
Algorithmica (2021) 83:1054–1095
https://doi.org/10.1007/s00453-020-00731-5

A Tight Runtime Analysis for the (� + �) EA

Denis Antipov1 · Benjamin Doerr2

Received: 28 December 2018 / Accepted: 3 June 2020 / Published online: 25 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Despite significant progress in the theory of evolutionary algorithms, the theoretical
understanding of evolutionary algorithms which use non-trivial populations remains
challenging and only few rigorous results exist. Already for the most basic problem,
the determination of the asymptotic runtime of the (μ + λ) evolutionary algorithm
on the simple OneMax benchmark function, only the special cases μ = 1 and
λ = 1 have been solved. In this work, we analyze this long-standing problem and
show the asymptotically tight result that the runtime T , the number of iterations until

the optimum is found, satisfies E[T] = �

(
n log n

λ
+ n

λ/μ
+ n log+ log+(λ/μ)

log+(λ/μ)

)
, where

log+ x := max{1, log x} for all x > 0. The same methods allow to improve the
previous-best O(

n log n
λ

+ n log λ) runtime guarantee for the (λ + λ) EA with fair

parent selection to a tight �(
n log n

λ
+ n) runtime result.

Keywords Evolutionary algorithms · Runtime analysis · Populations · Theory

A preliminary version of this work [1] was presented at the Genetic and Evolutionary Computation
Conference (GECCO) 2018. In this version, the presentation was improved by rewriting almost the entire
text, by giving a clearer comparison with the previous state of the art, by making many proofs more
rigorous, by extending the lower bounds to arbitrary fitness functions (subject to a mild restriction on the
number of global optima), and by extending our results to the so-called (N + N) EA using a fair parent
selection.

B Denis Antipov
antipovden@yandex.ru

Benjamin Doerr
doerr@lix.polytechnique.fr

1 ITMO University, Saint-Petersburg, Russia

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00731-5&domain=pdf
http://orcid.org/0000-0001-7906-096X

Algorithmica (2021) 83:1054–1095 1055

1 Introduction

Evolutionary algorithms are general-purpose optimization heuristics and have been
successfully applied to a broad range of computational problems.While themajority of
the research in evolutionary computation is applied and experimental, the last decades
have seen a growing number of theoretical analyses of evolutionary algorithms. Due
to the difficult nature of the stochastic processes describing the runs of evolutionary
algorithms, the vast majority of these works regards very simple algorithms like the
(1 + 1)EA,which has both a parent population and an offspring population of size one.
Such works, while innocent looking in their problem statement, can be surprisingly
challenging from the mathematical point of view, see, e.g., the long series of works
on how the (1 + 1) EA optimizes pseudo-Boolean linear functions which started with
the seminal paper [16]. Also, while these example problems are far from the real
applications, many of the theoretical works have contributed to the understanding of
the working principles of evolutionary algorithms (see, e.g, [11,14,26]), have given
advice on how to set parameters and take other design choices (see, e.g., [3,43,49]),
and even have proposed new algorithms (see, e.g, [9,21]).

Still, it remains dissatisfying that there are only relatively few works on true
population-based algorithms as this bears the risk that we do not really understand
the role of populations in evolutionary computation. What is clearly true, and the rea-
son for the lack of such works, is that the stochastic processes become much more
complicated when non-trivial populations come into play.

To make some progress towards a better understanding of population-based algo-
rithms, we regard the most simple population-based problem, namely how the elitist
(μ + λ) EA optimizes the OneMax benchmark problem (see Sect. 2.2 for the details
of this problem). With the corresponding problem for the (1 + λ) EA mostly solved
in 2005 [33] (see [18, Section 8] for a more complete picture) and the problem for the
(μ + 1) EA solved in 2006 [47], it is fair to call this a long-standing open problem.
In the conclusion of his paper [47], Witt writes “the most interesting direction seems
to be an extension to (μ + λ) strategies by a combination with the existing theory on
the (1 + λ) EA.”

1.1 Our Results

We give a complete answer to this question and prove that for arbitrary values of μ

and λ (which can be functions of the problem size n, however, for the lower bound
we assume that μ is at most polynomial in n), the expected number of iterations the
(μ + λ) EA takes to find the optimum of the OneMax function is

E[T] = �

(
n log n

λ
+ n

λ/μ
+ n log+ log+(λ/μ)

log+(λ/μ)

)
,

where log+ x := max{1, log x} for all x > 0. This result subsumes the previous results
for the (1 + λ) EA and (μ + 1) EA obtained in [18,33,47].

123

1056 Algorithmica (2021) 83:1054–1095

This runtime guarantee shows, e.g., that using a true parent population of size at
most max{log n, λ} does not reduce the asymptotic runtime compared to μ = 1. Such
information can be useful since it is known that larger parent population sizes can
increase the robustness to noise, see, e.g., [28].

With our methods, we can also analyze a related algorithm. He and Yao [32] and
Chen, He, Sun, Chen, and Yao [7] analyzed a version of the (μ + λ) EA in which
μ = λ and each parent produces exactly one offspring.We shall call this algorithm the

(λ
1:1+λ)EAfor brevity.Weprove a tight runtimeboundof�(

n log n
λ

+n) iterations,which
also shows that the fairness in the parent selection does not change the asymptotic
runtime in this problem.

To prove our bounds, we in particular build onWitt’s [46–48] family tree argument.
The main idea of this argument is to consider a tree graph the vertices of which are
the individuals created during the evolution process and each path from the root to a
vertex corresponds to the series of mutations which led to the creation of this vertex.
Selection does not play any role in this structure, so when working with family trees
we usually assume that all individuals with a corresponding vertex in the tree can
potentially be present in the current population. Different from Witt’s approach (and
different from all other works using his method that we are aware of), we work in a
complete tree that contains all possible family trees and in this structure argue about
which individuals really exist and whether they are an optimal solution. It appears to
us that this approach is technically easier than the previous approaches, which first
argue that with high probability the true family tree has a certain structure (e.g., a small
height) and then, conditioning on this, argue that within such a restricted structure an
optimal solution is hard to reach. We also believe that our approach facilitates the
uniform analysis of trees having different structures (as, e.g., in our work, in which
different relative sizes of μ and λ can lead to very different characteristics of the tree).

Using this argument that does not regard the selection process we have obtained
the lower bound that holds not only for the OneMax function, but for any function
with a unique optimum in the same way as it was done for the (μ + 1) EA in [47].
Our arguments let us extend the lower bounds to the functions with multiple optima
(however, the number of the optima in these functions must be restricted). In the case
of (μ + 1) EA this extension holds for a broader class of functions than the similar
extension in [47] which works only for the functions with a unique optimum.

1.2 PreviousWorks

The field of mathematical runtime analysis of evolutionary algorithms aims at
increasing our understanding via proven results on the performance of evolution-
ary algorithms. Due to the difficulty of mathematical understanding of complicated
population dynamics, the large majority of works in this field considers algorithms
with trivial populations. These algorithms may seem trivial, however already allow
deep results like the proof of the O(n log n) expected runtime of the (1+ 1) EA on all
linear pseudo-Boolean functions [12,16]. They give surprising insights like the fact
that monotonic functions can be difficult for simple EAs [6,15,37], and have spurred
the development of many useful analysis methods [17,31].

123

Algorithmica (2021) 83:1054–1095 1057

Despite the mathematical challenges, some results exist on algorithms using non-
trivial populations. While such results are quite rare, due the growth of the field in the
last 20 years they are still too numerous to be described here exhaustively. Therefore,
we describe in the following those results which regard our research problem or special
cases of it as well as a few related results.

The two obvious special cases of our problemare runtime analysis of the (1 + λ)EA
and the (μ + 1) EA onOneMax. In [18], the runtime of the (1 + λ) EA on the class of
linear functions is analyzed, which contains the OneMax function. A tight bound of

�(
n log n

λ
+ n log+ log+ λ

log+ λ
) is proven for the expected runtime (number of iterations until

the optimum is found) of the (1 + λ) EA maximizing the OneMax function. This
extends the earlier result [33], which shows this bound for λ = O(

log(n) log log(n)
log log log(n)

),

note that in this case the bound simplifies to �(
n log(n)

λ
), and which shows further that

for asymptotically larger values of λ, the expected runtime is ω(
n log(n)

λ
).

Witt [47] studied the (μ + 1) EA on the three pseudo-Boolean functions Leadin-
gOnes, OneMax and SPC. For the OneMax problem, under the mild assumption
thatμ is polynomially bounded in n, he proved that the expected runtime of the (μ+1)
EA is �(μn + n log n).

For algorithms with non-trivial parent and offspring population sizes, the following
is known. The only work regarding the classic (μ + λ) EA for general μ and λ is
[40]. Using the recent switch analysis technique [50] and assuming that μ and λ are
polynomially bounded in n, it was shown that the (μ + λ) EA needs an expected
number of

�

(
n log n

λ
+ μ

λ
+ n log log n

log n

)

iterations to find the optimum of any function f : {0, 1}n → R with unique optimum.
This bound is of smaller asymptotic order (and thus weaker) than ours when μ =
ω(log n) and λ

μ
< ee or when log λ

μ
= ω(log n), see the discussion at the end of

Sect. 4.
For the (λ

1:1+λ)EA the first result [32, Theorem4] considers the runtime on theOne-
Max in a special case when λ = n. It shows an upper bound of O(n) iterations,which
is tight as shown by our lower bound.

For the (λ
1:1+ λ) EA with general λ, Chen et al. [7, Proposition 4] show an

optimization time of O(
n log n

λ
+ n log λ) iterations. They conjecture a runtime of

O(
n log n

λ
+ n log log n) [7, Conjecture 3], which is asymptotically at least as good

and which is stronger for λ = ω(log n). Our result improves over this bound and the
conjecture for λ = ω(

log n
log log n) as discussed in Sect. 6.

We also find notable the result of Corus et al. [5] (see [2] for recent small improve-
ments) where they proved the upper bound for the (μ, λ) EA on the OneMax of
O(nλ) fitness evaluations when λ > μe and λ = �(log(n)). This runtime can be
seen as the upper bound for the (μ + λ) EA, since the population of the (μ + λ) EA
is always better than the population of (μ, λ) EA after the same number of iterations

123

1058 Algorithmica (2021) 83:1054–1095

in the dominating sense. In Sect. 3.4 we prove that in the parameters setting regarded
in [5] our upper bound is asymptotically smaller.

1.3 Organization of theWork

The remainder of the paper is organized as follows. Section 2 gives a formal description
of the (μ + λ) EA and introduces the notation that we use in the paper. In Sect. 3 we
prove an upper bound of O(

n log n
λ

+ nμ
λ

+ n) for the general case and a tighter bound

of O(
n log log λ

μ

log λ
μ

+ n log n
λ

) for the case of λ
μ

> ee, when the algorithm is able to gain

more than one fitness level during the major part of the optimization process. Section 4
introduces the notion of complete trees and proves a lower bound matching our upper
bounds. In Sect. 5 we extend our lower bounds to a much broader class of functions
than just OneMax. In Sect. 6 we provide an analysis of the (λ

1:1+λ) EA, for which our
results cannot be applied directly. The paper ends with a short conclusion and ideas
for future work in Sect. 7.

2 Preliminaries

2.1 Notation

In this subsection we shortly overview the notation used in this paper in order to
avoid misunderstanding raised by the plenty of other notations used in the mathe-
matical world nowadays. By N we denote the set of positive integer numbers and
by N0 we denote the set of non-negative integer numbers. By [a..b] with a, b ∈ N

we denote an integer interval which includes its borders. By [a, b] and (a, b) with
a, b ∈ R ∪ {−∞,+∞} we denote a real-valued interval including and excluding its
borders respectively. We denote the binomial distribution with parameters n and p by
Bin(n, p). If some random variable X follows some distribution D, we write X ∼ D.
We use a multiplicative notation of the binomial coefficient, that is

(
n

k

)
= n(n − 1) . . . (n − (k − 1))

k! .

This implies that the binomial coefficients are also defined for n < k and in this case(n
k

) = 0.

2.2 Problem Statement

In this section, we provide the definitions necessary to formalize the problem we ana-
lyze in this work. Our study focuses on evolutionary algorithms that aim at optimizing
pseudo-Boolean functions, that is, functions of the form f : {0, 1}n → R.

