.

Using Pr(Xt+1 = q(i + 1) ∣ Xt = q(i)) ≥ Pr(Xt+1 = q(i − 1) ∣ Xt = q(i)) and 
Pr(Xt+1 ≠ q(i) ∣ Xt = q(i)) = 2q(i)(1 − q(i)) , we obtain for i ≥ 1 that

Xt+1 =

⎧

⎪

⎨

⎪

⎩

q(i), with probability 1 − 2q(i)(1 − q(i))

q(i + 1), with probability ≥ q(i)(1 − q(i))

q(i − 1), with probability ≤ q(i)(1 − q(i)).

g(i + 1) − g(i) = g(1) − g(0) +

i
∑

k=1

1

q(k)(1 − q(k))
= g(1) +

i
∑

k=1

1

q(k)(1 − q(k))

g(K�) = g(K�) − g(0) =

K�−1
∑

j=0

g(j + 1) − g(j)

= g(1) − g(0) +

K�−1
∑

j=1

(

g(1) +

j
∑

k=1

1

q(k)(1 − q(k))

)

≤ K� +

K�∕2
∑

j=1

j
∑

k=1

4K

j
+

K�−1
∑

j=K�∕2+1

j
∑

k=1

4K

K − j

≤ K� +
K

2
(4K(ln(K∕2) + 1)) + 4K

K−1
∑

j=K∕2+1

(ln(K − 1) + 1)

≤ K + 2K2(ln(K∕2) + 1) + 2K2(ln(K − 1) + 1) ≤ 4K2 ln(K),
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by definition of g. Moreover, clearly E[Yt+1 − Yt ∣ Xt = q(0)] = 1 . Altogether, by the 
additive drift theorem (Theorem 24), E[T ∣ X0] ≤ 1 ⋅ g(K�) ≤ 4K2 ln(K) as claimed.

For the tail bound, we note that the upper bound on E[T ∣ X0] holds for all starting 
points. Hence, we obtain from Markov’s inequality that T ≤ 8K2 lnK with probabil-
ity at least 1/2. The probability that the target is not reached within m ≥ 1 phases of 
length 8K2 logK each is bounded by at most 2−m . The claimed tail bound now fol-
lows for all r ≥ 8 .   ◻

4  Stabilisation of the Sampling Variance

Now that we have collected the basic properties of the cGA, we can give a detailed 
road map of the proof. We want to use a drift argument for the potential �t (recall 
�t ∶=

∑n

i=1
(1 − pi,t) ). After a short initial phase, most of the frequencies are at the 

borders, but since a linear fraction is at the lower border we start with �t = �(n) . As 
we have seen, the drift of �t is O(

√

Vt∕K) , so the heart of the proof is to study how 
Vt evolves.

However, the behaviour of Vt is complex. It is determined by the number and 
position of the frequencies in the off-border region (the other frequencies contribute 
only negligibly). By Lemma 2, each pi,t performs a random walk with (state-depend-
ent) drift proportional to 1∕

√

Vt . Therefore, Vt affects itself in a complex feedback 
loop. For example, if Vt is large, then the drift of each pi,t is weak (not to be confused 
with the drift of �t , which is strong for large Vt ). This has two opposing effects. Con-
sider a frequency that leaves the lower border. On the one hand, the frequency has 
a large probability to be re-absorbed by this border quickly. On the other hand, if 
it does gain some distance from the lower border then it spends a long time in the 
off-border region, due to the weak drift. For small Vt and large drift, the situation is 
reversed. Frequencies that leave the lower border are less likely to be re-absorbed, 
but also need less time to reach the upper border. Thus the number and position of 
frequencies in the off-border region depends in a rather complex way on Vt.

To complicate things even more, the feedback loop from Vt to itself has a con-
siderable lag. For example, imagine that Vt suddenly decreases, i.e. the drift of the 
pi,t increases. Then frequencies close to the lower border are less likely to return to 
the lower border, and this also affects frequencies which have already left the bor-
der earlier. On the other hand, the drift causes frequencies to cross the off-border 
region more quickly, but this takes time: frequencies that are initially in the off-bor-
der region will not jump to a border instantly. Thus the dynamics of Vt play a role. 
For instance, if a phase of small Vt (large drift of pi,t ) is followed by a phase of large 
Vt (small drift of pi,t ), then in the first phase many frequencies reach the off-border 

E[Yt+1 − Yt ∣ Xt = i]

≥ q(i)(1 − q(i))((g(i + 1) − g(i)) − (g(i) − g(i − 1)))

= q(i)(1 − q(i))
1

q(i)(1 − q(i))
= 1
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region, and they all may spend a long time there in the second phase. This combina-
tion could not be caused by any static value of Vt.

Although the situation appears hopelessly complex, we overcome these obsta-
cles using the following key idea: the sampling variance  Vt of all frequencies at 
time  t   can be estimated accurately by analysing the stochastic behaviour of one 
frequency  i  over a period of time. More specifically, we split the run of the algo-
rithm into epochs of length K2

�(n) = o(n∕ log log n) , with �(n) = C log2 n for a suf-
ficiently large constant C, long enough that the value of Vt may take effect on the 
distribution of the frequencies. We assume that in one such epoch we know bounds 
Vmin ≤ Vt ≤ Vmax , and we show that, by analysing the dynamics of a single fre-
quency, (stronger) bounds V ′

min
≤ Vt ≤ V ′

max
 hold for the next epoch. The following 

key lemma makes this precise.

Lemma 7 (Stabilisation Lemma) Let r ∶= K2
�(n) with C log3 n ≤ K ≤ n and 

with �(n) = C log2 n, for a sufficiently large constant  C > 0. Let further t1 > 0 , 
t2 ∶= t1 + r and t3 ∶= t2 + r. Assume �(t1) = �(1). There are  C′,C′′

> 0 such that 
the following holds for all Vmin ∈ [0,K2∕3∕C�] and Vmax ∈ [C��K4∕3,∞]. Assume 
that  Vmin ≤ Vt ≤ Vmax for all t ∈ [t1, t2]. Then with probability 1 − q we have 
V ′
min

≤ Vt ≤ V ′
max

 for all times t ∈ [t2, t3], with the following parameters.

(a)  If Vmin = 0 , Vmax arbitrary, then

 
– V �

min
= �(

√

K);
– V �

max
= ∞;

– q = exp(−�(
√

K)).

(b)  If Vmin = �(
√

K) , Vmax arbitrary, then

 
– V �

min
= �(

√

KV
1∕4

min
);

– V �
max

= O(Kmin{K,
√

Vmax}∕
√

Vmin);
– q = exp(−�(min{

√

Vmin,
√

K∕V
1∕4

min
})).

To understand where the values of V ′
min

 and V ′
max

 come from, we recall that 
Vt =

∑n

i=1
pi,t(1 − pi,t) , and we regard the terms pi,t(1 − pi,t) from an orthogonal per-

spective. For a fixed frequency i that leaves the lower border at some time t1 , we con-
sider the total lifetime contribution of this frequency to all Vt until it hits a border again 
at some time t2 , so we consider Pi =

∑t2
t=t1

pi,t(1 − pi,t) . Note that Vt and Pi are concep-
tually very different quantities, as the first one adds up contributions of all frequencies 
for a fixed time, while the second quantifies the total contribution of a fixed frequency 
over its lifetime. Nevertheless, we show in Sect. 4.1 that their expectations are related, 
E[Vt] ≈ 2�(t)E[Pi] , where 2�(t) is the expected number of frequencies that leave the 
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lower border in each round.4 Crucially, E[Pi] is much easier to analyse: we link E[Pi] 
to the expected hitting time E[T] of a rescaled and loop-free version of the random 
walks that the frequencies perform. In Sect.  4.2 we then derive upper and lower 
bounds on E[T] that hold for all random walks with given bounds on the drift, which 
then lead to upper and lower bounds V �

min
≤ E[Vt] ≤ V �

max
.

To prove Lemma 7, it is not sufficient to know E[Vt] , we also need concentration 
for Vt . Naturally Vt is a sum of random variables pi,t(1 − pi,t) , so we would like to use 
the Chernoff bound. Unfortunately, all the random walks of the frequencies are cor-
related, so the pi,t are not independent. However, we show by an elegant argument in 
Sect. 4.3 that we may still apply the Chernoff bound. We partition the set of frequen-
cies into m batches, and show that the random walks of the frequencies in each batch 
do not substantially influence each other. This allows us to show that the contribu-
tion of each batch is concentrated with exponentially small error probabilities. The 
overall proof of Lemma 7 is then by induction. Given that we know bounds Vmin and 
Vmax for one epoch, we show by induction over all times t in the next epoch that Vt 
satisfies even stronger bounds V ′

min
 and V ′

max
.

In Sect. 5 we then apply Lemma 7 iteratively to show that the bounds Vmin and 
Vmax become stronger with each new epoch, until we reach Vmin = �(K2∕3) and 
Vmax = O(K4∕3) . At this point the approach reaches its limit, since then the new 
bounds V ′

min
 and V ′

max
 are no longer sharper than Vmin and Vmax . Still, the argument 

shows that Vt = O(K4∕3) from this point onwards, which gives us an upper bound 
of O(K−1∕3) on the drift of �t and a lower bound of �(K1∕3n) on the runtime of the 
algorithm.

As the proof outline indicates, the key step is to prove Lemma 7, and the rest of 
the section is devoted to it.

4.1  Connecting V
t
 to the Lifetime of a Frequency

In this section we will lay the foundation to analyse E[Vt] . We consider the situa-
tion of Lemma 7, i.e., we assume that we know bounds Vmin ≤ Vt ≤ Vmax that hold 
for an epoch [t1, t2] of length t2 − t1 = r = K2

�(n) . We want to compute E[Vt] for 
a fixed t ∈ [t2, t3] . Since Vt =

∑n

i=1
pi,t(1 − pi,t) , we call the term pi,t(1 − pi,t) the 

contribution of the i-th frequency to Vt . The main result of this section (and one of 
the main insights of the paper) is that the contribution of the off-border frequency 
can be described by E[Vt] = �(�(t)E[T]) , where T is the lifetime of a random vari-
able that performs a rescaled and loop-free version of the random walk that each pi,t 
performs.

First we introduce the rescaled and loop-free random walk. It can be described 
as the random walk that pi,t performs for an individual frequency if we ignore 
self-loops, i.e., if we assume that in each step pi,t either increases or decreases 

4 The actual statement is a bit more subtle and involves lower and upper bounds on P
i
 , see Lemma 9.
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by 1/K. Moreover, it will be convenient to scale the random walk by roughly a 
factor of K so that the borders are 0 and K instead of 1/n and 1 − 1∕n . The exact 
scaling is given by the formula Xi,t = (pi,t − 1∕n)∕(K − 2∕n) . Formally, assume 
that Xt is a random walk on {0,… ,K} where the following bounds hold whenever 
Xt ∈ {1,… ,K − 1}.

