
Vol.:(0123456789)

Algorithmica (2021) 83:667–694
https://doi.org/10.1007/s00453-020-00770-y

1 3

High Entropy Random Selection Protocols

Harry Buhrman, et al. [full author details at the end of the article]

Received: 18 January 2018 / Accepted: 17 September 2020 / Published online: 3 October 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study the two party problem of randomly selecting a common string among all 
the strings of length n. We want the protocol to have the property that the output 
distribution has high Shannon entropy or high min entropy, even when one of the 
two parties is dishonest and deviates from the protocol. We develop protocols that 
achieve high, close to n, Shannon entropy and simultaneously min entropy close 
to n/2. In the literature the randomness guarantee is usually expressed in terms of 
“resilience”. The notion of Shannon entropy is not directly comparable to that of 
resilience, but we establish a connection between the two that allows us to compare 
our protocols with the existing ones. We construct an explicit protocol that yields 
Shannon entropy n − O(1) and has O(log∗ n) rounds, improving over the protocol 
of Goldreich et  al. (SIAM J Comput 27: 506–544, 1998) that also achieves this 
entropy but needs O(n) rounds. Both these protocols need O(n2) bits of communica-
tion. Next we reduce the number of rounds and the length of communication in our 
protocols. We show the existence, non-explicitly, of a protocol that has 6 rounds, 
O(n) bits of communication and yields Shannon entropy n − O(log n) and min 
entropy n∕2 − O(log n) . Our protocol achieves the same Shannon entropy bound as, 
also non-explicit, protocol of Gradwohl et  al. (in: Dwork (ed) Advances in Cryp-
tology—CRYPTO ‘06, 409–426, Technical Report , 2006), however achieves much 
higher min entropy: n∕2 − O(log n) versus O(log n) . Finally we exhibit a very simple 
3-round explicit “geometric” protocol with communication length O(n). We connect 
the security parameter of this protocol with the well studied Kakeya problem moti-
vated by Harmonic Analysis and Analytic Number Theory. We prove that this proto-
col has Shannon entropy n − o(n) . Its relation to the Kakeya problem follows a new 
and different approach to the random selection problem than any of the previously 
known protocols.
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1 Introduction

We study the following communication problem. Alice and Bob want to select a 
common random string. They are not at the same location so they do not see what 
the other player does. They communicate messages according to some protocol, 
and in the end they output a string of n bits which is a function of the messages 
communicated. This string should be as random as possible, and in our case we 
measure the amount of randomness by Shannon entropy or min entropy of the 
probability distribution that is generated by this protocol.

The messages they communicate may depend on random experiments the play-
ers perform and on messages sent so far. The outcome of an experiment is known 
only to the party which performs it, so the other party cannot verify the outcome 
of such an experiment or whether the experiment was carried out at all. One or 
both the parties may deviate from the protocol and try to influence the selected 
string (cheat). We are interested in the situation when a party honestly follows the 
protocol and wants to have some guarantee that the selected string is indeed as 
random as possible.

2  Previous Work and Our Results

There is a large body of previous work which considers the problem of random 
string selection, and related problems such as a leader selection and fault-tolerant 
computation. In some work on random selection, such as Blum’s “coin-tossing 
over the telephone” [4], the adversary is assumed to be computationally bounded 
(e.g., probabilistic polynomial time). Generally, in this setting one utilizes one-
way functions and other cryptographic primitives to limit the adversary’s ability 
to cheat, and thus the resulting protocols rely on complexity assumptions.

In this paper, we study the information-theoretic setting (also known as “full 
information model”), where the adversary is computationally unbounded. In 
addition to its stronger security guarantees, the information-theoretic setting 
has the advantage that protocols typically do not require complexity-theoretic 
assumptions (such as the existence of one-way functions). Various such random 
selection protocols have been used to construct perfectly hiding bit-commitment 
schemes [19], to convert honest-verifier zero-knowledge proofs into general zero-
knowledge proofs [9, 10, 16], to construct oblivious transfer protocols in the 
bounded storage model [8, 11], and to perform general fault-tolerant computation 
[15]. There has also been substantial work in the k-party case for k ≥ 3 , where 
the goal is to tolerate coalitions of a minority of cheating players. This body of 
work includes the well-studied “collective coin-flipping” problem e.g., [1, 5, 14, 
22–24] (closely related to the ”leader election” problem), and again the use of 
random selection as a tool for general fault-tolerant computation [15].

Note that unlike Blum’s “coin-tossing over the telephone”, in the information-
theoretic setting we have to assume that n > 1 . Indeed, for n = 1 for any protocol 
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either Alice has a strategy to force the outcome 0, or Bob has a strategy to force 
the outcome 1. This follows from Zermelo’s theorem for finite two-person game 
of perfect information [28]. On the other hand, for n = 1 non-trivial protocols 
exist for quantum coin tossing, see [20] for an overview.

Several different measures for the randomness guarantee of the protocol are 
used in the literature. The most widely used is the (�, �)-resilience. A two-party 
protocol is (�, �)-resilient if for every set S ⊂ {0, 1}n with density � (cardinality 
�2n ), the output of the protocol is in S with probability at most � , provided at least 
one party is honest.

In this paper, however, we study another very natural randomness guarantee, 
namely min entropy or Shannon entropy of the resulting output distribution. We 
are not aware of any applications of randomness sources with high Shannon or 
min entropy in two-party protocols, thus our interest in protocols to generate such 
distributions is purely philosophical.

There is a very simple 2-round selection protocol with linear communication to 
obtain a distribution over n-bit strings with min entropy at least n/2: Alice selects 
at random the first half of the output string, and then Bob selects its second half. 
If at least one party is honest, then the min entropy of the resulting distribution 
is at least n/2. It follows from Goldreich et al. [15] and from a bound on quantum 
coin-flipping due to Kitaev (see [3]) that no protocol can achieve min entropy 
larger than n/2, thus for min entropy the problem is easy.

For Shannon entropy the situation is more complicated. There is a certain rela-
tionship between Shannon entropy and resilience: using Lemma 2 below we can 
deduce Shannon entropy guarantees from resilience guarantees. In particular, we 
can show that a protocol from [15] generates a distribution with Shannon entropy 
n − O(1) , which is close to the maximum, since Shannon entropy of any distribu-
tion over n-bit strings is at most n. More specifically, Goldreich et al. [15] con-
structed a protocol running in O(n) rounds and communicating O(n2) bits that is 
(�,O(

√
�))-resilient for all 𝜇 > 0 . By Lemma 2 below this protocol generates a 

distribution with Shannon entropy n − O(1).
A natural question is whether one can reduce the number of rounds or commu-

nication length keeping the guarantee n − O(1) for Shannon entropy of the result-
ing distribution.

Reducing the number of rounds to O(n) rounds. Regarding the number of 
rounds, we answer this question in positive by designing an explicit protocol 
(“the main protocol”) that runs in O(log∗ n) rounds, communicates O(n2) bits and 
generates a distribution with Shannon entropy n − O(1) (Theorem 7). Moreover, 
a version of this protocol also guarantees the min entropy at least n∕2 − O(log n) 
(Corollary 9).

Sanghvi and Vadhan in [25] showed a lower bound Ω(log∗ n) on the number of 
rounds of any random selection protocol that achieves constant statistical distance 
from the uniform distribution (for some constant less than 1). In Lemma  10, we 
show that Shannon entropy n − O(1) implies having constant statistical distance 
from the uniform distribution (for some constant less than 1), so their lower bound 
translates to our protocols: our upper bound O(log∗ n) for the number of rounds is 
tight.
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Constantly many rounds. The next question is what entropy guarantee can be pro-
vided by protocols running in constantly many rounds. Gradwohl et al. [17] showed 
that there is a non-explicit (1∕n2,O(1∕n))-resilient linear-communication protocol 
running in constantly many rounds. By Lemma 2 this resilience guarantee implies 
that the Shannon entropy of the protocol is n − O(log n).

In Sect. 4 we present an explicit protocol P0 (Lemma 5) with Shannon entropy 
n − log n that runs in just 3 rounds. Its communication length is O(n2) , which is 
larger than that of Gradwohl et  al. However, regarding the Shannon entropy and 
the number of rounds this protocol is optimal: by a result of Stepanov [26] no 
three-round protocol can generate a distribution with Shannon entropy larger than 
n − log n + O(log log n) , and no two-round protocol can generate a distribution 
with Shannon entropy larger than n∕2 + O(log log n) . A version of protocol P0 has 
6 rounds, communication length O(n2) and it simultaneously achieves Shannon 
entropy n − O(log n) and min entropy n∕2 − O(log n) (Corollary 6).