The (μ + λ) EA formulated as Algorithm 1 is a simple mutation-based elitist evo-
lutionary algorithm. In each iteration of the algorithm, we independently generate

123

Algorithmica (2021) 83:1054–1095 1059

Algorithm 1: The (μ + λ) EA, maximizing a given function f : {0, 1}n → R,
with population size μ, offspring population size λ and mutation rate p. We shall
exclusively regard the mutation rate p = 1

n . We did not specify how to break ties
in the selection phase since our results are valid for any tie-breaking rule. Usually,
one would prefer offspring over parents and break the remaining ties randomly.
1 Initialization:
2 Create a population of μ individuals by choosing x(i) ∈ {0, 1}n , 1 ≤ i ≤ μ uniformly at random.

Let the multiset X (0) := {x(1), ..., x(μ)} be the population at time 0. Let t := 0.
3 Optimization:
4 while an optimum has not been reached do
5 X ′ := X (t);
6 Mutation phase:
7 for i = 1, . . . , λ do
8 Choose x ∈ X (t) uniformly at random;
9 Create x ′ by flipping each bit of x with probability p;

10 X ′ := X ′ ∪ {x ′};
11 Selection phase:
12 Create the multiset X (t+1), the population at time t + 1, by deleting the λ individuals with

lowest f -value in X ′;
13 t := t + 1;

λ offspring each by selecting an individual from the parent population uniformly at
random and mutating it. We use standard-bit mutation with the standard mutation rate
p = 1

n , that is, we flip each bit independently with probability 1
n . We note without

proof that our results hold as well for any other mutation rate p = c/n, where c is a
constant.

As objective function f , also called fitness function, we consider the classic One-
Max function, which was the starting point for many theoretical investigations in this
field. This function OneMax : {0, 1}n → R is defined by OneMax(x) = ∑n

i=1 xi
for all x ∈ {0, 1}n . In other words, OneMax returns the number of one-bits in its
argument. Without proof we note that due to the unbiasedness of the operators used
by all considered algorithms all our results also hold for the so-called generalized
OneMax function, denoted by OneMaxz . This function has some hidden bit-string
z and returns the number of coinciding bits in its argument and z. In other words,

OneMaxz(x) =
n∑

i=1

(1 − |zi − xi |) = n − H(x, z),

where H(x, z) stands for the Hamming distance.

2.3 Useful Tools

A central argument in our analysis is the following Markov chain argument similar to
the classic fitness levels technique of Wegener [45].

123

1060 Algorithmica (2021) 83:1054–1095

Theorem 1 Let the space S of all possible populations of some population-based
algorithm be divided into m disjoint sets A1, . . . , Am that are called levels. We write
A≥i = ⋃m

j=i A j for all i ∈ [1..m].
Let Pt be the population of the algorithm after iteration t. Assume that for all t ≥ 0

and i ∈ [2..m], we have that Pt ∈ Ai implies Pr[Pt+1 ∈ A≥i] = 1. Let T be the
minimum number t such that Pt ∈ Am.

1. Assume that there are T1, . . . , Tm−1 ≥ 0 such that for all t ≥ 0 and i ∈ [1..m − 1]
we have that if Pt ∈ Ai , then E[min{s | s ∈ N, Pt+s ∈ A≥i+1}] ≤ Ti (for all
possible P0, . . . , Pt−1). Then

E[T] ≤
m−1∑
i=1

Ti .

2. Assume that there are p1, p2, . . . , pm−1 such that for all t ≥ 0 and i ∈ [1..m − 1]
we have that if Pt ∈ Ai , then Pr[Pt+1 ∈ A≥i+1] ≥ pi (for all possible
P0, . . . , Pt−1). Then

E[T] ≤
m−1∑
i=1

1

pi
.

The proof is standard, but for the reason of completeness we quickly state it.

Proof We start by proving the first claim. Consider a run of the algorithm. Let ti =
min{t | Pt ∈ A≥i }. Let i ∈ [1..m−1].We analyze the randomvariable ti+1−ti . If there
is no t with Pt ∈ Ai , then ti = ti+1 simply by the definition of the ti . Otherwise, by our
assumptions, we have E[ti+1 − ti] ≤ Ti . Note that this applies trivially also to the first
case where we just saw that ti+1 − ti = 0. Hence, from T = tm = ∑m−1

i=1 (ti+1 − ti)
we conclude

E[T] =
m−1∑
i=1

E[ti+1 − ti] ≤
m−1∑
i=1

Ti .

To prove the second claim,we note that by our assumptions ti+1−ti is stochastically
dominated by a geometric distribution with success rate pi . Hence E[ti+1 − ti] ≤ 1

pi
,

and the claim follows as above.
�
To ease the presentation, we use the following language. We say that the algorithm

is on level i if the current population is in the level Ai . We also say that the algorithm
gains a level or the algorithm leaves the current level if the new population is at the
higher level than the previous one.

In our proofs we shall use the following result for random variables with binomial
distribution from [29]. An elementary proof for it was given in [22].

Lemma 1 Let X ∼ Bin(n, p) such that p > 1/n. Then Pr(X ≥ E[X]) > 1/4.

123

Algorithmica (2021) 83:1054–1095 1061

We also use frequently the following inequality in our proofs, so we formulate it
as a separate lemma.

Lemma 2 For any x ∈ (0, 1] and any n > 0 we have

1 − (1 − x)n ≥ 1

1 + 1
xn

.

Aswas pointed out by one of the reviewers, this lemma is a special case of Lemma31 in
[20],which states that for all n ∈ N and x ≥ 0wehave 1−(1−x)n ≥ 1−e−xn ≥ xn

1+xn ,
except we do not have the constraint that n is an integer. Although the proof of [20,
Lemma 31] is true for the case x ∈ (0, 1], we find it wrong for, e.g., x = 3 and n = 2,
when the leftmost part of the inequality is negative, and others are positive. For this
reason we show a simple proof here.

Proof By [43, Lemma8]wehave (1−x)n ≤ 1
1+xn . Therefore, following the arguments

that were used in [43, Theorem 9] we conclude

1 − (1 − x)n ≥ 1 − 1

1 + xn

= xn

1 + xn
= 1

1 + 1
xn

.

�

3 Upper Bounds

In this section,we prove separately twoupper bounds for the runtime of the (μ + λ)EA
on the OneMax problem, the first one being valid for all values of μ and λ and the
second one giving an improvement for the case that λ is large compared to μ, more
precisely, that λ/μ ≥ ee.

Where not specified differently, we denote the current best fitness in the population
by i and the number of best individuals in the population by j .

3.1 Increase of the Number of the Best Individuals

In this subsection we analyze how the number of individuals on the current-best fitness
level increases over time and derive from this two estimates for the time taken for a
fitness improvement. We note that often it is much easier to generate an additional
individual with current-best fitness by copying an existing one than to generate an
individual having strictly better fitness by flipping the right bits. Consequently, in a
typical run of the (μ + λ) EA, first the number of best individuals will increase to a
certain number and only then it becomes likely that a strict improvement happens.

Since the increase of the number of individuals on the current-best fitness level via
producing copies of such best individuals is independent of the fitness function, we

123

1062 Algorithmica (2021) 83:1054–1095

formulate our results for the optimization of an arbitrary pseudo-Boolean function and
hope that they might find applications in other runtime analyses as well. So let f :
{0, 1}n → R be an arbitrary fitness function which we optimize using the (μ + λ) EA.

Assume that the (μ + λ) EA starts in an arbitrary state where the best individuals
have fitness i and there are j1 such individuals in the population. At this point due to
the elitism the algorithm cannot decrease the best fitness i and it also cannot decrease
the number of the best individuals j1 until it increases the best fitness. Following
[44, Lemma 2] we call an individual fit if it has a fitness i or better. For j2 ∈ N, we
define τ j1, j2(i) to be the first time (number of iterations) at which the population of
the (μ + λ) EA contains at least j2 fit individuals. We note that this random variable
τ j1, j2(i) may depend on the particular initial state of the (μ + λ) EA, but since our
results are independent of this initial state (apart from i and j1) we suppress in our
notation the initial state.

The time τ1,μ(i), that is, the specific case that j1 = 1 and j2 = μ, is also called the
takeover time of a new best individual. For this takeover time, Sudholt [44, Lemma 2]
proved the upper bound

E[τ1,μ(i)] = �log5 μ

(

32

1 − 1
e

· μ

λ
+ 1

)
= O

(
μ logμ

λ
+ logμ

)
(1)

for any i ∈ [0..n − 1].
In this section we improve this result by (i) treating the general case of arbitrary

j1, j2 ∈ [1..μ] and (ii) by showing an asymptotically smaller bound for the case
λ = ω(μ). In our main analysis of the (μ + λ) EA, we need takeover times for general
values of j2 to profit from the event when we get a fitness gain before the population
contains only best individuals, which is likely to happen on the lower fitness levels as
we show further. The extension to general values of j1 is not needed, but since it does
not take extra effort, we do it on the way.

We first prove the following result for arbitrary values of μ and λ. We need this
result since it allows arbitrary target numbers j2.

Lemma 3 Let i ∈ [0..n − 1] and j1, j2 ∈ [1..μ] with j1 < j2. Then

E[τ j1, j2(i)] ≤ 2eμ

λ

(
ln

j2
j1

+ 1

)
+ (j2 − j1).

Proof To prove this lemma we use Theorem 1. For this purpose we define levels
A j1, . . . , A j2 . For any j ∈ [j1.. j2 − 1] the populations in level A j have exactly j fit
individuals. The level A j2 consists of all populations with at least j2 fit individuals.
Note that the (μ + λ)EAcannot go from level A j to any other level with smaller index,
since it cannot decrease the number of the fit individuals due to the elitist selection.

If there are j fit individuals in the population, then the probability p1(j) to create as
one offspring a copy of a fit individual is the probability to select one of j fit individuals
as a parent multiplied by the probability not to flip any bit of it during the mutation.
Hence,

123

Algorithmica (2021) 83:1054–1095 1063

p1(j) ≥ j

μ

(
1 − 1

n

)n

≥ j

2eμ
, (2)

where we used the inequality (1 − 1
n)n ≥ 1

2e that holds for all n ≥ 2.
The probability p2(j) to leave level A j in one iteration is at least the probability to

create a copy of a fit individual as one of the λ offspring. Hence, by Lemma 2 we have

p2(j) ≥ 1 − (1 − p1(j))
λ ≥ 1

1 + 1
p1(j)λ

≥ 1

1 + 2eμ
jλ

. (3)

By Theorem 1 we have

E[τ j1, j2(i)] ≤
j2−1∑
j= j1

1

p2(j)
≤

j2−1∑
j= j1

(
1 + 2eμ

jλ

)
≤ 2eμ

λ

(
ln

j2
j1

+ 1

)
+ (j2 − j1).

�
We note that in case when j1 = 1 and j2 = μ our upper bound is O(

μ logμ
λ

+ μ).
This is weaker than the upper bound (1) given in [44, Lemma 2] if λ = ω(logμ).
Without proof we note that in all other cases the two bounds are asymptotically equal.

The reason that our bound is weaker in some cases is that we do not consider the
event that the algorithm generates more than one fit offspring in one iteration, while
Sudholt in [44, Lemma 2] proved that the number of the fit offspring is multiplied by
some constant factor in every 32μ/λ iterations. The same idea may be used to prove
the bound

E[τ j1, j2(i)] ≤
⌈
log5

j2
j1

⌉(
32

1 − 1
e

· μ

λ
+ 1

)
= O

(
μ log j2

j1

λ
+ log

j2
j1

)
. (4)

We still prefer to use to Lemma 3 in our proofs, since it gives us a bound that is easier
to operate with due to the simpler leading constants of each term, while the greater
terms do not affect our main results.

We now give a second bound for the case that λ
μ

≥ ee. It is asymptotically stronger
than (1) when λ = ω(μ) and μ = ω(1).

Lemma 4 Let λ
μ

≥ ee. Let i ∈ [1..n − 1] and j1, j2 ∈ [1..μ] with j1 < j2. Then

E[τ j1, j2(i)] ≤ 4
ln j2

j1

ln λ
2eμ

+ 4.