Note that by Lemma  2, if we condition on pi,t+1 ≠ pi,t then pi,t follows a random 
walk that increases with probability 1∕2 + �(1∕

√

Vt) . Hence, if Vmin ≤ Vt ≤ Vmax 
then this loop-free random walk of pi,t follows the description in (2) after scaling. 
Therefore, we will refer to the random walk defined by (2) as the loop-free random 
walk of a frequency. We remark that it is slight abuse of terminology to speak of 
the loop-free random walk, since  (2) actually describes a class of random walks. 
Formally, when we prove upper and lower bounds on the hitting time of “the” loop-
free random walk, we prove bounds on the hitting time of any random walk that 
follows (2).

To link E[Vt] and E[T] , we need one more seemingly unrelated concept. Con-
sider a frequency i that leaves the lower border at some time t0 , i.e., pi,t0−1 = 1∕n 
and pi,t0 = 1∕n + 1∕K , and let t′ > 0 be the first point in time when pi,t hits a bor-
der, so pi,t� = 1∕n or pi,t� = 1 − 1∕n . Then we call

the lifetime contribution of the i-th frequency. Analogously, we denote by P′
i
 the life-

time contribution if frequency i leaves the upper border,

Note that Vt and Pi are both sums over terms of the form pi,t(1 − pi,t) . But while Vt 
sums over all i for fixed t, Pi sums over some values of t for a fixed i. Nevertheless, 
as announced in the proof outline, we will show that the expectations E[Vt] and E[Pi] 
are closely related, and this will be the link between E[Vt] and E[T] . More precisely, 
we show the following lemma.

Lemma 8 Consider the situation of Lemma 7. Let t ∈ [t2, t3], and assume 
Vmin ≤ Vt′ ≤ Vmax for all t� ∈ [t1, t − 1]. Let Slow be the set of all frequen-
cies i with pi,t ∉ {1∕n, 1 − 1∕n}, and such that their last visit of a bor-
der was in [t1, t], and it was at the lower border. Formally, we require that 
t0 ∶= max{� ∈ [t1, t] ∣ pi,� ∈ {1∕n, 1 − 1∕n}} exists and that pi,t0 = 1∕n .  Let Supp be 
the analogous set, where the last visit was at the upper border. Then

(2)
Xt+1 =

�

Xt + 1, with probability
1

2
+ d(t),

Xt − 1, with probability
1

2
− d(t),

where d(t) = �
�

1∕
√

Vmax

�

and d(t) = O
�

1∕
√

Vmin

�

.

(3)Pi ∶=
∑t�−1

t=t0
pi,t(1 − pi,t), where pi,t0 = 1∕n + 1∕K

(4)P�
i
∶=

∑t�−1

t=t0
pi,t(1 − pi,t), where pi,t0 = 1 − 1∕n − 1∕K.
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(a) E[
∑

i∈Slow
pi,t(1 − pi,t)] = �(E[Pi]).

(b) E[
∑

i∈Supp
pi,t(1 − pi,t)] = �(E[P�

i
]).

(c) E[
∑

i∈{1,…,n}⧵(Slow∪Supp)
pi,t(1 − pi,t)] = O(1).

Proof (a) Recall that we assume �(t1) = �(1) . With high probability �(t) is 
slowly changing by Lemma  5 and �(t) ≤ 1 always holds trivially, so with high 
probability there is a constant c > 0 such that c ≤ �(t) ≤ 1 for all t ∈ [t1, t3] . 
More precisely, since t3 − t1 = �(log n) , the error probability in Lemma 5 is 
n−�(1) . Since pi,t is polynomially lower bounded in n, such small error probabili-
ties are negligible. In particular, we may assume that for every t� ∈ [t1, t3] , the 
expected number of frequencies s(t) which leave the lower border at time t is 
E[s(t)] = �(t)n ⋅

2

n
(1 −

1

n
) = (2 − o(1))�(t) = �(1).

Consider a frequency that leaves the lower border at time 0, and let 
�t ∶= pi,t(1 − pi,t) if i has not hit a border in the interval [1, t], and �t ∶= 0 otherwise. 
Hence, pt is similar to the contribution of a frequency to Vt , but only up to the point 
where the frequency hits a border for the first time. We will show in the follow-
ing that E[Vt] can nevertheless be related to Et ∶= E[�t] . First note that �t is related 
to the lifetime contribution via E[Pi] = E[

∑∞

t=0
�t] =

∑∞

t=0
Et , since �t is zero after 

the frequency hits a border. On the other hand, for a fixed t ∈ [t2, t3] let us estimate 
Vt,low ∶=

∑

i∈Slow
pi,t(1 − pi,t) . Assume that frequency i leaves the border at some time 

t − � ∈ [t1, t] . If it does not hit a border until time t, then it contributes �
�
 to Vt,low . 

The same is true if it does hit a border, and doesn’t leave the lower border again in 
the remainder of the epoch, since then i ∉ Slow and �

�
= 0 . For the remaining case, 

assume that i leaves the lower border several times t − �1, t − �2,… , t − �k , with 
𝜏1 > 𝜏2 > … > 𝜏k . Then �

�2
= … = �

�k
= 0 , and by the same argument as before, 

the contribution of i to Vt,low is �
�1
=
∑k

i=1
�
�k

 , where �
�1

 may or may not be zero. 
Therefore, we can compute E[Vt,low] by summing up a term E

�
 for every frequency 

that leaves the lower border at time t − � , counting frequencies multiple times if they 
leave the lower border multiple times. Recall that the number of frequencies s(t) that 
leave the lower border at time t − � has expectation E[s(t)] = �(1) . Therefore,

The sum on the right hand side is almost E[Pi] , except that the sum only goes to 
t − t1 instead of ∞ . Thus we need to argue that 

∑∞

�=t−t1+1
E
�
 is not too large. Since 

t − t1 ≥ K�2�(n) ≥ 8K logK , we may apply Lemma 6, and obtain that the probabil-
ity that a frequency does not hit a border state in 𝜏 > t − t1 rounds is e−�(�∕(K2 logK)) . 
Hence, we may split the range [t − t1 + 1,∞) into subintervals of the form 
[i ⋅ K2 logK, (i + 1) ⋅ K2 logK) , then the i-th subinterval contributes 
O((K2 logK)e−i) . Therefore, setting i0 ∶= �(n)∕ logK ≥ C log n , where we may 
assume C > 3 , the missing part of the sum is at most

(5)E[Vt,low] = E
[
∑t−t1

�=0
st−� ⋅ E�

]

= �(1)
∑t−t1

�=0
E
�
.

∑∞

�=r
e−�(�∕(K2 logK)) = O

(

K2 logK
∑∞

i=i0
e−i

)

= o(1∕K),
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using K ≤ n in the last step. This is clearly smaller than the rest of the sum, since 
already E1 ≥ 1∕K ⋅ (1 − 1∕K) . Hence E[Vt,low] = �(E[Pi]) , as required.

For (b), the proof is the same as for (a), except that the number s�(t) of frequen-
cies that leave the upper border at time t is given by (2 − o(1))� �(t) , where � �(t)n is 
the number of frequencies at the upper border at time t. Since � �(t) = �(1) , the same 
argument as in (a) applies.

For (c), a frequency i ∈ {1,… , n} ⧵ (Slow ∪ Supp) is either at the border at time t, 
or it is never at a border throughout the whole epoch. The former frequencies, which 
are at the border at time t, contribute 1∕n ⋅ (1 − 1∕n) each, which sums to less than 
1. For the other frequencies, similar as before, by Lemma 6 the probability that a 
frequency does not hit a border in t − t1 ≥ K2

�(n) rounds is e−�(�(n)∕ logK) = o(1∕n) 
since � = C log2 n for a sufficiently large constant C. Therefore, the expected num-
ber of such frequencies is o(1), and their expected contribution is o(1). This proves 
(c).   ◻

The next lemma links the lifetime contribution Pi and P′
i
 to the hitting time T 

of the loop-free random walk.

Lemma 9 Consider the situation of Lemma 7. Assume for a = 1 or a = K − 1 that 
Ta,min and Ta,max are a lower and upper bound, respectively, on the expected hitting 
time of  {0,K} of every random walk as in (2)  with X0 = a. Then the lifetime contri-
butions Pi and P′

i
  defined in (3)  and (4) satisfy

We say that E[Pi] = �(E[T]) , where T is the hitting time of {0,K} for the loop-free 
random walk starting at 1, and similarly for E[P�

i
].

Proof Any frequency i contributes pi,t(1 − pi,t) to Pi . On the other hand, the expected 
time until the i-th frequency makes a non-stationary step (i.e., it changes by a non-
zero amount) is 1∕(2pi,t(1 − pi,t)) (cf. Lemma 2). Therefore, the summed contribu-
tion to Pi until the frequency makes one non-zero step is in expectation exactly 1/2. 
Therefore, by Wald’s equation, E[Pi] = 1∕2 ⋅ E[#non-stationary steps] . However, the 
loop-free random walk is precisely defined to capture the random walk that the i-th 
frequency performs with its non-stationary steps, so 2E[Pi] equals the hitting time of 
{0,K} of a random walk as in (2) starting at X0 = 1 . This proves the first equation, 
and the second equation follows analogously.   ◻

Lemmas 8 and 9 together yield the following corollary.

Corollary 10 Consider the situation of Lemma 7, and let  Ta,min and Ta,max be lower 
and upper bounds, respectively, on the expected hitting time of {0,K} of every ran-
dom walk as in (2) with X0 = a . Assume T1,min = �(1). Then for all t ∈ [t2, t3],

2T1,min ≤ E[Pi] ≤ 2T1,max.

2TK−1,min ≤ E[P�
i
] ≤ 2TK−1,max.
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By Corollary 10, in order to understand E[Vt] it suffices to analyse the expected 
hitting time E[T] of the loop-free random walk.

4.2  Bounds on the Lifetime of a Frequency

We now give upper and lower bounds on the expected lifetime of every loop-free 
random walk, assuming that we only have lower and upper bounds �min and �max on 
the drift that hold the whole time. We start with the upper bound.

Lemma 11 Consider a stochastic process  {Xt}t≥0 on {0, 1,… ,K}, variables �t  
that may depend on X0,… ,Xt and 𝛥min > 0 , 1∕(2K) ≤ �max ≤ 1∕2 such that for 
�min ≤ �t ≤ �max,

Let T be the hitting time of states 0 or K, then regardless of the choice of the �t,

Remark 2 The most important term for us is E[T ∣ X0 = 1] = O(K�max∕�min) . This 
is tight, i.e., there is a scheme for choosing �t that yields a time of �(K�max∕�min) if 
�min = �(1∕K).

Consider �t = �max for states i ≤ K∕2 and �t = �min for states i > K∕2 . Then 
with probability �(�max) the random walk never reaches  0. Once it reaches K/2, 
it can be shown that the expected time to reach K or  0 from there is �(K∕�min) 
for �min = �(1∕K) . (The latter condition is needed since, if �min = o(1∕K) , the 
random walk would be nearly unbiased and reach a border in expected time 
O(K2) = o(K∕�min) , which contradicts the claimed lower bound of �(K∕�min) .) We 
omit the details.

