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Abstract
In this paper, we investigate the complexity of MaxiMuM independent Set (MiS) 
in the class of H-free graphs, that is, graphs excluding a fixed graph as an induced 
subgraph. Given that the problem remains NP-hard for most graphs H, we study its 
fixed-parameter tractability and make progress towards a dichotomy between FPT 
and W[1]-hard cases. We first show that MiS remains W[1]-hard in graphs forbid-
ding simultaneously K1,4 , any finite set of cycles of length at least 4, and any finite 
set of trees with at least two branching vertices. In particular, this answers an open 
question of Dabrowski et al. concerning C4-free graphs. Then we extend the polyno-
mial algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm 
when H is a disjoint union of cliques. We also provide a framework for solving 
several other cases, which is a generalization of the concept of iterative expansion 
accompanied by the extraction of a particular structure using Ramsey’s theorem. 
Iterative expansion is a maximization version of the so-called iterative compression. 
We believe that our framework can be of independent interest for solving other simi-
lar graph problems. Finally, we present positive and negative results on the existence 
of polynomial (Turing) kernels for several graphs H.

Keywords Parameterized algorithms · Independent set · H-Free graphs

1 Introduction

Given a simple graph G, a set of vertices S ⊆ V(G) is an independent set if the verti-
ces of this set are all pairwise non-adjacent. Finding an independent set with maxi-
mum cardinality is a fundamental problem in algorithmic graph theory, and is known 
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as the MiS problem (MiS, for short) [15]. In general graphs, it is not only NP-hard, 
but also not approximable within O(n1−�) for any 𝜖 > 0 unless P = NP  [28], and 
W[1]-hard parameterized by the solution size [13] (unless otherwise stated, n always 
denotes the number of vertices of the input graph). Thus, it seems natural to study 
the complexity of MiS in restricted graph classes. One natural way to obtain such 
a restricted graph class is to forbid some given pattern to appear in the input. For a 
fixed graph H, we say that a graph is H-free if it does not contain H as an induced 
subgraph. Unfortunately, it turns out that for most graphs H, MiS in H-free graphs 
remains NP-hard, as shown by a very simple reduction observed independently by 
Poljak [24] and Alekseev [1]:

Theorem 1 ([1, 24]) Let H be a connected graph which is neither a path nor a sub-
division of the claw. Then MiS is NP-hard in H-free graphs.

On the positive side, the case of Pt-free graphs has attracted a lot of attention dur-
ing the last decade. While it is still open whether there exists t ∈ ℕ for which MiS is 
NP-hard in Pt-free graphs, quite involved polynomial-time algorithms were discov-
ered for P5-free graphs [20], and very recently for P6-free graphs [16]. In addition, 
we can also mention the recent following result: MiS admits a subexponential algo-
rithm running in time 2O(

√
tn log n) in Pt-free graphs for every t ∈ ℕ [3].

The second open question concerns subdivisions of the claw. Let Si,j,k be a tree 
with exactly three vertices of degree one, being at distance i, j and k from the unique 
vertex of degree three. The complexity of MiS is still open in S1,2,2-free graphs and 
S1,1,3-free graphs. In this direction, the only positive results concern some subcases: 
it is polynomial-time solvable in (S1,2,2, S1,1,3, dart)-free graphs [18], (S1,1,3, banner)
-free graphs and (S1,1,3, bull)-free graphs [19], where dart, banner and bull are par-
ticular graphs on five vertices.

Given the large number of graphs H for which the problem remains NP-hard, it 
seems natural to investigate the existence of fixed-parameter tractable (FPT) algo-
rithms,1 that is, determining the existence of an independent set of size k in a graph 
with n vertices in time f (k)nc for some computable function f and constant c. A very 
simple case concerns Kr-free graphs, that is, graphs excluding a clique of size r. In 
that case, Ramsey’s theorem implies that every such graph G admits an independent 
set of size Ω(n

1

r−1 ) , where n = |V(G)| . In the FPT vocabulary, it implies that MiS in 
Kr-free graphs has a kernel with O(kr−1) vertices.

To the best of our knowledge, the first step towards an extension of this obser-
vation within the FPT framework is the work of Dabrowski et  al.   [11] (see also 
Dabrowski’s PhD manuscript  [10]) who showed, among others, that for any posi-
tive integer r, Max Weighted independent Set is FPT in H-free graphs when H is 
a clique of size r minus an edge. In the same paper, they settle the parameterized 
complexity of MiS on almost all the remaining cases of H-free graphs when H has 

1 For the sake of simplicity, “MiS ” will denote the optimisation, decision and parameterized version of 
the problem (in the latter case, the parameter is the size of the solution), the correct use being clear from 
the context.
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at most four vertices. The conclusion is that the problem is FPT on those classes, 
except for H = C4 which is left open. We answer this question by showing that 
MiS remains W[1]-hard in a subclass of C4-free graphs. On the negative side, it was 
proved that MiS remains W[1]-hard in K1,4-free graphs [17] We can also mention the 
case where H is the bull graph, which is a triangle with a pending vertex attached to 
two different vertices. For that case, a polynomial Turing kernel was obtained [27] 
then improved [14].

Finally, a subset of this paper’s authors recently settled several other cases  [5], 
such as the cricket graph, the P̄ graph, or the path of size four where all but one end-
point are replaced by a clique of fixed size.

1.1  Our Results

In Sect.  2, we present three reductions proving W[1]-hardness of MiS in graphs 
excluding several graphs as induced subgraphs, such as K1,4 , any fixed cycle of 
length at least four, and any fixed tree with two branching vertices. We actually show 
the stronger result that MiS remains W[1]-hard in graphs simultaneously excluding 
these graphs as induced subgraphs. We propose a definition of a graph decomposi-
tion whose aim is to capture all graphs which can be excluded using our reductions.

In Sect. 3, we extend the polynomial algorithm of Alekseev when H is a disjoint 
union of edges to an FPT algorithm when H is a disjoint union of cliques.

In Sect. 4, we present a general framework extending the technique of iterative 
expansion, which itself is the maximization version of the well-known iterative 
compression technique. We apply this framework to provide FPT algorithms when 
H is a clique minus a complete bipartite graph, when H is a clique minus a triangle, 
and when H is the so-called gem graph.

Finally, in Sect.  5, we focus on the existence of polynomial (Turing) kernels. 
We first strenghten some results of the previous section by providing polynomial 
(Turing) kernels in the case where H is a clique minus a claw. Then, we prove that 
for many H, MiS on H-free graphs does not admit a polynomial kernel, unless 
NP ⊆ coNP∕poly.

Our results allow to obtain the complete quatrochotomy polynomial-time solv-
able/polynomial kernel (PK)/no PK but polynomial Turing kernel/W[1]-hard for all 
possible graphs on four vertices.

1.2  Notation

For classical notation related to graph theory or fixed-parameter tractable algo-
rithms, we refer the reader to the monographs [12, 13], respectively. For an integer 
r ⩾ 2 and a graph H with vertex set V(H) = {v1,… , vnH} with nH ⩽ r , we denote 
by Kr⧵H the graph with vertex set {1,… , r} and edge set {ab ∶ 1 ⩽ a, b ⩽ r such 
that vavb ∉ E(H)} . For X ⊆ V(G) , we write G⧵X to denote G[V(G)⧵X] . For two 
graphs G and H, we denote by G ⊎ H the disjoint union operation, that is, the graph 
with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H) . We denote by G + H the 
join operation of G and H, that is, the graph with vertex set V(G) ∪ V(H) and edge 
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set E(G) ∪ E(H) ∪ {uv ∶ u ∈ V(G), v ∈ V(H)} . For two integers r, k, we denote by 
Ram(r, k) the Ramsey number of r and k, i.e. the number such that every graph with 
at least Ram(r, k) vertices contains either a clique of size r or an independent set 
of size k. We write for short Ram(k) = Ram(k, k) . Finally, for �, k > 0 , we denote 
by Ram

�
(k) the minimum order of a complete graph whose edges are colored with 

� colors to contain a monochromatic clique of size k. The following bounds are 
known: Ram(r, k) ⩽

(
r+k−2

r−1

)
=
(
r+k−2

k−1

)
 , and Ram

�
(k) ⩽ k�k.

2  W[1]‑Hardness

2.1  Main Reduction

We show the following:

Theorem 2 For any p1 ⩾ 4 and p2 ⩾ 1 , MiS remains W[1]-hard in graphs exclud-
ing simultaneously the following graphs as induced subgraphs:

• K1,4

• C4 , … , Cp1
• any tree T with two branching vertices2 at distance at most p2.

Proof Let p = max{p1, p2} . We reduce from grid tiling, where the input is com-
posed of k2 sets Si,j ⊆ [m] × [m] ( 0 ⩽ i, j ⩽ k − 1 ), called tiles, each composed of n 
elements. The objective of grid tiling is to find an element s∗

i,j
∈ Si,j for each 

0 ⩽ i, j ⩽ k − 1 , such that s∗
i,j

 agrees in the first coordinate with s∗
i,j+1

 , and agrees in 
the second coordinate with s∗

i+1,j
 , for every 0 ⩽ i, j ⩽ k − 1 (here and henceforth, i + 1 

and j + 1 are taken modulo k). In such case, we say that {s∗
i,j

 , 0 ⩽ i, j ⩽ k − 1} is a 
feasible solution of the instance. It is known that grid tiling is W[1]-hard parame-
terized by k [9, 21].

Before describing formally the reduction, let us give some definitions and ideas. 
Given s = (a, b) and s� = (a�, b�) , we say that s is row-compatible (resp. column-
compatible) with s′ if a ⩾ a′ (resp. b ⩾ b′).3 Observe that a solution {s∗

i,j
 , 

0 ⩽ i, j ⩽ k − 1} is feasible if and only if s∗
i,j

 is row-compatible with s∗
i,j+1

 and col-
umn-compatible with s∗

i+1,j
 for every 0 ⩽ i, j ⩽ k − 1.

We will represent each tile by a gadget partitioned into a constant number of 
cliques of size n. The vertices of each clique are in one-to-one correspondence with 
the elements of the corresponding tile. Overall the cliques will be arranged in a grid-
like structure with degree three. By that we mean that a clique will be linked to at 
most three other cliques. While most of the cliques will have only two neighboring 
cliques, a clique linked to three other cliques will be called branching clique. The 

2 A branching vertex in a tree is a vertex of degree at least 3.
3 Notice that the row-compatibility (resp. column-compatibility) relation is not symmetric.
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row-compatibility (resp. column-compatibility) will be encoded with a relatively 
simple interaction between two adjacent cliques. The main difficulty will be to pre-
vent the undesired induced subgraphs to appear in the vicinity of branching cliques. 
We now formally describe the reduction.   ◻

2.1.1  Tile Gadget

For every tile Si,j = {s
i,j

1
,… , s

i,j
n } , we construct a tile gadget TGi,j , depicted in Figs. 1 

and 2. Notice that this gadget shares some ideas with the W[1]-hardness proof for 
MiS in K1,4-free graphs by Hermelin et  al.   [17]. To define this gadget, we first 
describe an oriented graph with three types of arcs (type Th , Tr and Tc , which respec-
tively stands for half-graph, row and column, and this naming will become clearer 
later), and then explain how to represent the vertices and arcs of this graph to get the 
concrete gadget. Consider first a directed cycle on 4p + 4 vertices c1 , … , c4p+4 with 
arcs of type Th . Then consider four oriented paths on p + 1 vertices: P1 , P2 , P3 and 
P4 . P1 and P3 are composed of arcs of type Tc , while P2 and P4 are composed of arcs 
of type Tr . Put an arc of type Tc

• the last vertex of P1 and c1,
• c2p+3 and the first vertex of P3,

 between:and an arc of type Tr between:

• cp+2 and the first vertex of P2,
• the last vertex of P4 and c3p+4.