Proof Let the current population have j fit individuals. Then by (2) the probability that
a fixed offspring is a copy of a fit individual is p1(j) ≥ j

2eμ . Therefore, the number
N of fit individuals among the λ offspring dominates stochastically a random variable

B with binomial distribution Bin
(
λ,

j
2eμ

)
. We have E[B] = λ j

2eμ . By Lemma 1,

123

1064 Algorithmica (2021) 83:1054–1095

Pr[B ≥ E[B]] ≥ 1
4 and thus Pr[N ≥ j

2eμ] ≥ 1
4 . Consequently, in each iteration with

probability at least 1
4 the number of the fit individuals in the population is multiplied

by a factor of at least (1 + λ
2eμ) (but obviously it cannot become greater than μ).

For a formal proof we define the levels A1, . . . , Am , where

m :=
⌈ ln j2

j1

ln
(
1 + λ

2eμ

)
⌉

+ 1.

Level Am consists of the populations with at least j2 fit individuals. For k ∈ [1..m−1]
the populations of level Ak have exactly j fit individuals, where

j ∈
[
j1

(
1 + λ

2eμ

)k−1

, j1

(
1 + λ

2eμ

)k

− 1

]
,

and j < j2. To leave any level it is enough tomultiply the number of the best individuals
by 1 + λ

2eμ , and the probability of this event is at least 1
4 . By Theorem 1 we have

E[τ j1, j2(i)] ≤
m−1∑
k=1

4 = 4

⌈ ln j2
j1

ln
(
1 + λ

2eμ

)
⌉

≤ 4
ln j2

j1

ln λ
2eμ

+ 4.

�

We note that the proof of Lemma 4 holds for the weaker assumption λ
μ

> 2e as
well. However in order not to confuse the reader in Sect. 3.3 where we consider the
case λ

μ
> ee and where this lemma is used, we formulate Lemma 4 with unnecessarily

stronger condition.
When j2 = μ and j1 = 1 the bound yielded by Lemma 4 is at least as tight as

that of (1). For the general values of j1 and j2 our bound is at least as tight as the
bound (4). When λ/μ ≥ ee the bound (4) simplifies to O(log j2

j1
). If λ = ω(μ) and

j2
j1

= ω(1) then we have

4
ln j2

j1

ln λ
2eμ

+ 4 = o

(
log

j2
j1

)
.

Therefore, in this case the bound given in Lemma 4 is asymptotically smaller than (4).
In all other cases the two bounds are asymptotically equal.

The reason that we have obtained a tighter bound is that we have proven that the
number of the fit individuals is multiplied by a more than constant factor with constant
probability, while the proof of [44, Lemma 2] considers only the multiplication by a
constant factor.

We now use Lemmas 3 and 4 to prove estimates for the time it takes to obtain a
strictly better individual once the population contains at least one individual of fitness

123

Algorithmica (2021) 83:1054–1095 1065

i .We define T̃i as the number of iterations before the algorithm finds an individual with
fitness greater than i , if it already has an individual with fitness i in the population. As
before, this random variable depends on the precise initial state, but since our results
do not rely on the initial state, we suppress it in this notation.

To prove upper bounds on T̃i , we estimate the time it takes until some number
μ0(i) ∈ [1..μ] of individuals with fitness at least i are in the population and then
estimate the time to find an improving solution from this situation. We phrase our
results here in terms of μ0(i) and optimize the value of μ0(i) in the later subsections.

Corollary 1 For any i ∈ [0..n − 1] and μ0(i) ∈ [1..μ], we have

E[T̃i] ≤ μ0(i) + 2eμ

λ
(ln(μ0(i)) + 1) + eμn

λ(n − i)μ0(i)
.

Proof Even if the algorithmhas only one best individual in the population, in τ1,μ0(i)(i)
iterations it will have at least μ0(i) individuals with fitness at least i . Assume that at
this time we have no individuals with fitness better than i (since otherwise we are
done). Let τ+(i) be the runtime until the algorithm creates an individual with fitness
at least i + 1 if it already has at least μ0(i) individuals with fitness i in the population.

In this setting the probability p′(i) that a particular offspring has fitness better than
i is at least the probability to choose one of the μ0(i) best individuals and to flip only
one of n − i zero-bits in it. We estimate

p′(i) ≥ μ0(i)(n − i)

μn

(
1 − 1

n

)n−1

≥ (n − i)μ0(i)

eμn
.

By Lemma 2 the probability p′′(i) to create at least one superior individual among the
λ offspring is

p′′(i) ≥ 1 − (1 − p′(i))λ ≥ 1

1 + 1
λp′(i)

≥ 1

1 + eμn
λ(n−i)μ0(i)

. (5)

With p′′(i) we estimate E[τ+(i)] ≤ 1
p′′(i) . Therefore, by Lemma 3 we have

E[T̃i] ≤ E[τ1,μ0(i)(i) + τ+(i)] = E[τ1,μ0(i)(i)] + E[τ+(i)]
≤ E[τ1,μ0(i)(i)] + 1

p′′(i)

≤ 2eμ

λ
(lnμ0(i) + 1) + (μ0(i) − 1) + 1 + eμn

λ(n − i)μ0(i)

= μ0(i) + 2eμ

λ
(ln(μ0(i)) + 1) + eμn

λ(n − i)μ0(i)
.

�

123

1066 Algorithmica (2021) 83:1054–1095

Corollary 2 If λ
μ

> ee then for any i ∈ [0..n − 1] and μ0(i) ∈ [1..μ], we have

E[T̃i] ≤ 4
lnμ0(i)

ln λ
2eμ

+ eμn

λ(n − i)μ0(i)
+ 5.

Proof Using the same arguments as in the proof of Corollary 1 [in particular, the
estimate for p′′(i) given in (5)] and by Lemma 4 we estimate

E[T̃i] ≤ E[τ1,μ0(i)(i) + τ+(i)] = E[τ1,μ0(i)(i)] + E[τ+(i)]
≤ E[τ1,μ0(i)(i)] + 1

p′′(i)

≤ 4
lnμ0(i)

ln λ
2eμ

+ 4 + 1 + eμn

λ(n − i)μ0(i)

= 4
lnμ0(i)

ln λ
2eμ

+ eμn

λ(n − i)μ0(i)
+ 5.

�
We note that Lemma 4 is tight in the sense that we cannot obtain a better upper

bound using only the argument of copying the fit individuals.
To formalize this we assume that there is a set D ⊆ {0, 1}n of desired individuals.

We regard the variant EA0 of the (μ + λ) EA which only accepts offspring which are
desired individuals identical to their parent. Note that the number of desired individ-
uals in a run of this artificial algorithm can never decrease. Assuming that the initial
population of the EA0 contains exactly j1 desired individuals, we define τ ∗

j1, j2
(i) as

the number of iterations until the population of the EA0 contains at least j2 desired
individuals (unlike before, this notation does not depend on the precise initial popu-
lation as long as it has exactly j1 desired individuals, but this fact is not important in
the following). We show the following result.

Lemma 5 Let λ
μ

≥ ee. Let j1, j2 be some integer numbers in [1..μ] such that j2 > j1.
Then

E[τ ∗
j1, j2(i)] = �

(
log j2

j1

log λ
μ

+ 1

)
.

Proof If j2
j1

≤ λ
μ
, then

log j2
j1

log λ
μ

+ 1 = �(1)

and the claim is trivial, since we need at least one iteration to increase the number of
the copies in the population.

123

Algorithmica (2021) 83:1054–1095 1067

Consider j2
j1

≥ λ
μ

≥ ee. Let j(t) be the number of the desired individuals after
iteration t . We have j(0) = j1. Let N (t) be the number of desired individuals newly
created in iteration t . Then N (t) follows a binomial law Bin(λ,

j(t−1)
enμ

), where en :=
(1 − 1

n)−n ≥ e. Hence, we have E[N (t) | j(t − 1)] = j(t−1)λ
enμ

≤ j(t−1)λ
eμ .

For any t ∈ N we have j(t) ≤ j(t − 1) + N (t), where strict inequality occurs only
if j(t − 1) + N (t) > μ. Therefore, we have

E[j(t)] = E[E[j(t) | j(t − 1)]] ≤ E[E[j(t − 1) + N (t) | j(t − 1)]]
= E[j(t − 1)] + E[E[N (t) | j(t − 1)]] ≤ E[j(t − 1)] + E

[
j(t − 1)λ

eμ

]

= E[j(t − 1)] + λ

eμ
E[j(t − 1)] =

(
1 + λ

eμ

)
E[j(t − 1)].

By induction, we obtain

E[j(t)] ≤
(
1 + λ

eμ

)t

j(0) =
(
1 + λ

eμ

)t

j1,

and by Markov’s inequality, we have

Pr[j(t) ≥ j2] ≤ E[j(t)]
j2

≤
(
1 + λ

eμ

)t j1
j2

.

For

t := ln j2
2 j1

ln
(
1 + λ

eμ

) = �

(
log j2

j1

log λ
μ

)

we obtain

Pr[j(t) ≥ j2] ≤ 1

2
.

Hence, the probability that the EA0 does not obtain j2 desired individuals in t =
�(

log(j2/ j1)
log(λ/μ)

) iterations is at least constant. Thus, the expected number of iterations

before this happens is at least �(
log(j2/ j1)
log(λ/μ)

).
�

3.2 Unconditional Upper Bound

Having the results of Sect. 3.1 we first prove the following upper bound, which is
valid for all values of μ and λ. When λ is not significantly larger than μ, then the
(μ + λ) EA typically increases the best fitness by at most a constant in each iteration.
For this reason, we can use Theorem 1 and obtain a runtime bound that will turn out
to be tight for this case.

123

1068 Algorithmica (2021) 83:1054–1095

Theorem 2 The expected number of iterations for the (μ + λ) EA to optimize the
OneMax problem is

O

(
n log n

λ
+ nμ

λ
+ n

)
.

Proof To use Theorem 1 we define levels A0, . . . , An such that level Ai , i ∈ [0..n],
consists of all populations having maximum fitness equal to i . In Corollary 1 we have
already estimated the expected times E[T̃i] the (μ + λ) EA takes to leave these levels.
These estimates depended on the number μ0(i) of individuals of fitness i we aim
at before leaving the level. By choosing suitable values for the μ0(i) we prove our
bound.

The choice of μ0(i) is guided by the following trade-off. If we choose μ0(i) = μ,
then after having μ best individuals in the population we have the highest probability
to find a better individual. However, we pay for it with the time we spend on obtaining
μ copies of the best individual. On the other hand, if we choose μ0(i) = 1 we do
not spend any iteration filling the population with copies of the best individual, but
we have a low chance to increase the current fitness. How this trade-off is optimally
resolved, and hence the optimal value of μ0(i), depends on the probability to create a
better individual and thus on the current fitness i .

We distinguish three cases depending on current fitness i . The “milestones” which
mark the transition between these cases are the fitness values i = �n − n

2+λ/(eμ)

 and

i = �n− n
μ(2+λ/e)�.While the best fitness is below the firstmilestone, the probability to

increase the fitness is so high that we do not need to have more than one best individual
in the population. Beyond the secondmilestone this probability is so low that we better
spend the time to fill the population with the copies of the best individual. Between the
two milestones we have to find a suitable value of μ0(i) to give a balanced trade-off.

To simplify the notation, we define �i := 1 +
√
1 + nλ

e(n−i)μ . Note that

1 +
√

n

n − i

√
λ

eμ
≤ �i ≤ 1 +

√
n

n − i

√
1 + λ

eμ
. (6)

This value of �i arises from the computation of the derivative of the upper bound
on E[T̃i] from Corollary 1, which is needed to find the optimal value of μ0(i) in the
second case, when the current fitness is between the two milestones.

For i ≤ �n − n
2+λ/(eμ)

 we define μ0(i) := 1. By Corollary 1 we have

E[T̃i] ≤ eμn

λ(n − i)
+ 2eμ

λ
+ 1.

Let T1 be the number of iterations before the (μ + λ) EA finds an individual with
fitness greater than �n − n

2+λ/(eμ)

 for the first time. Then by Theorem 1 we have

123

Algorithmica (2021) 83:1054–1095 1069

E[T1] ≤
�n− n

2+λ/eμ
∑
i=0

E[T̃i] ≤
�n− n

2+λ/eμ
∑
i=0

(
eμn

λ(n − i)
+ 2eμ

λ
+ 1

)

≤ eμn

λ

(
ln(n) − ln

(
n

2 + λ/eμ

)
+ 1

)
+ 2eμ

λ
n + n

= eμn

λ
ln

(
2 + λ

eμ

)
+ 3eμn

λ
+ n

= O
(μn

λ

)
+ O(n),

where we used the estimate eμ
λ
ln(2+ λ

eμ) = O(1+ μ
λ
) that holds for any asymptotic

behavior of μ/λ.
For �n − n

2+λ/(eμ)

 < i ≤ �n − n

μ(2+λ/e)� we define μ0(i) := � n
(n−i)�i

. By
Corollary 1 we have

E[T̃i] ≤ n

(n − i)�i
+ 1 + 2eμ

λ

(
ln

n

(n − i)�i
+ 2

)
+ eμ�i

λ
.