More generally, for each i ≥ 0 , we present an explicit protocol Pi (Lemma  8) 
running in 2i + 3 rounds with communication length O(n2) and Shannon entropy 
n − log(i+1) n where log(j) n denotes the jth iteration of the ⌈log2 n⌉ function.

Reducing communication length. As we have mentioned, our main protocol, as 
well as the protocol of [15], has communication length O(n2) and Shannon entropy 
n − O(1) . It remains open whether one can reduce communication length in those 
protocols: it is unknown whether there are protocols with communication length 
o(n2) and Shannon entropy n − O(1) . There exist protocols with subquadratic com-
munication and some resilience guarantees, however those guarantees do not imply 
Shannon entropy n − O(1) . More specifically, we mean the following two protocols. 

1. Gradwohl et al. [17] for each � exhibit a non-explicit O(log∗ n)-round protocol 
that is (�,O(

√
�))-resilient and that uses linear communication. The resilience 

guarantee of that protocol holds only for one value of � , which is not enough for 
having entropy n − O(1).1

2. Sanghvi and Vadhan [25], for every constant 𝛿 > 0 , give a protocol with com-
munication length n logO(1) n that is (�,

√
� + �)-resilient (for every � ) and that 

has constant statistical distance from the uniform distribution (for some constant 
less than 1). This type of resilience essentially guarantees security only for sets 
of constant density. Indeed, their protocol allows the cheating party to bias the 
output distribution so that a particular string x0 has a constant positive probability 
� of being the output. Hence, the output distribution of their protocol may have 
constant min entropy and Shannon entropy at most (1 − �)n + 1 for some 𝜖 > 0.2

1 Assume for instance that a random variable X with the range {0, 1}n is (�, 2
√
�)-resilient for some � . If 

� ≥ 1∕
√
n then X may have the following distribution: Pr[X = 00… 0] = � and the remaining probabil-

ity 1 − � is uniformly distributed over the remaining strings. Then H(X) ≤ (1 − �)n + 1 ≤ n −
√
n + 1 

and X is (�, 2
√
�)-resilient, as Pr[X ∈ S] < Pr[X = 00… 0] + �S�∕2n ≤ 𝜇 + 𝜇 ≤ 2

√
𝜇 for 

any set S of density � . Otherwise, if 𝜇 < 1∕
√
n , let X be uniformly distributed over some √

�2n strings. Then H(X) = (1∕2) log� + n ≤ n − (1∕4) log n and X is (�, 2
√
�)-resilient, as 

Pr[X ∈ S] ≤ �S�∕(√�2n) = �2n∕(
√
�2n) =

√
� for any set S of density �.

2 Indeed, assume that Pr[X = x0] = � and let Y = 1 , if X = x0 , and Y = 0 otherwise. Then 
H(X) = H(X,Y) = H(X|Y) + H(Y) ≤ � ⋅ 0 + (1 − �) ⋅ n + H(Y) ≤ (1 − �)n + 1.
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  However, it turns out that it is possible to reduce communication length (from 
O(n2) ) in our constant round protocols with Shannon entropy n − o(n) . As we 
already mentioned, Gradwohl et al. [17] showed that there is a non-explicit 
protocol running in constantly many rounds, with linear communication and 
Shannon entropy n − O(log n) . In this paper, we show, also non-constructively 
(Theorem 12), that there is a protocol with linear communication complexity 
that achieves Shannon entropy n − O(log n) in just 3 rounds. Moreover, we show 
non-constructively (Corollary 14) that there is a 6-round protocol with linear com-
munication complexity that achieves Shannon entropy n − O(log n) and simulta-
neously min-entropy n∕2 − O(log n).

   Constantly many rounds and linear communication: explicit protocols. The 
above mentioned protocols with linear communication and constantly many 
rounds are non-explicit. A natural question is whether there are explicit con-
stant-round and linear-communication protocols guaranteeing Shannon entropy 
n − o(n) . In this paper, we construct an explicit three-round linear-communication 
protocol with Shannon entropy guarantee n − O(n3∕4) (Theorem 17). That pro-
tocol is related to Kakeya problem for finite fields. Besides, we construct three 
constant-round linear-communication candidate protocols. We conjecture that all 
of them guarantee Shannon entropy n − O(log n).

   A comparison of the mentioned random selection protocols. For reader’s con-
venience we have collected all the above mentioned protocols and their guarantees 
in Table 1.

Our techniques. For our main protocol ( O(log∗ n)-round, O(n2)-communica-
tion and n − O(1)-entropy) we use the recursion technique similar to that used 
in [25]. The existence of a non-explicit protocol (3-round O(n)-communication 
n − O(log n)-entropy) is proved by standard probabilistic arguments based on 
Chernov bounds. However our explicit linear communication protocols use novel 
techniques, especially the “geometric protocol” from Theorem 17.

A comparison of this paper with its conference version [7]. The present paper 
is the improved and extended version of the paper [7] by the same authors. Here 
we summarize the main novel things in this paper (compared to [7]).

• The analysis of the Geometric protocol has been improved using Z. Dvir’s 
technique from [12]. Previously, using G. Mockenhaupt and T. Tao bounds for 
Kakeya problem, we were able to prove that Geometric protocol yields Shan-
non entropy 3n∕4 − O(1) (Theorem 2 from [7]). Now we can show that it yields 
Shannon entropy n − O(n3n∕4) (Theorem 17).

• In Lemma 7 from [7] we established some guarantee for the protocol 
P(Alice, Bob, frot) for all prime n, and it was mentioned in [7] that the same holds 
for the protocols P(Alice, Bob, flin) and P(Alice, Bob, fmul) . Now, using a result 
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from [6], we can drop the assumption that n is prime and prove the same guaran-
tee for all three protocols for all n (Theorem 19).

• Now we explicitly state all the results obtained by “averaging technique” (Corol-
laries 6, 9, 14, and 18).

The paper is organized as follows. In the next section we review the notion of entropy 
and of other measures of randomness, we establish some relationships among them, and 
define selection protocols. Section 4 contains our main protocol that achieves entropy 
n − O(1) , and constant-round protocols Pi with entropy n − log(i+1) n . In Sect.  5 we 
address the problem of reducing the communication complexity of our protocols.

Table 1  A comparison of protocols

In the second line (the protocol of [25])), 𝛿 > 0 is a parameter of the protocol and can be chosen arbitrar-
ily small (the number of rounds and the length of communication depend on � ). In the third line (the pro-
tocol of [17]), � is a parameter of the protocol and can be chosen arbitrarily in [0, 1]

Reference Number of 
rounds

Communica-
tion length

Resilience Entropy Min entropy

[15] O(n) O(n2) (�,O
�√

�
�
) n − O(1) n/2

for any �
[25] O(log∗ n) n logO(1) n (�,O

�√
� + �

�
) ≤ n(1 − �) + 1 constant

for any � for some 𝜀 > 0

that depends 
on �

[17] O(log∗ n) O(n) (�,O
�√

�
�
)

(non-explicit)
Corollary 9 O(log∗ n) O(n2) n − O(1) n∕2 − O(log n)

Lemma 8 2i + 1 O(n2) n − log(i) n

for any
constant
i ≥ 1

[17] constant O(n) (1∕n2,O(1∕n)) n − O(log n) O(log n)

(non-explicit)
Corollary 6 6 O(n2) n − O(log n) n∕2 − O(log n)

Theorem 12 3 O(n) n − O(log n)

(non-explicit)
Corollary 14 6 O(n) n − O(log n) n∕2 − O(log n)

(non-explicit)
Theorem 17 3 O(n) n − O(n3∕4)

(geometric)
Corollary 18 6 O(n) n − O(n3∕4) n∕2 − O(1)

(geometric)
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3  Preliminaries

3.1  Random Variables and Shannon Entropy

Let Y  be a random variable with a finite range S. Shannon entropy of Y  is defined by:

If for some s ∈ S , Pr[Y = s] = 0 then the corresponding term in the sum is consid-
ered to be zero. All logarithms are based two.