Now, we replace every vertex of this oriented graph by a clique on n vertices, and 
fix an arbitrary ordering on the vertices of each clique. The ith vertex in this ordering 
is said to have index i. For each arc of type Th between c and c′ , add a half-graph4 
between the corresponding cliques: connect the ath vertex of the clique representing 
c with the bth vertex of the clique representing c′ whenever a > b . For every arc of 
type Tr from a vertex c to a vertex c′ , connect the ath vertex of the clique representing 
c with the bth vertex of the clique representing c′ iff si,ja  is not row-compatible with si,j

b
 

(see Fig. 3). Similarly, for every arc of type Tc from a vertex c to a vertex c′ , connect 
the ath vertex of the clique representing C with the bth vertex of the clique represent-
ing c′ iff si,ja  is not column-compatible with si,j

b
.

The cliques corresponding to vertices of this gadget are called the main cliques 
of TGi,j , and the cliques corresponding to the central cycle on 4p + 4 vertices are 
called the cycle cliques. The main cliques which are not cycle cliques are called path 

4 Notice that our definition of half-graph slighly differs from the usual one, in the sense that we do not 
put edges relying two vertices of the same index. Hence, our construction can actually be seen as the 
complement of a half-graph (which is consistent with the fact that usually, both parts of a half-graph are 
independent sets, while they are cliques in our gadgets).
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cliques. The cycle cliques adjacent to one path clique are called branching cliques. 
We call cycle of cliques the set of all cycle cliques present in the same gadget TGi,j . 
Two cycle of cliques are said consecutive if they lie on two gadgets TGi,j and TGi,j+1 , 
or TGi,j and TGi+1,j . A path of cliques is any subgraph induced by the cliques corre-
sponding to vertices forming a directed path in the oriented preliminary graph.

Finally, the clique corresponding to the vertex of degree one in the path attached 
to c1 (resp. cp+2 , c2p+3 , c3p+4 ) is called the top (resp. right, bottom, left) clique of 
TGi,j , denoted by Ti,j (resp. Ri,j , Bi,j , Li,j ). Let Ti,j = {t

i,j

1
,… , t

i,j
n } , Ri,j = {r

i,j

1
,… , r

i,j
n } , 

Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Fig. 1  Gadget TGi,j representing a tile and its adjacencies with TGi,j−1 and TGi,j+1 , for p = 1 . Each circle is 
a main clique on n vertices: dashed cliques are the cycle cliques (those of them connected to three other 
cliques are branching cliques), while others are path cliques. Black, blue and red arrows represent respec-
tively type Th , Tr and Tc edges (bold arrows are between two gadgets). Figures 2 and 3 represent some 
adjacencies in more details (Color figure online)

Fig. 2  Adjacencies between 
cycle cliques (represented by 
dashed circles in Fig. 1)
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Bi,j = {b
i,j

1
,… , b

i,j
n } , and Li,j = {�

i,j

1
,… ,�

i,j
n } . For the sake of readability, we might 

omit the superscripts i, j when it is clear from the context.

Lemma 1 Let K be an independent set of size 8(p + 1) in TGi,j . Then:

(a) K intersects all the cycle cliques on the same index x ∈ [n];
(b) if K ∩ Ti,j = {txt} , K ∩ Ri,j = {rxr} , K ∩ Bi,j = {bxb} , and K ∩ Li,j = {�x

�
} . Then:

• s
i,j
x
�
 is row-compatible with si,jx  which is row-compatible with si,jxr , and

• s
i,j
xt

 is column-compatible with si,jx  which is column-compatible with si,jxb.

Proof Observe that the vertices of TGi,j can be partitioned into 8(p + 1) cliques (the 
main cliques), hence an independent set of size 8(p + 1) intersects each main clique 
on exactly one vertex. Let C1 , C2 and C3 be three consecutive cycle cliques, and sup-
pose K intersects C1 (resp. C2 , C3 ) on the xth

1
 (resp. xth

2
 , xth

3
 ) index. By definition of the 

gadget, it implies x1 ⩽ x2 ⩽ x3 . By applying the same argument from C3 along the 
cycle, we obtain x3 ⩽ x1 , which proves (a). The proof of (b) directly comes from the 
definition of the adjacencies between cliques of type Tr and Tc , and from the fact that 
K intersects all cycle cliques on the same index.   ◻

2.1.2  Attaching Gadgets Together

For i, j ∈ {0,… , k − 1} , we connect the right clique of TGi,j with the left clique of 
TGi,j+1 in a “type Tr spirit”: for every x, y ∈ [n] , connect ri,jx ∈ Ri,j with �i,j+1

y ∈ Li,j+1 
iff si,jx  is not row-compatible with si,j+1y  . Similarly, we connect the bottom clique of 
TGi,j with the top clique of TGi+1,j in a “type Tc spirit”: for every x, y ∈ [n] , connect 
b
i,j
x ∈ Bi,j with ti+1,jy ∈ Ti+1,j iff si,jx  is not column-compatible with si+1,jy  (all incremen-

tations of i and j are done modulo k). This terminates the construction of the graph 
G.

Fig. 3  Two consecutive tiles 
and the representation of their 
adjacencies (representing type 
Tr adjacencies) si,j1 si,j2

si,j3 si,j5

si,j4

si,j+1
5

si,j+1
1 si,j+1

4

si,j+1
3 si,j+1

2

si,j1
si,j2
si,j3
si,j4
si,j5

si,j+1
1
si,j+1
2
si,j+1
3
si,j+1
4
si,j+1
5

1 2 3 4 5

1
2
3
4
5

1 2 3 4 5

1
2
3
4
5
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2.1.3  Equivalence of Solutions

We now prove that the input instance of grid tiling is positive if and only if G 
has an independent set of size k� = 8(p + 1)k2 . First observe that G has k2 tile 
gadgets, each composed of 8(p + 1) main cliques, hence any independent set 
of size k′ intersects each main clique on exactly one vertex. By Lemma 1, for all 
i, j ∈ {0,… , k − 1} , K intersects the cycle cliques of TGi,j on the same index xi,j . 
Moreover, if K ∩ Ri,j = {r

i,j
x } and K ∩ Li,j+1 = {�

i,j+1

x�
} , then, by construction of G, si,jx  

is row-compatible with si,j+1
x�

 . Similarly, if K ∩ Bi,j = {b
i,j
x } and K ∩ Ti+1,j = {t

i+1,j

x�
} , 

then, by construction of G, si,jx  is column-compatible with si+1,j
x�

 . By Lemma  1, it 
implies that si,jxi,j is row-compatible with si,j+1xi,j+1

 and column-compatible with si+1,jxi+1,j
 

(incrementations of i and j are done modulo k), thus {xi,jxi,j ∶ 0 ⩽ i, j ⩽ k − 1} is a fea-
sible solution. Using similar ideas, one can prove that a feasible solution of the grid 
tiling instance implies an independent set of size k′ in G.

2.1.4  Structure of the Obtained Graph

Let us now prove that G does not contain the graphs mentioned in the statement as 
an induced subgraph:

No K1,4 We first prove that for every 0 ⩽ i, j ⩽ k − 1 , the graph induced by the 
cycle cliques of TGi,j is claw-free. For the sake of contradiction, suppose that there 
exist three consecutive cycle cliques A, B and C containing a claw. W.l.o.g. we may 
assume that bx ∈ B is the center of the claw, and a� ∈ A , b� ∈ B and c� ∈ C are the 
three endpoints. By construction of the gadgets (there is a half-graph between A and 
B and between B and C), we must have 𝛼 < x < 𝛾 . Now, observe that if x < 𝛽 then 
a� must be adjacent to b� , and if 𝛽 < x , then b� must be adjacent to c� , but both case 
are impossible since {a� , b� , c�} is supposed to be an independent set.

Similarly, each subgraph induced by P, a path of size 2(p + 1) of cliques linking 
two consecutive cycles of cliques, is claw-free. Hence, for K1,4 to appear in G its 
center would have to lie in a branching clique. However, in that case, a claw must 
exist either in the cycle of cliques or in P, which we already ruled out.

No C4,… ,Cp1
 The main argument is that the graph induced by any two main 

cliques does not contain any of these cycles. Then, we show that such a cycle cannot 
lie entirely in the cycle cliques of a single gadget TGi,j . Indeed, if this cycle uses at 
most one vertex per main clique, then it must be of length at least 4p + 4 . If it inter-
sects a clique C on two vertices, then either it also intersect all the cycle cliques of 
the gadget, in which case it is of length 4p + 5 , or it intersects an adjacent clique of 
C on two vertices, in which case these two cliques induce a C4 , which is impossible. 
Similarly, such a cycle cannot lie entirely in a path between the main cliques of two 
gadgets. Finally, the main cliques of two gadgets are at distance at least 2(p + 1) , 
hence such a cycle cannot intersect the main cliques of two gadgets.

No tree T with two branching vertices at distance at most p2 Using the same argu-
ment as for the K1,4 case, observe that the claws contained in G can only appear in 
the cycle cliques where the paths are attached. However, observe that these cliques 
are at distance 2(p + 1) > p2 , thus, such a tree T cannot appear in G.   ◻
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As a direct consequence of Theorem  2, we get the following by setting 
p1 = p2 = |V(H)| + 1:

Corollary 1 If H is not chordal, or contains as an induced subgraph a K1,4 or a tree 
with two branching vertices, then MiS in H-free graphs is W[1]-hard.

2.2  Capturing Hard Graphs

We introduce two variants of the hardness construction of Theorem  2, which we 
refer to as the first construction. The second construction is obtained by replacing 
each interaction between two main cliques by an anti-matching, except the one inter-
action in the middle of the path cliques which remains a half-graph (see Fig. 4, mid-
dle). In an anti-matching, the same elements in the two adjacent cliques define the 
only non-edges. The correctness of this new reduction is simpler since the propaga-
tion of a choice is now straightforward. Observe however that the graph C4 appears 
in this new construction. For the third construction, we start from the second con-
struction and just add an anti-matching between two neighbors of each branching 
clique among the cycle cliques (see Fig. 4, right). This anti-matching only constrains 
more the instance but does not destroy the intended solutions; hence the correctness.

To describe those connected graphs H which escape the disjunction of Theorem 2 
(for which there is still a hope that MiS is FPT), we define a decomposition into 
cliques, similar yet different from clique graphs or tree decompositions of chordal 
graphs (a.k.a k-trees).

Definition 1 Let T be a graph on � vertices t1,… , t
�
 . We say that T is a clique 

decomposition of H if there is a partition of V(H) into (C1,C2,… ,C
�
) such that:

• for each i ∈ [�] , H[Ci] is a clique, and
• for each pair i ≠ j ∈ [�] , if H[Ci ∪ Cj] is connected, then titj ∈ E(T).

Fig. 4  A symbolic representation of the hardness constructions. To the left, only half-graphs (blue) are 
used between the cliques, as in the proof of Theorem 2. In the middle and to the right, the half-graphs 
(blue) are only used once in the middle of each path of cliques, and the rest of the interactions between 
the cliques are anti-matchings (red). The third construction (right) is a slight variation of the second 
(middle) where for each branching clique, we link by an anti-matching its two neighbors among the cycle 
cliques (Color figure online)



2369

1 3

Algorithmica (2020) 82:2360–2394 

Observe that, in the above definition, we do not require T to be a tree. Two 
cliques Ci and Cj are said adjacent if H[Ci ∪ Cj] is connected. We also write a 
clique decomposition on T (of H) to denote the choice of an actual partition 
(C1,C2,… ,C

�
).