By (6), we have

E[T̃i] ≤ n

(n − i)
(
1 +

√
n

n−i

√
λ
eμ

) + 1

+ 2eμ

λ

⎛
⎜⎝ln

n

(n − i)
(
1 +

√
n

n−i

√
λ
eμ

) + 2

⎞
⎟⎠+ eμ

λ

(
1 +

√
n

n − i

√
1 + λ

eμ

)
.

(7)

Let T2 be the number of iterations until the (μ + λ) EA finds an individual with
fitness greater than �n− n

μ(2+λ/e)� for the first time if it already has an individual with
fitness greater than �n − n

2+λ/(eμ)

 in the population. By Theorem 1 and by (7), we

obtain

E[T2] ≤
�n− n

μ(2+λ/e) �∑
i=�n− n

2+λ/(eμ)

+1

E[T̃i]

≤ n

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

1

(n − i)
(
1 +

√
n

n−i

√
λ
eμ

)

+ eμ

λ

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

(
1 +

√
n

n − i

√
1 + λ

eμ

)

+ 2eμ

λ

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

ln

(
n

(n − i)�i

)
+ 2eμ

λ
2n + n. (8)

123

1070 Algorithmica (2021) 83:1054–1095

We regard three sums in (8) separately. First, by the estimate
∑n

i=1 1/
√
i ≤ 1 +∫ n

1 (1/
√
x)dx < 2

√
n, we obtain

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

1

(n − i)
(
1 +

√
n

n−i

√
λ
eμ

)

≤
�n− n

μ(2+λ/e) �∑
i=�n− n

2+λ/(eμ)

+1

1

(n − i)
√

n
n−i

√
λ
eμ

=
√
eμ

λn

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

1√
n − i

≤
√
eμ

λn
· 2
√

n

2 + λ/(eμ)
≤ 2

√
eμ

λn

√
n

λ/(eμ)
= 2e

μ

λ
. (9)

To analyze the second sum we also use the estimate 1+t
2+t < 1 valid for all t ∈

[0,+∞). We obtain

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

(
1 +

√
n

n − i

√
1 + λ

eμ

)

≤ n +
√
n

(
1 + λ

eμ

) �n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

1√
n − i

≤ n +
√
n

(
1 + λ

eμ

)
· 2
√

n

2 + λ/(eμ)

= n + 2n

√
1 + λ/(eμ)

2 + λ/(eμ)
≤ 3n. (10)

For the last sumweuse the logarithmic version of Stirling’s formula, that is, ln(n!) =
n ln(n) − n + O(log(n)) (see, e.g. [41] or [24, Theorem 1.4.10]), and the estimate
ln(2+t)+2

2+t ≤ 2 for all t ∈ [0,+∞). We obtain

�n− n
μ(2+λ/e) �∑

i=�n− n
2+λ/(eμ)

+1

ln

(
n

(n − i)�i

)

≤
�n− n

μ(2+λ/e) �∑
i=�n− n

2+λ/(eμ)

+1

ln

(
n

(n − i)

)

123

Algorithmica (2021) 83:1054–1095 1071

≤
⌈

n

2 + λ/(eμ)

⌉
ln(n) − ln

⎛
⎜⎝

n∏
i=�n− n

2+λ/(eμ)

(n − i)

⎞
⎟⎠

≤
⌈

n

2 + λ/(eμ)

⌉
ln(n) − ln

(⌈
n

2 + λ/(eμ)

⌉
!
)

=
⌈

n

2 + λ/(eμ)

⌉(
ln(n) − ln

⌈
n

2 + λ/(eμ)

⌉
+ 1

)

+ O

(
log

⌈
n

2 + λ/(eμ)

⌉)

≤ n

2 + λ/(eμ)

(
ln

(
2 + λ

eμ

)
+ 2

)
+ o(n)

≤ 2n + o(n). (11)

Finally, by putting (9), (10) and (11) into (8) we obtain

E[T2] ≤ n · 2eμ

λ
+ eμ

λ
· 3n + 2eμ

λ
(2n + o(n)) + 4eμn

λ
+ n

= 13eμn

λ
+ n + o

(μn

λ

)
= O

(μn

λ
+ n

)
.

For n − 1 ≥ i > �n − n
μ(2+λ/e)� we define μ0(i) := μ. Note that this case can

only appear when n
μ(2+λ/e) ≥ 1 and thus μ ≤ n

(2+λ/e) = O(n/λ). By Corollary 1 the
expected waiting time for a fitness gain is at most

E[T̃i] ≤ μ + 2eμ

λ
(ln(μ) + 1) + en

λ(n − i)
.

Let T3 be the number of iterations until the (μ + λ) EA finds the optimum starting
from the moment when it has an individual with fitness greater than �n − n

μ(2+λ/e)�
in the population. Then by Theorem 1 we have

E[T3] ≤
n−1∑

i=�n− n
μ(2+λ/e) �+1

E[T̃i]

≤
n−1∑

i=�n− n
μ(2+λ/e) �+1

(
μ + 2eμ

λ
(ln(μ) + 1) + en

λ(n − i)

)

≤ μ
n

μ(2 + λ/e)
+ 2eμ

λ
(ln(μ) + 1)

n

μ(2 + λ/e)

+ en

λ

(
ln

n

μ(2 + λ/e)
+ 1

)

123

1072 Algorithmica (2021) 83:1054–1095

= O
(n
λ

)
+ O

(
n logμ

λ2

)
+ O

(
n log n

λ

)

= O

(
n logμ

λ2

)
+ O

(
n log n

λ

)
= O

(μn

λ

)
+ O

(
n log n

λ

)
.

Summing the expected runtimes for all cases, we obtain the upper bound for the
expected total runtime.

E[T] ≤ E[T1] + E[T2] + E[T3]
= O

(μn

λ
+ n

)
+ O

(μn

λ
+ n

)
+ O

(
μn

λ
+ n log n

λ

)

= O

(
n log n

λ
+ μn

λ
+ n

)
.

�

3.3 Upper Boundwith Large �

In this section we consider the case when λ
μ

> ee. Due to the large number of offspring
the algorithm performs significantly better in this case. The first reason of this speed-
up is that the algorithm can now gain several fitness levels in one iteration with high
probability when the current-best fitness is small. The second reason is the faster
increase of the number of best individuals, see Corollary 2.

These two observations allow us to prove the following upper bound on the runtime.

Theorem 3 If λ
μ

≥ ee then the expected number of iterations for the (μ + λ) EA to
optimize the OneMax problem is

O

(
n log log λ

μ

log λ
μ

+ n log n

λ

)
.

Note that the bound given in Theorem 3 is asymptotically the same as the bound
given in Theorem 2when λ

μ
= �(1). The difference between the two bounds becomes

asymptotically significant only when λ
μ

= ω(1). Therefore it does not matter which
constant we choose to distinguish the fast regime of the algorithm. The main purpose
of the choice of ee as a border value is to simplify the proofs and to improve their
readability. However without proof we note that all arguments used in this section
hold also for the smaller values of λ

μ
which are greater than 2e.

To prove Theorem 3 we split the optimization process into four phases. Each phase
corresponds to some range of the best fitness values, and the phase transition occurs at
fitness values n− n

ln λ
μ

, n− μn
λ

and n− n
λ
. In each phase the (μ + λ) EA has a specific

behavior, so we analyze each phase separately in the following four lemmas.
During the first phase, while the fitness of the best individual is below n − n

ln λ
μ

,

regardless of the number of best individuals, with constant probability we generate an

123

Algorithmica (2021) 83:1054–1095 1073

offspring increasing the best fitness in the population by at least γ := � ln λ
μ

2 ln ln λ
μ

�. So
we need not more than an expected number of O(n

γ
) iterations to finish the first phase.

Let R1 be the runtime of the (μ + λ) EA until it finds an individual with fitness at
least n − n

ln λ
μ

, in other words, the duration of the first phase. We prove the following

upper bound on the expected value of R1.

Lemma 6 (Phase 1) If λ
μ

≥ ee, then we have

E[R1] = O

(
n log log λ

μ

log λ
μ

)
.

Proof To use Theorem 1, we split the space of populations S into levels A1, . . . Am ,
where

m :=
⌈�n − n

ln λ
μ

�
γ

⌉
+ 1.

If k < m, then the populations of level Ak have the fitness of the best individual in
[(k − 1)γ..kγ − 1] (but less than n − n

ln λ
μ

). The level Am consists of all populations

containing an individual of fitness at least n − n
ln λ

μ

.

To show that we have a constant probability to leave any level, we consider the
probability that a particular offspring has a fitness exceeding the current best fitness i
by at least γ . This is at least the probability to choose one of the best individuals and
to flip exactly γ zero-bits in it and not to flip the other n − γ bits, namely(

n − i

γ

)
j

μnγ

(
1 − 1

n

)n−γ

≥ j

eμ

(
n − i

nγ

)γ

=: pγ (i).

The probability to increase the best fitness by at least γ with one of λ offspring is
at least 1 − (1 − pγ (i))λ. Thus, by Lemma 2, the expected number of iterations for
this to happen is not larger than

1

1 − (1 − pγ (i))λ
≤ 1 + e

μ

λ

(
nγ

n − i

)γ

.

Since λ
μ

≥ ee, we have γ = � ln λ
μ

2 ln ln λ
μ

� ≥ � e
2� = 1. Using this and the estimate

n
n−i ≤ ln λ

μ
valid during this phase, we compute

(
nγ

n − i

)γ

≤ exp

(
γ ln

(
γ ln

λ

μ

))
≤ exp

(
ln λ

μ

2 ln ln λ
μ

ln

(
ln2 λ

μ

2 ln ln λ
μ

))

≤ exp

(
ln λ

μ

2 ln ln λ
μ

2 ln ln
λ

μ

)
= exp

(
ln

λ

μ

)
= λ

μ
.

123

1074 Algorithmica (2021) 83:1054–1095

Therefore, the expected time to increase the fitness by γ (and thus to leave level Ak for
any k < m) is at most 1+ e. Summing over the levels A1, . . . , Am−1 , by Theorem 1
we have

E[R1] ≤
m−1∑
k=1

(1 + e) < (1 + e)m < (1 + e)
n

γ
= O

(
n log log λ

μ

log λ
μ

)
.

�
Having found an individual with fitness at least n− n

ln λ
μ

, we enter the second phase.

Due to the elitist selection, the minimum fitness in the population does not decrease,
so there is no risk of a fall-back into the first phase.

In the second phase, due to the smaller distance from the optimum, fitness gains by
more than a constant are too rare to be exploited profitably. However, even when we
only have one best individual in the population, the probability to create at least one
better individual in one iteration will still be constant. Consequently, we do not need
the arguments of Sect. 3.1 analyzing how the the number of best individuals grows.
This phase ends when the best fitness in the population is n − μn

λ
or more.

Let R2 be the runtime of the (μ + λ) EA until it finds an individual with fitness at
least n − μn

λ
starting from the moment when it has an individual with fitness at least

n − n
ln λ

μ

in the population. In other words, R2 is the duration of the second phase.

Lemma 7 (Phase 2) If λ
μ

≥ ee, then we have

E[R2] = O

(
n

log λ
μ

)
.

Proof For

i ∈
[⌈

n − n

ln λ
μ

⌉
..

⌈
n − μn

λ

⌉
− 1

]
,

the level Bi is defined as the set of all populations in which the best individuals have
fitness i . For i = �n − μn

λ

 let the level Bi consist of all populations with best fitness

at least i .
By Corollary 2 and defining μ0(i) := 1 for all i , we have

E[T̃i] ≤ eμn

λ(n − i)
+ 5 ≤ e + 5,

where the last estimate follows from i ≤ n − μn
λ
. Therefore, by Theorem 1

E[R2] ≤
�n−nμ/λ
−1∑
i=�n−n/ ln λ

μ

E[T̃i] ≤ (5 + e)

n

ln λ
μ

= O

(
n

log λ
μ

)
.