Let X, Y  be (possibly dependent) jointly distributed random variables with ranges 
T, S, respectively. Shannon entropy of  Y  conditional to X is defined by:

where Y|X = t stands for the random variable whose range is S and which takes out-
come s ∈ S with probability Pr[Y = s|X = t].

The following are basic facts about Shannon entropy:

Here ⟨X, Y⟩ stands for the random variable with range S × T  , which takes the out-
come ⟨s, t⟩ with probability Pr[X = t, Y = s] . We will abbreviate H(⟨X, Y⟩) as 
H(X, Y) in the sequel.

The following corollaries of these facts are used in the sequel.

Corollary 1 

Proof Inequality (6) follows from (5). Inequality (7) follows from (4) and (5).   ◻

The min entropy of a random variable X with a finite range S is

It is straightforward that Shannon entropy is always greater than or equal to min 
entropy:

H(Y) = −
∑
s∈S

Pr[Y = s] ⋅ log Pr[Y = s].

H(Y|X) = ∑
t∈T

Pr[X = t]H(Y|X = t),

(1)H(f (Y)) ≤H(Y) for any functionf ,

(2)H(X|f (Y)) ≥H(X|Y) for any functionf ,

(3)H(Y) ≤ log |S|,

(4)H(Y|X) ≤H(Y),

(5)H(⟨X, Y⟩) =H(X) + H(Y�X),

(6)1. H(X) ≤ H(⟨X, Y⟩),
(7)2. H(⟨X, Y⟩) ≤ H(X) + H(Y)

H∞(X) = min{− log Pr[X = s] ∶ s ∈ S}.



674 Algorithmica (2021) 83:667–694

1 3

The statistical distance between random variables X, Y  with the same finite 
range S is defined as the maximum

over all subsets A of S. It is easy to see that the maximum is attained for A consisting 
of all s with Pr[X = s] > Pr[Y = s] (as well as for its complement). For every integer 
n ≥ 1 , we denote by Un the uniform probability distribution over {0, 1}n.

For 𝜇, 𝜖 > 0 , a random variable X in {0, 1}n is (�, �)-resilient if for any set S 
of density at most � (that is, |X| ≤ �2n ), the probability that X is in S is at most 
� . In order to compare our results with previous work, and to prove some of our 
results, we need the following

Lemma 2 For any random variable X in {0, 1}n the following holds. 

1. If X is (2−j, �)-resilient, then H(X) ≥ (n − j)(1 − �).
2. If X is (2−j, �j)-resilient for all j = 0, 1,… , n − 1 , then H(X) ≥ n −

∑n−1

j=0
(j + 1)�j

.

This lemma is proved in “Appendix”. By the second item, if the series ∑∞

j=0
(j + 1)�j converges to c, then H(X) ≥ n − c . In this way we will derive entropy 

guarantees n − O(1) from resilience guarantees. For instance, if a random variable X 
with the range {0, 1}n is (�,O(

√
�))-resilient for all � , then

As the series 
∑∞

j=0
(j + 1)2−j∕2 converges, we have H(X) ≥ n − O(1) . Item 1 does not 

suffice to make such conclusion, as (n − j)(1 − �) is not n − O(1) for any constant 
positive � . In particular, the entropy of the outcome of protocols of [17] can be less 
than n(1 − �) , if one of the parties cheats.

3.2  Random Selection Protocols

Definition 1 A random selection protocol Π = (A,B, f ) over {0, 1}n consists 
of a pair of functions A and B from {0, 1}∞ × {0, 1, #}∗ to {0, 1}∗ and a function 
f ∶ {0, 1, #}∗ → {0, 1}n . It works as follows:

• Both A (Alice) and B (Bob) alternately output strings (“messages”) mi of 
arbitrary length that are a function of the conversation thus far and their 
sequences of random coin tosses rA and rB (from {0, 1}∞ ), respectively. That is, 
m1 = A(rA, empty string) , m2 = B(rB,m1) , m3 = A(rA,m1#m2) , etc.

H(X) ≥ H∞(X).

|Pr[X ∈ A] − Pr[Y ∈ A]|

H(X) ≥ n −

∞�
j=0

(j + 1)O(
√
2−j).
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• The conversation between Alice and Bob is the transcript m1#m2#… #mr , 
where r is a parameter defining the number of messages (i.e., the number of 
rounds) of the protocol.

• The output of the protocol is f (m1#m2#… #mr) , which is a binary string of 
length n.

We are interested in the behavior of the protocol when one of functions A,  B is 
replaced by an arbitrary “cheating” function A∗ or B∗ from {0, 1}∞ × {0, 1, #}∗ to 
{0, 1}∗ . We assume that cheating functions A∗ and B∗ are total and always output a 
binary string. Thus our protocols have guaranteed output delivery, which is the same 
string for both parties, even if one or both parties cheat.

We say that Alice follows the protocol (is honest) if she uses the function A. 
Similarly for Bob.

Definition 2 We say that a protocol P for random string selection is (k, l)-Shannon 
good if the following properties hold:

• If Alice follows the protocol (and Bob possibly deviates from it), then the out-
come has Shannon entropy at least k.

• If Bob follows the protocol (and Alice possibly deviates from it), then the out-
come has Shannon entropy at least l.

A (k, k)-Shannon good protocol is called just k-Shannon good.
In a similar way we define (k,  l)-ME good protocols and k-ME good protocols, 

using minimal entropy in place of Shannon entropy.

Throughout the paper we use the following easy observation (proven in 
“Appendix”) that holds for every protocol (A, B, f):

Lemma 3 Assume that Alice’s strategy A guarantees that Shannon entropy of the 
outcome is at least k for all deterministic strategies of Bob. Then the same guarantee 
holds for all randomized strategies of Bob as well. A similar statement is true for 
min entropy in place of Shannon entropy, and for resiliency.

A string selection protocol P is called (�, �)-resilient if its output is (�, �)-resil-
ient provided at least one of the parties is honest.

Averaging the asymmetry. One of the interesting features of many of our pro-
tocols is the asymmetry of cheating power of the two parties. We use this asym-
metry to build the protocol with entropy n − O(1) . One can also use this asym-
metry for “averaging” their cheating powers in the following simple way. Given a 
protocol Qn(Alice, Bob) for selecting an n bit string, Alice and Bob first select the 
first n/2 bits of the string by running the protocol Qn∕2(Alice, Bob) , and then they 
select the other half of the string by running the protocol Qn∕2(Bob,Alice) (Alice 
and Bob exchange their roles).
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Lemma 4 If the protocolQn is (k(n), l(n))-Shannon good then the averaging proto-
col is(k(n∕2) + l(n∕2))-Shannon good.Similarly, if the protocolQn is (k(n), l(n))-ME 
good then theaveraging protocol is (k(n∕2) + l(n∕2))-ME good

This lemma is proved in “Appendix”.

4  The Main Protocol

In this section we construct a protocol that is (n − O(1))-Shannon good. We start 
with the following protocol.

Lemma 5 There is a(n − 1, n − log n)-Shannon good protocol P0 running in 3 
rounds and communicating n2 + n + log n bits. If Bob is honest then the outcome of 
P0 has min entropy at least n − log n.

Proof The protocol P0(Alice, Bob) is as follows: 

1. Alice picks x1, x2,… , xn ∈ {0, 1}n uniformly at random and sends them to Bob.
2. Bob picks y ∈ {0, 1}n uniformly at random and sends it to Alice.
3. Alice picks an index j ∈ {1,… , n} uniformly at random and sends it to Bob.
4. The outcome R of the protocol is xj ⊕ y , i.e., the bit-wise xor of xj and y.

(1) Assume that Alice follows the protocol and Bob is trying to cheat. Hence, Alice 
picks uniformly at random x1,… , xn ∈ {0, 1}n . Bob picks y. Then Alice picks a ran-
dom index j ∈ {1,… n} and they set R = xj ⊕ y . Clearly, H(x1,… , xn) = n2 , thus

Here the first inequality holds by (6), the second one by (1), the third one by (7), and 
the last one by (3). Therefore,

Here the second inequality holds by (7), the equality holds, as Alice chooses j uni-
formly, and the last inequality is true by (4).