Let T1 be the class of trees with at most one branching vertex. Equivalently, T1 
consists of paths and subdivisions of the claw.

Proposition 1 For a fixed connected graph H, if no tree in T1 is a clique decompo-
sition of H, then MiS in H-free graphs is W[1]-hard.

Proof This is immediate from the proof of Theorem 2 since H cannot appear in the 
first construction.   ◻

At this point, we can focus on connected graphs H admitting a tree T ∈ T1 as a 
clique decomposition. The reciprocal of Proposition 1 cannot be true since a sim-
ple edge is a clique decomposition of C4 . The next definition further restricts the 
interaction between two adjacent cliques.

Definition 2 Let T be a graph on � vertices t1,… , t
�
 . We say that T is a strong clique 

decomposition of H if there is a partition of V(H) into (C1,… ,C
�
) such that:

• for each i ∈ [�] , H[Ci] is a clique,
• for each titj ∈ E(T) , H[Ci ∪ Cj] is a clique, and
• for each titj ∉ E(T) , there is no edge between Ci and Cj.

An equivalent way to phrase this definition is that H can be obtained from T by 
adding false twins. Adding a false twin v′ to a graph consists of duplicating one 
of its vertex v (i.e., v and v′ have the same neighbors) and then adding an edge 
between v and v′.

We define almost strong clique decompositions which informally are strong 
clique decompositions where at most one edge can be missing in the interaction 
between two adjacent cliques.

Definition 3 Let T be a graph on � vertices t1,… , t
�
 . We say that T is an almost 

strong clique decomposition of H if there is a partition of V(H) into (C1,… ,C
�
) 

such that:

• for each i ∈ [�] , H[Ci] is a clique,
• for each titj ∈ E(T) , H[Ci ∪ Cj] is a clique potentially deprived of a single 

edge, and is connected, and
• for each titj ∉ E(T) , there is no edge between Ci and Cj.

Finally, a nearly strong clique decomposition is slightly weaker than an almost 
strong clique decomposition: at most one interaction between two adjacent 
cliques is only required to be C4-free. Formally:
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Definition 4 Let T be a graph on � vertices t1,… , t
�
 with a special edge tatb . We say 

that T is a nearly strong clique decomposition of H if there is a partition of V(H) into 
(C1,… ,C

�
) such that:

• for each i ∈ [�] , H[Ci] is a clique,
• H[Ca ∪ Cb] is C4-free,
• for each titj ∈ E(T)⧵{tatb} , H[Ci ∪ Cj] is a clique potentially deprived of a single 

edge, and is connected, and
• for each titj ∉ E(T) , there is no edge between Ci and Cj.

Let P be the set of all the paths. Notice that T1⧵P is the set of all the subdivisions 
of the claw.

Theorem 3 Let H be a fixed connected graph. If no P ∈ P is a nearly strong clique 
decomposition of H and no T ∈ T1⧵P is an almost strong clique decomposition of 
H, then MiS in H-free graphs is W[1]-hard.

Proof The idea is to mainly use the second construction and the fact that MiS in C4

-free graphs is W[1]-hard (due to the first construction). For every fixed graph H 
which cannot be an induced subgraph in the second construction, MiS is W[1]-hard. 
To appear in this construction, the graph H should have

• either a clique decomposition on a subdivision of the claw, such that the interac-
tion between two adjacent cliques is the complement of a (non necessarily per-
fect) matching, or

• a clique decomposition on a path, such that the interaction between two adja-
cent cliques is the complement of a matching, except for at most one interaction 
which can be a C4-free graph.

We now just observe that in both cases if, among the interactions between adjacent 
cliques, one complement of matching has at least two non-edges, then H contains an 
induced C4 . Hence the two items can be equivalently replaced by the existence of an 
almost strong clique decomposition on a subdivision of the claw, and a nearly strong 
clique decomposition on a path, respectively.   ◻

Theorem 3 narrows down the connected open cases to graphs H which have a 
nearly strong clique decomposition on a path or an almost strong clique decomposi-
tion on a subdivision of the claw.

In the strong clique decomposition, the interaction between two adjacent cliques 
is very simple: their union is a clique. Therefore, it might be tempting to conjecture 
that if H admits T ∈ T1 as a strong clique decomposition, then MiS in H-free graphs 
is FPT. Indeed, those graphs H appear in both the first and the second W[1]-hardness 
constructions. Nevertheless, we will see that this conjecture is false: even if H has a 
strong clique decomposition T ∈ T1 , it can be that MiS is W[1]-hard. The simplest 
tree of T1⧵P is the claw. We denote by Ti,j,k the graph obtained by adding a universal 
vertex to the disjoint union of three cliques Ki ⊎ Kj ⊎ Kk . The claw is a strong clique 
decomposition of Ti,j,k (for every natural numbers i, j, k).



2371

1 3

Algorithmica (2020) 82:2360–2394 

Theorem 4 MiS in T1,2,2-free graphs is W[1]-hard.

Proof We show that T1,2,2 does not appear in the third construction (Fig. 4, right). 
We claim that, in this construction, the graph T1,1,2 , sometimes called cricket, can 
only appear in the two ways depicted on Fig. 5 (up to symmetry).

Claim 5 The triangle of the cricket cannot appear within the same main clique.

Proof of claim Otherwise the two leaves (i.e., vertices of degree 1) of the cricket are 
in two distinct adjacent cliques. But at least one of those adjacent cliques is linked 
to the main clique of the triangle by an anti-matching. This is a contradiction to the 
corresponding leaf having two non-neighbors in the main clique of the triangle.   ◻

We first study how the cricket can appear in a path of cliques. Let C be the main 
clique containing the universal vertex of the cricket. This vertex is adjacent to three 
disjoint cliques K1 ⊎ K1 ⊎ K2 . Due to the previous claim, the only way to distribute 
them is to put K1 in the previous main clique, K1 in the same main clique C, and 
K2 in the next main clique. This is only possible if the interaction between C and 
the next main clique is a half-graph. In particular, this implies that the interaction 
between the previous main clique and C is an anti-matching. This situation corre-
sponds to the left of Fig. 5.

This also implies that the cricket cannot appear in a path of cliques without a half-
graph interaction (anti-matchings only). We now turn our attention to the vicinity of 
a triangle of main cliques, which is proper to the third construction. By our previous 
remarks, we know that the universal vertex of the cricket has to be either alone in 
a main clique (by symmetry, it does not matter which one) of the triangle, or with 
exactly one of its neighbors of degree 2. Now, the only way to place K1 ⊎ K1 ⊎ K2 is 
to put the two K1 in the two other main cliques of the triangle, and the K2 (or the sin-
gle vertex rest of it) in the remaining adjacent main clique. Indeed, if the K2 is in a 
main clique of the triangle, the K1 in the third main clique of the triangle would have 
two non-edges towards to K2 . This is not possible with an anti-matching interaction. 
Therefore, the only option corresponds to the right of Fig. 5.

Fig. 5  The two ways the cricket appears in the third construction. The red edges between two adjacent 
cliques symbolize an anti-matching, whereas the blue edge symbolizes a C4-free graph. In the left hand-
side, one neighbor of the universal vertex with degree 2 could alternatively be in the same clique as the 
universal vertex
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To obtain a T1,2,2 , one needs to find a false twin to one of the leaves of the cricket. 
This is not possible since, in both cases, the two leaves are in two adjacent cliques 
with an anti-matching interaction. Therefore, adding the false twin would create a 
second non-neighbor to the remaining leaf.   ◻

The graph T1,1,1 is the claw itself for which MiS is solvable in polynomial time. 
The parameterized complexity for the graph T1,1,2 (the cricket) remains open. As a 
matter of fact, this question is unresolved for T1,1,s-free graphs, for any integer s ⩾ 2 . 
Solving those cases would bring us a bit closer to a full dichotomy FPT vs W[1]-
hard. Although, Theorem  4 suggests that this dichotomy will be rather subtle. In 
addition, this result infirms the plausible conjecture: if MiS is FPT in H-free graphs, 
then it is FPT in H′-free graphs where H′ can be obtained from H by adding false 
twins.

The toughest challenge towards the dichotomy is understanding MiS in the 
absence of paths of cliques.5 In Theorem 11, we make a very first step in that direc-
tion: we show that for every graph H with a strong clique decomposition on P3 , the 
problem is FPT. In the previous paragraphs, we dealt mostly with connected graphs 
H. In Theorem 6, we show that if H is a disjoint union of cliques, then MiS in H-free 
graphs is FPT. In the language of clique decompositions, this can be phrased as H 
has a clique decomposition on an edgeless graph.

3  Positive Results I: Disjoint Union of Cliques

For r, q ⩾ 1 , let Kq
r  be the disjoint union of q copies of Kr . The proof of the following 

theorem is inspired by the case r = 2 by Alekseev [2].

Theorem 6 MaxiMuM independent Set is FPT in Kq
r -free graphs.

Proof We will prove by induction on q that a Kq
r -free graph has an independent set 

of size k or has at most Ram(r, k)qknqr independent sets. This will give the desired 
FPT-algorithm, as the proof shows how to construct this collection of independent 
sets. Note that the case q = 1 is trivial by Ramsey’s theorem. We also assume r ≥ 3 , 
since the case r = 2 corresponds to Alekseev’s algorithm [2].

Let G be a Kq
r -free graph and let < be any fixed total ordering of V(G) such that 

the largest vertex in this ordering belongs to a clique of size r (the case where G 
is Kr-free is trivial by Ramsey’s theorem). Since a clique of size r can be found in 
polynomial time, such an ordering can be found in polynomial time. For any vertex 
x, define x+ = {y, x < y} and x− = V(G)⧵x+.

Let us first explain how we will generate independent sets. We will prove next 
that the algorithm generates all of them. Let C be a fixed clique of size r in G and 
let c be the largest vertex of C with respect to <. Let V1 be the set of vertices of 
c+ which have no neighbor in C. Note that V1 induces a Kq−1

r -free graph, so by 

5 Actually, even the classical complexity of MiS in the absence of long induced paths is not well under-
stood.
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induction either it contains an independent set of size k, and so does G, or it has at 
most Ram(r, k)(q−1)kn(q−1)r independent sets. In the latter case, let S1 be the set of 
all independent sets of G[V1] . Now in a second phase we define an initially empty 
set SC and do the following. For each independent set S1 in S1 (including the empty 
set), we denote by V2 the set of vertices in c− that have no neighbor in S1 . For every 
choice of a vertex x amongst the largest Ram(r, k) vertices of V2 in the order, we add 
x to S1 and modify V2 in order to keep only vertices that are smaller than x (with 
respect to <) and non adjacent to x. We repeat this operation k − 1 times (or until V2 
becomes empty). At the end, we either find an independent set of size k (if V2 is still 
not empty) or add S1 to SC (when V2 becomes empty). By doing so we construct a 
family of at most Ram(r, k)k independent sets for each S1 , so in total we get indeed 
at most Ram(r, k)kqn(q−1)r independent sets for each clique C. Finally we define S as 
the union over all r-cliques C of the sets SC , so that S has size at most the desired 
number.

We claim that if G does not contain an independent set of size k, then S contains 
all independent sets of G. It suffices to prove that for every independent set S, there 
exists a clique C for which S ∈ SC . Let S be an independent set, and define C to 
be a clique of size r such that its largest vertex c (with respect to <) satisfies the 
conditions:

• no vertex of C is adjacent to a vertex of S ∩ c+ , and
• c is the smallest vertex such that a clique C satisfying the first item exists.