Proof We first give a brief overview over the proof. For X0 = 1 we fix an intermedi-
ate state k0 = �(1∕�max) and show, using martingale theory and the upper bound 
�max on the drift, that (1) the time to reach either state 0 or state k0 is O(1∕�max) , and 
(2) the probability that k0 is reached is O(�max) . In that case, using the lower bound 
�min on the drift, the remaining time to hit state 0 or state K is O(K∕�min) by additive 
drift. The time from k0 is also bounded by O(K2) as it is dominated by the expected 
time a fair random walk would take if state 0 was made reflecting. The statement for 
X0 = K − 1 is proved using similar arguments, starting from K − 1 instead of k0.

We first show the upper bound for X0 = 1 . Let k0 = 1∕(2�max) and note that 
k0 ≤ K since �max ≥ 1∕(2K) . Let � be the first point in time when we either hit 0 

E[Vt] = O(T1,max + TK−1,max) and E[Vt] = �(T1,min + TK−1,min).

Pr
(

Xt+1 = Xt + 1 ∣ Xt

)

=
1

2

(

1 + 𝛥t

)

for all Xt < K and

Pr
(

Xt+1 = Xt − 1 ∣ Xt

)

=
1

2

(

1 − 𝛥t

)

for all Xt > 0.

E[T ∣ X0 = 1] = O(min{K2
�max,K�max∕�min}) and

E[T ∣ X0 = K − 1] = O(min{K, 1∕�min}).
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or k0 , and let p
�
 and ph be the probability to hit 0 or k0 , respectively, at time � . Now 

consider Yt ∶= X2
t
 during the time before we hit k0 . Then Yt has a positive drift, more 

precisely

Therefore, Zt ∶= Yt − t is a submartingale (has non-negative drift). By the optional 
stopping theorem [7, page 502], at time � we have

On the other hand, since Xt − t ⋅ �max is a supermartingale (has non-positive drift), 
we can do the same calculation and obtain

Solving for E[�] in both equations, we get

Now we ignore the term in the middle and sort for ph:

This is equivalent to

and plugging this into (7) yields E[�] = O(1∕�max).
If state k0 is reached, we use that the drift is always at least �min . Then a distance 

of K − k0 ≤ K has to be bridged, and by additive drift (Theorem 24) the expected 
remaining time until state K or state 0 is reached is O(K∕�min).

It is also bounded by O(K2) as the first hitting time of either state 0 or state K is 
stochastically dominated by the first hitting time of state K for a fair random walk 
starting in k0 when state 0 is made reflecting. This is equivalent to a fair gambler’s 
ruin game with 2K dollars (imagine a state space of {−K,… , 0,… ,K} where −K 
and +K are both ruin states), and the game starts with K − k0 dollars. The expected 
duration of the game is (K − k0) ⋅ (K + k0) = O(K2).

Together, we obtain an upper bound of

where 1∕�max can be absorbed since 1∕�max = O(K) = O(K2
�max).

E[Yt+1 − Yt ∣ Xt] = − X2
t
+ Pr(Xt+1 − Xt = 1 ∣ Xt) ⋅ (X

2
t
+ 2Xt + 1)

+ Pr(Xt+1 − Xt = −1 ∣ Xt) ⋅ (X
2
t
− 2Xt + 1)

= 1 + 2 ⋅ Xt
⏟⏟⏟

≥0

E[Xt+1 − Xt ∣ Xt]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

≥ 1.

(6)1 = Z0 ≤ E[Z
�
] = p

𝓁
⋅ 0 + ph ⋅ k

2
0
− E[�].

1 = X0 ≥ E[X
�
] − E[�]�max = p

𝓁
⋅ 0 + ph ⋅ k0 − E[�]�max.

(7)phk0∕�max − 1∕�max ≤ E[�] ≤ phk
2
0
− 1.

phk0(1∕�max − k0) ≤ 1∕�max − 1.

ph ≤
1 − �max

k0(1 − k0�max)
=

2 − 2�max

k0
≤

2

k0
= 4�max,

O(1∕�max + ph min{K∕�min,K
2}) = O(min{K2

�max,K�max∕�min})
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For X0 = K − 1 an upper bound O(1∕�min) follows from additive drift as only a 
distance of 1 has to be bridged, and the drift is at least �min . To show an upper bound 
of O(K), we again use that the aforementioned fair gambler’s ruin game stochasti-
cally dominates the sought hitting time. As X0 = K − 1 , the game starts with 1 dollar 
and the expected duration of the game is 1 ⋅ (2K − 1) = O(K) .   ◻

The following lemma gives a lower bound on the lifetime of every loop-free 
random walk.

Lemma 12 Consider a stochastic process {Xt}t≥0 on {0, 1,… ,K}, variables �t 
that may depend on X0,… ,Xt and  �min ≥ 0 , �max ≥ (4 lnK)∕K such that for 
�min ≤ �t ≤ �max,

Let T be the hitting time of states 0 or K, then regardless of the choice of the �t,

and

Remark 3 There is a scheme for choosing �t such that the bound on the expectation 
from Lemma 12 is asymptotically tight.

The scheme uses minimum drift �min until state 0 or state 
√

K∕�max is reached 
for the first time. In the latter case we switch to a maximum drift �max . By gam-
bler’s ruin, the probability of reaching state 

√

K∕�max can be shown to be at most 
1∕

√

K∕�max + 4�min , and in this case the remaining time to reach state  0 or  K is 
O(K∕�max) by additive drift. We omit the details.

Proof The lower bound on the expectation follows immediately from the lower 
bounds on the probabilities. We first give an overview of the proof of the lower 
bound on the expectation. We couple the process with two processes Xmin

t
 and Xmax

t
 

that always use the minimum and maximum drift �min and �max , respectively. The 
coupling ensures that Xmin

t
≤ Xt ≤ Xmax

t
 , hence as long as Xmin

t
> 0 and Xmax

t
< K , 

the process cannot have reached a border state. We show for both coupled pro-
cesses that the probability of reaching their respective borders in time 1

2
K∕�max is 

small, and then apply a union bound. For the Xmax
t

 process a negligibly small fail-
ure probability follows from additive drift with tail bounds [11] and the condition 
�max ≥ (4 lnK)∕K . For the Xmin

t
 process we show that the fair random walk on the 

integers, starting in state 1, does not reach state 0 in time 1
2
K∕�max with probabil-

ity �(
√

�max∕K) . In addition, the Xmin
t

 process on the integers never reaches state 0 

Pr
(

Xt+1 = Xt + 1 ∣ Xt

)

=
1

2

(

1 + 𝛥t

)

for all Xt < K and

Pr
(

Xt+1 = Xt − 1 ∣ Xt

)

=
1

2

(

1 − 𝛥t

)

for all Xt > 0.

Pr
�

T >
1

2
K∕𝛥max ∣ X0 = 1

�

= 𝛺(
√

𝛥max∕K + 𝛥min)

E[T ∣ X0 = 1] = �(
√

K∕�max + K�min∕�max).
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with probability �(�min) [5, page 351], which yields the second term in the claimed 
probability.

More specifically, we show that all schemes for choosing the �t lead to the 
claimed probability bound. We couple the random walk with two processes: Xmin

t
 

is a random walk on {0, 1,…} (i. e. with the border K removed) with the minimum 
drift, i. e. using the minimum possible values for �t : �min

t
∶= �min for all t. Moreover, 

Xmax
t

 is a process on {K,K − 1,…} (i. e. with the border 0 removed) with the maxi-
mum drift, �max

t
∶= �max for all  t. The coupling works as follows: draw a uniform 

random variable  r from [0,  1]. If r ≤ 1∕2 ⋅ (1 − �t) , Xt decreases its current state, 
and the same applies to Xmin

t
 if r ≤ 1∕2 ⋅ (1 − �

min
t

) and Xmax
t

 if r ≤ 1∕2 ⋅ (1 − �
max
t

) . 
Otherwise, the random walks increase their current state. This coupling and 
�
min
t

≤ �t ≤ �
max
t

 ensures that for every time step t, we have Xmin
t

≤ Xt ≤ Xmax
t

.
This implies in particular that, as long as Xmin

t
> 0 and Xmax

t
< K , Xt will not 

have hit any borders. Let Tmin
0

 be the first hitting time of the Xmin
t

 process hitting 
state 0 and Tmax

K
 be the first hitting time of the Xmax

t
 process hitting state K. Thus the 

first hitting time T of the Xt process hitting either state 0 or state K is bounded from 
below by T ≥ min{Tmin

0
, Tmax

K
}.

In particular, by the union bound we have

and we proceed by bounding the last two probabilities from above.
By additive drift, it is easy to show that E[Tmax

K
] = �(K∕�max) , and this time is 

highly concentrated. Using Theorem 25, we have

as K�max ≥ 4 lnK . It remains to analyse Tmin
0

 , that is, the time until a random walk 
with drift �min on the positive integers, starting at X0 = 1 , hits state 0. This time sto-
chastically dominates the time until a fair random walk (with no drift) hits state 0.

For the fair random walk, the probability that state 0 will be hit at time  t is [5, 
III.7, Theorem 2]

where the binomial coefficient is 0 in case the second argument is non-integral. 
Hence

The binomial coefficient (for odd t) is at least �(2t∕
√

t) . Hence we get a lower 
bound of

(8)Pr
(

T ≤ K∕(2�max)
)

≤ Pr
(

Tmin
0

≤ K∕(2�max)
)

+ Pr
(

Tmax
K

≤ K∕(2�max)
)

(9)Pr
(

Tmax
K

≤ K∕(2�max)
)

≤ e−K�max∕4 ≤ 1∕K

1

t

(

t
t+1

2

)

⋅ 2−t

Pr
(

Tmin
0

> K∕(2𝛥max)
)

≥
∑

t≥K∕(2𝛥max)

1

t

(

t
t+1

2

)

⋅ 2−t
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Including terms for even  t as 1∕t3∕2 ≥ 1∕2 ⋅ 1∕t3∕2 + 1∕2 ⋅ 1∕(t + 1)3∕2 and using 
∑

t≥x
1

t3∕2
≥ ∫ ∞

x

1

t3∕2
dt =

2
√

x
 leads to a lower bound of

Hence Pr
�

Tmin
0

≤ K∕(2�max)
�

≤ 1 −�(
√

�max∕K) and plugging this and (9) into (8) 
yields

as 
√

�max∕K = �(1∕K) . Thus E[T] = �(
√

�max∕K ⋅ K∕�max) = �(
√

K∕�max).
We only need to prove a lower probability bound of �(�min) in case 

�min = �(
√

�max∕K) = �(1∕K) . The sought probability bound then follows from 
observing that, according to [5, page 351], the Xmin

t
 process never reaches 0 with 

probability

and in that case (8) and (9) yield

  ◻

4.3  Establishing Concentration

Our major tool for showing concentration will be using the Chernoff bound [4] and 
the Chernoff-Hoeffding bound [4].