(2) Assume that Bob follows the protocol and Alice is trying to cheat. As Shan-
non entropy is greater than or equal to the min entropy, it suffices to prove the lower 
bound on the min entropy. WLOG we can assume that Alice uses a deterministic 
strategy. Fix a deterministic strategy of Alice, which picks a particular sequence 
x1,… , xn in the first round and then sends a i = i(y) in the third round. For every n 
bit string s the probability of event xi(y) ⊕ y = s does not exceed the probability of 
event ∃i, xi ⊕ y = s , which is at most n2−n by union bound over i’s.   ◻

n2 =H(x1,… , xn) ≤ H(x1,… , xn, y) ≤ H(x1 ⊕ y,… , xn ⊕ y, y)

≤H(x1 ⊕ y,… , xn ⊕ y) + H(y) ≤ H(x1 ⊕ y,… , xn ⊕ y) + n.

(n2 − n)∕n ≤ H(x1 ⊕ y,… , xn ⊕ y)∕n ≤

n∑
i=1

H(xi ⊕ y)∕n = H(xj ⊕ y|j) ≤ H(xj ⊕ y).
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Remark 1 Note that the entropy bounds for the outcome of P0 are tight. Indeed, a 
cheating Bob can set y = x1 in the protocol. Then, in the third round, with prob-
ability 1/n Alice chooses j = 1 and the outcome becomes the all-zero string. Thus R 
takes the all-zero string with probability close to 1/n and the remaining probability 
is uniformly distributed over other strings. Hence

(all approximate equalities hold with accuracy o(1)). Similarly, a cheating Alice can 
enforce the first ⌊log n⌋ bits of the outcome to be all zero bits. To this end she chooses 
x1, x2,… , xn so that all ⌊log n⌋-bit strings occur among prefixes of x1, x2,… , xn . Thus 
in the third round she can choose j so that xj has the same length-⌊log n⌋ prefix as y. 
Hence H(R) ≤ n − ⌊log n⌋ in that case.

From Lemmas 5 and 4 we obtain the following

Corollary 6 There is a (n − O(log n))-Shannon good protocol running in 6 rounds3 
and communicating O(n2) bits. If either Alice or Bob is honest, then the min entropy 
of the protocol is at least n∕2 − O(log n).

Our protocol P0 achieves our goal of having entropy of the outcome close to n if 
Alice is honest. However if she is dishonest she can fix up to log n bits of the out-
come to her will. Clearly, Alice’s cheating power comes from the fact that she can 
choose up to log n bits in the last round of the protocol. If we would reduce the num-
ber of strings xj she can choose from in the last round, her cheating ability would 
decrease as well. Unfortunately, that would increase cheating ability of Bob. Hence, 
there is a trade-off between cheating ability of Alice and Bob. To overcome this, we 
will reduce the number of strings Alice can choose from, but at the same time we 
will also limit Bob’s cheating ability by replacing his y by an outcome of yet another 
run of the protocol played with Alice’s and Bob’s roles reversed. By iterating this 
several times we obtain our main protocol.

Let log∗ n stand for the number of times we can apply the function ⌈log x⌉ until we 
get 1 from n. For instance, log∗ 17 = log∗ 216 = 4.

Theorem 7 There is a(n − 2, n − 3)-Shannon good protocol running in 2 log∗ n + 1 
rounds and communicating n2 + O(n log n) bits. If n is even and Bob is honest or n is 
odd and Alice is honest, then the min entropy of the protocol is at least n − O(log n).

H(R) ≈ −(1∕n) log(1∕n) − (1 − 1∕n) log((1 − 1∕n)2−n)

= (log n)∕n − (1 − 1∕n) log(1 − 1∕n) + (n − 1) ≈ n − 1

3 One can wrongly think that the concatenation of 3 round protocols P(Alice,Bob) and P(Bob,Alice) has 
5 (and not 6) rounds, since the 3rd and 4th messages are on the same directions. Actually, the 3rd and 4th 
messages are on the opposite directions because the last message in P(Alice,Bob) is send by Alice, and 
the first message in P(Bob,Alice) is sent by Bob, who plays Alice’s part.
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Proof Let k = log∗ n − 1 . Define �0 = n and �i = ⌈log�i−1⌉ , for i = 1,… , k , so 
�k−1 ∈ {3, 4} and �k = 2.

The protocol of the theorem is Pk where for i = 1,… , k the protocol 
Pi(Alice, Bob) is defined as follows. 

1. Alice picks x1, x2,… , x
�i
∈ {0, 1}n uniformly at random and sends them to Bob.

2. Alice and Bob now run protocol Pi−1(Bob,Alice) (note that players exchange their 
roles) and set y to the outcome of that protocol.

3. Alice picks an index j ∈ {1,… ,�i} uniformly at random and sends it to Bob.
4. The outcome Ri of this protocol is xj ⊕ y.

We claim that the protocol Pi is (n − 2, n − log 4�i)-Shannon good. This implies the 
theorem since �k = 2.

Lemma 8 For all i = 0, 1,… , k the following is true. 

1. If Alice follows the protocolPi(Alice, Bob) then the outcome Ri satisfies 
H(Ri) ≥ n − 2.

2. If Bob follows the protocol Pi(Alice, Bob) then the outcome Ri of the protocol 
satisfies H(Ri) ≥ n − log 4�i.

3. Furthermore, if i is even and Bob is honest or i is odd and Alice is honest, then 
H∞(Ri) ≥ n −

∑i

j=0
log�j.

Proof We prove all the claims simultaneously by an induction on i. For i = 0 the 
claims follow from Lemma 5. So assume that the claims are true for i − 1 and we 
will prove them for i.

(1) If Alice follows the protocol Pi(Alice, Bob) then she picks x1,… , x
�i

 uni-
formly at random. Then the protocol Pi−1(Bob,Alice) is invoked to obtain y = Ri−1 . 
We can reason just as in the proof of Lemma 5. However this time we have a better 
lower bound for H(x1,… , x

�i
, y) . Indeed, by induction hypothesis, since Alice fol-

lows the protocol,

Here the last inequality holds for all i < k , as �i−1 > 4 in this case and hence

For i = k we have �i−1 ∈ {3, 4} and �i = 2 and the inequality is evident.
Thus,

Just as in Lemma 5, this implies

H(y|x1,… , x
�i
) ≥ n − log 4�i−1 ≥ n − 2�i.

log�i−1 > 2 ⇒ 2�i ≥ 2 log�i−1 > log�i−1 + 2 = log 4�i−1.

H(x1,… , x
�i
, y) = H(x1,… , x

�i
) + H(y|x1,… , x

�i
) ≥ �in + (n − 2�i).
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(2) Assume that Bob follows the protocol Pi(Alice, Bob) but Alice deviates from it 
by carefully choosing x1,… , x

�i
 and j. Then the protocol Pi−1(Bob,Alice) is invoked 

to obtain y = Ri−1 . By induction hypothesis H(y|x1,… , x
�i
) ≥ n − 2 . Now Alice 

chooses j ∈ {1,… ,�i} and we have

The claim about min entropy follows by induction. The base of induction i = 0 
holds by Lemma 5. The induction step: assume that i > 0 is even and Bob is hon-
est. Then i − 1 is odd and on stage 2 Bob plays Alice’s part, thus we may apply 
the induction hypothesis about min entropy of the outcome of Pi−1(Bob,Alice) . 
By induction hypothesis for the random string y selected on stage 2, we have 
H∞(y) ≥ n −

∑i−1

k=0
log�k . That is, for every n bit string s,

By union bound for every s the probability that the outcome equals s is

If i is odd and Alice is honest, then the arguments are even simpler:

  ◻

By the lemma, the protocol Pk is (n − 2, n − 3) good. It runs in 
2k + 3 = 2(log∗ n − 1) + 3 rounds.

The number of communicated bits is equal to

All �i ’s in the sum are at most log n and decrease faster than a geometric progres-
sion. Hence the sum is at most its largest term ( n log n ) times a constant.   ◻

Remark 2 Our protocol P0(Alice, Bob) is similar to the Random Shift Protocol of 
[25] (call it RSn ), and our protocol Pk(Alice, Bob) is obtained from P0(Alice, Bob) 
by a recursion similar to that used to obtain the Iterated Random Shift Protocol of 

H(xj ⊕ y) ≥ H(xj ⊕ y|j) =
�i∑
s=1

H(xs ⊕ y)∕�i

≥ (H(x1,… , x
�i
, y) − H(y))∕�i ≥ (�in + (n − 2�i) − n)∕�i = n − 2.