First remark that such a clique always exist, since we assumed that the largest ver-
tex clast of < is contained in a clique of size r, which means that S ∩ c+

last
 is empty 

and thus the first item is vacuously satisfied. Secondly, note that several cliques C 
might satisfy the two previous conditions. In that case, pick one such clique arbitrar-
ily. This definition of C and c ensures that S ∩ c+ is an independent set in the set V1 
defined in the construction above (it might be empty). Thus, it will be picked in the 
second phase as some S1 in S1 and for this choice, each time V2 is considered, the 
fact that C is chosen to minimize its largest element c guarantees that there must be 
a vertex of S in the Ram(r, k) largest vertices in V2 , otherwise we could find within 
those vertices an r-clique contradicting the choice of C (we can find an r-clique sat-
isfying both points such that the maximum vertex is smaller than c). So it ensures 
that we will add S to the collection SC , which concludes our proof.   ◻

4  Positive Results II

4.1  Key Ingredient: Iterative Expansion and Ramsey Extraction

In this section, we present the main idea of our algorithms. It is a generalization 
of iterative expansion, which itself is the maximization version of the well-known 
iterative compression technique. Iterative compression is a useful tool for design-
ing parameterized algorithms for subset problems (i.e. problems where a solu-
tion is a subset of some set of elements: vertices of a graph, variables of a logic 
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formula...etc.) [9, 25]. Although it has been mainly used for minimization prob-
lems, iterative compression has been successfully applied for maximization prob-
lems as well, under the name iterative expansion  [7]. Roughly speaking, when 
the problem consists of finding a solution of size at least k, the iterative expan-
sion technique consists of solving the problem where a solution S of size k − 1 
is given in the input, in the hope that this solution will imply some structure in 
the instance. In the following, we consider an extension of this approach where, 
instead of a single smaller solution, one is given a set of f(k) smaller solutions 
S1 , … , Sf (k) . As we will see later, we can further add more constraints on the sets 
S1 , … , Sf (k) . Notice that all the results presented in this sub-section (Lemmas  2 
and 3 in particular) hold for any hereditary graph class (including the class of all 
graphs). The use of properties inherited from particular graphs (namely, H-free 
graphs in our case) will only appear in Sects. 4.2 and 4.3.

Definition 5 For a function f ∶ ℕ → ℕ , the f -iterative expanSion MiS problem 
takes as input a graph G, an integer k, and a set of f(k) vertex-disjoint independent 
sets S1 , … , Sf (k) , each of size k − 1 . The objective is to find an independent set of size 
k in G, or to decide that such an independent set does not exist.

Lemma 2 Let G be a hereditary graph class. MiS is FPT in G iff f -iterative expan-
Sion MiS is FPT in G for some computable function f ∶ ℕ → ℕ.

Proof Clearly if MiS is FPT, then f -iterative expanSion MiS is FPT for any com-
putable function f. Conversely, let f be a function for which f -iterative expanSion 
MiS is FPT, and let G be a graph with |V(G)| = n.

We show by induction on k that there is an algorithm that either finds an inde-
pendent set of size k, or answers that such a set does not exist, in FPT time parame-
terized by k. The initialization can obviously be computed in constant time. Assume 
we have an algorithm for k − 1 . Successively for i from 1 to f(k), we construct an 
independent set Si of size k − 1 in G⧵

(
S1,… , Si−1

)
 . If, for some i, we are unable to 

find such an independent set, then it implies that any independent set of size k in G 
must intersect S1 ∪⋯ ∪ Si−1 . We thus branch on every vertex v of this union, and, by 
induction, find an independent set of size k − 1 in the graph induced by V(G)⧵N[v] . 
If no step i triggered the previous branching, we end up with f(k) vertex-disjoint 
independent sets S1 , … , Sf (k) , each of size k − 1 . We now invoke the algorithm for 
f -iterative expanSion MiS to conclude. Let us analyze the running time of this 
algorithm: each step either branches on at most f (k)(k − 1) subcases with param-
eter k − 1 , or concludes in time Af (n, k) , the running time of the algorithm for f 
-iterative expanSion MiS. Hence the total running time is O∗(f (k)k(k − 1)kAf (n, k)) , 
where the O∗(.) suppresses polynomial factors.   ◻

We will actually prove a stronger version of this result, by adding more con-
straints on the input sets S1 , … , Sf (k) , and show that solving the expansion version 
on this particular kind of input is enough to obtain the result for MiS.
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Definition 6 Given a graph G and a set of k − 1 vertex-disjoint cliques of G, 
C = {C1,… ,Ck−1} , each of size q, we say that C is a set of Ramsey-extracted cliques 
of size q if the conditions below hold. Let Cr = {cr

j
∶ j ∈ {1,… , q}} for every 

r ∈ {1,… , k − 1}.

• For every j ∈ [q] , the set {cr
j
∶ r ∈ {1,… , k − 1}} is an independent set of G of 

size k − 1.
• For any r ≠ r� ∈ {1,… , k − 1} , one of the four following case can happen: 

 (i) for every j, j� ∈ [q] , cr
j
cr

�

j�
∉ E(G)

 (ii) for every j, j� ∈ [q] , cr
j
cr

�

j�
∈ E(G) iff j ≠ j′

 (iii) for every j, j� ∈ [q] , cr
j
cr

�

j�
∈ E(G) iff j < j′

 (iv) for every j, j� ∈ [q] , cr
j
cr

�

j�
∈ E(G) iff j > j′

   In the case (i) (resp. (ii)), we say that the relation between Cr and Cr′ is empty 
(resp. full6). In case (iii) or (iv), we say the relation is semi-full.

Observe, in particular, that a set C of k − 1 Ramsey-extracted cliques of size q 
can be partitioned into q independent sets of size k − 1 . As we will see later, these 
cliques will allow us to obtain more structure with the remaining vertices if the 
graph is H-free. Roughly speaking, if q is large, we will be able to extract from 
C another set C′ of k − 1 Ramsey-extracted cliques of size q′ < q , such that every 
clique is a module7 with respect to the solution x∗

1
 , … , x∗

k
 we are looking for. Then, 

by guessing the structure of the adjacencies between C′ and the solution, we will be 
able to identify from the remaining vertices k sets X1 , … , Xk , where each Xi has the 
same neighborhood as x∗

i
 w.r.t. C′ , and plays the role of “candidates” for this vertex. 

For a function f ∶ ℕ → ℕ , we define the following problem:

Definition 7 The f -raMSey-extracted iterative expanSion MiS problem takes as 
input an integer k and a graph G whose vertices are partitioned into non-empty sets 
X1 ∪⋯ ∪ Xk ∪ C1 ∪⋯ ∪ Ck−1 , where:

• {C1,… ,Ck−1} is a set of k − 1 Ramsey-extracted cliques of size f(k)
• any independent set of size k in G is contained in X1 ∪⋯ ∪ Xk

• ∀i ∈ {1,… , k} , ∀v,w ∈ Xi and ∀j ∈ {1,… , k − 1} , N(v) ∩ Cj = N(w) ∩ Cj = � 
or N(v) ∩ Cj = N(w) ∩ Cj = Cj

• the following bipartite graph B is connected: V(B) = B1 ∪ B2 , B1 = {b1
1
,… , b1

k
} , 

B2 = {b2
1
,… , b2

k−1
} and b1

j
b2
r
∈ E(B) iff Xj and Cr are adjacent.

The objective is the following:

6 Remark that in this case, the graph induced by C
r
∪ C

r�
 is the complement of a perfect matching.

7 A set of vertices M is a module if every vertex v ∉ M is adjacent to either all vertices of M, or none.



2376 Algorithmica (2020) 82:2360–2394

1 3

• if G contains an independent set S such that S ∩ Xi ≠ � for all i ∈ {1,… , k} , then 
the algorithm must answer “YES”. In that case the solution is called a rainbow 
independent set.

• if G does not contain an independent set of size k, then the algorithm must 
answer “NO”.

Observe that in the case the graph contains an independent set of size k but no 
rainbow independent set, the algorithm is allowed to answer either yes or no. Even-
tually, this will imply a one-sided error Monte-Carlo algorithm with constant error 
probability for MiS. Definition 7 is illustrated by Fig. 6.

Lemma 3 Let G be a hereditary graph class. If there exists a computable function 
f ∶ ℕ → ℕ such that f -raMSey-extracted iterative expanSion MiS is FPT in G , then 
g -iterative expanSion MiS is FPT in G , where g(x) = Ram

�x
(f (x)2x(x−1)) ∀x ∈ ℕ , 

with �x = 2(x−1)
2.

Proof Let f ∶ ℕ → ℕ be such a function, and let G, k and S = {S1,… , Sg(k)} be an 
input of g -iterative expanSion MiS. Recall that the objective is to find an inde-
pendent set of size k in G, or to decide that 𝛼(G) < k . We prove it by induction on k. 
If G contains an independent set of size k, then either there is one intersecting some 
set of S , or every independent set of size k avoids the sets in S . In order to capture 
the first case, we branch on every vertex v of the sets in S , and make a recursive call 

X

X1

X2

X3

X4

X5

X6

X7 C

C1

C2

C3

C4

C5

C6

S3B

Fig. 6  The structure of the f -raMSey-extracted iterative expanSion MiS inputs
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with parameter G⧵N[v] , k − 1 . In the remainder of the algorithm, we thus assume 
that any independent set of size k in G avoids every set of S.

We choose an arbitrary ordering of the vertices of each Sj . Let us denote by sr
j
 the 

rth vertex of Sj . Notice that given an ordered pair of sets of k − 1 vertices (A,  B), 
there are �k = 2(k−1)

2 possible sets of edges between these two sets. Let us denote by 
c1 , … , c2(k−1)2 the possible sets of edges, called types. We define an auxiliary edge-
colored graph H whose vertices are in one-to-one correspondence with S1 , … , Sg(k) , 
and, for i < j , there is an edge between Si and Sj of color � iff the type of (Si, Sj) is � . 
By Ramsey’s theorem, since H has Ram

�k
(f (k)2k(k−1)) vertices, it must admit a mon-

ochromatic clique of size at least h(k) = f (k)2k(k−1) . W.l.o.g., the vertex set of this 
clique corresponds to S1 , … , Sh(k) . For p ∈ {1,… , k − 1} , let Cp = {s

p

1
,… , s

p

h(k)
} . 

Observe that the Ramsey extraction ensures that each Cp is either a clique or an inde-
pendent set. If Cp is an independent set for some p, then we can immediately con-
clude, since h(k) ⩾ k . Hence, we suppose that Cp is a clique for every 
p ∈ {1,… , k − 1} . We now prove that C1 , … , Ck−1 are Ramsey-extracted cliques of 
size h(k). First, by construction, for every j ∈ {1,… , h(k)} , the set 
{s

p

j
∶ p = 1,… , k − 1} is an independent set. Then, let c be the type of the mono-

chromatic clique of H obtained previously, represented by the adjacencies between 
two sets (A, B), each of size k − 1 . For every p ∈ {1,… , k − 1} , let ap (resp. bp ) be 
the pth vertex of A (resp. B). Let p, q ∈ {1,… , k − 1} , p ≠ q . If none of apbq and 
aqbp are edges in type c, then there is no edge between Cp and Cq , and their relation 
is thus empty. If both edges apbq and aqbp exist in c, then the relation between Cp and 
Cq is full. Finally if exactly one edge among apbq and aqbp exists in c, then the rela-
tion between Cp and Cq is semi-full. This concludes the fact that C = {C1,… ,Ck−1} 
are Ramsey-extracted cliques of size h(k).