The basic idea is that for fixed t, we define for each frequency i a random variable 
Xi ∶= pi,t(1 − pi,t) to capture the contribution of the i-th frequency to Vt =

∑n

i=1
Xi . 

In the previous sections we have computed E[Vt] by studying the expected lifetime 
E[T] . Concentration of Vt would follow immediately by the Chernoff bound if the 
random walks of the different frequencies were independent of each other. Unfortu-
nately, this is not the case. However, for the initial case of the stabilisation lemma, 
Lemma 7 (a), we show that the random walks behave almost independent, which 
allows us to show the following lemma.

Pr
�

Tmin
0

> K∕(2𝛥max)
�

>

�

t≥K∕𝛥max,t odd

1

t
⋅𝛺

�

1
√

t

�

= 𝛺(1) ⋅
�

t≥K∕𝛥max, t odd

1

t3∕2
.

�(1) ⋅
1

2

�

t≥K∕�max+1

1

t3∕2
= �

�

1
√

K∕�max

�

= �(
√

�max∕K).

Pr
�

T ≤ K∕(2�max)
�

≤ 1 −�(
√

�max∕K) + 1∕K ≤ 1 −�(
√

�max∕K)

1 −
1∕2 ⋅ (1 − �min)

1∕2 ⋅ (1 + �min)
=

�min

1∕2 ⋅ (1 + �min)
= �(�min)

Pr
(

T ≤ K∕(2�max)
)

≤ 1 −�(�min) + 1∕K ≤ 1 −�(�min).
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Lemma 13 Assume the situation of Lemma  7 (a). Then  Vt = �(
√

K) holds with 
probability  1 − e−�(

√

K) for all t ∈ [t2, t3].

Proof We use an inductive argument over t ∈ [t2, t3] . Note that in Lemma  7 the 
statement gets weaker with increasing C′ and C′′ , so we may assume that they 
are as large as we want. We claim that if they are chosen appropriately, then for 
part  (b) of the lemma we have V ′

min
≥ Vmin and V ′

max
≤ Vmax . Therefore, by induc-

tion hypothesis we may assume that Vmin ≤ V ′
min

≤ Vt′ ≤ V ′
max

≤ Vmax also holds 
for t� ∈ [t2, t − 1] . To check the claim for V ′

min
 , we write the first statement from 

Lemma 7 (b) as V �
min

≥ c
√

KV
1∕4

min
 for some c > 0 , making the �-notation explicit. 

Then we use the condition Vmin ≤ K2∕3∕C� , or equivalently 
√

K ≥ (C�Vmin)
3∕4 , and 

hence V �
min

≥ c
√

KV
1∕4

min
≥ cC�3∕4Vmin , which is larger than Vmin if C�

> c−4∕3 . This 
proves the claim for V ′

min
 . After fixing C′ , we inspect the second statement from 

Lemma  7 (b), which implies in particular V �
max

≤ c�K
√

Vmax∕
√

Vmin for some c′ , 
since replacing a minimum by one of its terms can only make it larger. We plug in 
the two conditions Vmin ≤ K2∕3∕C� and Vmax ≥ C��K4∕3 , the latter in the equivalent 
form K2∕3 ≤

√

Vmax∕C
�� , and obtain

where the last steps holds for fixed C′ , if we choose C′′ sufficiently large. Thus we 
may assume V ′

min
≥ Vmin and V ′

max
≤ Vmax.

As mentioned above, we know that E[Vt] = E[T] = �(
√

K) by Corollary 10 and 
Lemma 12 with trivial drift bounds �min = 0 and �max = 1∕2 , so it remains to show 
concentration. Fix i ∈ {1,… , n} , and consider the random walk that pi,t performs 
over time. More precisely, we consider one step of this random walk, from t to t + 1 . 
If the offspring x and y have the same i-th bit, then pi,t+1 = pi,t , so assume that x and 
y differ in the i-th bit. We want to understand how the drift of pi,t changes if we con-
dition on what the other frequencies do.

So assume that we have already drawn all bits of the two offspring x and y at 
time t + 1 except for the i-th bit. Let f �(x) ∶= f (x) − xi and f �(y) ∶= f (y) − yi be the 
number of one-bits among the n − 1 uncovered bits of x and y, respectively. Assume 
also that someone tells us which of x, y is the selected offspring. In some cases, for 
example if f �(x) ≥ f �(y) + 2 and x is selected, the probability that xi = 1 is exactly 
1/2, since the one-bit is equally likely in x and y, and it does not have any influ-
ence on the selection process. In other cases, for example if f �(x) = f �(y) + 1 and 
y is selected, then Pr(yi = 1) = 1 , because this is the only scenario in which y can 
be selected. However, in all cases the selected offspring has probability at least 1/2 
to have a one-bit at position i, because the selection process can never decrease the 
probability that the selected offspring has a one-bit at position i. Therefore, even 
after conditioning on the steps that all other pj,t perform, we still have a non-nega-
tive drift for pi,t , i.e., for any collection (qj)j∈{1,…,n}⧵{i} of frequencies,

V �
max

≤ c�K
√

Vmax∕
√

Vmin ≤ c�
√

C�K2∕3
√

Vmax ≤ c�
√

C�∕C��Vmax ≤ Vmax,

E[pi,t+1 − pi,t ∣ pi,t, xi ≠ yi ∧ ∀j ≠ i ∶ pj,t+1 = qj] ≥ 0.
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On the other hand we have the upper bound pi,t+1 − pi,t ≤ 1∕K by definition of the 
algorithm. Therefore, we can use the following uncovering procedure to force inde-
pendence between the contributions of different i. In each step, we first uncover 
for all bits whether the offspring coincide for this bit or not, which is independent 
for all bits. Then we uncover for all 1 ≤ i ≤ n one after the other whether the value 
of pi,t+1 increases or decreases (or stays the same). Crucially, even conditioned on 
all the prior information, pi,t still has non-negative drift. Therefore, the associated 
loop-free random walk still follows the description in Lemma 12 with �min = 0 and 
�max = 1 . Hence, if we uncover the random walks one by one as described above, 
then still the contribution of the frequencies sum up to �(

√

K) in expectation, and 
the contribution of the i-th frequency is independent of the contribution of the previ-
ous frequencies.5 Therefore, for a fixed t ∈ [t2, t3] we may apply the Chernoff bound 
(Lemma 22 with � = 1∕2 ), and obtain that Vt = �(

√

K) with probability e−�(
√

K) . 
Then the claim follows by a union bound over all t2 − t1 = KO(1) values of t, since 
KO(1)e−�(

√

K) = e−�(
√

K) .   ◻

We would like to use a similar argument also in the cases with non-trivial �min 
and �max . Unfortunately, it is no longer true that the drift remains lower bounded by 
𝛥min > 0 if we uncover the random walk steps of the other frequencies. However, 
the bound still remains true if we condition on only a few of the other frequencies. 
More precisely, if we consider a batch of r frequencies b1,… , br for a suitably cho-
sen r ∈ ℕ , then even if we condition on the values that the two offspring have in 
the bits b1,… , br−1 then frequency of br will still perform a random walk where the 
drift in each round is in �(1∕(K

√

Vt)) . Hence, we can couple the random walks of 
b1,… , br−1 to r independent random walks, and apply the Chernoff bound to show 
that the contribution of this batch is concentrated. Afterwards we use a union bound 
over all batches.

Formally, we show the following pseudo-independence lemma. Note that there 
are two types of error events in the lemma. One is the explicit event E , the other is 
the event that B ∉ � , i.e., that the other frequencies in the batch display an atypical 
distribution. However, both events are very unlikely if Vt is large, which we may 
assume after one application of Lemma 13.

Lemma 14 Consider a vector of probabilities pt with potential  Vt =
∑n

i=1
pi,t(1 − pi,t).

Let m = m(n) ≥ 3. Let S ⊆ {1,… , n} be a random set which contains each posi-
tion independently with probability 1/m.  Then there is an error event E  of prob-
ability  Pr(E) = e−�(Vt∕m) such that, conditioned on  ¬E, the following holds for 
all i0 ∈ S. Let  b1

i
 and b2

i
 be the i-th bit in the first and second offspring, respec-

tively, and let B ∶= (b
j

i
)i∈S⧵{i0},j∈{1,2}. There is a set  � ⊆ {0, 1}2(m−1) such that 

Pr(B ∈ �) = 1 − e−�(min{m,Vt∕m}) and such that for  all B0 ∈ �,

5 Or more formally: we can couple the contribution of the i-th frequency to a random variable which is 
independent of the previous contributions, and which gives a lower bound on the contribution of the i-th 
frequency.
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Before we prove the lemma, we remark briefly on how we apply it. Recall 
that our overall proof strategy is to show that Vt is between Vmin = �(K2∕3) and 
Vmax = O(K4∕3) , and then stays in this regime for the remaining runtime. For this 
regime, by choosing m =

√

Vmin , both error events (the event E and the event 
B ∉ � ) have probability e−�(K1∕3) = e−�(C1∕3 log n) , where C is the constant from the 
assumption K ≥ C log3 n . So for any nO(1) iterations, the error events will not happen 
if C is sufficiently large.

Proof of Lemma 14 The error event E is that the contribution of S to Vt deviates 
from its expectation Vt∕m , more precisely, 

∑

i∈S pi,t(1 − pi,t) ∉ [
1

2
Vt∕m, 2Vt∕m] . To 

estimate its probability note that the contribution of all frequencies sum to Vt , so 
the contribution of the frequencies in S sums to Vt∕m in expectation. We apply the 
Chernoff bound to random variables where the i-th random variable takes value 
pi,t(1 − pi,t) if i ∈ S (with probability 1/m), and value 0 otherwise. Hence we apply 
Lemma 22 with b = 1 . We obtain that the probability that the contribution of the fre-
quencies in S deviates from its expectation by more than 1

2
Vt∕m is at most e−�(Vt∕m) , 

as required.
We uncover the offspring in three steps. First we uncover all bits in S ⧵ {i0} , then 

we uncover the bits in S̄ ∶= {1,… , n} ⧵ S , and finally we uncover i0 . We call d1 and 
d2 the difference of the fitnesses of the uncovered bits in the first and second uncov-
ering steps, respectively. Assume first that |d1 + d2| ≥ 2 . Then the values of i0 in the 
two offspring do not have an effect on the selection step, and by symmetry pi0,t per-
forms a (possibly stagnating) unbiased random walk step. On the other hand, assume 
that d1 + d2 = 0 , and that the two i0-bits in the offspring are different. Then the off-
spring which has a one-bit in i0 will always be selected. (The case d1 + d2 = ±1 con-
tributes similarly as the case of zero difference, but is not needed for the argument.)