H(xj ⊕ y) ≥ H(xj ⊕ y�⟨x1,… , x
�i
⟩) ≥ H(y�⟨x1,… , x

�i
⟩) − H(j�⟨x1,… , x

�i
⟩)

≥ H(y�⟨x1,… , x
�i
⟩) − H(j) ≥ n − 2 − log�i.

Pr[y = s] ≤ 2−(n−
∑i−1

k=0
log�k).

Pr[xj ⊕ y = s] ≤
�
j

Pr[y = xj ⊕ s] ≤ �i2
−(n−

∑i−1

k=0
log�k) = 2−(n−

∑i

k=0
log�k).

Pr[xj ⊕ y = s] = (1∕�j)
�
j

Pr[y = xj ⊕ s] ≤ 2−(n−
∑i−1

k=0
log�k) < 2−(n−

∑i

k=0
log�k).

n2 + n + log n +

k∑
i=1

(n�i + log�i)
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[25] (call it IRSn ) from the Random Shift Protocol RSn . The difference is the fol-
lowing. The Random Shift Protocol RSn is almost symmetric: both players choose 
a bunch of n-bit strings, a1,… , an and b1,… , bn , respectively, and the protocol out-
puts the list of strings {ai ⊕ bj ∣ i, j ≤ n} rather than a single string (the asymmetry 
is caused by the fact that they choose their strings in turn). In the Iterated Random 
Shift Protocol IRSn , we first run RSn and obtain a list of n2 strings, then we apply 
IRS⌊log n2⌋ to choose a single string from the list. If n is smaller than a certain con-
stant, then IRSn invokes the protocol of [15].

From Theorem 7 and Lemma 4 we obtain the following

Corollary 9 There is a (n − 5)-Shannon good protocol running in 4 log∗ n + 2 
rounds and communicating O(n2) bits. If either Alice or Bob is honest then the min 
entropy of the protocol is at least n∕2 − O(log n).

In [25], Sanghvi and Vadhan establish that any protocol for random selection that 
guarantees a constant statistical distance of the output from the uniform distribu-
tion (for some constant less than 1) requires at least Ω(log∗ n) rounds. The following 
lemma implies that this lower bound translates to protocols guaranteeing Shannon 
entropy n − O(1).

Lemma 10 For every integer c the following holds. If X is a random variable 
with range {0, 1}n and H(X) ≥ n − c , then the statistical distance of X and Un is at 
most1 − 2−2c−7.

We prove this lemma in “Appendix”.

Corollary 11 If P is a protocol that is (n − O(1))-Shannon good then P has at least 
Ω(log∗ n) rounds.

5  Random Selection Protocols in Constantly Many Rounds 
with Linear Communication Length

In the previous section we have constructed protocols Pi , for i = 0,… , log∗ n − 1 , 
that guarantee Shannon entropy close to n and communicate O(n2) bits. In this sec-
tion we will address the possibility of reducing the amount of communication in the 
protocols.

Let us focus on the basic protocol P0(Alice, Bob) , as that protocol contributes to 
the communication the most. The protocol can be viewed as follows. 

1. Alice picks x ∈ {0, 1}mA uniformly at random and sends it to Bob.
2. Bob picks y ∈ {0, 1}mB uniformly at random and sends it to Alice.
3. Alice picks l ∈ {0, 1}m

�
A uniformly at random and sends it to Bob.
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4. A fixed function f ∶ {0, 1}mA × {0, 1}mB × {0, 1}m
�
A → {0, 1}n is applied to x, y 

and l to obtain the outcome f(x, y, l).

We will denote such a protocol by P0(Alice, Bob, f ) . In the basic protocol the 
parameters are: mA = n2 , mB = n and m�

A
= log n . We would like to find another suit-

able function f with a smaller domain keeping the guarantee n − o(n) for the entropy 
of the outcome.

Remark 3 Three rounds in the protocol are necessary in order to obtain the required 
guarantees on the output of the protocol. Indeed, by a result of [26], in any two round 
protocol at least one of the parties can force the output to have Shannon entropy 
close to n/2. The idea of the proof is the following. In a two round protocol, if for 
some x, the range of f (x, ⋅) is smaller than n2n∕2 , then Alice can enforce entropy 
n∕2 + log n by picking this x. On the other hand, if the range of f (x, ⋅) is larger than 
n2n∕2 for all x, then there is a set S of cardinality at most 2n∕2 that intersects images 
of all functions f (x, ⋅) , which can be proven by a probabilistic argument. Bob can 
cheat by enforcing the output to lie in S.

5.1  Non‑Explicit Protocol

The following claim indicates that finding a suitable function f should be possible.

Theorem  12 If f ∶ {0, 1}n × {0, 1}n × {0, 1}5 log n → {0, 1}n is taken uniformly 
at random among all functions, then with probability at least 1/2, the protocol 
P0(Alice, Bob, f ) satisfies: 

1. If Alice follows the protocol P0(Alice, Bob, f ) , then the outcome R satisfies 
H(R) ≥ n − O(1).

2. If Bob follows the protocol P0(Alice, Bob, f ) , then the outcome R of the protocol 
satisfies H(R) ≥ H∞(R) ≥ n − O(log n).

Proof We will define certain properties of a function f and we will show that most 
functions have such properties, and that any such function satisfies the lemma. The 
latter will be done using the second item of Lemma 2.

The properties of a function f will ensure that the outcome of the protocol is 
resilient. More specifically, let K = {0, 1}n and L = {0, 1}5 log n . The properties of 
f ∶ K × K × L → K are as follows: 

1. For any S ⊆ {0, 1}n , and for any function x ↦ y(x) from K to K, 

2. For every s ∈ {0, 1}n and for every x ∈ K , 

Prx∈K,l∈L[f (x, y(x), l) ∈ S] ≤ |S|∕2n + 1∕n2,

Pry∈K[∃l ∈ L f (x, y, l) = s] ≤ 2n5∕2n,
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 that is, 

The first condition means that the outcome of the protocol is (�,� + 1∕n2)

-resilient when Alice follows the protocol and Bob uses a deterministic strat-
egy, specified by a function x ↦ y(x) . By Lemma  2 it implies that the entropy 
of the outcome is n − O(1) in that case. Indeed, the outcome of the protocol is 
(2−i, �i)-resilient, where �i = 2−i + 1∕n2 . By Lemma  2 the entropy of the out-
come is at least n −

∑
0≤i<n 𝜀i(i + 1) . We can split the sum 

∑
0≤i<n 𝜀i(i + 1) into 

two sums: the sum of 2−i(i + 1) and the sum of (i + 1)∕n2 . The first sum is smaller 
than the of infinite series 

∑∞

i=0
2−i+1(i + 1) = O(1) . The second sum is equal to 

n(n + 1)∕2n2 ≤ 1.
The second property of the function f immediately implies that the min entropy 

(and hence entropy) of the outcome is at least − log(2n5∕2n) = n − O(log n).
It remains to prove that there is a function with properties 1 and 2. We show 

that for n large enough the probability that a random function satisfies each of the 
properties is at least 99/100, hence a random function satisfies both properties 
with probability at least 98/100. To this end we will use the Chernoff bound in 
the following two forms:

Lemma 13 Assume that we are given independent random variables Z1,… , ZN 
with values in {0, 1} . Then 

(a) the probability that their sumZ = Z1 +⋯ + ZN exceeds twice the expectation EZ 
of Z is less than e−EZ∕4 [2, Cor A.1.14] and

(b) the probability that Z exceeds EZ + �N is less than e−2�2N [2, Thm A.1.4].

1. Let S ⊆ {0, 1}n and x ↦ y(x) be any mapping from K to K. The size of the set 
{(x, l) ∣ f (x, y(x), l) ∈ S} is the sum of N = n52n independent random variables Zx,l , 
x ∈ K , l ∈ L , where Zx,l is 1, if f (x, y(x), l) ∈ S , and is 0 otherwise. The expected 
size of this set is N times the probability |S|∕2n of the event Zx,l = 1 . The first prop-
erty of the function f claims that the size of this set exceeds the expected size by 
at most �N  where � = 1∕n2 . Thus by Lemma 13(b) the property does not hold for 
a specific pair S, (x ↦ y(x)) with probability at most e−2�2N = e−2(1∕n

2)2n52n = e−2n2
n . 

By union bound over S and mappings x ↦ y(x) Property 1 does not hold with 
probability at most 22n ⋅ 2n2n ⋅ e−2n2n , which is negligible.

