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Abstract
We propose and analyze a self-adaptive version of the (1, �) evolutionary algorithm 
in which the current mutation rate is encoded within the individual and thus also 
subject to mutation. A rigorous runtime analysis on the OneMax benchmark func-
tion reveals that a simple local mutation scheme for the rate leads to an expected 
optimization time (number of fitness evaluations) of O(n�∕ log � + n log n) when � 
is at least C ln n for some constant C > 0 . For all values of � ≥ C ln n , this perfor-
mance is asymptotically best possible among all �-parallel mutation-based unbiased 
black-box algorithms. Our result rigorously proves for the first time that self-adap-
tation in evolutionary computation can find complex optimal parameter settings on 
the fly. In particular, it gives asymptotically the same performance as the relatively 
complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen, 
Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes 
new tools for the analysis of two-dimensional drift processes arising in the analysis 
of dynamic parameter choices in EAs, including bounds on occupation probabilities 
in processes with non-constant drift.

Keywords  Evolutionary algorithms · Self-adaptive · Runtime analysis

1  Introduction

Evolutionary algorithms are a class of heuristic algorithms that can be applied to solve 
optimization problems if no problem-specific algorithm is available. For example, this 
may be the case if the structure of the underlying problem is poorly understood or one 
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is faced with a so-called black-box scenario, in which the quality of a solution can only 
be determined by calling an implementation of the objective function. This implemen-
tation may be implicitly given by, e. g., the outcome of a simulation without revealing 
structural relationships between the search point and the function value.

An approach to understand the working principles of evolutionary algorithms is to 
analyze the underlying stochastic process and its first hitting time of the set of optimal 
or approximate solutions. The runtime analysis community in evolutionary computa-
tion (see, e. g., [2, 31, 41, 54] for introductions to the subject) follows this approach by 
partly using methods known from the analysis of classical randomized algorithms and, 
more recently and increasingly often, using and adapting tools from the theory of sto-
chastic processes to obtain bounds on the hitting time of optimal solutions for different 
classes of evolutionary algorithms and problems. Such bounds will typically depend on 
the problem size, the problem type, the evolutionary algorithm, and the values of the 
parameters that these heuristic algorithms come with.

One of the core difficulties when using evolutionary algorithms is in fact finding suit-
able values for its parameters. It is well known and supported by ample experimental 
(e. g., [8, 58]) and theoretical evidence (e. g., [24, 28, 44, 48, 61]) that already small 
changes of the parameters can have a crucial influence on the efficiency of the algorithm.

One elegant way to overcome this difficulty, and in addition the difficulty that 
the optimal parameter values may change during a run of the algorithm, is to let the 
algorithm optimize the parameters on the fly (we give more details and references on 
dynamic parameter choices in Sect. 1.2). Formally speaking, this is an even more com-
plicated task, because instead of a single good parameter value now a suitable func-
tional dependence of the parameter on the search history needs to be provided. Fortu-
nately, a number of natural heuristics like the 1/5-th rule has proven to be effective in 
certain cases. In a sense, these are all exogenous parameter control mechanisms which 
are added to the evolutionary system.

An even more elegant way is to incorporate the parameter control mechanism 
into the evolutionary process, that is, to attach the parameter value to the individual, 
to modify it via (extended) variation operators, and to use the fitness-based selection 
mechanisms of the algorithm to ensure that good parameter values become dominant in 
the population. This self-adaptation of the parameter values has two main advantages: 
(1) It is generic, that is, the adaptation mechanism is provided by the algorithm, only 
the representation of the parameter in the individual and the extension of the variation 
operators have to be provided by the user. (2) It allows to re-use existing algorithms and 
much of the existing code.

Despite these advantages, self-adaptation is not used a lot in discrete evolutionary 
optimization. From the theory side, there exists some advice on how to set up such a 
self-adaptive system, but a real proof for its usefulness is still missing. This is the point 
we aim to make some progress on.

1.1 � Our Results

The main result of this work is that we propose a version of the (1, �) evolution-
ary algorithm (EA) with a natural self-adaptive choice of the mutation rate. For 
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� ≥ C ln n , C a sufficiently large constant, we prove that it optimizes the classic One-
Max benchmark problem in a runtime that is asymptotically optimal among all �
-parallel black-box optimization algorithms and that is better than the known runt-
imes of the (1,�) EA and the (1+�) EA for all static choices of the mutation rate. 
Compared to the (also asymptotically optimal) (1+�)  EA with fitness-dependent 
mutation rate of Badkobeh, Lehre, and Sudholt  [9] and the (1+�)  EA with self-
adjusting (exogenous) mutation rate of Doerr, Gießen, Witt, and Yang [23] the good 
news of our result is that this optimal runtime could be obtained in a generic man-
ner. Note that both the fitness-dependent mutation rate of [9] and the self-adjusting 
rate of  [23] with its mix of random and greedy rate adjustments would have been 
hard to find without a deeper understanding of the mathematics of these algorithms.