For the upper bound on the drift, assume that d1 = k for some k ∈ ℤ . Note 
that the frequencies in S̄ contribute at least Vt∕2 to Vt , with room to spare. In par-
ticular, by the general probability bound for Poisson-Binomial distributions [1], 
Pr(d2 ∈ {−k − 1,−k,−k + 1}) = O(1∕

√

Vt) . Since this holds for any value of k, 
analogously to Lemma 2 we obtain

For the lower bound, we use a similar argument, but we need to be more care-
ful since Pr(d2 = −k) = �(1∕

√

Vt) holds only if �k� ≤ �
√

Vt for a sufficiently 
small constant 𝜂 > 0 [23, Lemma 2.5]. Thus the claim will follow as before if we 
define � ∶= {B0 ∈ {0, 1}2(m−1) ∣ �d1(B0)� ≤ �

√

Vt} . It only remains to check that 
Pr(B ∉ �) = e−�(min{m,Vt∕m}) . To this end, we proceed in two steps. First, let S′ be 

(10)E[pi0,t+1 − pi0,t ∣ pt,B = B0,¬E] = �

�

pi0,t(1 − pi0,t)

K
√

Vt

�

.

E[pi0,t+1 − pi0,t ∣ pt,B = B0,¬E] = O

�

pi0,t(1 − pi0,t)

K
√

Vt

�

.
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the set of all positions i ∈ S such that the two offspring differ in the i-th bit. We 
claim that then |S�| ≤ 4Vt∕m with probability e−�(Vt∕m) . Indeed, this follows from 
the Chernoff bound by using |S| indicator random variables Xi , where Xi = 1 
if i ∈ S� , and Xi = 0 otherwise. In a second step, we use |S′| random variables Yi , 
where for i ∈ S� we set Yi = +1 if the first offspring has a one-bit in i and the sec-
ond offspring has a zero-bit in i, and Yi = −1 otherwise. (Recall that by definition 
of S′ , the offspring differ in the bits in S′ .) By symmetry E[Yi] = 0 for all i, and 
d1(B) =

∑

i∈S� Yi . Now we apply the Chernoff-Hoeffding bound, Lemma 23 to the 
random variables (Yi + 1) ∈ {0, 2} with t = �

√

Vt and b = 4|S�| and obtain that 
Pr(�

∑

i∈S� Yi� ≥ �
√

Vt) ≤ 2e−�
2Vt∕(2�S

�
�) = e−�(m) , as required.   ◻

We note that from Lemma 14 we may derive the following corollary.

Corollary 15 In the situation of Lemma 7 with Vmin = �(log2 K) and Vmin ≤ K2, we 
may split the set of frequencies randomly into m =

√

Vmin batches of size  �(n∕m),  
such that for every batch S there are independent random walks (Li,t)i∈S,t≥0 and  
(Ui,t)i∈S,t≥0 which both satisfy the recurrence (1), and such that Li,t ≤ pi,t ≤ Ui,t holds 
for all off-border frequencies  i ∈ {1,… , n} and all t1 ≤ t ≤ t2 with probability at 
least 1 − e−�(

√

Vmin).

Proof For each frequency we decide randomly (independently) to which batch 
it belongs. Then each batch satisfies the description of Lemma 14, and with suffi-
ciently large probability all batches have size �(n∕m) by the Chernoff bound (since 
Vmin ≤ Vt ≤ n we have m ≤

√

n ). The coupling is an immediate consequence of 
Lemma 14, which states that for any value of the other frequencies in the batch, the 
frequency i0 still performs a random walk that satisfies the recurrence (10). It just 
remains to check the error probabilities.

For a single time step, in Lemma 14 we have Pr(B ∉ �) = e−�(
√

Vmin) . By a union 
bound over all t2 − t1 = KO(1) time steps, the probability that there is any iteration 
with B ∉ � is at most KO(1)e−�(

√

Vmin) = e−�(
√

Vmin) , where the last equality fol-
lows since 

√

Vmin = �(logK) . Similarly, for a single round and a single frequency 
the probability of the error event is Pr(E) = e−�(

√

Vmin) . The number of rounds is 
t2 − t1 = KO(1) , and by Lemma 6 with probability 1 − e−�(K) = 1 − e−�(

√

Vmin) there 
are only KO(1) frequencies starting from the boundaries in this epoch. By a union 
bound over all rounds and all off-border frequencies, the probability that there is 
ever an error event is at most KO(1)e−�(

√

Vmin) = e−�(
√

Vmin) , since 
√

Vmin = �(logK) .  
 ◻

Corollary 15 allows us to partition the frequencies randomly into m batches, 
such that in each batch the frequencies perform random walks that can be cou-
pled to independent random walks. In particular, we will be able to apply the 
Chernoff-Hoeffding bounds to each batch. This gives concentration of the Vt as 
follows.
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Lemma 16 Assume the situation of Lemma 7 (b), in particular V �
min

= �(
√

KV
1∕4

min
) 

and V �
max

= O(Kmin{K,
√

Vmax}∕
√

Vmin) where we may choose the hidden con-
stants suitably. Then with probability  1 − exp(−�(min{

√

Vmin,
√

K∕V
1∕4

min
})), for all 

t ∈ [t2, t3], we have V ′
min

≤ Vt ≤ V ′
max

.

Proof Apart from the complication with the batches, the proof is analogous to the 
proof of Lemma 13.

For simplicity we shall abbreviate q ∶= min{
√

Vmin,
√

K∕V
1∕4

min
} , and note 

that KO(1)e−�(q) = e−�(q) . Therefore, it suffices to show all statements for a single 
t, since we can afford a union bound over all KO(1) values of t. More precisely, as 
for Lemma  13 we use induction on t ∈ [t2, t3] , and we may choose the constants 
C′,C′′ in Lemma  7 such that V ′

min
≥ Vmin and V ′

max
≤ Vmax . Therefore, by induc-

tion hypothesis we may assume that Vmin ≤ V ′
min

≤ Vt′ ≤ V ′
max

≤ Vmax also holds for 
t� ∈ [t2, t − 1].

For every 1 ≤ i ≤ n , we define a random variable Xi ∶= pi,t(1 − pi,t) , and we 
are interested in Vt =

∑n

i=1
Xi . The frequencies perform a random walk with 

drift between �(pi,t(1 − pi,t)∕(K
√

Vmax)) and O(pi,t(1 − pi,t)∕(K
√

Vmin)) . There-
fore, the loop-free random walk with state space {1,… ,K} has drift between 
�min ∶= 1∕

√

Vmax and �max ∶= 1∕
√

Vmin . By Corollary 10, E[Vt] = �(E[T]) , where 
T is the lifetime of a random walk on {1,… ,K} with drift between �min and �max . By 
Lemma 11,

and by Lemma  12 (where the precondition �max ≥ (4 lnK)∕K follows from 
Vmin = O(K2∕3) with room to spare) we have

Now we split the set {1,… , n} of frequencies into m ∶=
√

Vmin batches as in Corol-
lary 15. Since each frequency enters the batch with probability 1/m, the contribution 
XS ∶=

∑

i∈S Xi of the frequencies in S is

Even after conditioning on the random walks of the other frequencies, by Cor-
ollary  15 the i-th frequency of the batch still performs a random walk with drift 
between pi,t(1 − pi,t)∕(K

√

Vmax) and pi,t(1 − pi,t)∕(K
√

Vmin) , with an error prob-
ability of e−�(

√

Vmin) . Thus its loop-free random walk still has drift between �min and 
�max . Therefore, the contribution of the i-th frequency stays the same even after con-
ditioning on the contribution of the other frequencies in the batch. Hence, we may 
apply the Chernoff bound, and the probability that XS deviates from its expectation 
by more than a factor of 2 is at most e−�(E[XS]) = e−�(

√

KV
1∕4

min
∕m) = exp(−

√

K∕V
1∕4

min
).

By a union bound over all KO(1) batches, the contribution of every batch is within 
a factor of 2 from its expectation. Therefore, E[Vt]∕2 ≤ Vt ≤ 2E[Vt] , and the lemma 
follows from (11) and (12).   ◻

(11)E[T] = O(K�max min{K, 1∕�min}) = O(Kmin{K,
√

Vmax}∕
√

Vmin),

(12)E[T] = �(
√

K∕�max) = �(
√

KV
1∕4

min
).

E[XS] = �(E[Vt]∕m) = �(E[T]∕m).
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Altogether, we have proven the Stabilisation Lemma  7: part (a) is proven in 
Lemma 13, and part (b) is proven in Lemma 16.

5  Proof of the Main Result

With the Stabilisation Lemma in place, we now prove the three statements in our 
main result, Theorem 1. We first show the first statement in Theorem 1 about too 
large step sizes, which is implied by the following slightly more detailed theorem.

Theorem 17 If K ≤ � log n for any constant 0 < 𝜀 < 1∕ log(10) ≈ 0.301 the runtime 
of the cGA  on OneMax  with probability 1 − 2−�(n�(1)) is at least  2cn�(1) for a suitable 
constant c > 0.

The condition K ≤ � log n makes sense as we suspect from closely related results 
on the UMDA [2, 24] that the cGA optimises OneMax in expected time O(n log n) if 
K ≥ c log n for a sufficiently large constant c > 0.

The main idea behind the proof of Theorem 17 is that if the step size 1/K is too 
large then frequencies frequently hit the lower border due to the large variance in the 
stochastic behaviour of frequencies. To keep the paper streamlined and focused on 
the medium step size regime, a proof of Theorem 17 is placed in the “appendix”.

The following lemma is used to prove the remaining two statements in Theorem 1.

Lemma 18 With probability 1 − exp(−�(K1∕4)), we have Vmin = �(K2∕3) and 
Vmax = O(K4∕3) after i∗ = O(log logK)  epochs of length r = K2

�(n).

Moreover, for any fixed t ≥ i∗r, as long as �(�) = �(1) for all � ∈ [i∗r, t − 1] , 
Vmax and Vmin are bounded in the same way during [i∗r, t], with a failure probability 
of at most t∕r ⋅ exp(−�(K1∕3)), and with probability 1 − tn exp(−�(�(n)∕ log n)) the 
number of off-border frequencies at any time t ∈ [i∗r, t] is at most  4K2

�(n). In par-
ticular, if t = n2 , �(n) = C log2 n ,  and K ≥ C log3 n for a sufficiently large constant 
C > 0 ,  then the error probability is o(1).

Proof By Lemma  4, we know that the initial fraction of frequencies at the lower 
border is �(1) , with probability 1 − e−�(

√

n) . We apply the first statement of the Sta-
bilisation Lemma 7 (a) with respect to an initial epoch of length r and obtain that 
with probability 1 − e−�(

√

K) we have Vt = �(K1∕2) in a epoch [t2, t3] of length at 
least r. Applying the statement again, now with respect to this epoch and with the 
assumption Vmin = �(K1∕2) , we obtain Vmin = �(K5∕8) for the next epoch, with error 
probability exp(−�(min{

√

Vmin,
√

K∕V
1∕4

min
})) = exp(−�(K1∕4)) . Iterating this argu-

ment i times, we have Vmin = �(K2∕3−(2∕3)(1∕4)i+1 ) after i epochs of length r, and each 
error probability is at most exp(−�(K1∕4)) . In particular, choosing i∗ = c ln lnK for 
a sufficiently large constant  c > 0 , we get Vmin = �(K2∕3−1∕ logK) = �(K2∕3) after 
i∗∕2 iterations, with error probability exp(−�(K1∕4)) in each step.
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Applying the second statement of the Stabilisation Lemma 7 with respect to the 
i∗-th epoch, we obtain with error probability exp(−�(K1∕3)) that Vmax = O(K2) 
for the next epoch. We apply the statement again, and the next epoch will satisfy 
Vmax = O(K

√

K2∕K2∕3) = O(K5∕3) . Iterating this argument using the new value of 
Vmax and still Vmin = �(K2∕3) for O(log logK) epochs similarly as above, we arrive at 
Vmax = O(K4∕3) , with an error probability of i∗∕2 ⋅ exp(−�(K1∕3)) = exp(−�(K1∕3)).