2. For the second condition, for any pair (s, x) ∈ K × K , consider 
N = |K||L| = n52n independent random variables Zy,l , y ∈ K , l ∈ L , where 
Zy,l = 1 , if f (x, y, l) = s , and Zy,l = 0 otherwise. We claim that

Indeed, the size of the set

|{y ∈ K ∶ ∃l ∈ L f (x, y, l) = s}| ≤ 2n5.

|{y ∈ K ∶ ∃l ∈ L f (x, y, l) = s}| ≤ ∑
y∈K,l∈L

Zy,l.
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can be expressed as 
∑

y∈K max{Zy,l ∣ l ∈ L} . Since max{Zy,l ∣ l ∈ L} ≤
∑

l∈L Zy,l , the 
claim follows.

Hence, if for a specific pair (s, x) the inequality in the second property is false, 
then the sum Z =

∑
y∈K,l∈L Zy,l exceeds 2n5 . The expectation of this sum is n5 . Thus 

by Lemma 13(a) we have that Prf [Z > 2n5] ≤ e−n
5∕4 . Hence for every pair s, x, the 

probability of event |{y ∈ K ∶ ∃l ∈ L f (x, y, l) = s}| > 2n5 for a random f is at most 
e−n

5∕4 . By union bound over x and s, with a probability at least 1 − 22n ⋅ e−n
5∕4 the 

second property holds.   ◻

From Theorem 12 and Lemma 4 we obtain the following

Corollary 14 There is a 6-round protocol communicating O(n) bits that is 
(n − O(log n))-Shannon good and (n∕2 − O(log n))-ME good.

5.2  Geometric Protocol and the Problem of Kakeya

The question is how to find an explicit function f with similar properties. We exhibit 
here an explicit function f such that the protocol P0(Alice, Bob, f ) guarantees Shan-
non entropy at least n − o(n) (if at least one party is honest).

Fix a finite field F and a natural m ≥ 2 . Let q = |F| . Consider the following 
protocol: 

1. Alice picks at random a vector d = (1, d2,… , dm) ∈ Fm and sends it to Bob.
2. Bob picks at random x = (x1,… , xm) ∈ Fm and sends it to Alice.
3. Alice picks at random t ∈ F and sends it to Bob.
4. The output of the protocol is 

The geometric meaning of the protocol is as follows. Alice picks at random a direc-
tion of an affine line in the m-dimensional space Fm over F. Bob chooses a random 
affine line going in that direction. Alice outputs a random point lying on the line.

Assume that Bob is honest. Then it is easy to lower bound the entropy of the out-
put y of this protocol.

Lemma 15 If Bob is honest, then the outcome y of the protocol satisfies

Proof Fix an outcome s ∈ Fm and fix a deterministic strategy of Alice. That is, Alice 
chooses some d in the first round and some t = t(x) in the third round. Then by union bound

  ◻

{y ∈ K ∶ ∃l ∈ L f (x, y, l) = s}

y = x + td = (x1 + t, x2 + td2,… , xm + tdm).

H(y) ≥ H∞(y) ≥ (m − 1) log q.

Prx[x + t(x)d = s] ≤
∑
t∈F

Prx[x + td = s] = q ⋅ q−m.
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Note that Alice can cheat this much. For example, Alice can force y1 = 0 by 
choosing always t = −x1.

In the case when Alice is honest, we are able to prove the bound 
H(y) ≥ m log q − O(m3) . This is related to the following problem that is known as 
Kakeya problem for finite fields.

Kakeya problem Let L be a collection of affine lines in Fm such that for each 
direction there is at least one line in L going in that direction. Let PL denote the 
set of all points from lines from L. How small can be |PL|?

Call any set of lines L satisfying the conditions of Kakeya problem a Kakeya fam-
ily. For every Kakeya family L consider the following deterministic Bob’s strategy: 
choose any point from the line in L going in direction d specified by Alice. Using 
this strategy, Bob can force the outcome to be in PL , and hence its entropy be at 
most log |PL| . Thus to prove that the entropy of the outcome is at least � (provided 
Alice is honest), we need the lower bound |PL| ≥ 2� for Kakeya problem. Dvir [12] 

has shown that |PL| ≥
(
q + m − 1

m

)
 . It turns out that the technique of [12, 13] used 

to show the lower bound for |PL| is suitable also to prove that the entropy of the out-
come of the protocol (provided Alice is honest) is at least m log q − O(m3).

Theorem  16 If Alice is honest then the outcome Y  of the geometric protocol is 
(�, 2m�1∕m)-resilient (for all � ) and H(Y) ≥ m log q − O(m3).

Proof We start by proving that Y  is (�, 2m�1∕m)-resilient for all � . By Lemma 3 we 
may assume that Bob uses a deterministic strategy: for every d he chooses a point 
x(d) ∈ Fm . We have to show that the random variable Y = x(d) + dt is (�, �)-resilient 
for

For the sake of contradiction assume that there is S ⊂ Fm with

Let us find a non-zero low-degree polynomial P ∈ F[x1,… , xm] that vanishes on 
S, that is, P(x1,… , xm) = 0 for all (x1,… , xm) ∈ S . Such polynomial can be found 
by solving a system of |S| linear homogeneous equations. Indeed, for every x ∈ S 
the condition P(x) = 0 is a homogeneous linear equation in the coefficients of P. 
We need to choose the degree of P so that the number of coefficients of P be greater 
than the number of equations. Assuming that the degree of P in each variable is at 
most k, we are fine if (k + 1)m > |S| = 𝜇qm . Thus we can let

Definition 3 Call a direction d good if x(d) + dt ∈ S with probability more than 
�∕2 (for a random t chosen with uniform distribution).

(8)� = 2m�1∕m.

(9)|S| = 𝜇qm and Pr[x(d) + dt ∈ S] > 𝛿.

(10)k = �1∕mq.
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Claim 1 More than �∕2 fraction of directions are good.

Proof Recall that we assume that with probability more than � (when a pair d,  t 
is chosen with uniform distribution) it happens that x(d) + dt ∈ S (Equation  (9)). 
Hence more than � − �∕2 = �∕2 fraction of directions are good.   ◻

For all good d consider the univariate polynomial P(x(d) + dt) of t. We claim that 
this is a zero polynomial. Indeed, its degree is at most km and it vanishes in more 
than q�∕2 points, as P(x(d) + dt) = 0 whenever x(d) + dt ∈ S . We have chosen k and 
� so that km = q�∕2 (Equations (8) and (10)). Thus P(x(d) + dt) has more roots than 
its degree and hence is a zero polynomial.

Represent P(x) as a sum of homogeneous polynomials: 
P(x) = P0 + P1(x) +⋯ + Pl(x) , where Pj is a homogeneous polynomial of degree 
j and Pl is non-zero. Since x(d) + dt is a linear function of t and Pj is a homoge-
neous polynomial of degree j, the univariate polynomial Pj(x(d) + dt) equals 
Pj(d)t

j plus some polynomial of t of degree less than j. (Indeed, for every mono-
mial Q ∈ F[y1,… , ym] and for every a ∈ Fm , the degree of the polynomial 
Q(a + y) − Q(y) is less than that of Q and Q(dt) = Q(d)ti , where i is the degree of 
Q.) As

the polynomial P(x(d) + dt) equals Pl(d)t
l plus some polynomial of degree less than 

l.
By Definition  3, P(x(d) + dt) is a zero polynomial of t for all good d. Hence 

Pl(d) = 0 for all good d. By Claim 1 there at least �qm−1∕2 good d’s. The Schwartz-
Zippel lemma states that a non-zero polynomial in F[y1,… , yn] of degree l cannot 
have more than l|F|n−1 zeros. On the other hand, the non-zero degree-l polynomial 
Pl(1, d1,… , dm−1) has m − 1 variables and more than

roots (the first equality holds by (8) and the last equality holds by (10)). This contra-
diction shows that the outcome Y  is (�, 2m�1∕m)-resilient.