Not surprisingly, the proof of our main result has some similarity to the analysis 
of the self-adjusting (1+�) EA of [23]. In particular, we also estimate the expected 
progress in one iteration and use variable drift analysis. Also, we need a careful 
probabilistic analysis of the progress obtained from different mutation rates to esti-
mate which rate is encoded in the new parent individual (unfortunately, we cannot 
reuse the analysis of [23] since it is not always strong enough for our purposes). The 
reason, and this is also the main technical challenge in this work, is that the (1,�
) EA can lose fitness in one iteration. This happens almost surely when the mutation 
rate is too high. For this reason, we need to argue more carefully that such events 
do not happen regularly. To do so, among several new arguments, we also need a 
stronger version of the occupation probability result  [47, Theorem 7] since (1) we 
need sharper probability estimates for the case that movements away from the tar-
get are highly unlikely and (2) for our process, the changes per time step cannot be 
bounded by a small constant. We expect our new results (Lemmas 6 and 7) to find 
other applications in the theory of evolutionary algorithms in the future. Note that 
for the (1+�) EA, an excursion into unfavorable rate regions is less a problem as 
long as one can show that the mutation rate returns into the good region after a rea-
sonable time. The fact that the (1,�) EA can lose fitness also makes it more difficult 
to cut the analysis into regimes defined by fitness levels since it is now possible that 
the EA returns into a previous regime.

In this work, we also gained two insights which might be useful in the design of 
future self-adaptive algorithms.

Need for non-elitism Given the previous works, it would be natural to try a self-
adaptive version of the (1+�) EA. However, this is risky. While the self-adjusting 
EA of [23] copes well with the situation that the current mutation rate is far from 
the ideal one and then provably quickly changes the rate to an efficient setting, a 
self-adaptive algorithm cannot do so. Since the mutation rate is encoded in the indi-
vidual, a change of the rate can only occur if an offspring is accepted. For an elitist 
algorithm like the (1+�) EA, this is only possible when an offspring is generated that 
is good enough to compete with the parent(s). Consequently, if the parent individual 
in a self-adaptive (1+�) EA has a high fitness, but a detrimental (that is, large) muta-
tion rate, then the algorithm is stuck with this individual for a long time. Already for 
the simple OneMax function, such a situation can lead to an exponential runtime.

Needless to say, when using a comma strategy we have to choose � sufficiently 
large to avoid losing the current-best solution too quickly. This phenomenon has 
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been observed earlier, e.g., in [57] it is shown that � ≥ (1 − o(1)) log(e−1)∕e(n) is nec-
essary for the (1,�) EA with mutation rate 1/n to have a polynomial runtime on any 
function with unique optimum. We shall not specify a precise leading constant for 
our setting, but also require that � ≥ C ln(n) for a sufficiently large constant C.

Tie-breaking towards lower mutation rates To prove our result, we need that the 
algorithm in case of many offspring of equal fitness prefers those with the smaller 
mutation rate. Given that the usual recommendation for the mutation rate is small, 
namely 1

n
 , and that it is well-known that large rates can be very detrimental, it is 

natural to prefer smaller rates in case of ties (where, loosely speaking, the offspring 
population gives no hint which rate is preferable).

This choice is similar to the classic tie-breaking rule of preferring offspring over 
parents in case of equal fitness. Here, again, the fitness indicates no preference, but 
the simple fact that one is maybe working already for quite some time with this par-
ent suggests to rather prefer the new individual.

1.2 � Previous Works

This being a theoretical paper, for reasons of space we shall mostly review the rel-
evant theory literature, and also this with a certain brevity. For a broader account of 
previous works, we refer to the survey [46]. For a detailed description of the state of 
the art in theory of dynamic parameter choices, we refer to the survey [14]. We note 
that the use of self-adaptation in genetic algorithms was proposed in the seminal 
paper [5] by Bäck. Also, we completely disregard evolutionary optimization in con-
tinuous search spaces due to the very different nature of optimization there (visible, 
e.g., from the fact that dynamic parameter changes, including self-adaptive choices, 
are very common and in fact necessary to allow the algorithms to approach the opti-
mum with arbitrary precision).