For t ≥ i∗r , we may apply the same argument again, getting an error probabil-
ity of exp(−�(K1∕3)) for each epoch. The statement on Vmin and Vmax then follows 
from a union bound over all epochs. For the number of off-border frequencies, by 
Lemma 6 every frequency hits a border after at most K2

�(n) rounds with probability 
1 − exp(−�(�(n)∕ log n)) . By a union bound over all frequencies and all rounds, the 
probability that there is ever a frequency that does not hit a border within K2

�(n) 
rounds is at most tn exp(−�(�(n)∕ log n)) . Therefore, for every � , the only off-
border frequencies at time � are frequencies that left the border in the last K2

�(n) 
rounds. The expected number of such frequencies is at most 2K2

�(n) , and by the 
Chernoff bound, Lemma 22, the number exceeds 4K2

�(n) with probability at most 
exp(−�(K2

�(n))) , which is negligible compared to exp(−�(�(n)∕ log2 n)) . This 
proves the statement on the number of off-border frequencies.

Finally, the statement for t = n2 follows since n2e−�(log n) = o(1) if the hidden con-
stant is large enough.   ◻

We are finally ready to prove our main result.

Proof of Theorem  1 As mentioned earlier, the first statement follows from 
Theorem 17.

Concerning the second statement, a lower bound of �(
√

nK + n log n) was shown 
in [22]. Hence it suffices to show a lower bound of �(K1∕3n) for K ≥ C log3 n , where 
we may choose the constant C to our liking. In the following, we assume that all 
events that occur with high probability do occur.

Recall that the potential �t ∶=
∑n

i=1
(1 − pi,t) is the total distance of all frequen-

cies to the optimal value of 1. By Lemma 5, we have a �0 = �(1) fraction of fre-
quencies at the lower border at some time within the first O(K2) iterations with prob-
ability 1 − e−�(K2

�(n)) − e−�(
√

n) . In particular, this implies �t ≥ �0(n − 1).
Let � ∶= 1 − �0∕8 . We show that the time until either �t has decreased to 

�0∕4 ⋅ (n − 1) or a solution with fitness at least �n is found is �(K1∕3n) with high 
probability. This implies the second and third statements since in an iteration where 
𝜑t > 𝛾0∕4 ⋅ (n − 1) the expected fitness is at most n − �0∕4 ⋅ (n − 1) and the prob-
ability of sampling a solution with fitness at least �n is 2−�(n) by Chernoff bounds. 
This still holds when considering a union bound over O(K1∕3n) steps.

By Lemma 18, with probability exp(−�(K1∕4)) = o(1) we will have Vt = O(K4∕3) 
after T = O(r log logK) = o(n) steps. By Lemma  5, with high probability we will 
still have at least �0∕2 ⋅ (n − 1) frequencies at the lower border.

Moreover, also by Lemma  18, if we can show �(t) = �(1) then the bound 
Vt = O(K4∕3) remains true for the next K1∕3n rounds, with probability 1 − o(1) . So 
it remains to show �(t) = �(1) for t ∈ [T ,�(K1∕3n)] . Note that the prerequisites 
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of Lemma 18 only concern times strictly before t, so we can use the statement of 
the lemma inductively to show that �(t) = �(1) . By Lemma 18, the number of off-
border frequencies in each epoch is O(K2

�(n)) , hence while 𝜑t > 𝛾0∕4 ⋅ (n − 1) , we 
have �(t) ≥ �0∕4 − O(K2

�(n)∕n) = �(1) as off-border frequencies (and frequen-
cies at the upper border) only contribute O(K2

�(n)) = o(n) to �t . Hence Lemma 18 
implies that with probability 1 − o(1) , Vt = O(K4∕3) holds for all t ∈ [T , n2] such that 
𝜑t > 𝛾0∕4 ⋅ (n − 1).

By Lemma 3, the drift of �t is at most O
�

√

Vt∕K
�

= O(K−1∕3) and the change of 
�t is bounded by 

√

Vt log n = O(K2∕3 log n) with probability 1 − n−�(K log log n) , even 
when taking a union bound over O(K1∕3n) steps. Applying Theorem 1 in [11] with a 
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Fig. 2  Left-hand side: empirical runtime of the cGA on OneMax, right-hand side: number of hits of 
lower border; for n = 1000 , K ∈ {8, 9,… , 210} , and averaged over 3000 runs

50 100 150 200 250 300 350

3.2

3.4

3.6

3.8

4

4.2

4.4

·104

K

50 100 150 200 250 300 350

0

1,000

2,000

K

Fig. 3  Left-hand side: empirical runtime of the cGA on OneMax, right-hand side: number of hits of 
lower border; for n = 2000 , K ∈ {9, 10,… , 350} , and averaged over 3000 runs
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maximum step size of O(K2∕3 log n) , distance �0∕4 ⋅ (n − 1) and drift O(K−1∕3) , the 
time until �t ≤ �0∕4 ⋅ (n − 1) is at least �(�0∕4 ⋅ (n − 1) ⋅ K1∕3) = �(K1∕3n) with 
probability 1 − e

−�
(

n⋅K−1∕3∕(K4∕3 log2 n)
)

= 1 − e−�(n1∕6∕ log2 n), where the last step uses 
K = O(n1∕2) . Adding up failure probabilities completes the proof.   ◻
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Fig. 4  Left-hand side: empirical runtime of the cGA on OneMax, right-hand side: number of hits of 
lower border; for n = 3000 , K ∈ {9, 10,… , 400} , and averaged over 3000 runs
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Fig. 5  Left-hand side: empirical runtime of the cGA on OneMax, right-hand side: number of hits of 
lower border; for n = 10000 , K ∈ {10, 11,… , 50, 55, 60,… , 100, 110, 120,… , 1000} , and averaged over 
500 runs
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6  Experiments

We have carried out experiments for the cGA on OneMax to gain some empiri-
cal insights into the relationship between K and the runtime. The algorithm was 
implemented in the C programming language using the WELL512a random num-
ber generator.

The experiments supplement our asymptotic analyses and confirm that 
the algorithm indeed exhibits a bimodal runtime behavior also for small prob-
lem sizes. We ran the cGA with n = 1000 (Fig.  2), n = 2000 (Fig.  3), n = 3000 
(Fig. 4), all averaged over 3000 runs, and n = 10000 (Fig. 5), averaged over 500 
runs, as detailed in the figures. In all four cases, we observe the same picture: the 
empirical runtime starts out from very high values, takes a minimum when K is 
around 10 and then increases again, e. g., up to K = 30 for n = 1000 . Thereafter it 
falls again, e. g., up to K ≈ 130 for n = 1000 , and finally increases rather steeply 
for the rest of the range. The location of the first minimum does not change much 
in the three scenarios, but the second minimum clearly grows with  K, roughly 
from 130 at n = 1000 via roughly 210 at n = 2000 to finally roughly 590 at 
n = 10000 . As n grows, the relative difference between the maximum and second 
minimum increases as well, from roughly 23 % at n = 1000 to roughly 45 % at 
n = 10000 . Close inspection of the left part of the plot also shows that the range 
left of the first minimum leads to very high runtimes. We could not plot even 
smaller values of K due to exploding runtimes. This is consistent with our expo-
nential lower bounds for K ≤ 0.3 log n.

The right-hand sides of the pictures also illustrate that the number of times 
the lower frequency border is hit seems to decrease exponentially with K. The 
phase transition where the behavior of frequencies turns from chaotic into stable 
is empirically located somewhere around the value of K where the second mini-
mum of the runtime is reached.

7  Conclusions

We have investigated the complex parameter landscape of the cGA, highlight-
ing how performance depends on the step size 1/K. In addition to an exponential 
lower bound for too large step sizes ( K ≤ 0.3 log n ), we presented a novel lower 
bound of �(K1∕3n + n log n) for the cGA on OneMax that at its core has a very 
careful analysis of the dynamic behaviour of the sampling variance and how it 
stabilises in a complex feedback loop that exhibits a considerable lag. A key idea 
to handle this complexity was to show that the sampling variance Vt of all fre-
quencies at time t can be estimated accurately by analysing the stochastic behav-
iour of one frequency i over a period of time.

Assuming that the cGA has the same upper bound as the UMDA for step sizes 
K = �(log n) , the expected runtime of the cGA is a bimodal function in K with 
worse performance in between its two minima.
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We believe that our analysis can be extended towards an upper bound of 
O(K2∕3n + n log n) , using that typically Vt = �(K2∕3) after an initial phase, which 
implies a drift of �(

√

Vt∕K) = �(K−2∕3) for �t . This would require additional 
arguments to deal with �(t) decreasing to sub-constant values where showing con-
centration becomes more difficult. Another avenue for future work would be to 
investigate whether the results and techniques carry over to the UMDA, where the 
frequencies can make larger steps.
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A Appendix

This appendix contains proofs omitted from the main part.

A.1 Proof of Lemma4

The proof uses the following lemma from [22]. The notion of rw-steps and 
b-steps is briefly explained in the proof of Lemma 2; see [22] for further details.

Lemma 19 (Lemma 10 in [22]) Consider a frequency of the cGA  on OneMax  and let 
pt be its frequency at time t. Let t0, t1, t2,… be the times where the cGA  performs an 
rw-step (before hitting one of the borders  1/n or 1 − 1∕n) and let �i ∶= pti+1 − pti. For  
s ∈ ℝ, let Ts be the smallest t such that  sgn (s)

�
∑t

i=0
�i

�

≥ �s� holds.

Choosing 0 < 𝛼 < 1, where 1∕� = o(K), and −1 ≤ s < 0  constant, we have

Pr
�

Ts ≤ �(sK)2 or pt exceeds 5∕6 or reaches 1∕n before tTs

�

≥
�

1

13
√

1∕(�s��)
−

1

(13
√

1∕(�s��))3

�

1
√

2�
e
−

169

2�s�� − O
�

1

�s�
√

�K

�

.

http://creativecommons.org/licenses/by/4.0/
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Moreover, for any 𝛼 > 0 and s ∈ ℝ,

Before we can apply this lemma, we follow [22] and bound the total effect 
of b-steps during the first �(K2) steps. To this end, we need to show that a con-
stant fraction of the frequencies stay in the range [1/6, 5/6]. The following lemma 
improves Lemma 15 in [22] towards much smaller failure probabilities that are 
independent of  K. This improvement is vital for the upcoming proof of Theo-
rem 17 in Sect. A.2 since Lemma 15 in [22] is trivial for K = O(log n).