Let us show now that the outcome Y  of the protocol has large Shannon entropy 
(provided Alice is honest). By Lemma 2,

where �i = 2m2−i∕m . Therefore

We claim that the last sum is O(m2) . Indeed, we can rewrite it as

P(x(d) + dt) = P0 + P1(x(d) + dt) +⋯ + Pl(x(d) + dt),

�qm−1∕2 = (2m�1∕mqm−1)∕2 = m�1∕mqm−1 = kmqm−2 ≥ lqm−2

H(Y) ≥ m log q −

m log q∑
i=0

(i + 1)�i,

m log q − H(Y) ≤

∞∑
i=0

(i + 1)2m2−i∕m = 2m

∞∑
i=0

(i + 1)2−i∕m.
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The inner sum 
∑∞

i=j
2−i∕m is a sum of geometric series with the quotient 2−1∕m and 

the first term 2−j∕m and thus equals

Thus the outer sum is

Hence H(Y) ≥ m log q − O(m3) .   ◻

If we choose m = n1∕4 and log q = n3∕4 , then the lower bounds for H(Y) in the 
cases when Alice cheats and Bob cheats coincide and are equal to n − O(n3∕4) . Thus 
we get an explicit 3 round protocol with linear communication and entropy n − o(n):

Theorem 17 There is an explicit (n − O(n3∕4))-Shannon good 3-round protocol that 
communicates 2n bits.

Using Lemma 4 we obtain the following corollary:

Corollary 18 There is a 6-round explicit protocol that communicates O(n) bits and 
that is (n − O(n3∕4))-Shannon good and (n∕2 − O(1))-ME good.

5.3  Explicit 3‑Round Linear Communication Candidate Protocols

The above results leave open the following question: Is there an explicit 
(n − O(log n))-Shannon good protocol running in constantly many rounds with com-
munication length O(n)?

We propose the following three protocols that we believe have the required prop-
erties. Consider the protocol P0(Alice, Bob, f ) where f is one of the following three 
functions. 

1. frot ∶ {0, 1}n × {0, 1}n × {0,… , n − 1} → {0, 1}n defined by f (x, y, j) = xj ⊕ y , 
where xj is the j-th rotation of x, xj = xj+1 ⋯ xnx1 ⋯ xj.

2. flin ∶ Fm−1 × Fm × F → Fm , where F = GF[2k] , m = n∕ log n , k = log n and 
f (x, y, j) = (1, x1,… , xm−1) ∗ j + (y0,… , ym−1) . This function is similar to that 
used in the geometric protocol, we have just changed the values of m and q.

3. fmul ∶ F × F × {0,… , n − 1} → F , where F = GF[2n] , h0,… , hn−1 are some dis-
tinct elements of F, and f (x, y, j) = x ∗ hj + y (this function depends on the choice 
of h0,… , hn−1).

∞∑
i=0

i∑
j=0

2−i∕m =

∞∑
j=0

∞∑
i=j

2−i∕m.

2−j∕m

1 − 2−1∕m
=

2−j∕m

1 − (1 − Ω(1∕m))
= O(m2−j∕m).

∞∑
j=0

O(m2−j∕m) = O(m)

∞∑
j=0

2−j∕m = O(m) ⋅ O(m) = O(m2).
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In particular the function frot is interesting as it would allow very efficient imple-
mentation. We conjecture that for f ∈ {frot, flin, fmul} the protocol P0(Alice, Bob, f ) is 
(n − O(log n))-Shannon good. However we are able to prove only the following

Theorem  19 For all f ∈ {frot, flin, fmul} the protocol P0(Alice, Bob, f ) is 
(n∕2 − no(1), n − log n)-Shannon good and the min entropy of the outcome is at least 
n − log n when Bob follows the protocol.

Proof 

1. All the three functions have the following feature: for all fixed x, j and uniformly 
distributed y the random variable f(x, y, j) has uniform distribution. This implies 
that the outcome of the protocol has min entropy at least n − log n provided Bob 
follows the protocol. This is proved by an analysis similar to that in the proof of 
Lemma 5: Fix a deterministic strategy of Alice, which picks a particular x in the 
first round and then sends a j = j(y) in the third round. For every s the probability 
of event f (x, y, j(y)) = s does not exceed the probability of event ∃j, f (x, y, j) = s , 
which is at most n2−n by union bound over j’s.

2. Assume that Alice follows the protocol. WLOG Bob is deterministic. Let x be 
chosen uniformly at random and y be set depending on x. As we have seen in the 
proof of Lemma  5, the entropy of the outcome is at least 

∑n−1

j=0
H(f (x, y, j))∕n . 

Obviously, the arithmetic mean of any n ≥ 2 numbers a0,… , an−1 is equal to the 
arithmetic mean of n(n − 1)∕2 numbers (ak + al)∕2 for k ≠ l ∈ {0,… , n − 1} . Fix 
k ≠ l ∈ {0,… , n − 1} . By inequalities (7) and (1), we have 

 All the three functions have the following feature: f (x, y, k) − f (x, y, l) does not 
depend on y and equals 

 In the case f = fmul the difference f (x, y, k) − f (x, y, l) has uniform distribution 
and hence H(f (x, y, k) − f (x, y, l)) = n , which implies that the entropy of the out-
come is at least n/2 provided Alice is honest.

  For f = flin the difference f (x, y, k) − f (x, y, l) , is uniformly distributed 
in the set of all k-dimensional vectors whose first coordinate is k − l . Hence 
H(f (x, y, k) − f (x, y, l)) = (k − 1) log n = n − log n . This implies that the entropy 
of the outcome is at least n∕2 − (log n)∕2 provided Alice is honest.

  The case f = frot is the hardest one. Note that in this case it is not true that 
H(f (x, y, k) − f (x, y, l)) , that is, H(xk ⊕ xl) is close to n for all k ≠ l ∈ {0,… , n − 1} . 
For example, if n is even, k = 0 , l = n∕2 , then ith bit and (i + n∕2) th bit of xk ⊕ xl 

H(f (x, y, k)) + H(f (x, y, l)) ≥ H(f (x, y, k), f (x, y, l)) ≥ H(f (x, y, k) − f (x, y, l)).

⎧⎪⎨⎪⎩

xk ⊕ xl if f = frot,

(1, x1,… , xk−1) ∗ (k − l) if f = flin,

x ∗ (hk − hl) if f = fmul.
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coincide for all i = 0,… , n∕2 − 1 , hence H(xk ⊕ xl) ≤ n∕2 . However, on average 
H(xk ⊕ xl) is close to n.

  ◻

Lemma 20 Assume that n ≥ 2 and x is chosen with uniform probability distribu-
tion in {0, 1}n.Then the average of H(xk ⊕ xl) for k ≠ l ∈ {0,… , n − 1} is at least 
n − no(1).

Proof Fix k ≠ l ∈ {0,… , n − 1} . The mapping x ↦ xk ⊕ xl is a homomorphism 
hence xk ⊕ xl has uniform distribution over its range.

The range of the mapping x ↦ xk ⊕ xl is equal to the set of all z ∈ {0, 1}n such 
that the system of equations

is consistent. In this system every equation has two variables. Thus it is convenient 
to represent this system by a directed graph, call it Gn,l,k . The nodes of the graph are 
variables x0, x1,… , xn−1 and arcs of the graph correspond to equations: ith arc starts 
in the node x(i+k) mod n and ends in x(i+l) mod n . It is easy to see that each vertex of Gn,l,k 
has one incoming edge and one outgoing edge. Hence Gn,l,k is a union of vertex-
disjoint oriented cycles C1,… ,Cm.

We claim that the dimension of the image of the mapping x ↦ xk ⊕ xl is equal 
to n − m . Indeed, the system  (11) can be split in m sub-systems, associated with 
the cycles C1,… ,Cm . Those sub-systems do not have common variables. Let Ct be 
one of the cycles, and let z0,… , zn−1 be obtained from some x ∈ {0, 1}n by equa-
tions (11). Then

is even, since every variable xj has either 0 or 2 occurrences in this sum. Thus for 
each cycle Ct we obtain a constraint 

∑
zi∈Ct

zi ≡ 0 (mod 2) . On the other hand, 
assume that z0,… , zn−1 satisfy all such constraints. Then for each equation the value 
of any variable from that equation determines uniquely the value of the other vari-
able from that equation. Thus for each cycle Ct , we can pick one variable xi from 
that cycle and set xi = 0 , say. The values of the remaining variables from the cycle 
can be determined uniquely (the last equation is fulfilled because of the constraint 
associated to the cycle).

Thus we need to count the number of cycles in Gn,l,k . A variable xi is connected 
in Gn,l,k to all variables of the form x(i+(l−k)j) mod n , j = 0,… , n − 1 . If n is prime, then 
the range of the mapping j ↦ (i + (l − k)j) mod n consists of all residues modulo n. 
In this case Gn,l,k consists of one cycle and hence H(xk ⊕ xl) = n − 1.