Suppose that G has an independent set X∗ = {x∗
1
,… , x∗

k
} . Recall that we assumed 

previously that X∗ is contained in V(G)⧵
(
C1 ∪⋯ ∪ Ck−1

)
 . The next step of the algo-

rithm consists of branching on every subset of f(k) indices J ⊆ {1,… , h(k)} , and 
restrict every set Cp to {sp

j
∶ j ∈ J} . For the sake of readability, we keep the notation 

Cp to denote {sp
j
∶ j ∈ J} (the non-selected vertices are put back in the set of remain-

ing vertices of the graph, i.e. we do not delete them). Since h(k) = f (k)2k(k−1) , there 
must exist a branch where the chosen indices are such that for every i ∈ {1,… , k} 
and every p ∈ {1,… , k − 1} , x∗

i
 is either adjacent to all vertices of Cp or none of 

them. In the remainder, we may thus assume that such a branch has been made, with 
respect to the considered solution X∗ = {x∗

1
,… , x∗

k
} . Now, for every 

v ∈ V(G)⧵
(
C1,… ,Ck−1

)
 , if there exists p ∈ {1,… , k − 1} such that N(v) ∩ Cp ≠ � 

and N(v) ∩ Cp ≠ Cp , then we can remove this vertex, as we know that it cannot cor-
respond to any x∗

i
 . Thus, we know that all the remaining vertices v are such that for 

every p ∈ {1,… , k − 1} , v is either adjacent to all vertices of Cp , or none of them.
In the following, we perform a color coding-based step on the remaining verti-

ces. Informally, this color coding will allow us to identify, for every vertex x∗
i
 of the 

optimal solution, a set Xi of candidates, with the property that all vertices in Xi have 
the same neighborhood with respect to sets C1 , … , Ck−1 . We thus color uniformly at 
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random the remaining vertices V(G)⧵
(
C1,… ,Ck−1

)
 using k colors. The probability 

that the elements of X∗ are colored with pairwise distinct colors is at least e−k.
This random process can be derandomized using the so-called notion of perfect 

hash families. A (n, k)-perfect hash family is a family of functions F  from [n] to [k] 
(which can be seen as colorings) such that for every set S ∈

([n]
k

)
 , there exists f ∈ F  

such that the restriction of f on S is injective. It is known [23] that a (n, k)-perfect 
hash family of size ekkO(log k) log n can be constructed in time ekkO(log k)n log n . 
Hence, instead of coloring V(G)⧵

(
C1,… ,Ck−1

)
 uniformly at random, we branch 

on every coloring f ∈ F  and run the remainder of the algorithm. The definition of 
(n, k)-perfect hash family ensures that there is a coloring f such that X∗ is a rain-
bow independent set with respect to f. Notice that this derandomization step implies 
a branching into h(k) log n subcases, for some computable function h. However, 
the depth of the branching tree (i.e. the maximum number of times this branching 
will be made in every computation path) is bounded by a function of k only. Since 
(log n)k ≤ g(k)n for some function g [26], the deterministic version of the algorithm 
is still FPT.

We are thus reduced to the case of finding a rainbow independent set. For every 
i ∈ {1,… , k} , let Xi be the vertices of V(G)⧵

(
C1,… ,Ck−1

)
 colored with color i. We 

now partition every set Xi into at most 2k−1 subsets X1
i
 , … , X2k−1

i
 , such that for every 

j ∈ {1,… , 2k−1} , all vertices of Xj

i
 have the same neighborhood with respect to the 

sets C1 , … , Ck−1 (recall that every vertex of V(G)⧵
(
C1,… ,Ck−1

)
 is adjacent to all 

vertices of Cp or none, for each p ∈ {1,… , k − 1} ). We branch on every tuple 
(j1,… , jk) ∈ {1,… , 2k−1} . Clearly the number of branches is bounded by a function 
of k only and, moreover, one branch (j1,… , jk) is such that x∗

i
 has the same neighbor-

hood in C1 ∪⋯ ∪ Ck−1 as vertices of Xji
i
 for every i ∈ {1,… , k} . We assume in the 

following that such a branching has been made. For every i ∈ {1,… , k} , we can thus 
remove vertices of Xj

i
 for every j ≠ ji . For the sake of readability, we rename Xji

i
 as 

Xi . Let B be the bipartite graph with vertex bipartition (B1,B2) , B1 = {b1
1
,… , b1

k
} , 

B2 = {b2
1
,… , b2

k−1
} , and b1

i
b2
p
∈ E(B) iff x∗

i
 is adjacent to Cp . Since every x∗

i
 has the 

same neighborhood as Xi with respect to C1 , … , Ck−1 , this bipartite graph actually 
corresponds to the one described in Definition  7 representing the adjacencies 
between Xi ’s and Cp’s. We now prove that it is connected. Suppose it is not. Then, 
since |B1| = k and |B2| = k − 1 , there must be a component with as many vertices 
from B1 as vertices from B2 . However, in this case, using the fixed solution X∗ on 
one side and an independent set of size k − 1 in C1 ∪⋯ ∪ Ck−1 on the other side, it 
implies that there is an independent set of size k intersecting ∪k−1

p=1
Cp , a 

contradiction.
Hence, all conditions of Definition 7 are now fulfilled. It now remains to find an 

independent set of size k disjoint from the sets C , and having a non-empty intersec-
tion with Xi , for every i ∈ {1,… , k} . We thus run an algorithm solving f -raMSey-
extracted iterative expanSion MiS on this input, which concludes the algorithm.  
 ◻
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The proof of the following result is immediate, by using successively Lem-
mas 2 and 3.

Theorem  7 Let G be a hereditary graph class. If f -raMSey-extracted iterative 
expanSion MiS is FPT in G for some computable function f, then MiS is FPT in G.

We now apply this framework to two families of graphs H.

4.2  Clique Minus a Smaller Clique

Theorem  8 For any r ⩾ 2 and 2 ⩽ s < r , MiS in (Kr⧵Ks)-free graphs is FPT if 
s ⩽ 3 , and W[1]-hard otherwise.

Proof The case s = 2 was already known [11]. The result for s ⩾ 4 comes from The-
orem 2. We now deal with the case s = 3 . We solve the problem in (Kr+3⧵K3)-free 
graphs, for every r ⩾ 2 (the problem is polynomial for r = 1 , since it it corresponds 
exactly to the case of claw-free graphs). Let G, k be an input of the problem. We 
present an FPT algorithm for f -raMSey-extracted iterative expanSion MiS with 
f (x) = r for every x ∈ ℕ . The result for MiS can then be obtained using Theorem 7.

We thus assume that V(G) = X1 ∪⋯ ∪ Xk ∪ C1 ∪⋯ ∪ Ck−1 where all cliques Cp 
have size r. Consider the bipartite graph B representing the adjacencies between 
{X1,… ,Xk} and {C1,… ,Ck−1} , as in Definition 7 (for the sake of readability, we 
will make no distinction between the vertices of B and the sets {X1,… ,Xk} and 
{C1,… ,Ck−1} ). We may first assume that |Xi| ⩾ Ram(r, k) for every i ∈ {1,… , k} , 
since otherwise we can branch on every vertex v of Xi and make a recursive call with 
input G⧵N[v] , k − 1 . Hence, for every i ∈ {1,… , k} , we may assume that Xi contains 
a clique on r vertices (indeed, if it does not, then it must contain an independent set 
of size k, in which case we are done). Suppose now that G contains an independent 
set S∗ = {x∗

1
,… , x∗

k
} , with xi ∈ Xi for all i ∈ {1,… , k} . The first step is to consider 

the structure of B , using the fact that G is (Kr⧵K3)-free. We have the following:

Claim 9 B is a path, or we can conclude in polynomial time.

Proof of claim We first prove that for every i ∈ {1,… , k} , the degree of Xi in B is at 
most 2. Indeed, assume by contradiction that it is adjacent to Ca , Cb and Cc . Since 
|Xi| ⩾ Ram(r, k) , by Ramsey’s theorem, it either contains an independent set of size 
k, in which case we are done, or a clique K of size r. However, observe in this case 
that K together with sa

1
 , sb

1
 and sc

1
 (which are pairwise non-adjacent) induces a graph 

isomorphic to Kr+3⧵K3.

Then, we show that for every i ∈ {1,… , k − 1} , the degree of Ci in B is at most 
2. Assume by contradiction that Ci is adjacent to Xa , Xb and Xc . If the instance 
is positive, then there must be an independent set of size three with non-empty 
intersection with each of Xa , Xb and Xc . If such an independent set does not exist 
(which can be checked in cubic time), we can immediately answer NO. Now 
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observe that Ci (which is of size r) together with this independent set induces a 
graph isomorphic to Kr+3⧵K3.

To summarize, B is a connected bipartite graph of maximum degree 2 with k 
vertices in one part, k − 1 vertices in the other part. It must be a path.   ◻

W.l.o.g., we may assume that for every i ∈ {2,… , k − 1} , Xi is adjacent to Ci−1 
and Ci , and that X1 (resp. Xk ) is adjacent to C1 (resp. Ck−1 ). We now concentrate on 
the adjacencies between sets Xi . We say that an edge xy ∈ E(G) is a long edge if 
x ∈ Xi , y ∈ Xj with |j − i| ⩾ 2 and 2 ⩽ i, j ⩽ k − 1 , i ≠ j.

Claim 10 ∀x ∈ X2 ∪⋯ ∪ Xk−1 , x is incident to at most (k − 2)(Ram(r, 3) − 1) long 
edges.

Proof of claim In order to prove it, let us show that for i, j ∈ {2,… , k − 1} such that 
|j − i| ⩾ 2 , i ≠ j , and for every x ∈ Xi , |N(x) ∩ Xj| ⩽ Ram(r, 3) − 1 . Assume by con-
tradiction that there exists x ∈ Xi which has at least Ram(r, 3) neighbors Y ⊆ Xj . By 
Ramsey’s theorem, either Y contains an independent set of size 3 or a clique of size 
r. In the first case, Cj together with these three vertices induces a graph isomorphic 
to Kr+3⧵K3 . Hence we may assume that Y contains a clique Y ′ of size r. But in this 
case, Y ′ together with x, sj−1

1
 , sj

1
 induce a graph isomorphic to Kr+3⧵K3 as well.   ◻

Recall that the objective is to find an independent set of size k with non-empty 
intersection with Xi , for every i ∈ {1,… , k} . We assume k ⩾ 5 , otherwise the 
problem is polynomial. The algorithm starts by branching on every pair of non-
adjacent vertices (x1, xk) ∈ X1 × Xk , and removing the union of their neihborhoods 
in X2 ∪⋯ ∪ Xk−1 . For the sake of readability, we still denote by X2 , … , Xk−1 these 
reduced sets. If such a pair does not exist or the removal of their neighborhood 
empties some Xi , then we immediately answer NO (for this branch). Informally 
speaking, we just guessed the solution within X1 and Xk (the reason for this is that 
we cannot bound the number of long edges incident to vertices of these sets). We 
now concentrate on the graph G′ , which is the graph induced by X2 ∪⋯ ∪ Xk−1 . 
Clearly, it remains to decide whether G′ admits an independent set of size k − 2 
with non-empty intersection with Xi , for every i ∈ {2,… , k − 1}.