Lemma 20  Let K ≤
√

n and 𝜅 > 0 be a small constant. There exists a constant �, 
depending on �, such that the following properties hold regardless of the last n/2 fre-
quencies throughout the first T ∶= �K2 steps of cGA, with probability 1 − e−�(

√

n) : 

1. The probability of a b-step at any frequency is always O(1∕
√

n) during the first 
T steps, and

2. There is a subset S of �n frequencies among the first n/2  frequencies such that

(a) the frequencies in S are always within [1/6, 5/6] during the first T steps,
(b) the total number of b-steps for each frequency in S is bounded by K/6,  leading 

to a displacement of at most 1/6.

Proof By Lemma 13 in [22], with probability 1 − e−�(n) , for at least �n of these fre-
quencies among the first n/2 frequencies, the total effect of all rw-steps is always 
within [−1∕6,+1∕6] during the first T ≤ �K2 steps. We assume in the follow-
ing that this happens and take S′ as a set of exactly �n of these frequencies. We set 
� ∶= �∕100.

Now we will use an inductive argument. The inductive statement is that 1. and 2. 
hold for the first t rounds, and we let t run from 0 to T. More precisely, we will show 
the following two implications. Firstly, if 2. holds for t − 1 rounds, then 1. holds for 
t rounds. Secondly, if 1. holds for t rounds, then 2. also holds for t rounds with prob-
ability 1 − e−�(

√

n) , where the hidden constant is uniform over all t. Note that the 
error probabilities accumulate to Te−�(

√

n) = e−�(
√

n).
For the first implication, as long as there are at least �n∕2 frequencies in [1/6, 5/6], 

according to Lemma 12 in [22], for all frequencies the probability of a b-step in the 
next round is at most c2∕

√

n for a positive constant c2 that only depends on � . This is 
exactly the first implication that we need for the inductive statement, so it remains to 
prove the second implication. So in the following we may assume that 1. holds for t 
rounds. We remark that for this step we will not use that 2. holds for t − 1 , although 
this would be a valid assumption. Rather, we show the existence of S from scratch.

As long as 1. holds, consider a fixed frequency in S′ . The expected number of 
b-steps in t ≤ �K2 steps is at most � ⋅ c2K . In fact, we will later use a slightly weaker 
bound of � ⋅ c3K for some constant c3 > c2 that we will define later. Each b-step 

Pr
(

Ts ≥ �(sK)2 or a border is reached until time t
�(sK)2

)

≥ 1 − e−1∕(4�).
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changes the frequency by 1/K. A necessary condition for increasing the frequency by 
a total of at least 1/6 is that we have at least K/6 b-steps among the first t steps. Choos-
ing � small enough to make � ⋅ c3K ≤ 1∕2 ⋅ K∕6 , by Chernoff bounds the probabil-
ity to get at least K/6 b-steps in t steps is at most (e∕4)K∕12 ≤ (e∕4)1∕12 < 0.97.

So we conclude that each frequency in S′ satisfies the condition in (b) with prob-
ability at least 0.03. Moreover, by choice of S′ , every such frequency automatically 
also satisfies the condition in (a). Thus the expected number of frequencies that sat-
isfy the conditions in (a) and (b) is at least 0.03�n . It remains to show concentration, 
i.e., we show that the number of frequencies which have at most K/6 b-steps among 
the first t steps is concentrated.

The number of b-steps is not independent for different frequencies, so we cannot 
apply Chernoff bounds. However, we can use the same argument as in the proof of 
Corollary 15, which we repeat briefly. We split the set S′ randomly into 

√

n batches, 
assigning each frequency independently to a batch. Then each batch satisfies the 
description of Lemma  14, and with probability 1 − e−�(

√

n) all batches have size 
�(

√

n) by the Chernoff bound. Now consider one fixed batch. By Lemma 14, the 
frequencies in this batch can be coupled to independent random walks with drift 
�(1∕(K

√

n)) . Hence, there is c3 > 0 such that the numbers of b-steps of the fre-
quencies in the batch are dominated by independent binomial random variables with 
expectation at most tc3∕

√

n ≤ K∕12 . Each binomial random variable exceeds K/6 
with probability at most 0.97, so by the Chernoff bound at least 1/100 of the fre-
quencies in the batch make at most K/6 b-steps [and thus satisfy the conditions in 
(a) and (b)], with probability 1 − e−�(

√

n) . By a union bound, the same is true for all 
batches simultaneously with error probability 

√

ne−�(
√

n) = e−�(
√

n) , and in this case 
at least �n∕100 = �n of the frequencies in S′ satisfy the conditions in (a) and (b). 
This concludes the proof of the second implication, and of the lemma.   ◻

Proof of Lemma 4 The proof follows closely arguments from the proof of Theorem 8 
in [22], using our improved Lemma 20. For concentration we again need the batch 
argument as in Corollary 15. We will focus on proving that frequencies are likely to 
hit the lower border. Since the probability of a frequency hitting the upper border is 
no smaller than the probability of hitting the lower border, a symmetric statement 
also holds for frequencies hitting the upper border.

Let T ∶= �K2 for a small enough constant 𝜅 > 0 . We first fix one frequency, and 
we use Lemma  19 to show that some frequencies are likely to walk down to the 
lower border. Note that Lemma 19 applies for an arbitrary (even adversarial) mix-
ture of rw-steps and b-steps over time. Lemma 20 states that there are �(n) frequen-
cies whose displacement owing to b-steps during the first T steps is at most 1/6. We 
focus on these frequencies in the following and show that a constant fraction of them 
reach the lower border.

We shall fix such a frequency i and focus on the effect of its rw-steps during the 
first T steps. We will apply both statements of Lemma 19, to prove that pi walks to 
its lower border with a not too small probability. First we apply the second state-
ment of the lemma for a positive displacement of s ∶= 1∕6 within T steps, using 
� ∶= T∕((sK)2) . The random variable Ts describes the first point of time when the 
frequency reaches a value of at least 1∕2 + 1∕6 + s = 5∕6 through a mixture of 
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b- and rw-steps. This holds since we work under the assumption that the b-steps 
only account for a total displacement of at most 1/6 during the phase. Lemma 19 
now gives us a probability of at least 1 − e−1∕(4�) = �(1) (using � = O(1) ) for the 
event that the frequency does not exceed 5/6. In the following, we condition on this 
event.

We then revisit the same stochastic process and apply Lemma 19 again to show 
that, under this condition, the random walk achieves a negative displacement. Note 
that the event of not exceeding a certain positive displacement is positively corre-
lated with the event of reaching a given negative displacement (formally, the state 
of the conditioned stochastic process is always stochastically smaller than of the 
unconditioned process), allowing us to apply Lemma 19 again despite dependencies 
between the two applications.

We now apply the first statement of Lemma 19 for a negative displacement of 
s ∶= −1 through rw-steps within T steps, using � ∶= T∕((sK)2) . Since we still 
work under the assumption that the b-steps only account for a total displacement 
of at most 1/6 during the phase, the displacement is then altogether no more than 
s + 1∕6 ≤ −5∕6 , implying that the lower border is hit as the frequency does not 
exceed 5/6.

We note that � = �(1) by definition and that 1∕� = �(1) = o(K) under our 
assumption K = �(1) . Now Lemma  19 states that the probability of the random 
walk reaching a total displacement of −5∕6 (or hitting the lower border before) is at 
least

Since K = �(1) , � = �(1) and |s| = 1 , (13) is at least

Combining with the probability of not exceeding 5/6, which we have proved to be 
constant, the probability of the frequency hitting the lower border within T steps is 
�(1).

Therefore the expected number of frequencies which reach the lower border is 
�(n) . To show the whp statement, we use the same trick as in the proofs of Cor-
ollary 15 and of Lemma  20, and split the set of frequencies into batches of size 
�(

√

n) . Then by Lemma 14, the frequencies in each batch can be coupled to inde-
pendent random walks. This allows us to apply the Chernoff bound and to conclude 
that within each batch, with probability 1 − e−�(

√

n) a constant fraction of the fre-
quencies reaches the lower border. The statement of the lemma is then obtained 
by a union bound over all batches. We omit the details as they are analogous to 
Lemma 20.   ◻

(13)
�

1

13
√

1∕(�s��)
−

1

(13
√

1∕(�s��))3

�

1
√

2�
e
−

169

2�s�� − O
�

1∕(�s�
√

�K)
�

�(1) − O

�

1
√

K

�

= �(1).
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A.2 Proof of Theorem 17

Here we prove an exponential lower bound for too large step sizes as stated in 
Theorem 17.

The following lemma shows that with a good probability, a frequency will reach 
the lower border through a sequence of steps that are all decreasing. Such a sequence 
was called landslide sequence in the context of a simple ACO algorithm in [17].

Lemma 21 Consider the cGA  on OneMax  at a point in time when the number of 
frequencies at the lower border is at most n −�(n). Then with probability at least 
�(10−K) within the following O(K logK) steps one of the remaining frequencies will 
reach the lower border.

Proof We first estimate transition probabilities for a frequency  i with 
1∕n < pi < 1 − 1∕n using arguments from the proof of Lemma  2, but providing 
bounds on the constants hidden in the �(

√

Vt) terms.
For every t ≥ t∗ we have

as xi and yi need to be sampled differently for pi,t to change. A sufficient condition 
for pi,t to decrease is that xi is sampled at 0 (probability 1 − pi,t ), yi is sampled at 1 
(probability pi,t ) and the fitness difference on all other bits, Di,t =

∑

j≠i(xj − yj) , to be 
at least 1. By symmetry, Pr(Di,t ≥ 1) = Pr(Di,t ≤ −1) = 1∕2 ⋅ Pr(Di,t ≠ 0) . Using the 
general bound for Poisson binomial distributions from [1] (see Theorem 22 in [22]), 
for all pj , j ≠ i,

Together, we have

for large enough n. Hence the conditional probability of pi,t decreasing, given that it 
changes, is at least 2∕9⋅pi,t(1−pi,t)

(2+2∕9)pi,t(1−pi,t)
=

1

10
.

For the remainder we choose a frequency  i with 1∕n < pi < 1 − 1∕n , if such a 
frequency exists. If no such frequency exists, there must be �(n) frequencies at the 
upper border and the probability that at least one such frequency detaches from the 
upper border in the next iteration is at least �(n) ⋅ 1∕n ⋅ (1 − 1∕n) ⋅ 1∕5 = �(1) , re-
using arguments from above. We assume that this happens, keeping in mind a �(1) 
factor in the claimed probability (and absorbing the additional iteration in the time 
bound), and choose one such frequency i.