The theoretical analysis of dynamic parameter choices started slow. A first 
paper [45] on this topic in 2006 demonstrated the theoretical superiority of dynamic 
parameter choices by giving an artificial example problem for which any static 
choice of the mutation rate leads to an exponential runtime, whereas a suitable time-
dependent choice leads to a polynomial runtime. Four years later [6], it was shown 
that a fitness-dependent choice of the mutation rate can give a constant-factor speed-
up when optimizing the LeadingOnes benchmark function (see [33, Sect. 2.3] for a 
simplified proof giving a more general result). The first super-constant speed-up on 
a classic benchmark function obtained from a fitness-dependent parameter choice 
was shown in [15], soon to be followed by the paper [9] which is highly relevant for 
this work. In [9], the (1+�) EA with fitness-dependent mutation rate was analyzed. 
For a slightly complicated fitness-dependent mutation rate, an optimization time of 
O(n�∕ log � + n log n) was obtained. Also, it was shown that no �-parallel mutation-
based unbiased black-box algorithm can have an asymptotically better optimization 
time.

Around that time, several successful self-adjusting (“on-the-fly”) parameter 
choices were found and analyzed with mathematical means. In [49], a success-based 
multiplicative update of the population size � in the (1+�) EA is proposed and it 
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is shown that this can lead to a reduction of the parallel runtime. A multiplicative 
update inspired by the 1/5-th success rule from evolution strategies automatically 
finds parameter settings [12] leading to the same performance as the fitness-depend-
ent choice in  [15]. Similar multiplicative update rules have been used to control 
the mutation strength for multi-valued decision variables [17] and the time interval 
for which a selected heuristic is used in [30]. A learning-based approach was used 
in  [18] to automatically adjust the mutation strength and obtain the performance 
of the fitness-dependent choice of  [19]. Again a different approach was proposed 
in  [23], where the mutation rate for the (1+�)  EA was determined on the fly by 
creating half the offspring with a smaller and half the offspring with a larger muta-
tion rate than the value currently thought to be optimal. As new mutation rate, with 
probability 1

2
 the rate which produced the best offspring was chosen, with probability 

1

2
 a random of the two rates was chosen. The three different exogenous approaches 

used in these works indicate that a generic approach towards self-adjusting param-
eter choices, such as self-adaptation, would ease the design of such algorithms 
significantly.

Surprisingly, prior to this work only a single runtime analysis paper for self-
adapting parameter choices appeared. In [29], Dang and Lehre show several positive 
and negative results on the performance of a simple class of self-adapting evolu-
tionary algorithms having the choice between several mutation rates. Among them, 
they show that such an algorithm having the choice between an appropriate and a 
destructively high mutation rate can optimize the LeadingOnes benchmark function 
in the usual quadratic time, whereas the analogous algorithm using a random of the 
two mutation rates (and hence in half the cases the right rate) fails badly and needs 
an exponential time. As a second remarkable result, they give an example setting 
where any constant mutation rate leads to an exponential runtime, whereas the self-
adapting algorithm succeeds in polynomial time. As for almost all such examples, 
also this one is slightly artificial and needs quite some assumptions, for example, 
that all � individuals are initialized with the 1-point local optimum. Nevertheless, 
this result makes clear that self-adaptation can outperform static parameter choices. 
In the light of this result, the main value of our results is showing that asymptotic 
runtime advantages from self-adaptation can also be obtained in less constructed 
examples (of course, at the price that the runtime gap is not exponential).

To complete the picture on previous work relevant to ours, we finally quickly 
describe what is known on the performance of the most common mutation-based 
algorithms for the OneMax benchmark function. For the simple (1+1)  EA, the 
expected runtime of Θ(n log n) was determined in  [53] (upper bound) and  [25] 
(lower bound, this result was announced already in 1998). For the (1+�) EA with 
� ≤ n1−� , 𝜀 > 0 a constant, an expected runtime (number of fitness evaluations) of

was shown in [27, 42]. These two problems are also the only problems discussed in 
this work for which more precise bounds than asymptotic orders of magnitude have 
been obtained, however, with significant technical effort [20, 21, 36, 38, 39, 50, 59].

Θ

(
n� log log �

log �
+ n log n

)
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For the ( �+1)  EA with polynomially bounded � , the expected runtime is 
Θ(�n + n log n) , see  [61]. Finally, the expected runtime of the ( �+�)  EA was 
recently [3] determined as

where log+ x ∶= max{1, log x} for all x > 0.
For non-elitist algorithms, unsuitable choices of the parameters or selection 

mechanisms can lead to prohibitively large runtimes. The earliest runtime analy-
sis of the (1,�) EA with mutation rate 1/n on OneMax is due to Jägersküpper and 
Storch [44], who proved a phase transition from exponential to polynomial runt-
ime in the regime � = Θ(log n) , leaving a gap of at least 21 between the largest � in 
the exponential regime and the smallest in the polynomial regime. This result was 
improved by Rowe and Sudholt [57], who determined the phase transition point to 
be the above-mentioned function log(e−1)∕e(n) , up to lower order terms. Jägersküpper 
and Storch [44] also obtain a useful coupling result: if � ≥ c ln n for a sufficiently 
large constant c > 0 , the stochastic behavior of the (1+�) EA and (1,�) EA with high 
probability are identical for a certain polynomial (with degree depending on c) num-
ber of steps, allowing the above-mentioned results about the (1+�) EA to be trans-
ferred to the (1,�) EA.