�

123

Algorithmica (2021) 83:1054–1095 1075

After completion of the second phase, generating a strictly better individual is so
difficult that it pays off (in the analysis) to wait for more than one best individual in
the population. More precisely, depending on the current best fitness i we define a
number μ0(i) and compute the time to reach μ0(i) best individuals and argue that the
expected time to generate a strict improvement when at least μ0(i) best individuals
are in the population is only constant. Since, as discussed in Sect. 3.1, specifically in
Lemma 4, the number of the best individuals in the population roughly increases by a
factor (1+ λ

2eμ) in each iteration, the algorithm obtains μ0(i) individuals reasonably
fast.

Let R3 be the runtime of the (μ + λ) EA until it finds an individual with fitness
at least n − n

λ
, the end of the third phase, starting from the moment when it has an

individual with fitness at least n − μn
λ

in the population.

Lemma 8 (Phase 3) If λ
μ

≥ ee, then we have

E[R3] = O
(μn

λ

)
.

Proof During this phase the best fitness i in the population satisfies

n − μn

λ
≤ i < n − n

λ
,

which implies

λ

μ
≤ n

n − i
< λ. (12)

For these values of i we define μ0(i) := � nμ
(n−i)λ
. Note that μ0(i) ∈ [1..μ].

For

i ∈
[
�n − μn

λ

..�n − n

λ

 − 1

]
,

level Ci is defined as a set of all populations in which the best individuals have fitness
i . For i = �n− n

λ

 let the level Ci consist of all populations with best fitness at least i .

By Corollary 2 and by the definition of μ0(i) we have

E[T̃i] ≤ 4
lnμ0(i)

ln λ
2eμ

+ eμn

λ(n − i)μ0(i)
+ 5

≤ 4

ln λ
2eμ

(
ln

nμ

(n − i)λ
+ 1

)
+ e + 5.

123

1076 Algorithmica (2021) 83:1054–1095

By Theorem 1 we obtain

E[R3] ≤
�n−n/λ
−1∑
i=�n−nμ/λ

T̃i

≤
�n−n/λ
−1∑
i=�n−nμ/λ

(
4

ln λ
2eμ

(
ln

nμ

(n − i)λ
+ 1

)
+ e + 5

)

≤ 4

ln λ
2eμ

⎛
⎝nμ

λ
+

�n−n/λ
−1∑
i=�n−nμ/λ

ln
nμ

(n − i)λ

⎞
⎠+ nμ

λ
(e + 5).

We estimate
�n−n/λ
−1∑
i=�n−nμ/λ

ln nμ
(n−i)λ using Stirling’s formula as in (11). We also notice

that this phase occurs only when nμ
λ

> 1, thus we have (ln nμ
λ

− ln� nμ
λ

�) ≤ 1. Hence,
we obtain.

�n−n/λ
−1∑
i=�n−nμ/λ

ln
nμ

(n − i)λ
≤

�nμ/λ�∑
i=1

ln
nμ

iλ

=
⌊nμ

λ

⌋
ln

nμ

λ
−
⌊nμ

λ

⌋
ln
⌊nμ

λ

⌋

+
⌊nμ

λ

⌋
+ O

(
log

⌊nμ

λ

⌋)

=
⌊nμ

λ

⌋ (
ln

nμ

λ
− ln

⌊nμ

λ

⌋
+ 1

)
+ o

(μn

λ

)

≤ 2
nμ

λ
+ o

(μn

λ

)
.

Therefore,

E[R3] ≤ (5 + e)
μn

λ
+ 4

2 nμ
λ

+ o
(

μn
λ

)+ nμ
λ

ln λ
2eμ

= O
(μn

λ

)
.

�

When the algorithm is closer to the optimum than in the third phase, then we cannot
expect to have a constant probability for a strict fitness improvement even when the
whole population consists of individuals of best fitness. In this forth and last phase, we
thus always wait (in the analysis) until the population only contains best individuals
and then estimate the expected time for an improvement. We denote by R4 the runtime
until the algorithm finds the optimum if it already has an individual with fitness at least
n − n

λ
in the population.

123

Algorithmica (2021) 83:1054–1095 1077

Lemma 9 (Phase 4) If λ
μ

≥ ee then

E[R4] = O

(
n log n

λ

)
.

Proof For

i ∈
[⌈

n − n

λ

⌉
..n − 1

]

we define level Di as a set of all populations in which the best individuals have fitness
i . We also define μ0(i) = μ for these values of i .

By Corollary 2 we have

E[T̃i] ≤ 4
lnμ

ln λ
2eμ

+ en

λ(n − i)
+ 5.

Therefore, by Theorem 1, we obtain

E[R4] ≤
n−1∑

i=�n− n
λ

(
4 lnμ

ln λ
2eμ

+ en

λ(n − i)
+ 5

)

≤ 4n lnμ

λ ln λ
2eμ

+ en(ln n
λ

+ 1)

λ
+ 5n

λ

= O

(
n

log λ
μ

)
+ O

(
n log n

λ

)
.
�

Finally, we prove Theorem 3.

Proof (Theorem 3) Since we consider an elitist algorithm that cannot reduce the best
fitness, by linearity of expectation and Lemmas 6 to 9 we have

E[T] ≤ E[R1] + E[R2] + E[R3] + E[R4] = O

(
n log log λ

μ

log λ
μ

+ n log n

λ

)
.

�

3.4 ComparisonWith Other Upper Bounds

We first note that our upper bound

O

(
n log n

λ
+ n

λ/μ
+ n log+ log+(λ/μ)

log+(λ/μ)

)

123

1078 Algorithmica (2021) 83:1054–1095

for the runtime of the (μ + λ) EA on OneMax subsumes the known bounds

O(n log n + μn)

for the (μ + 1) EA [47] and

O

(
n log n

λ
+ n log+ log+ λ

log+ λ

)

for the (1 + λ) EA [18].
We are not aware of any previous result for the (μ + λ) EA for general values of μ

and λ. We believe that a domination argument allows to transfer the results of Corus
et al. [5] for the (μ, λ) EA to the (μ + λ) EA. Since we prove in this work a bound
that is at least as strong and stronger in some cases, we sketch this argument now, but
do not give formal proofs.

We recall that the (μ, λ) EA differs from the (μ + λ) EA only in the selection
mechanism, which disallows the (μ, λ) EA to select any parent individual into the
next population. This imposes a constraint on the parameters requiring λ to be at least
μ. For the case that λ > (1+ δ)eμ, δ > 0 a constant, and λ ≥ c ln(n)with sufficiently
large constant c, Corus et al. [5, Theorem 3] proved that the (μ, λ) EA within an
expected number of O(n) iterations finds the optimum of OneMax.

Since the (μ + λ) EA uses elitist selection, we conjecture that the fitness values of
its population always stochastically dominate those of the population of the (μ, λ)EA.
More precisely, for a run of the (μ + λ) EA let us for i ∈ [1..μ] and t ∈ N denote
by fi t the fitness of the i-th individual in the parent population after iteration t , where
we assume that the individuals are sorted by decreasing fitness. Let us denote by f ′

i t
the same for the (μ, λ) EA. Then for all i and t , the random variable fi t stochastically
dominates f ′

i t . Presumably, this can be shown via coupling in a similar fashion as in
the proof of Theorem 23 in [23]. Thus the upper bound given by Corus et al. is also
valid for the (μ + λ) EA. For the case λ > (1 + δ)eμ and λ = �(log n) regarded by
Corus et al., our bound becomes

O

(
n

(
log(n)

λ
+ μ

λ
+ log+ log(λ/μ)

log(λ/μ)

))
,

which is of an asymptotically slightly smaller order than that of [5] when λ = ω(μ +
log(n)).

4 Lower Bounds

In this section, we show the lower bounds corresponding to the upper bounds we
proved in the previous section. They in particular imply the lower bounds for the
(μ + 1) EA given in [47] and the (1 + λ) EA given in [18]. Hence our proof method
is a unified approach to both these algorithms as well. The arguments we use do not

123

Algorithmica (2021) 83:1054–1095 1079

consider selection phase at all, thus they hold also for all functions with a unique
optimum and for other selection mechanisms, including the (μ, λ) EA.

The main problem when proving lower bounds for population-based algorithms is
that many individuals which are created during the run of the EA are removed at some
stage by selection operations. This creates a complicated population dynamics, which
is very hard to follow via mathematical means.

One way to overcome this difficulty is to try to disregard the effect of selection and
instead regard an optimistic version of the evolutionary process in which no individ-
uals are removed. This idea can be traced back to [42]. In the context of evolutionary
computation, it has been first used in [46] (see [48] for an extended version) in the
analysis of a steady-state genetic algorithm with fitness-proportionate selection. In
[34], this argument was used in the analysis of a (μ + 1) evolution strategy (in con-
tinuous search spaces). Not surprisingly, the analysis of the (μ + 1) EA [47] uses the
artificial populations argument as well.

This technique then found applications in the analysis of memetic algorithms [44],
aging-mechanisms [35], and non-elitist algorithms [36,39]. The artificial population
argument was also used to overcome the difficulties imposed by another removal
mechanism, namely Pareto domination in evolutionary multi-objective optimization
[19]. While similar in spirit, this work however uses quite different techniques, e.g.,
it does not represent the search process via tree structures.

Of course, to make the new process really an optimistic version of the original one,
we have to ensure that, despite the larger population present, each individual which is
also present in the true population has the same power of creating good solutions as
in the original process. To ensure this in our process, we assume that in the artificial
process each individual creates Bin(λ, 1/μ) offspring. This assumption, in fact, leads
to amuchmore drastic growth of the artificial population than the fact that we disregard
selection.

When working with such an artificially enlarged population, there is a risk that the
larger population finds it easier to create the optimal solution. This would give weaker
lower bounds. So the main art in this proof approach is setting up the arguments in a
way that the larger population does still, in an asymptotic sense, not find the optimum
earlier than the original process. The reason why this is possible at all is that once
selection is disregarded, the process consists only of independent applications of the
mutation operator. This allows to use strong-concentration arguments which in the
end give the desired result that none of the many members of the artificial population
is the optimal solution.

To make this approach formal, we use the following notion of a complete tree,
which, in simple words, describes all possible (iterated) offspring which could occur
in a run of the evolutionary algorithm. This notion is different from those used in
the works above, which all work with certain subtrees of the complete tree and use
suitable arguments to reason that the restricted tree still covers all individuals that
can, with reasonable probability, appear. We feel that our approach of working in the
complete tree is technically simpler. For example, compared to [47], we do not first
need to argue that with high probability the true tree has only certain depths and then,
conditional on this event, argue that it does not contain an optimal solution.Working in
the complete tree, we also do not need arguments from branching processes as used in

123

1080 Algorithmica (2021) 83:1054–1095

– – –

1 2 1 2 1 21 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

Fig. 1 The structure of the complete tree for the (3+2) EA after t = 2 iterations. The green vertices are the
initial vertices, the blue vertices were created in the first iteration and the orange vertices were created in
the second iteration. Each vertex is uniquely defined by a tuple of its parent vertex v, iteration it was created
t and its number i among the children of its parent vertex created at the same iteration (the vertices in the
figure are labeled with this number i). The highlighted vertices are the ones which were actually created by
the algorithm. The labels are omitted in this illustration for reasons of readability

[39]. Of course, the key argument that without selection we only do repeated unguided
mutation, is used by us in the same flavor as in all previous works.

More precisely, the complete tree with initial individual x0 is defined recursively
as follow. Every vertex is labeled with some individual (a bit-string) which could
potentially occur in the evolution process. The labels are not necessarily unique, but
every vertex, except the root vertex v0 is uniquely defined by the tuple (v, t, i), where
v is the parent vertex (that is either the root vertex, or another vertex defined by a
tuple), t ∈ N is the iteration when this vertex was created and i ∈ [1..λ] is the number
of the vertex among the vertices with the same v and t . The tree T0 = (V0, E0) at
time t = 0 consists of the single (root) vertex v0 that is labeled with the bit-string
c(v0) = x0. Hence E0 = ∅. If Tt = (Vt , Et) is defined for some t ≥ 0, then we define
the tree Tt+1 = (Vt+1, Et+1) as follows. For each vertex in Vt , we add λ vertices,
connect them to this vertex, and generate their labels via standard-bit mutation from
the parent. More precisely, let Nt+1 := {(vt , t + 1, i) | vt ∈ Vt , i ∈ [1..λ]} and
Vt+1 = Vt ∪ Nt+1. We call vt the parent of (vt , t + 1, i) and (vt , t, i) the i-th child
of vt in iteration t + 1. We generate the label c(vt , t + 1, i) by applying standard-
bit mutation to c(vt). We connect each new vertex with its parent, that is, we define
Et+1 = Et ∪{(vt , (vt , t+1, i)) | vt ∈ Vt , i ∈ [1..λ]}. A simple example of a complete
tree structure is shown in Figure 1.