A sufficient condition for frequency i reaching the lower bound before returning 
to the upper bound is that pi,t always decreases if it is changed. This needs to happen 

Pr(pi,t+1 = pi,t + 1∕K ∣ pi,t) ≤ 2pi,t(1 − pi,t)

Pr(Di,t = 0) ≤
1

2
�

∑

j≠i pj(1 − pj)

≤
1

2
√

(n − 1)∕n ⋅ (1 − 1∕n)
=

n

2n − 2
≤

1

2
+

1

n
.

Pr(pi,t+1 = pi,t − 1∕K ∣ pi,t) ≥ pi,t(1 − pi,t)
(

1

4
−

1

2n

)

≥ 2pi,t(1 − pi,t)∕9
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at most K times, yielding a probability of at least 10−K as claimed. The expected 
time for this sequence of events to happen is at most

By Markov’s inequality, the probability that the time is at most 20K(ln(K) + 1) is at 
least 1/2. Absorbing this factor in the term �(10−K) completes the proof.   ◻

Proof of Theorem 17 According to Lemma 4, with probability 1 − e−�(
√

n) at least �0n 
frequencies reach their lower border within the first t∗ = O(K2) iterations, for some 
constant 𝛾0 > 0 . As argued in Lemma 5, frequencies that hit the lower border before 
time t∗ have a chance to leave the border again. However, since the probability of a 
frequency detaching from the lower border is at most 2/n irrespective of other fre-
quencies, the probability that at time t∗ there will be at least �0n∕2 frequencies at the 
lower border is 1 − 2−�(n) by Chernoff bounds.

Let �t denote the number of frequencies at the lower border at iteration  t. We 
consider periods of T = O(K logK) iterations, where the O-term is the one from 
Lemma  21, and how the number of frequencies at the lower border changes in 
expectation during such a period. By Lemma  21, if �t ≤ n −�(n) , the number 
increases by 1 with probability at least p+ = �(10−K) and since every frequency at 
the lower border detaches only with probability at most 2/n, we have

Note that for every frequency i, every time t and all remaining frequencies, the prob-
ability that frequency i is at the lower border at time t + 1 is maximised if frequency i 
is already at the lower border at time t. More formally, the sought probability is at 
least 1 − 2∕n if pi,t = 1∕n , it is at most (1∕n + 1∕K)(1 − 1∕n − 1∕K) ≪ 1 − 2∕n if 
pi,t = 1∕n + 1∕K (by Lemma 2) and it is 0 otherwise. Hence we are being pessimis-
tic if we underestimate the number of frequencies at the lower border.

We argue in the following that the number of frequencies at the lower border sto-
chastically dominates that of a simpler Markov chain Z0, Z1, Z2,… defined as fol-
lows. One step of the Z-process reflects a simplified view of T iterations of the cGA, 
with Zt being defined so that it is stochastically dominated by the number of frequen-
cies at the lower border after t ⋅ T  iterations of the cGA. We will define the Z-process 
so that it is capped: Zt ∈ [0, b + 1] for a value b ≤ n −�(n) chosen later. The value 
of Zt+1 is determined by starting with Zt , subtracting Zt ⋅ T  independent Bernoulli 
variables with parameters 2/n and, if and only if Zt ≤ b , adding the outcome of a 
Bernoulli trial with parameter p+.

The simpler process Zt is stochastically dominated by �t∗+tT since 
Zt = min{�t∗+tT , b + 1} (thus in particular Z0 ≤ �t∗ ) and all transition probabilities 
are estimated pessimistically: for all d ≥ 1 and all i ≤ b + 1 we have

K−1
∑

j=1

1

Pr(pi,t+1 = pi,t − 1∕K ∣ pi,t = 1 − 1∕n − j∕K)

≤
K−1
∑

j=1

5

(1∕n + j∕K)(1 − 1∕n − j∕K)
≤

K∕2
∑

j=1

10

1∕n + j∕K
≤ 10K

K∕2
∑

j=1

1

j
≤ 10K(ln(K) + 1).

E[�t+T − �t ∣ �t, �t ≤ n −�(n)] ≥ p+ −
2�tT

n
.
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as the left-hand side is 0 for d > 1 or i = b + 1 and p+ ⋅ (1 − 2∕n)iT otherwise, which 
is a lower bound for Pr(�t∗+tT+T = �t∗+tT + 1 ∣ �t∗+tT = i) by Lemma 21 and the fact 
that all i frequencies at the lower border remain there for T steps with probability at 
least (1 − 2∕n)iT . Furthermore, for all d ≥ 1,

where the last inequality follows from the same arguments as above. Note that 
state b + 1 is a reflective state, but this does not affect the drift estimates for states 
Zt ≤ b as the process can only increase by 1 in each step.

We apply the negative drift theorem [18, 19] in the variant with self-loops [20], 
stated as Theorem 26 in Sect. B.2, to the process Z1, Z2,… . The interval is chosen 
as [a, b] with a ∶= b∕2 and b + 1 ∶= min{p+n∕(4T), �0n∕2} , such that we start at a 
state at least b. This implies

and also that the converse of the self-loop probability is Pr(Zt+1 ≠ Zt ∣ Zt) ≤ 3p+∕2 
by a union bound over all Bernoulli trials. This establishes the first condition of the 
negative drift theorem with self-loops.

To establish the second condition, note that Pr(Zt+1 ≠ Zt ∣ Zt) is bounded from 
below by p+ if Zt ≤ b and 1 − (1 − 2∕n)(b+1)T = 1 − (1 − 2∕n)p

+n∕4 = �(p+) if 
Zt = b + 1 and b + 1 = p+n∕(4T) ; if b + 1 = �0n∕2 a lower bound of �(1) = �(p+) 
follows in the same way. Hence for all Zt and all d ≥ 1

when choosing r = O(1) appropriately. Along with 
Pr(Zt+1 = Zt + 1 ∣ Zt) ≤ p+ ≤ r ⋅ Pr(Zt+1 ≠ Zt ∣ Zt) ⋅ 2

−1 and Pr(Zt+1 = Zt + d ∣ Zt) = 0 
for d > 1 , this establishes the second condition of the nega-
tive drift theorem. Invoking said theorem and noting that 
(b − a)∕r = �(p+n∕T) = �((10)−Kn∕(K logK)) = �(n1−� log(10)∕(log(n) log log n)) 
shows that with probability 1 − 2−�(n1−� log(10)∕(log(n) log log n)) the time to reduce the num-
ber of frequencies at the lower border below a = �(n1−� log(10)∕(log(n) log log n)) is 
at least 2cn1−� log(10)∕(log(n) log log n) for a suitable constant c > 0 . Note that while �t ≥ a 
the probability of sampling the optimum in one iteration is at most 2n−a since at 
least a frequencies at the lower border have to be sampled at 1 in one of the two 
search points. Taking a union bound over 2cn1−� log(10)∕(log(n) log log n) iterations still 
yields a failure probability that is absorbed in the term 1 − 2−�(n1−� log(10)∕(log(n) log log n)) . 

Pr(Zt+1 = Zt + d ∣ Zt = i) ≤ Pr(�t∗+tT+T = �t∗+tT + d ∣ �t∗+tT = i)

Pr(Zt+1 = Zt − d ∣ Zt = i) = (1 − p+)(2∕n)d(1 − 2∕n)iT−d + p+(2∕n)d+1(1 − 2∕n)iT−d−1

≥ Pr(�t∗+tT+T = �t∗+tT − d ∣ �t∗+tT = i)

E[Zt+1 − Zt ∣ Zt, Zt ≤ b] ≥ p+ −
2(b + 1)T

n
≥

p+

2

Pr(Zt+1 = Zt − d ∣ Zt) ≤
(

ZtT

d

)

(

2

n

)d

≤
(

2ZtT

n

)d

≤
4ZtT

n
⋅ 2−d ≤ p+ ⋅ 2−d ≤ r ⋅ Pr(Zt+1 ≠ Zt ∣ Zt) ⋅ 2

−d
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Noting that the exponent can be simplified using 𝜀 < 1∕ log(10) to 
n1−� log(10)∕(log(n) log log n) = n�(1) completes the proof.   ◻

B Mathematical Tools

B.1 Chernoff Bounds

Lemma 22 (Chernoff Bound [4]) Let b > 0. Let X1,… ,Xn be independent ran-
dom variables (not necessarily i.i.d.) that take values in [0, b]. Let S =

∑n

i=1
Xi and 

� = E[S]. Then for all 0 ≤ � ≤ 1,

and

Lemma 23 (Chernoff-Hoeffding Bound [4]) Let X1,… ,Xn be independent random 
variables, where Xi  has values in [0, bi] (not necessarily i.i.d.). Let S =

∑n

i=1
Xi, and 

let b ∶=
∑n

i=1
b2
i
. Then

and

B.2 Drift Theorems

Theorem 24 (Additive Drift [10]) Let (Xt)t≥0 be a sequence of non-negative random 
variables over a finite state space S ⊆ ℝ. Let T be the random variable that denotes 
the earliest point in time t ≥ 0 such that  Xt = 0. If there exists c > 0 such that, for 
all t < T ,

then

Theorem  25 (Concentration for Additive Drift [11]) Let (Xt)t≥0 be a sequence 
of random variables over  ℝ, each with finite expectation and let n > 0. With 
T = min{t ≥ 0 ∶ Xt ≥ n ∣ X0 ≥ 0} we denote the random variable describing the 

Pr(S ≤ (1 − �)�) ≤ e−�
2
�∕(2b)

Pr(S ≥ (1 + �)�) ≤ e−�
2
�∕(3b).

Pr(S − E[S] ≥ t) ≤ e−2t
2∕b

Pr(|S − E[S]| ≥ t) ≤ 2e−2t
2∕b.

E[Xt+1 − Xt ∣ Xt] ≤ c,

E[T ∣ X0] ≥
X0

c
.
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earliest point that the random process exceeds n, given a starting value of at least 0. 
Suppose there are 𝜀, c > 0 such that, for all t < T  , 

1. E[Xt − Xt+1 ∣ X0,… ,Xt] ≤ �, and

2. |Xt − Xt+1| < c.

Then, for all s ≤ n∕(2�),

The following theorem is an adaptation of the negative drift theorem [18, 19] for 
large self-loop probabilities [20]. The theorem uses transition probabilities pi,j and 
the notation “ pk,k±d ≤ x ” as a shorthand for “ pk,k+d ≤ x and pk,k−d ≤ x”.

Theorem  26 (Negative drift with self-loops [20]) Consider a Markov process 
X0,X1,… on {0,… ,m}  with transition probabilities pi,j and suppose there exist 
integers a,  b with 0 < a < b ≤ m and 𝜀 > 0 such that for all a ≤ k ≤ b the drift 
towards 0 is

where pk,k is the self-loop probability at state k. Further assume there exist constants 
r, 𝛿 > 0 (i. e. they are independent of m) such that for all k ≥ 1 and all d ≥ 1

Let T be the first hitting time of a state at most a, starting from X0 ≥ b. Let � = b − a. 
Then there is a constant c > 0 such that
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