The previous claim showed that the structure of G′ is quite particular: roughly 
speaking, the adjacencies between consecutive Xi ’s is arbitrary, but the number 
of long edges is bounded for every vertex. The key observation is that if there 
were no long edge at all, then a simple dynamic programming algorithm would 
allow us to conclude. Nevertheless, using the previous claim, we can actually 
upper bound the number of long edges incident to a vertex of the solution by 
a function of k only (recall that r is a constant). We can then get rid of these 
problematic long edges using the so-called technique of random separation  [6]. 
Let S = {x2,… , xk−1} be a solution of our problem (with xi ∈ Xi for every 
i ∈ {2,… , k − 1} ). Let us define D = {y ∶ xy is a long edge and x ∈ S} . By the 
previous claim, we have |D| ⩽ (Ram(r, 3) − 1)(k − 2)2 . The idea of random sepa-
ration is to delete each vertex of the graph with probability 1

2
 . At the end, we say 

that a removal is successful if both of the two following conditions hold: (i) no 
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vertex of S has been removed, and (ii) all vertices of D have been removed (other 
vertices but S may have also been removed). Observe that the probability that 
a removal is successful is at least 2−k2Ram(r,3) . In such a case, we can remove all 
remaining long edges (more formally, we remove their endpoints): indeed, for a 
remaining long edge xy, we know that there exists a solution avoiding both x and 
y, hence we can safely delete x and y.

Similarly to the color coding step of Lemma 3, this can be derandomized using 
(n, t)-universal sets: a (n, t)-universal set is a family U  of subsets of [n] such that 
for any S ⊆ [n] of size t, the family {A ∩ S ∶ A ∈ U} contains all 2t subsets of S. 
It is known  [23] that for any n, t ⩾ 1 , one can construct an (n,  t)-universal set 
of size 2ttO(log t) log n in time 2ttO(log t)n log n . Let U  be an (n,  t)-universal set for 
t = k + (Ram(r, 3) − 1)(k − 2)2 . Instead of deleting vertices of G randomly, branch 
on every set U ∈ U  , and for each branch, delete vertices from U. Then there must 
be a branch where D ⊆ U and S ⊈ U , hence vertices of D are deleted while those 
of S are not. As previously, this implies branching into h(k) log n subcases for 
some computable function of k, but since the depth of the branching tree is a 
function of k only, the running time of the deterministic version is still FPT.

We still denote by X2 , … , Xk−1 the reduced sets, for the sake of readability. We 
thus end up with a graph composed of sets X2 , … , Xk−1 , with edges between Xi 
and Xj only if [j − i| = 1 . In that case, observe that there is a solution if and only 
if the following dynamic programming returns true on input P(3, x2) for some 
x2 ∈ X2:

Informally, this dynamic programming relies on the fact that the only adjacencies 
between sets Xi are between consecutive sets, hence we only need to remember the 
previous choice when constructing a solution from i = 2 to k − 1 . Hence, P(i, xi−1) 
represents whether there exists a rainbow solution in ∪k−1

j=i−1
Xj containing xi−1 ∈ Xi−1 . 

Clearly this dynamic programming runs in O(mnk) time, where m and n are the 
number of edges and vertices of the remaining graph, respectively. Moreover, it can 
easily be turned into an algorithm returning a solution of size k − 2 if it exists.   ◻

4.3  Clique Minus a Complete Bipartite Graph

For every three positive integers r, s1 , s2 with s1 + s2 < r , we consider the graph 
Kr⧵Ks1,s2

 . Another way to see Kr⧵Ks1,s2
 is as a P3 of cliques of size s1 , r − s1 − s2 , and 

s2 . More formally, every graph Kr⧵Ks1,s2
 can be obtained from a P3 by adding s1 − 1 

false twins of the first vertex, r − s1 − s2 − 1 , for the second, and s2 − 1 , for the third.

Theorem  11 For any r ⩾ 2 and s1 ⩽ s2 with s1 + s2 < r , MiS in Kr⧵Ks1,s2
-free 

graphs is FPT.

P(i, xi−1) =

⎧
⎪⎨⎪⎩

true if i = k

false if Xi ⊆ N(xi−1)⋁
xi∈Xi⧵N(xi−1)

P(i + 1, xi) otherwise.
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Proof It is more convenient to prove the result for K3r⧵Kr,r-free graphs, for any posi-
tive integer r. It implies the theorem by choosing this new r to be larger than s1 , 
s2 , and r − s1 − s2 . We will show that for f (x) ∶= 3r for every x ∈ ℕ , f -raMSey-
extracted iterative expanSion MiS in K3r⧵Kr,r-free graphs is FPT. By Theorem 7, 
this implies that MiS is FPT in this class. Let C1,… ,Ck−1 (whose union is denoted 
by C ) be the Ramsey-extracted cliques of size 3r, which can be partitioned, as in 
Definition 7, into 3r independent sets S1,… , S3r , each of size k − 1 . Let X =

⋃k

i=1
Xi 

be the set in which we are looking for an independent set of size k. We recall that 
between any Xi and any Cj there are either all the edges or none. Hence, the whole 
interaction between X  and C can be described by the bipartite graph B described in 
Definition 7. Firstly, we can assume that each Xi is of size at least Ram(r, k) , other-
wise we can branch on Ram(r, k) choices to find one vertex in an optimum solution 
(and decrease k by one). By Ramsey’s theorem, we can assume that each Xi contains 
a clique of size r (if it contains an independent set of size k, we are done). Our gen-
eral strategy is to leverage the fact that the input graph is (K3r⧵Kr,r)-free to describe 
the structure of X  . Hopefully, this structure will be sufficient to solve our problem in 
FPT time.

We define an auxiliary graph Y with k − 1 vertices. The vertices y1,… , yk−1 of Y 
represent the Ramsey-extracted cliques of C and two vertices yi and yj are adjacent 
iff the relation between Ci and Cj is not empty (equivalently the relation is full or 
semi-full). It might seem peculiar that we concentrate the structure of C , when we 
will eventually discard it from the graph. It is an indirect move: the simple struc-
ture of C will imply that the interaction between X  and C is simple, which in turn, 
will severely restrict the subgraph induced by X  . More concretely, in the rest of the 
proof, we will (1) show that Y is a clique, (2) deduce that B is a complete bipar-
tite graph, (3) conclude that X  cannot contain an induced K2

r
= Kr ⊎ Kr and run the 

algorithm of Theorem 6 (which is even stronger than simply solving the colored ver-
sion of the problem: Theorem 6 returns YES if and only if the instance contains an 
independent set of size k).

Suppose that there is yi1yi2yi3 an induced P3 in Y, and consider Ci1
 , Ci2

 , Ci3
 the cor-

responding Ramsey-extracted cliques. For s < t ∈ [3r] , let Cs→t
i

∶= Ci ∩
⋃

s⩽j⩽t Sj . 
In other words, Cs→t

i
 contains the elements of Ci having indices between s and t. 

Since |Ci| = 3r , each Ci can be partitioned into three sets, of r elements each: C1→r
i

 , 
Cr+1→2r
i

 and C2r+1→3r
i

 . Recall that the relation between Ci1
 and Ci2

 (resp. Ci2
 and Ci3

 ) is 
either full or semi-full, while the relation between Ci1

 and Ci3
 is empty. This implies 

that at least one of the four following sets induces a graph isomorphic to K3r⧵Kr,r:

• C1→r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

• C1→r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

• C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

• C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

Hence, Y is a disjoint union of cliques (since it is P3-free). Let us assume that Y is 
the union of at least two (maximal) cliques.
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Recall that the bipartite graph B is connected. Thus there is b1
h
∈ B1 (correspond-

ing to Xh ) adjacent to b2
i
∈ B2 and b2

j
∈ B2 (corresponding to Ci and Cj , respectively), 

such that yi and yj lie in two different connected components of Y (in particular, the 
relation between Ci and Cj is empty). Recall that Xh contains a clique of size at least 
r. This clique induces, together with any r vertices in Ci and any r vertices in Cj , a 
graph isomorphic to K3r⧵Kr,r ; a contradiction. Hence, Y is a clique.

Now, we can show that B is a complete bipartite graph. Each Xh has to be adja-
cent to at least one Ci (otherwise this trivially contradicts the connectedness of B ). If 
Xh is not linked to Cj for some j ∈ {1,… , k − 1} , then a clique of size r in Xh (which 
always exists) induces, together with C1→r

i
∪ C2r+1→3r

j
 or with C2r+1→3r

i
∪ C1→r

j
 , a 

graph isomorphic to K3r⧵Kr,r.
Since B is a complete bipartite graph, every vertex of C1 dominates all vertices 

of X  In particular, X  is in the intersection of the neighborhood of the vertices of 
some clique of size r. This implies that the subgraph induced by X  is (Kr ⊎ Kr)-free. 
Hence, we can run the FPT algorithm of Theorem 6 on this graph.   ◻

4.4  The Gem

Let the gem be the graph obtained by adding a universal vertex to a path on four 
vertices (see Fig. 7). Using our framework once again, we are able to obtain the fol-
lowing result:

Theorem 12 There is an FPT algorithm for MiS in gem-free graphs.

Proof Let f (x) ∶= 1 for every x ∈ ℕ . We prove that f -raMSey-extracted iterative 
expanSion MiS admits an FPT algorithm in gem-free graphs. By the definition of f, 
we have Cp = {cp} for every p ∈ {1,… , k − 1} . Recall that the objective is to find a 
rainbow independent set in G, or to decide that 𝛼(G) < k . Since the bipartite graph 
B representing the adjacencies between {X1,… ,Xk} and {c1,… , ck−1} is connected, 
it implies that for every i ∈ {1,… , k} , there exists p ∈ {1,… , k − 1} such that cp 
dominates all vertices of Xi . Since G is gem-free, it implies that G[Xi] is P4-free 
for every i ∈ {1,… , k} . Since P4-free graphs (a.k.a cographs) are perfect, the size 
of a maximum independent set equals the size of a clique cover. If G[Xi] contains 
an independent set of size k (which can be tested in polynomial time), then we are 
done. Otherwise, we can, still in polynomial time, partition the vertices of Xi into 
at most k − 1 sets X1

i
 , … , Xqi

i
 , where G[Xj

i
] induces a clique for every j ∈ {1,… , qi} . 

We now perform a branching for every tuple (j1,… , jk) , where ji ∈ {1,… , qi} for 
every i ∈ {1,… , k} , which, informally, allows us to guess the clique Xji

i
 which con-

tains the element of the rainbow independent set we are looking for. For the sake 

Fig. 7  The gem
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of readability, we allow ourselves this slight abuse of notation: we rename Xji
i
 into 

simply Xi . Thus, for every i ∈ {1,… , k} , G[Xi] is a clique.
Now, let i, j ∈ {1,… , k} , i ≠ j . Let us analyse the adjacencies between Xi and Xj . 

We say that {a, b, c, d} ⊆ Xi ∪ Xj is a balanced diamond if a, b ∈ Xi ( a ≠ b ), c, d ∈ Xj 
( c ≠ d ) and all vertices {a, b, c, d} are pairwise adjacent but {b, d} . We have the fol-
lowing claim:

Claim 13 If the graph induced by Xi ∪ Xj has a balanced diamond, then Xi and Xj 
are twins in B.