It is easy to see that a complete tree at time t contains exactly (λ + 1)t nodes,
since each vertex from Vt has exactly λ new children in Vt+1. As said earlier, it thus
massively overestimates the size of the true population of the EA.

For our purposes, it is not so much the total size of the tree that is important, but
rather the number of nodes in a certain distance from the root. We estimate these in
the following elementary lemma. Here and in the remainder, by distance we mean the
graph theoretic distance, that is, the length of the (in this case unique) path between
the two vertices. Observe that this can be different from the iteration in which a node

123

Algorithmica (2021) 83:1054–1095 1081

was generated. For example, the vertex (v0, t, i), which is generated in iteration t from
the initial vertex, has distance one from v0.

Lemma 10 Let Tt be a complete tree at time t. Let
 ∈ N0. Then Tt contains exactly

(
t

)
λ

nodes in distance exactly
 from the root.

Proof If t <
, then there are no vertices in distance
 (recall that in our notation(t

) = 0 in this case). Otherwise, let v be a vertex in distance exactly
 from the root.
Then there are times 1 ≤ t1 < · · · < t
 ≤ t and offspring numbers i1, . . . , i
 ∈ [1..λ]
such that with the recursive definition of the vertices v1, . . . , v
 via vd = (vd−1, td , id)
for all d ∈ [1..
], we have v = v
. Hence, there are at most

(t

)
λ
 vertices in distance

from the root. Conversely, each tuple of times and offspring numbers as above defines
a different vertex in distance
. Hence, there are at least

(t

)
λ
 different vertices in

distance
 from the root.
�
Since there is no selection in the complete tree, the vertex labels simply arise from

repeated mutation. More precisely, a vertex in distance
 from the root has a label
that is obtained from
 times applying mutation to the root label. This elementary
observation allows to estimate the probability that a node label is equal to some target
string.

Lemma 11 Consider a complete tree with root label c(v0) = x0. Let x∗ ∈ {0, 1}n with
H(x∗, x0) ≥ n/4 (where H is the Hamming distance). Let x be the node label of a
node in distance
 from v0. Then

Pr[x = x∗] ≤ min

{
1,

(

n − 1

)n/4
}

=: p(
, n).

Proof The probability that x = x∗ is at most the probability that each of the H(x0, x∗)
bits in which x0 and x∗ differ was flipped in at least one of the
 applications of
the mutation operator which generated x from x0. For one particular position the
probability that this position was involved in one of
 mutations is 1 − (1 − 1

n)
. For
H(x0, x∗) positions the probability that all of themwere involved in one of
mutations
is

(
1 −

(
1 − 1

n

)

)H(x0,x∗)

≤
(
1 − exp

(
−

n − 1

)) n
4 ≤

(

n − 1

) n
4

,

where we used the estimates (1−1/n)(n−1)r ≥ e−r valid for all n ≥ 1 and any positive
r ∈ R, and e−r ≥ 1 − r valid for all r ∈ R.
�

We are now ready to prove our lower bound. Since the proof is valid not only for the
OneMax function, but for any pseudo-Boolean function with a unique optimum, we

123

1082 Algorithmica (2021) 83:1054–1095

formulate the result for such functions. We show extensions to many functions with
multiple optima in the following section.

Theorem 4 If μ is polynomial in n, then the (μ + λ) EA with any type of selection
of the new parent population (including only selecting from the offspring population)
needs an expected number of

�

(
n log n

λ
+ μn

λ

)

iterations to optimize any pseudo-Boolean function with a unique optimum.
If further λ

μ
≥ ee, then the stronger bound

�

(
n log n

λ
+ n log log λ

μ

log λ
μ

)

holds.

Proof Without any loss of generality in this proof we assume that the function opti-
mized by the algorithm has an optimum in x∗ = (1, . . . , 1).

In our proofs we use the following tool. To prove that the expected runtime of the
algorithm is�(f (n)) for some function f (n), it is enough to prove that the probability
that the runtime is less than f (n) is less than some constant γ < 1, since in this case
the expected runtime is not less than (1 − γ) f (n).

We first note that the bound �(
n log n

λ
) is easy to prove for the OneMax function.

A short, but deep argument for this bound is that the (μ + λ) EA is an unary unbi-
ased black-box complexity algorithm in the sense of Lehre and Witt [38]. Any such
algorithm needs an expected number of �(n log n) [38] or, more precisely, of at least
n ln(n)− O(n) [10] fitness evaluations to find the optimum of the OneMax function.

However, we prove the lower bounds for any function with a unique optimum, so
we use an elementary argument essentially identical to the one of [47] as follows. The
lower bound �(

n log n
λ

) needs to be shown only in the case μ ≤ c log n, where c is
an arbitrarily small constant. For any bit position we have the probability q1 that all
individuals in the initial population have a zero-bit in that position that is calculated
as

q1 =
(
1

2

)μ

≥
(
1

2

)c log(n)

= exp(c log(n) log(1/2)) = n−c log(2).

Thus, the expected number z of the bit positions such that all individuals in the initial
population have a zero-bit in that position is

E[z] =
n∑

i=1

q1 = n1−c log(2).

123

Algorithmica (2021) 83:1054–1095 1083

We call such positions initially wrong positions. Since the bit values in each bit posi-
tion and each initial individual are independent, each position is initially wrong or
not independently on other positions. Hence, by Chernoff bounds (see, e.g., Theo-
rem 1.10.5 in [24]) the probability q2 that we have at least E[z]/2 = n1−c log(2)/2
such bit positions is calculated as

q2 = Pr [z ≥ (1 − δ)E[z]] ≥ 1 − exp

(
−δ2E[z]

2

)
= 1 − exp

(
−n1−c log(2)

8

)
.

Now we are ready to show that the algorithm does not flip at least one of the bits
in the initially wrong positions in t := �α(n−1) log(n)

λ
� iterations, where α is a constant

that will be defined later, with a high (at least 1 − o(1)) probability. We calculate the
probability q3 that one particular bit is flipped at least once in t iterations (or in λt
mutations) as

q3 = 1 −
(
1 − 1

n

)λt

= 1 −
(
1 − 1

n

)(n−1) λt
(n−1)

≤ 1 − exp

(
− tλ

(n − 1)

)
≤ 1 − e−α log(n) = 1 − n−α.

If we have at least n1−c log(2)/2 initially wrong positions, then the probability q4 that
all of them are flipped at least once in t iterations is

q4 = q
n1−c log(2)

2
3 ≤ (1 − n−α)

n1−c log(2)
2

= (1 − n−α)n
α · n1−c log(2)−α

2 ≤ exp

(
−n1−c log(2)−α

2

)

Thus we have the probability q5 that at least one of the initially wrong bits is not
flipped (and thus, the optimum is not found) in t = �(

n log(n)
λ

) iterations at least

q5 ≥ q2(1 − q4)

≥
(
1 − exp

(
−n1−c log(2)

8

))(
1 − exp

(
−n1−c log(2)−α

2

))

≥ 1 − 2 exp

(
−n1−c log 2−α

8

)
. (13)

Hence, if α and c satisfy c log(2) + α < 1, (e.g., α := 1
2 and c := 1

2) then the

expected runtime of the algorithm is �(
n log(n)

λ
).

To prove the remaining two bounds, we argue as follows. Again using a simple
Chernoff bound argument, we first observe that the probability q6 that the number of
zero-bits y in the one particular individual in the initial population is less than n/4, is
estimated as

123

1084 Algorithmica (2021) 83:1054–1095

q6 = Pr

[
y ≤ E[y]

2

]
= Pr [y ≤ (1 − 1/2)E[y]] ≤ exp

(
− n

16

)
.

Hence, all μ individuals of the initial population have a Hamming distance of at least
n/4 from the optimum x∗ with probability

q7 = (1 − q6)
μ ≥

(
1 − exp

(
− n

16

))μ ≥ exp

(
− μ

e
n
16 − 1

)

Since μ is polynomial in n, we have μ

e
n
16 −1

= o(1) and therefore, q7 = 1 − o(1).

Further in this proof we assume that all initial individuals have at least n/4 zero-bits.
Clearly, a run of the (μ + λ)EAcreates a subforest ofμ disjoint complete treeswith

random root labels (complete forest).Whether a node of the complete forest appears in
the forest describing the run of the (μ + λ) EA (the forest of the family trees) depends
on the node labels (more precisely, on their fitness). However, regardless of the node
labels the following is true: If some node vs is present in the population at iteration
t , then the edge (vs, (vs, t, i)) is present in the subforest at most with probability
1/μ, because for this it is necessary that the i-th offspring generated in iteration t
chooses vs as parent. Consequently, regardless of the nodes labels, the probability that
a node in distance
 from the root in the complete forest enters the population of the
(μ + λ) EA, is at most μ−
. Since we have not taken into account the node labels, we
observe that the probability that a particular node of the complete forest (i) is labeled
with the optimum and (ii) makes it into the population of the (μ + λ) EA, is at most
μ−
 p(
, n) with p(
, n) as defined in Lemma 11.

Using a union bound over all nodes in the complete forest up to iteration t ,
cf. Lemma 10, we see that the probability that the (μ + λ) EA finds the optimum
within t iterations, is at most

qopt ≤ μ

t∑

=0

(
t

)(
λ

μ

)

p(
, n). (14)

Let first t := �μn/8eλ�. Using the inequality
(t

) ≤ (et/
)
 that follows from
Stirling’s formula, we estimate the summand s(
) := (t

)
(λ
μ
)
 p(
, n) of qopt for every

 ∈ [0..t].
• By Lemma 11 we have p(
, n) ≤ 1. Thus, if
 ≥ n/4, we estimate

s(
) =
(
t

)(
λ

μ

)

p(
, n) ≤
(
etλ

μ

)

≤
(n

8

)
 ≤ (1/2)
 ≤ (1/2)n/4.

• By Lemma 11 we have p(
, n) ≤ (
/(n − 1))n/4. Hence, if n/4 ≥
 > 0, we
estimate

123

Algorithmica (2021) 83:1054–1095 1085

s(
) =
(
t

)(
λ

μ

)

p(
, n) ≤
(
etλ

μ

)
 (

n − 1

)n/4

≤
(n

8

)

(

n − 1

)n/4

≤
(n

4

)

(

n − 1

)n/4

≤
(

n

4

·

n − 1

)n/4

≤ (1/2)n/4.

• Finally, for
 = 0 we have p(
, n) = 0 and thus s(
) = 0.

Consequently, the optimum is found in less than t iterations if either there is an
individualwith less thann/4 zero-bits in the initial population, orwith an exponentially
small probability otherwise. Therefore, the probability q8 of finding the optimum in
less than t iterations is bounded as

q8 ≤ (1 − q7) + q7μ
t∑

=0

s(
)

≤
(
1 − exp

(
− μ

e
n
16 − 1

))
+ μ

t∑

=1

(1/2)n/4

≤ μ

e
n
16 − 1

+ μ2n

8eλ
(1/2)n/4 = o(1), (15)

since we assumed μ to be at most polynomial in n.

We finish the proof by showing the lower bound �

(
n log log λ

μ

log λ
μ

)
in case when

λ
μ

≥ ee. For this purpose let t = � (e−2)n ln ln λ
μ

4(e+1) ln λ
μ

�. Using the complete tree notation we

show that the probability that the algorithm finds an optimum in less than t iterations
is very small.

For all
 ∈ [0..t] consider s(
). Using the inequality (t

) ≤ (et/
)
 we estimate the
upper bound for it as follows.

s(
) =
(
t

)(
λ

μ

)

p(
, n) ≤
(
etλ

μ

)
 (

n − 1

)n/4

= exp

(

 ln

etλ

μ
+ n

4
ln

n − 1

)
.

(16)

Consider precisely the argument of the exponential function from the last equality
in (16). For this purpose define f (
) :=
 ln etλ

μ
+ n

4 ln

n−1 . By considering the
derivative of f (
) on segment [0, t] one can see that it is a monotonically increasing
function. Since t ≥
 and λ

μ
≥ ee, we have etλ

μ
≥ ee+1 and thus, ln etλ

μ
≥ e + 1.