In general case, the cardinality of the range of the mapping j ↦ (i + (l − k)j) mod n 
is equal to n∕ gcd(l − k, n) . Hence each cycle has n∕ gcd(l − k, n) nodes and the num-
ber of cycles is gcd(l − k, n) . That is, H(xk ⊕ xl) = n − gcd(l − k, n).

(11)x(i+k) mod n ⊕ x(i+l) mod n = zi, i = 0, 1,… , n − 1

∑
zi∈Ct

zi =
∑
zi∈Ct

(x(i+k) mod n ⊕ x(i+l) mod n)
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Thus we need to estimate the average of gcd(l − k, n) where k ≠ l ∈ {0,… , n − 1} 
are chosen with uniform distribution. Obviously it is equal to

The sum 
∑n−1

i=1
gcd(i, n) is a well studied subject in the Number Theory, and it is 

called the gcd-sum. By a result of Broughan [6] we have 
∑n−1

i=1
gcd(i, n) ≤ n1+o(1) . 

Hence the average of H(xk ⊕ xl) is at least n − no(1) .   ◻

The theorem is proved.   ◻

6  Open Questions

1. Is there an explicit (n − O(log n))-Shannon good protocol running in constantly 
many rounds with communication length O(n)?

2. Is there a (n − O(1))-Shannon good protocol with communication length o(n2)?
3. Given r,  n, what is maximal h = hr(n) such that there is a h-Shannon 

good protocol running in r rounds? Lemma  8 provides a lower bound 
hr(n) ≥ n − log(⌊(r−1)∕2⌋) n . Building on results of [25], Stepanov [26] showed 
that hr(n) ≤ n −

1

8
log(log

∗ log∗ n+r) n.
4. Is it true that that for all f ∈ {frot, flin, fmul} the protocol P0(Alice, Bob, f ) is 

(n − O(log n))-Shannon good?
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A Appendix: Deferred Proofs

The proof of Lemma 2 For x ∈ {0, 1}n , let px = Pr[X = x] . For any non-negative inte-
ger i let

Since the total probability sums to one, we have |{0, 1}n ⧵ Si| < 2i . 

∑n−1

i=1
gcd(i, n)

n − 1
.

Si = {x ∈ {0, 1}n ∣ px ≤ 2−i}.
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1. In order to prove the first claim note that 

 Since |{0, 1}n ⧵ Sn−j| < 2n−j and X is (2−j, �)-resilient, it follows that 
Pr[X ∉ Sn−j] ≤ � . Hence 

∑
x∈Sn−j

px ≥ 1 − � and 

2. To prove the second claim, we partition {0, 1}n into slices Si ⧵ Si+1 : 

 Hence 

 Since X is (2−j, �j)-resilient for all j = 0, 1,… , n − 1 and |{0, 1}n ⧵ Si+1| < 2i+1 , 
we conclude that 

 hence 

  ◻

The proof of Lemma 3 We first prove the min entropy part. Assume that Alice’s strat-
egy A guarantees that for all deterministic strategies B of Bob, the min entropy of 
the outcome is at least k. Let XB denote the outcome random variable provided Bob 
uses a deterministic strategy B. Then for every x the probability Pr[XB = x] is at most 
2−k.

Assume that Bob uses a randomized strategy � . This strategy can be viewed as 
a probability distribution over his deterministic strategies. Let X denote the output 
random variable. Then Pr[X = x] is equal to the average value of Pr[XB = x] with 
respect to that distribution. Hence the min entropy part follows from the fact that the 
average value of any random variable cannot exceed its maximal value, which is at 
most 2−k in our case.

Similar arguments prove the resilience part.
The Shannon entropy part follows from the inequality H(X) ≥ H(X|�) . Indeed, 

H(X|�) is the average value of H(XB) over a randomly chosen B.   ◻

H(X) =
∑
x

px(− log px) ≥
∑
x∈Sn−j

px(− log px) ≥ (n − j)
∑
x∈Sn−j

px.

H(X) ≥ (n − j)(1 − �).

H(X) =
∑
x

px(− log px) =

∞∑
i=0

∑
x∈Si⧵Si+1

px(− log px) ≥

∞∑
i=0

∑
x∈Si⧵Si+1

pxi.

n − H(X) ≤

∞∑
i=0

∑
x∈Si⧵Si+1

(n − i)px ≤

n−1∑
i=0

∑
x∈Si⧵Si+1

(n − i)px ≤

n−1∑
i=0

∑
x∉Si+1

(n − i)px

∑
x∉Si+1

px ≤ �n−i−1,

n − H(X) ≤

n−1∑
i=0

(n − i)�n−i−1 =

n−1∑
j=0

(j + 1)�j
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Proof of Lemma 4 Assume that Alice is honest and hence follows the strategy A pre-
scribed by the protocol Qn∕2(Alice, Bob) to select the first half of the output and 
the strategy B prescribed by the protocol Qn∕2(Bob,Alice) to select the second half 
of the output. To prove the first statement, we have to show that whatever strategy 
S follows Bob, Shannon entropy of the outcome X is at least k(n∕2) + l(n∕2) . By 
Lemma 3 we may assume that S is deterministic.

Let X1,X2 denote the first and the second part of the output, respectively. Then

As the protocol Qn∕2(Alice, Bob) is (k(n/2),  l(n/2))-Shannon good we have 
H(X1) ≥ k(n∕2) and it remains to show that H(X2|X1) ≥ l(n∕2) . As X1 is a function 
of messages M1 sent while selecting X1 , by inequality  (2) the conditional entropy 
H(X2|X1) is at least H(X2|M1) . As the protocol Qn∕2(Bob,Alice) is (l(n/2), k(n/2))-
Shannon good, for every m1 we have H(X2|M1 = m1) ≥ l(n∕2) . Indeed, once we 
fix m1 , the action of Bob’s strategy S while selecting the second half of the output 
becomes deterministic.

The bound on min entropy is proven in a similar way: for all x1, x2 we have

The first factor here is at most 2−k(n∕2) , as Qn∕2(Alice, Bob) guarantees min entropy at 
least k(n/2) provided Alice is honest. The second factor is at most 2−l(n∕2) , as for all 
messages m1 we have Pr[X2 = x2|M1 = m1] ≤ 2−l(n∕2) . Since X1 is a function of M1 , 
this implies that Pr[X2 = x2|X1 = x1] ≤ 2−l(n∕2) as well.   ◻

The proof of Lemma 10 Fix an integer c. For x ∈ {0, 1}∗ let px = Pr[X = x] . The sta-
tistical distance between Un and X is equal to 

∑
x∶px>2

−n(px − 2−n) . For all integer 
i ≤ n let Ni stand for the cardinality of the set

And let wi denote the cumulative probability of Ti . In terms of wi,Ni the statistical 
distance between Un and X can be rewritten as

Here the last inequality holds, as wi ≤ Ni2
−n+i by (12).

Thus it suffices to prove that

provided H(X) ≥ n − c . This can be done similar to the proof of Lemma 2. Indeed,

H(X) = H(X1) + H(X2|X1).

Pr[X = (x1, x2)] = Pr[X1 = x1] ⋅ Pr[X2 = x2|X1 = x1].

(12)Ti = {x ∣ 2−n+i−1 < px ≤ 2−n+i}.

n∑
i=1

wi −

n∑
i=1

Ni2
−n ≤

n∑
i=1

wi −

n∑
i=1

2−iwi.

n∑
i=1

(1 − 2−i)wi ≤ 1 − 2−2c−7
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hence

Here i ranges over all integers i ≤ n , including negative ones. However, the contri-
bution of negative i’s is bounded by a constant. Indeed, as 2n−iwi ≤ Ni ≤ 2n we can 
conclude that wi ≤ 2i hence

Thus, inequality (13) implies that the sum of iwi over positive i’s is bounded by a 
constant:

Split the sum 
∑n

i=1
(1 − 2−i)wi into two sums: the sum over all i ≥ 2(c + 3) and the 

rest. Let p =
∑

1≤i<2(c+3) wi and q =
∑

n≥i≥2(c+3) wi . Then

It remains to show that p ≤ 1∕2 . This follows from (14). Indeed,

Thus (14) implies that 2(c + 3)p ≤ c + 3 ⇒ p ≤ 1∕2 . Lemma 10 is proved.   ◻
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