Proof of claim Suppose they are not. W.l.o.g. we assume that Xi is adjacent to {cp} 
while Xj is not, for some p ∈ {1,… , k − 1} . Then the vertices of the balanced dia-
mond together with cp induce a gem.   ◻

The remainder of the proof consists of “cleaning” the adjacencies (Xi,Xj) having 
no balanced diamond (but at least one edge between them). In that case, observe that 
Xi and Xj can respectively be partitioned into X0

i
 , X1

i
 , … , Xq

i
 and X0

j
 , X1

j
 , … , Xq

j
 (where 

X0
i
 and X0

j
 are potentially empty) such that Xr

i
∪ Xr

j
 induces a clique for every 

r ∈ {1,… , q} , and there is no edge between Xr
i
 and Xr′

j
 whenever r ≠ r′ or r = 0 or 

r� = 0 (see Fig. 8). In each branch of the next branching rule, the sets {X1,… ,Xk} 
will be modified into {X�

1
,… ,X�

k
} . For the sake of readability, we chose to state the 

rule as a random one, and then explain how to derandomize it.
Branching rule: Let i, j ∈ {1,… , k} , i ≠ j such that Xi ∪ Xj has no balanced dia-

mond. Then perform the following branching:

• Branch 1: X�
i
= X0

i
 and X�

z
= Xz for z ∈ [k]⧵{i}

• Branch 2: X�
j
= X0

j
 and X�

z
= Xz for z ∈ [k]⧵{j}

• Branch 3: pick a set T ⊆ {1,… , q} uniformly at random, then:

– X�
i
=
⋃

r∈T X
r
i

– X�
j
=
⋃

r∉T X
r
j

– X�
z
= Xz for z ∈ [k]⧵{i, j}

Consider the graph G(X1,… ,Xk) having one vertex per set Xi , and an edge between 
Xi and Xj if these two sets are adjacent. We now prove the following:

Claim 14 The graph G(X�
1
,… ,X�

k
) has one edge less than G(X1,… ,Xk)

Fig. 8  Schema of the adjacen-
cies between Xi and Xi when 
they do not contain a balanced 
diamond ( q = 6 ). An edge 
represent a complete relation 
between the corresponding 
subsets

X0
i X1

i X2
i X3

i X4
i X5

i X6
i

X6
jX5

jX4
jX3

jX2
i

X1
jX0

j
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Proof of claim Proof of claim: In all three branches, observe that there is no edge 
between X′

i
 and X′

j
 .   ◻

Claim 15 If G has no independent set of size k, then no graph obtained after the 
branching contains an independent set of size k.

Proof of claim Observe that in all branches, 
⋃k

z=1
X�
z
⊆
⋃k

z=1
Xz , that is, each graph 

obtained in each branch is an induced subgraph of G.   ◻

Claim 16 If G has a rainbow independent set, then with probability at least 1
2
 , at 

least one branch leads to a graph having a rainbow independent set.

Proof of claim Suppose that G contains a rainbow independent set S∗ . If S∗ intersects 
X0
i
 , then S∗ also exists in the graph of the first branch. If S∗ intersects X0

j
 , then S∗ also 

exists in the graph of the second branch. The last case is where S∗ intersects Xr1
i

 and 
X
r2
j

 , for some r1, r2 ∈ {1,… q} . In that case, there is a probability of 1
2
 that r1 ∈ T  

and r2 ∉ T  , which concludes the proof of the claim   ◻

The derandomization of this branching rule uses uses once again (n,  t)-uni-
versal sets. However, this case is simpler since we actually need a (q, 2)-univer-
sal set, which can be easily constructed as follows. For every i ∈ {1,… , ⌈log q⌉} , 
define Ti to be the set of all integers r ≤ q whose binary representation contains a 
one at the ith bit. Then let U = {Ti, i = 1… ⌈log q⌉} . This family is of size ⌈log n⌉ 
and can be constructed in O(n log n) time. The deterministic version of the previ-
ous branching rule contains the same first two branches, and replaces the random 
third one by |U| branches, where, instead of picking T ⊆ {1,… , q} at random, we 
branch on every T ∈ U  . Now, Claims 14 and 15 remain the same, while Claim 16 
can be replaced by the fact that if G has a rainbow independent set, then at least 
one branch leads to a graph having a rainbow independent set. Its correctness fol-
lows from the fact that by construction of U  , for every r1, r2 ∈ {1,… , q} , r1 ≠ r2 , 
there exists T ∈ U  such that r1 ∈ T  and r2 ∉ T  . As in Lemma  3, this implies 
branching into O(log n) subcases, but since the depth of the branching tree is a 
function of k only, the running time of the deterministic version is still FPT.

We apply the previous branching rule exhaustively, hence we now assume it 
cannot apply. For the sake of readability, we keep the notation X1,… ,Xk in order 
to denote our instance, even after an eventual application of the previous branch-
ing rule. For every Xi , Xj with i ≠ j , there is either (i) no edge between Xi and Xj , 
or (ii) a balanced diamond induced by Xi ∪ Xj . Hence, Claim 13 implies that each 
connected component of the graph induced by 

⋃k

i=1
Xi is a module with respect to 

the clique {c1,… , ck−1} . In particular, each connected component is dominated 
by some cp , with p ∈ {1,… , k − 1} , and is thus P4-free (otherwise, a P4 together 
with this vertex cp induce a gem), which means that we can decide in polynomial 
time whether G contains an independent set of size k, by deciding the problem in 
every connected component separately (since MiS is polynomial-time solvable 
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in P4-free graphs). This concludes the proof, since by Claim  14, the previous 
branching rule can be applied at most 

(
k

2

)
 times.   ◻

5  Polynomial (Turing) Kernels

In this section we investigate some special cases of Sect. 4.3, in particular when H 
is a clique of size r minus a claw with s branches, for s < r . Although Theorem 11 
proves that MiS is FPT for every possible values of r and s, we show that when 
s ⩾ r − 2 , the problem admits a polynomial Turing kernel, while for s ⩽ 2 , it admits 
a polynomial kernel. Notice that the latter result is somehow tight, as Corollary 4 
shows that MiS cannot admit a polynomial kernel in (Kr⧵K1,s)-free graphs whenever 
s ⩾ 3.

5.1  Positive Results

The main ingredient of the two following results is a constructive version of the 
Erdős-Hajnal theorem for the concerned graph classes:

Lemma 4 (Constructive Erdős-Hajnal for Kr⧵K1,s ) For every r ⩾ 2 and s < r , there 
exists a polynomial-time algorithm which takes as input a connected (Kr⧵K1,s)-free 
graph G, and constructs either a clique or an independent set of size n

1

r−1 , where n is 
the number of vertices of G.

Proof First consider the case s = r − 1 , i.e. the forbidden graph is Kr−1 plus an iso-
lated vertex. If G contains a vertex v with non-neighborhood N of size at least n

r−2

r−1 , 
then, since G[N] is Kr−1-free, by Ramsey’s theorem, it must contains an independent 
set of size |N| 1

r−2 = n
1

r−1 , which can be found in polynomial time. We may now 
assume that the maximum non-degree8 of G is n

r−2

r−1 − 1 . We construct a clique v1 , … , 
vq in G by picking an arbitrary vertex v1 , removing its non-neighborhood, then pick-
ing another vertex v2 , removing its non-neighborhood, and repeating this process 
until the graph becomes empty. Using the above argument on the maximum non-
degree, this process can be applied n

n
r−2
r−1

= n
1

r−1 times, corresponding to the size of 
the constructed clique.

Now, we make an induction on r − 1 − s (the base case is above). If G contains a 
vertex v with neighborhood N of size at least n

r−2

r−1 , then, since G[N] is (Kr−1⧵Ks)-free, 
by induction it admits either a clique or an independent set of size |N| 1

r−2 = n
1

r−1 , 
which can be found in polynomial time. We may now assume that the maximum 
degree of G is n

r−2

r−1 − 1 . We construct an independent set v1 , … , vq in G by picking an 
arbitrary vertex v1 , removing its neighborhood, and repeating this process until the 
graph becomes empty. Using the above argument on the maximum degree, this 

8 The non-degree of a vertex is the size of its non-neighborhood.



2387

1 3

Algorithmica (2020) 82:2360–2394 

process can be applied n

n
r−2
r−1

= n
1

r−1 times, corresponding to the size of the constructed 
independent set.   ◻

Theorem  17 For every r ⩾ 2 , MiS in (Kr⧵K1,r−2)-free graphs has a polynomial 
Turing kernel.

Proof The problem is polynomial for r = 2 and r = 3 , hence we suppose r ⩾ 4 . 
Suppose we have an algorithm A which, given a graph J and an integer i such that 
|V(J)| = O(ir−1) , decides whether J has an independent set of size i in constant time. 
Having a polynomial algorithm for MiS assuming the existence of A implies a poly-
nomial Turing kernel for the problem [9]. To do so, we will present an algorithm B 
which, given a connected graph G and an integer k, outputs a polynomial (in |V(G)|) 
number of instances of size O(kr−1) , such that one of them is positive iff the former 
one is. With this algorithm in hand, we obtain the polynomial Turing kernel as fol-
lows: let G and k be an instance of MiS. Let V1 , … , V

�
 be the connected components 

of G. For every j ∈ {1,… ,�} , we determine the size of a maximum independent set 
kj of G[Vj] by first invoking, for successive values i = 1,… , k , the algorithm B on 
input (G[Vj], i) , and then A on each reduced instance. At the end of the algorithm, 
we answer YES iff 

∑�

j=1
ki ⩾ k.

We now describe the algorithm B . Let (G, k) be an input, with n = |V(G)| . We 
first invoke Lemma 4. If the algorithm outputs an independent set of size at least 
s = n

1

r−1 , then either k ⩽ s and we are done (we output a trivially positive instance), 
or k > n

1

r−1 which implies that the instance is a kernel with O(kr−1) vertices. Hence, 
we assume that the algorithm outputs a clique C of size at least n

1

r−1 . We assume that 
|C| > r2 , since otherwise the instance is already reduced.

Let B = N(C) . First observe that for every u ∈ B , |NC(u)| ⩾ |C| − (r − 3) . Indeed, 
if |NC(u)| ⩽ |C| − (r − 2) , then the graph induced by r − 2 non-neighbors of u in C 
together with u and a neighbor of u in C (which exists since |C| > r2 ) is isomorphic 
to Kr⧵K1,r−2 . Secondly, we claim that V(G) = C ∪ B : for the sake of contradiction, 
take v ∈ N(B)⧵C , and let u ∈ B be such that uv ∈ E(G) . By the previous argument, u 
has at least |C| − r + 3 ⩾ r − 2 neighbors in C which, in addition to u and v, induce a 
graph isomorphic to Kr⧵K1,r−2.

The algorithm outputs, for every u ∈ B , the graph induced by B⧵N[u] (with 
parameter k − 1 ), and, for every u ∈ B and every v ∈ C such that uv ∉ E(G) , the 
graph induced by B⧵(N[u] ∪ N[v]) (with parameter k − 2 ). The correctness of the 
algorithm follows from the fact that if G has an independent set S of size k > 1 , then 
either:

• S ∩ C = � , in which case S⧵{u} lies entirely in B⧵N[u] for any u ∈ S , or
• S ∩ C = {v} for some v ∈ C , in which case S⧵{u, v} lies entirely in 

B⧵(N[u] ∪ N[v]) for any u ∈ S ∩ B.
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We now argue that each of these instances has O(kr−3) vertices. To do so, observe 
that for any u ∈ B , B⧵N[u] does not contain Kr−2 as an induced subgraph: indeed, 
since |C| > r2 , then any set of r − 1 vertices of B must have a common neighbor 
in C (since the union of the non-neighborhoods of these r − 1 vertices in C is of 
size at most (r − 1)(r − 3) ). Now, take (for the sake of contradiction) any clique K 
of size r − 2 in B⧵N[u] , and consider a common neighbor x ∈ C of K ∪ {u} . Then 
K ∪ {u, x} induces a graph isomorphic to Kr⧵K1,r−2 , which is impossible. Since 
each of these instances is Kr−2-free, applying Ramsey’s theorem to each of them 
allows us to either construct an independent set of size k − 1 in one of them (and 
thus output an independent set of size k in G), or to prove that each of them has 
at most O(kr−3) vertices. At the end, this algorithm outputs O(n2) instances, each 
having O(kr−3) vertices.   ◻

Since a (Kr⧵K1,r−1)-free graph is (Kr�⧵K1,r�−2)-free for r� = r + 1 , we have the 
following:

Corollary 2 For every r ⩾ 2 , MiS in (Kr⧵K1,r−1)-free graphs has a polynomial 
Turing Kernel.