Hence,

f ′(
) = ln
etλ

μ
− 1 + n

4

≥ e + 1 − 1 > 0

123

1086 Algorithmica (2021) 83:1054–1095

Thus, f (
) reaches its maximum when
 = t . Therefore,

f (
) ≤ f (t) ≤ t ln
eλ

μ
+ n

4
ln

t

n − 1

≤ (e − 2)n ln ln λ
μ

4(e + 1) ln λ
μ

(
ln

λ

μ
+ 1

)
+ n

4
ln

(e − 2)n ln ln λ
μ

4(e + 1)(n − 1) ln λ
μ

= (e − 2)

4(e + 1)
n ln ln

λ

μ

(
1 + 1

ln λ
μ

)

+ n

4

(
ln ln ln

λ

μ
− ln ln

λ

μ
+ ln

(e − 2)n

4(e + 1)(n − 1)

)

≤ n

4
ln ln

λ

μ

(
(e − 2)

(e + 1)

(
1 + 1

e

)
+ ln ln ln λ

μ

ln ln λ
μ

− 1 + ln (e−2)n
4(e+1)(n−1)

ln ln λ
μ

)
.

Notice that ln x
x ≤ 1

e for all x ≥ 1 and that ln (e−2)n
4(e+1)(n−1) < 0 for all n > 1.

Therefore we have

f (
) ≤ n

4
ln ln

λ

μ

(
(e − 2)

(e + 1)

(
1 + 1

e

)
−
(
1 − 1

e

))
= −n ln ln λ

μ

4e
.

Thus, by (16) we have

s(
) ≤ exp

(
−n ln ln λ

μ

4e

)
=
(
ln

λ

μ

)−n/4e

.

By (14) summing upμs(
) for all
 ∈ [0..t]we obtain the following upper bound on
the probability q9 that the algorithm finds the optimum in less than t = �(

n log log λ
μ

log λ
μ

)

iterations.

q9 ≤ (1 − q7) + q7μ
t∑

=0

s(
)

≤ μ

e
n
16 − 1

+ μ
(e − 2)n ln ln λ

μ

4(e + 1) ln λ
μ

(
ln

λ

μ

)−n/4e

.

(17)

Notice that q9 is o(1), since we assumed that μ is polynomial in n. Hence, the

expected runtime of the algorithm is �(
n log log λ

μ

log λ
μ

)
�

123

Algorithmica (2021) 83:1054–1095 1087

ComparisonWith Other Lower Bounds

Since all results involved are asymptotically tight, our lower bounds subsume the
previous bounds for the (μ + 1) EA and the (1 + λ) EA in the way as discussed for
upper bounds in Sect. 3.4.

For general values of μ and λ, the only result [40] we are aware of proves that for
any μ and λ that are at most polynomial in n the runtime of the (μ + λ) EA on every
pseudo-boolean function with a unique global optimum is

�

(
n log n

λ
+ μ

λ
+ n log log n

log n

)
. (18)

By comparing the three terms of this bound with the corresponding terms of our
bound

�

(
n log n

λ
+ n

λ/μ
+ n log+ log+(λ/μ)

log+(λ/μ)

)
,

we immediately see that our bound is asymptotically at least as large as the one
in (18); note that for the third term, this follows trivially from the assumption that λ is
polynomial in n and the fact that x �→ log log(x)

log(x) is decreasing for x sufficiently large.
There are two cases when our bound is asymptotically greater than (18).

Setting 1. Let λ
μ

= O(1) and μ = ω(log(n)). Then our bound is �(
nμ
λ

), which is at
least �(n). On the other hand, (18) is

n log n

λ
+ μ

λ
+ n log log n

log n
= n o(μ)

λ
+ μ

λ
+ o(n) = o

(nμ

λ

)
.

Setting 2. Let log λ
μ

= ω(log n). This implies that λ
μ

= ω(n) and thus

log n = o

(
n log log n

log n

)
= o

(
λ
μ
log log λ

μ

log λ
μ

)
.

Therefore, we have

n log n

λ
= o

(
n log log λ

μ

μ log λ
μ

)
= o

(
n log log λ

μ

log λ
μ

)
.

Hence, the lower bound given in Theorem 4 simplifies to �(
n log log λ

μ

log λ
μ

).

On the other hand, the bound (18) is of the asymptotically smaller order o(log n)+
o(1) + O(

n log log n
log n) = O(

n log log n
log n).

123

1088 Algorithmica (2021) 83:1054–1095

5 Extending the Lower Bounds to All Functions Having Not
Excessively Many Global Optima

Since the family tree technique depends little on the particular function to be optimized,
Witt [47] extended his lower bounds forOneMax to amuch broader class of functions.
He proved that the (μ + 1) EA needs �(μn) iterations to find a global optimum of
any function that satisfies one of the following conditions. (i) The function has at most
2o(n) optima. (ii) All optima have at least n/2+ εn one-bits or all optima have at least
n/2 + εn zero-bits, where ε > 0 is an arbitrary constant.

In this section we extend our lower bounds of Sect. 4 to a wide class of functions as
well. In particular, we show that Witt’s results are valid for all functions with at most
2βn optima, where β is some constant less than 1

16 ln 2 , regardless of the positions of
the optima.

To reach our goal we exploit the fact that in Theorem 4 we proved very small values
for the probabilities that the runtime is less than some threshold [see (13), (15) and
(17)], while it would have been enough to prove that they are some constants less than
one.

Theorem 5 For any constant ε > 0 there exists another constant c > 0 such that if
μ < c ln n, then for any n-dimensional pseudo-Boolean function with not more than
2n

1−ε
optima the (μ + λ) EA takes at least �(

n log n
λ

) iterations in expectation and
with high probability to find an optimum.

Proof Let c be some arbitrary small positive constant and let μ < c ln n. By (13)
the probability that the algorithm finds a particular optimum in less than t := αn log n

λ
iterations (where α is some arbitrary constant) is

1 − q5 ≤ 2 exp

(
−n1−c ln 2−α

8

)
.

If we have at most 2n
1−ε

optima, then by a union bound over all optima we obtain
that the probability q10 that the algorithm finds an optimum in less than t iterations is

q10 ≤ (1 − q5)2
n1−ε ≤ 2 exp

(
−n1−c ln 2−α

8

)
exp

(
n1−ε ln 2

)

= 2 exp

(
n1−ε ln 2 − n1−c ln 2−α

8

)
.

This probability q10 tends to zero with growing n if and only if the argument of the
exponential function tends to negative infinity. It does so if and only if α and c satisfy
α + c ln 2 < ε. Since ε is a positive constant, we can choose α := ε/2 and c := ε/2
to satisfy this condition.
�

The actual reason that the algorithm cannot find an optimum faster than in�(
n log n

λ
)

iterations is the coupon collector effect when the algorithm tries to flip the few wrong

123

Algorithmica (2021) 83:1054–1095 1089

bits left in the end of the optimization. However, if we have 2�(n) optima, the algo-
rithm avoids this effect. To illustrate this idea consider the (1 + 1) EA that optimizes
the OneMax function, but the bit-strings with less than cn zero-bits, where c is
some small constant, are considered optimal. Thus, this functions has no more than
O(2c log2(1/c)n) ⊆ 2�(n) optima. Clearly, the runtime of the (1 + 1) EA on such func-
tion is linear, which may be proven with simple additive drift argument.

The following two theorems extend our �(
nμ
λ

) and �(
n log log λ

μ

log λ
μ

) bounds to the

functions with 2O(n) optima.

Theorem 6 Ifμ is at most polynomial in n, then the (μ + λ) EA optimizes any pseudo-
Boolean function with at most 2βn optima, where β is some constant less than 1

16 ln 2 ,

in �(
μn
λ

) iterations. If λ
μ

> ee, then the stronger bound �(
n log log λ

μ

log λ
μ

) holds.

Proof By (15) the probability that the algorithm finds a particular optimum in less
than t := � μn

8eλ� iterations is

q8 ≤ μ

e
n
16 − 1

+ μ2n

8eλ

(
1

2

) n
4

.

By a union bound taken over no more than 2βn optima, the probability q11 that the
algorithm finds any optimum in this time is

q11 ≤ q82
βn ≤ μe(ln 2)βn− n

16

1 − e− n
16

+ μ2n

8eλ
2βn− n

4 .

Sinceβ < 1
16 ln 2 andβ is a constant,wehave both (ln 2)βn− n

16 < 0 andβn− n
4 < 0

(and both of them are linear in n). Thus, q11 tends to zero with growing n. Hence, the
expected runtime of the algorithm is �(t) = �(

μn
λ

).

To prove the�(
n log log λ

μ

log λ
μ

) bound we argue in a similar way. By (17) the probability

that the algorithm finds a particular optimum in less than t := � (e−2)n ln ln λ
μ

4(e+1) ln λ
μ

� iterations
is

q9 ≤ μ

e
n
16 − 1

+ μ
(e − 2)n ln ln λ

μ

4(e + 1) ln λ
μ

(
ln

λ

μ

)−n/4e

.

By a union bound taken over no more than 2βn optima, the probability q12 that the
algorithm finds any optimum in this time is

q12 ≤ q92
βn ≤ μeβn ln 2−n/16

1 − e− n
16

+ μ
(e − 2)n ln ln λ

μ

4(e + 1) ln λ
μ

eβn ln 2−n/4.

123

1090 Algorithmica (2021) 83:1054–1095

Algorithm 2: The (λ
1:1+ λ) EA, maximizing a given function f : {0, 1}n → R,

with population size λ and mutation rate p.
1 Initialization:
2 Create a population of λ individuals by choosing x(i) ∈ {0, 1}n , 1 ≤ i ≤ λ uniformly at random. Let

the multiset X (0) := {x(1), ..., x(λ)} be the population at time 0. Let t := 0.
3 Optimization:
4 while an optimum has not been reached do
5 X ′ := X (t);
6 Mutation phase:
7 for i = 1, . . . , λ do
8 x := the i-th individual from X (t) (deterministic selection);
9 Create x ′ by flipping each bit of x with probability p;

10 X ′ := X ′ ∪ {x ′};
11 Selection phase:
12 Create the multiset X (t+1), the population at time t + 1, by deleting the λ individuals with

lowest f -value in X ′;
13 t := t + 1;

Since β < 1
16 ln 2 and β is a constant, we have both (ln 2)βn − n

16 < 0 and
βn ln 2 − n

4 < 0 (and both of them are linear in n). Thus, q12 tends to zero with

growing n. Hence, the expected runtime of the algorithm is �(t) = �(
n log log λ

μ

log λ
μ

).
�

6 Analysis of the (�
1:1+ �) EA

In this section we prove that our results (both upper bound from Theorem 2 and

lower bound from Theorem 4) hold in an analogous fashion also for the (λ
1:1+ λ) EA,

that is, we show that this algorithm optimizes OneMax in an expected number of
�(

n log n
λ

+ n) iterations. This improves over the O(
n log n

λ
+ n log λ) proven bound

and the O(
n log n

λ
+ n log log n) conjecture of [7].

Due to the differences in the algorithms, to prove our results we obviously cannot
just apply the previous theorems in this work to the case λ = μ. We recall that the

(λ
1:1+λ)EAuses a different parent selection.While the classic (μ + λ)EAchooses each

parent independently and uniformly at random from theμ individuals, the (λ
1:1+λ) EA

creates exactly one offspring from each parent. The pseudocode of the (λ
1:1+ λ) EA is

shown in Algorithm 2. We note that [7] also use a slightly different way of selecting
the next parent population. In principle, they take as new parent population the μ best
individuals among parents and offspring (plus-selection). If this would lead to a new
parent population only consisting of offspring, they remove the weakest offspring and
replace it with the strongest individual from the previous parent population. Since this
appears to be a not very common way of selecting the new population, we shall work
with the classic plus-selection, favoring offspring in case of ties, and breaking further

123

Algorithmica (2021) 83:1054–1095 1091

ties randomly (though, indeed, the tie-breaking is not important when optimizing
OneMax via unary unbiased black-box algorithms). We note without proof that the
following results and proofs are valid for the precise algorithm regarded in [7] as well.

We start by proving the upper bound for the runtime.

Theorem 7 The expected runtime of the (λ
1:1+ λ) EA on the OneMax function is

O(
n log n

λ
+ n).