In other words, (Kr⧵K1,r−1) is a clique of size r − 1 plus an isolated vertex. 
Observe that the previous corollary can actually be proved in a very simple way: 
informally, we can “guess” a vertex v of the solution, and return its non-neigh-
borhood together with parameter k − 1 . Since this non-neighborhood is Kr−1-free, 
it can be reduced to a O(kr−2)-sized instance. This is perhaps the most simple 
example of a problem admitting a polynomial Turing kernel but no polynomial 
kernel, unless NP ⊆ coNP∕poly (as we will prove later in Theorem 19). By con-
sidering the complement of graphs, it implies the following even simpler obser-
vation: MaxiMuM clique has a O(k2) Turing kernel on claw-free graphs, but no 
polynomial kernel, under the same complexity-theoretic assumption.

Theorem  18 For every r ⩾ 3 , MiS in (Kr⧵K1,2)-free graphs has a kernel with 
O(kr−1) vertices.

Proof For r = 3 , the problem is polynomial, so we assume r ⩾ 4 . We first invoke 
Lemma 4. If the algorithm outputs an independent set of size at least s = n

1

r−1 , then 
either k ⩽ s and we are done (we output a trivially positive instance), or k > n

1

r−1 
which implies that the instance is a kernel with O(kr−1) vertices. Hence, we assume 
that the algorithm outputs a clique C of size at least n

1

r−1 . We assume that this clique 
is maximal. We present a reduction rule in the case |C| > (k − 1)(r − 4) + 1 . If this 
rule cannot apply, then it means that the number of vertices of the reduced instance 
is O(kr−1).

First observe that for every u ∈ N(C) , then either |NC(u)| = |C| − 1 , or 
|NC(u)| ⩽ r − 4 (recall that NC(u) = N(u) ∩ C ). Indeed, first observe that NC(u) < |C| , 
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since C is maximal. Then, suppose that r − 3 ⩽ |NC(u)| ⩽ |C| − 2 . Then u together 
with r − 3 of its neighbors in C and 2 of its non-neighbors in C induce a graph iso-
morphic to Kr⧵K1,2 , a contradiction. Let B = {u ∈ N(C) ∶ |NC(u)| = |C| − 1} and 
D = {u ∈ N(C) ∶ |NC(u)| ⩽ r − 4}.

We claim that C ∪ B is a complete |C|-partite graph. To do so, we prove that for 
u, v ∈ B , NC(u) = NC(v) implies uv ∉ E(G) , and NC(u) ≠ NC(v) implies uv ∈ E(G) . 
Suppose that NC(u) = NC(v) = C⧵{x} . If uv ∈ E(G) , then u, v, x together with 
r − 3 vertices of C different from x induce a graph isomorphic to Kr⧵K1,2 , which 
is impossible. Suppose now that NC(u) = C⧵{xu} , NC(v) = C⧵{xv} , with xu ≠ xv . If 
uv ∉ E(G) , then u, v, xu together with r − 3 vertices of C different from xu and xv 
induce a graph isomorphic to Kr⧵K1,2 , which is impossible.

Thus, we now write C ∪ B = S1 ∪⋯ ∪ S|C| , where, for every i, j ∈ {1,… , |C|} , 
i ≠ j , Si induces an independent set, and Si ∪ Sj induces a complete bipartite graph. 
We assume |S1| ⩾ |S2| ⩾ ⋯ ⩾ |S|C|| . Recall that |C| > (k − 1)(r − 4) + 1 . Using the 
same arguments as previously, we can show that every vertex of D is adjacent to at 
most r − 4 different parts among C ∪ B : if a vertex u ∈ D is adjacent to r − 3 parts, 
then taking one vertex in each of these parts together with u and 2 non-neighbors 
of u in C induces a graph isomorphic to Kr⧵K1,2 . Hence, for every u ∈ D , we have 
|{Si ∶ N(u) ∩ Si ≠ �}| ⩽ r − 4 . Let q = (k − 1)(r − 4) + 1 . The reduction consists of 
removing Sq+1 ∪⋯ ∪ S|C| . Clearly it runs in polynomial time.

Let G′ denote the reduced instance. We now prove the safeness of this reduction 
rule. Obviously, if G′ has an independent set of size k, then G does, since G′ is an 
induced subgraph of G. It remains to show that the converse is also true. Let X be an 
independent set of G of size k. If X ∩

(
∪
|C|
i=q+1

Si

)
= � , then X is also an independent 

set of size k in G′ , thus we suppose X ∩
(
∪
|C|
i=q+1

Si

)
= Xr ≠ � , which implies that 

|X ∩ D| ≤ k − 1 . In particular, since C ∪ B is a complete multipartite graph, there is a 
unique i ∈ {1,… , |C|} such that X ∩ Si ≠ � , and i ⩾ q + 1 . Since every vertex of D 
is adjacent to at most r − 4 parts of C ∪ B , and since q = (k − 1)(r − 4) + 1 , there 
must exist j ∈ {1,… , q} such that N(X ∩ D) ∩ Sj = � . Moreover, |Sj| ⩾ |Si| . Hence, 
(X⧵Si) ∪ Sj is an independent set of size at least k in G′.

Recall that we apply this reduction rule as long as |C| > (k − 1)(r − 4) + 1 . If it 
is not the case, then the instance has O(kr−1) vertices, since, by Lemma 4, we have 
|C| ⩾ n

1

r−1 , and thus n ⩽ (kr + 5)r−1 , which concludes the proof.   ◻

Observe that a (Kr⧵K2)-free graph is (Kr+1⧵K1,2)-free, hence we have the follow-
ing, which answers a question of [11].

Corollary 3 For every r ⩾ 1 , MiS in (Kr⧵K2)-free graphs has a kernel with O(kr−1) 
vertices.
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5.2  Kernel Lower Bounds

We now give a sufficient criteria for a graph H to preclude any polynomial kernel 
for MiS in H-free graphs. In a nutshell, we characterize graphs which cannot appear 
in the “straightforward” cross-composition consisting in taking the complete join of 
several instances.

Definition 8 Given a graph H, a join is a bipartition of V(H) into two non-empty 
subsets (A, B) such that for every a ∈ A and b ∈ B , ab ∈ E(H).

Theorem  19 Let H be any fixed graph such that (i) MiS is NP-hard in H-free 
graphs, and (ii) H has no join. Then MiS does not admit a polynomial kernel in H-
free graphs unless NP ⊆ coNP/poly.

Proof We construct an OR-cross-composition from MiS in H-free graphs. For more 
details about cross-compositions, see  [4]. Let G1,… ,Gt be a sequence of H-free 
graphs, and let G� = G1 +⋯ + Gt (recall that + is the join operation, that it, there 
are all possible edges between V(Gi) and V(Gj) , i ≠ j ). Then we have the following:

• �(G�) = maxi=1…t �(Gi) , since, by construction of G′ , any independent set cannot 
intersect the vertex set of two distinct graphs Gi and Gj.

• G′ is H-free. Indeed, suppose that X ⊆ V(G�) induces a graph isomorphic to H, 
and let Xj = X ∩ V(Gj) for every j ∈ [t] . Since every Gi is H-free, at least two sets 
Xj , Xj′ , j ≠ j′ are non-empty. But then (Xj,∪s≠jXs) is a join in H, a contradiction.

These two arguments imply a cross-composition from MiS in H-free graphs to MiS 
in H-free graphs.   ◻

Naturally, the previous lower bound also holds for graphs H containing a graph 
H′ as an induced subgraph fulfulling the statement of the theorem (since the class of 
H′-free graphs is included in the class of H-free graphs).

We now use this theorem to show that the polynomial kernel obtained in the pre-
vious section for (Kr⧵K1,s)-free graphs, s ⩽ 2 , is somehow tight.

Corollary 4 For r ⩾ 4 , and every 3 ⩽ s ⩽ r − 1 , MiS in (Kr⧵K1,s)-free graphs does 
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof Observe that for these values of r and s, (Kr⧵K1,s) always contain as an 
induced subgraph the graph H defined as the disjoint union of K1 and K3 , which does 
not have a join, while MiS is NP-hard in H-free (since it contains a triangle K3 ).   ◻

It would be interesting to find out whether there exist graphs H not falling into the 
statement of Theorem 19 for which there is no polynomial kernel. In other words: is 
Theorem 19 the only way to obtain kernel lower bounds in this case?
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6  Conclusion and Open Problems

We made some signifiant progress toward the FPT/W[1]-hard dichotomy for MiS in 
H-free graphs, for a fixed graph H. At the cost of one reduction, we showed that it 
is W[1]-hard as soon as H is not chordal, even if we simultaneously forbid induced 
K1,4 and trees with at least two branching vertices. Tuning this construction, it is 
also possible to show that if a connected H is not roughly a “path of cliques” or a 
“subdivided claw of cliques”, then MiS is W[1]-hard. More formally, with the defi-
nitions of Sect. 2.2, the remaining connected open cases are when H has an almost 
strong clique decomposition on a subdivided claw or a nearly strong clique decom-
position on a path. In this language, we showed that for every connected graph H 
with a strong clique decomposition on a P3 , there is an FPT algorithm. However, we 
also proved that for a very simple graph H with a strong clique decomposition on 
the claw, MiS is W[1]-hard. This suggests that the FPT/W[1]-hard dichotomy will 
be somewhat subtle. For instance, easy cases for the parameterized complexity do 
not coincide with easy cases for the classical complexity where each vertex can be 
blown into a clique. For graphs H with a clique decomposition on a path, the first 
unsolved cases are H having:

• an almost strong clique decomposition on P3;
• a nearly strong clique decomposition on P3;
• a strong clique decomposition on P4.

For graphs H with a clique decomposition on the claw, an interesting open ques-
tion is the case of T1,1,s-free graphs (see notation preceding Theorem 4). We observe 
that a randomized FPT algorithm was later found in the T1,1,2-free (or cricket-
free) case  [5], while W[1]-hardness on T1,2,2-free is established in this paper (see 
Theorem 4)

For disconnected graphs H, we obtained an FPT algorithm when H is a cluster 
(i.e., a disjoint union of cliques). We conjecture that, more generally, the disjoint 
union of two easy cases is an easy case; formally, if MiS is FPT in G-free graphs 
and in H-free graphs, then it is FPT in G ⊎ H-free graphs.

A natural question regarding our two FPT algorithms of Sect.  4 concerns 
the existence of polynomial kernels. In particular, we even do not know whether 
the problem admits a kernel for very simple cases, such as when H = K5⧵K3 or 
H = K5⧵K2,2.

A more anecdotal conclusion is the fact that the parameterized complexity of 
the problem on H-free graphs is now complete for every graph H on four vertices, 
including concerning the polynomial kernel question (see Fig. 9). Observe that the 
FPT/W[1]-hard dichotomy was recently settled for all graphs on five vertices  [5], 
using tools from this paper.
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