Proof We aim at adapting Theorem 2 for the (λ
1:1+λ) EA. For this purpose we note that

the proof of Theorem 2 only depends on the expected level improvement times E[T̃i]
computed in Corollary 1, which again depend on the times needed for increasing the
number of fit individuals computed in Lemma 3. Therefore, it suffices to show that

the estimates of Lemma 3 and Corollary 1 are also valid for the (λ
1:1+ λ) EA.

We prove that Lemma 3 holds for the (λ
1:1+ λ) EA by observing that the probability

p2(j) to create at least one copy of the fit individual satisfies the same estimate as the

one used for the (μ + λ) EA, which is (3), withμ = λ. For the (λ
1:1+λ) EA, p2(j) is at

least the probability that at least one of the j fit parent individuals creates as offspring
a copy of it. By Lemma 2 we have

p2(j) ≥ 1 −
(
1 −

(
1 − 1

n

)n) j

≥ 1 −
(
1 − 1

2e

) j

≥ 1

1 + 2e
j

,

which is the same estimate as for the (μ + λ) EA (with μ = λ).

To prove that Corollary 1 holds for the (λ
1:1+λ)EA aswell, it is sufficient to show that

the probability p′′(i) to create a superior individual satisfies as well the estimate (5)
in the case μ = λ. The probability p′′(i) is at least the probability that for at least one
of the μ0(i) best individuals the offspring is better than its parent. Using Lemma 2 we
calculate

p′′(i) ≥ 1 −
(
1 − n − i

n

(
1 − 1

n

)n−1
)μ0(i)

≥ 1 −
(
1 − n − i

en

)μ0(i)

≥ 1 − 1

1 + μ0(i)(n−i)
ne

,

which is the same value as in Corollary 1 when μ = λ.
�

Comparing this bound with the bound O(
n log n

λ
+ n log λ) proven in [7] and the

bound O(
n log n

λ
+ n log log n) conjectured in the same work, we immediately see that

ours is at least as strong as these two for all values of λ. For λ = ω(
log n

log log n), our bound
is asymptotically smaller than both the proven bound and the conjecture.

We now prove a matching lower bound, which agrees with the one of Theorem 4
in the case of μ = λ.

123

1092 Algorithmica (2021) 83:1054–1095

Theorem 8 If λ is polynomial in n then the expected runtime of the (λ
1:1+ λ) EA on the

OneMax function is �(
n log n

λ
+ n).

Proof We show that the main arguments of the proof for this bound in Theorem 4 are
also valid for this parent selection mechanism.

To prove the�(
n log n

λ
) boundwe can repeat the arguments fromTheorem 4without

any changes. One needs to prove this bound only for λ < c log n for some arbitrary
small constant c. The main argument is that with high probability there is a set of
bits which were in a wrong position in all initial individuals and that at least one of
those bits was not flipped by any of tλ applications of the mutation operator for some
t = �(

n log n
λ

). This argument stays valid for the fair parent selection as well.

To prove the�(n) boundwe consider the complete trees for the (λ
1:1+λ)EA. Since in

a run of the (λ
1:1+λ) EA each individual in the population creates exactly one offspring,

the complete trees now have a slightly different structure, namely each node of the tree
has exactly one child at each time step (instead of λ children). In return, we cannot
argue that each edge is present in the true family tree with probability at most 1/μ
only (so we assume that all these edges are in fact present). Since λ = μ, these two
effects cancel.

More precisely, following the proof of Theorem 4 we argue that with high proba-
bility q7 ≥ exp(− λ

e
n
16 −1

) all initial individuals have at least n/4 wrong bits. Next, we

argue that in an analogous fashion as in (14)—and this is where the two effects truly
cancel—the probability qopt that the optimum occurs in any tree in less than t := � n

8e

iterations is at most

qopt ≤ λ

t∑

=0

(
t

)
p(
, n) ≤ λt

(
1

2

)n/4

.

Since we only consider λ that is polynomial in n, this entity tends to zero, when
n tends to infinity. Therefore, the probability that the algorithm finds an optimum in
t = �(n) iterations is at most (1 − q7) + q7qopt that is less than some constant, if n

is large enough. Hence, the expected runtime of the (λ
1:1+ λ) EA is �(n).
�

7 Discussion and Conclusion

In this work, we determined – tight apart from constant factors – the runtime of the
(μ + λ) EA on the OneMax benchmark problem. This is thus one of the few tight
runtime analyses taking into account more than a single parameter ([8,30] are the
other two such works we are aware of).

Not surprisingly for a simple function like OneMax, our result does not indicate
that it is advantageous to use larger parent or offspring populations. Indeed, it follows
from [49, Theorem 6.2] (see [23] for a simplified proof) that for any μ and λ the
runtime of the (μ + λ) EA stochastically dominates the runtime of the (1 + 1) EA
with best-of-μ initialization. The runtime difference between the (1 + 1) EA with

123

Algorithmica (2021) 83:1054–1095 1093

best-of-μ initialization and with the usual random initialization is small, roughly an
additive �(

√
n lnμ) term [25].

While our result does not show an advantage of using larger populations, it does
show that using moderate-size populations is not overly costly. For example, as long
as μ, λ = O(log n), the (μ + λ) EA takes �(n log n) fitness evaluations to find the
optimum. This observation could indicate that using such population sizes is gener-
ally an interesting idea—we could speculate that there is no harm from using such
populations, but there could be other advantages.

In the light of recent other work, our work suggests two directions for further
research. In [30], a precise runtime analysis for the (1 + λ) EA with general mutation
rate c/n, c a constant, on the OneMax benchmark was conducted. It suggests that the
precise mutation rate is important when λ is small, but less decisive when λ is large. It
would be interesting to know to what extent this result carries over to the (μ + λ) EA.
In [4,13,27], it was shown that various dynamic choices of themutation rate can reduce
the runtime of the (1 + λ) EA on OneMax. Again, it would be interesting to see to
what extend a similar behavior is true for the (μ + λ) EA.

Acknowledgements We are thankful to Jiefeng Fang and Tangi Hetet for their contributions to the prelim-
inary version [1] of this work. The second author would like to thank Jon Rowe for pointing him to the
arguments used in [43], which were used in the proof of Lemma 2. The first author was supported by the
Government of Russian Federation (Grant 08-08).

References

1. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ + λ) EA optimizing OneMax.
In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1459–1466. ACM (2018)

2. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the
(μ, λ) EA. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1461–1469.
ACM (2019)

3. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes
problem. In: Parallel Problem Solving from Nature, PPSN XI, Part I, pp. 1–10 (2010)

4. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Parallel
Problem Solving from Nature, PPSN 2014, pp. 892–901. Springer (2014)

5. Corus, D., Dang, D.-C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and
other search processes. IEEE Trans Evolut Comput 22(5), 707–719 (2018)

6. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and
Evolutionary Computation Conference, GECCO 2014, pp. 753–760. ACM (2014)

7. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity
of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern.
Part B (Cybern.) 39, 1092–1106 (2009)

8. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic
algorithm. Algorithmica 80, 1658–1709 (2018)

9. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor.
Comput. Sci. 567, 87–104 (2015)

10. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theor. Com-
put. Sci. 801, 1–34 (2020)

11. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima using crossover with emergent diversity. IEEE Transa. Evolut. Comput.
22, 484–497 (2018)

12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)

123

1094 Algorithmica (2021) 83:1054–1095

13. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 + λ) evolutionary algorithm with self-adjusting
mutation rate. Algorithmica 81, 593–631 (2019)

14. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theor.
Comput. Sci. 425, 17–33 (2012)

15. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing
monotone functions. Evolut. Comput. 21, 1–21 (2013)

16. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comput.
Sci. 276, 51–81 (2002)

17. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
18. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1 + λ) evolutionary algorithm—

different asymptotic runtimes for different instances. Theor. Comput. Sci. 561, 3–23 (2015)
19. Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-objective evolutionary

algorithm. In: Congress on Evolutionary Computation, CEC 2013, pp. 432–439. IEEE (2013)
20. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to

partial information. Algorithmica 75, 428–461 (2016)
21. Doerr, B., Le, H.P.,Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary

Computation Conference, GECCO 2017. ACM (2017)
22. Doerr, B.: An elementary analysis of the probability that a binomial random variable exceeds its

expectation. Stat. Probab. Lett. 139, 67–74 (2018)
23. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theor. Comput. Sci.

773, 115–137 (2019)
24. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neu-

mann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pp. 1–87. Springer, Berlin (2020). arXiv:1801.06733

25. de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for nothing: speeding up evolutionary algo-
rithms through better initialization. In: Genetic and Evolutionary Computation Conference, GECCO
2015, pp. 815–822. ACM (2015)

26. Droste, S.: Not all linear functions are equally difficult for the compact genetic algorithm. In: Genetic
and Evolutionary Computation Conference, GECCO 2005, pp. 679–686. ACM (2005)

27. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2018, pp. 1475–1482. ACM (2018)

28. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75, 462–
489 (2016)

29. Greenberg, S.,Mohri,M.: Tight lower bound on the probability of a binomial exceeding its expectation.
Stat. Probab. Lett. 86, 91–98 (2014)

30. Gießen, C., Witt, C.: The interplay of population size and mutation probability in the (1 + λ) EA on
OneMax. Algorithmica 78, 587–609 (2017)

31. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.
127, 51–81 (2001)

32. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms.
Nat. Comput. 3, 21–35 (2004)

33. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evolut. Comput. 13, 413–440 (2005)

34. Jägersküpper, J., Witt, C.: Rigorous runtime analysis of a (μ+ 1) ES for the sphere function. In: Genetic
and Evolutionary Computation Conference, GECCO 2005, pp. 849–856. ACM (2005)

35. Jansen, T., Zarges, C.: On benefits and drawbacks of aging strategies for randomized search heuristics.
Theor. Comput. Sci. 412, 543–559 (2011)

36. Lehre, P.K.: Negative drift in populations. In: Parallel Problem Solving from Nature, PPSN 2010, pp.
244–253. Springer (2010)

37. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. In: Parallel Prob-
lem Solving from Nature, PPSN 2018, Part II, pp. 3–15. Springer (2018)

38. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)
39. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of evolutionary

algorithms. IEEE Trans. Evolut. Comput. 16, 225–241 (2012)
40. Qian, C., Yu, Y., Zhou, Z.-H.: A lower bound analysis of population-based evolutionary algorithms

for pseudo-Boolean functions. In: International Conference on Intelligent Data Engineering and Auto-
mated Learning, IDEAL 2016, pp. 457–467. Springer, (2016)

123

http://arxiv.org/abs/1801.06733

Algorithmica (2021) 83:1054–1095 1095

41. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)
42. Rabani, Y., Rabinovich, Y., Sinclair, A.: A computational view of population genetics. Random Struct.

Algorithms 12, 313–334 (1998)
43. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ) evolutionary algorithm.

Theor. Comput. Sci. 545, 20–38 (2014)
44. Sudholt, D.: The impact of parametrization in memetic evolutionary algorithms. Theor. Comput. Sci.

410, 2511–2528 (2009)
45. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: International ColloquiumonAutomata,

Languages, and Programming, ICALP 2001, pp. 64–78. Springer (2001)
46. Witt, C.: Population size vs. runtime of a simple EA. In: Congress on Evolutionary Computation, CEC

2003, pp. 1996–2003. IEEE (2003)
47. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evolut. Comput.

14, 65–86 (2006)
48. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403,

104–120 (2008)
49. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions.

Comb. Probab. Comput. 22, 294–318 (2013)
50. Yang, Y., Qian, C., Zhou, Z.-H.: Switch analysis for running time analysis of evolutionary algorithms.

IEEE Trans. Evolut. Comput. 19, 777–792 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A Tight Runtime Analysis for the (µ+ λ) EA
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Previous Works
	1.3 Organization of the Work

	2 Preliminaries
	2.1 Notation
	2.2 Problem Statement
	2.3 Useful Tools

	3 Upper Bounds
	3.1 Increase of the Number of the Best Individuals
	3.2 Unconditional Upper Bound
	3.3 Upper Bound with Large λ
	3.4 Comparison With Other Upper Bounds

	4 Lower Bounds
	Comparison With Other Lower Bounds

	5 Extending the Lower Bounds to All Functions Having Not Excessively Many Global Optima
	6 Analysis of the
	7 Discussion and Conclusion
	Acknowledgements
	References