For the ( �,�)  EA with � ≥ (1 + �)e� , 𝜀 > 0 a constant, and � = Ω(log n) suffi-
ciently large (as well as for many other non-elitist algorithms under suitable param-
eter settings), a runtime of O(n� log �) was shown in [28], which was improved to 
O(n�) in [10]. When � ≤ (1 − �)� and � is at most polynomial in n, then the runtime 
of the ( �,�) EA is exponential in n  [48, Corollary 1]. More precise results on this 
threshold phenomenon were given in [4].

1.3 � Techniques

One of the technical difficulties in our analysis is that our self-adaptive (1,�)  EA 
can easily lose fitness when the rate parameter is set to an unsuitable value. For 
this reason, we cannot use the general approach of the analysis of the self-adjusting 
(1+�) EA in [23], which separated the analysis of the rate and the fitness by, in very 
simple words, first waiting until the rate is in the desired range and then waiting for 
a fitness improvement (of course, taking care of the fact that the rate could leave the 
desired range). To analyze the joint process of fitness and rate with its intricate inter-
actions, we in particular use drift analysis with a two-dimensional distance function, 
that is, we map (e.g., in Lemma 22) the joint space of fitness and rate suitably into 
the non-negative integers in a way that the expected value of this mapping decreases 
in each iteration. This allows to use well-known drift theorems.

The use of two-dimensional potential functions is not new in the analysis of evo-
lutionary algorithms. However, so far only very few analyses exist that use this tech-
nique with dynamic parameter values and among these results, we feel that ours, in 
particular, Lemma 22, are relatively easy to use. Again in very simple words, the 
distance function g defined in the proof of Lemma 22 is the fitness distance plus a 

Θ

(
n log n

�
+

n

�∕�
+

n log+ log+ �∕�

log+ �∕�

)
,
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pessimistic estimate for the fitness loss that could be caused from the current rate if 
this is maladjusted). We thus hope that this work eases future analyses of dynamic 
parameter choices by suggesting ways to measure suitably the progress in the joint 
space of solution quality and parameter value.

To allow the reader to compare our two-dimensional drift approach with existing 
works using similar arguments, we briefly review the main works that use two- or 
more-dimensional potential functions. Ignoring that the artificial fitness functions 
used in [22, 25, 26, 62] could also be interpreted as n-dimensional potential func-
tions, the possibly first explicit use of a two-dimensional potential function in the 
runtime analysis of randomized search heuristics can be found in [60, proof of Theo-
rem  4], a work analyzing how simulated annealing and the Metropolis algorithm 
compute minimum spanning trees in a line of connected triangles. In such optimiza-
tion processes, a solution candidate (which is a subset of the edge set of the graph) 
can have two undesirable properties. (1) The solution contains a complete triangle, 
so one of these three edges has to be removed on the way to the optimal solution. (2) 
The solution contains two edges of a triangle, but not the two with smallest weight. 
This case, called bad triangle, is the less desirable one as here one edge of the solu-
tion has to be replaced by the missing edge and hence the status of two edges has 
to be changed. It turns out that a simple potential function can take care of these 
two issues, namely twice the number of bad triangles plus the number of complete 
triangles.

When analyzing non-trivial parent populations, then often it does not suffice 
to measure the quality of the current state via the maximum fitness in the popu-
lation, but also the number of individuals having this best fitness has to be taken 
into account. This was first done in the analysis of the ( �+1) EA in [61]. Since in a 
run of this algorithm the population never worsens (in a strong sense), the progress 
could be analyzed conveniently via arguments similar to the fitness level method. 
Consequently, it was not necessary to define an explicit potential function. In a simi-
lar fashion, the (N + N) EA [11] and the ( �+�) EA  [3] were analyzed by regarding 
the maximum fitness and the number of individuals having this fitness.

In  [51], a vaguely similar approach was taken for non-elitist population-based 
algorithms. However, the fact that these algorithms may lose the current-best solu-
tion required a number of non-trivial modifications, most notably, (1) that the poten-
tial is based on the maximum fitness such that at least a proportion of � of the indi-
viduals have at least this fitness (for a suitable constant 0 < 𝛾 < 1 ) instead of the 
maximum fitness among all individuals, and (2) that the arguments resembling the 
fitness level method had to be replaced by a true drift argument. This approach was 
extended in [28] to give a general “level-based” runtime analysis result. A simplified 
version of this level theorem was recently given in [10].

What comes closest to our work with respect to the use of two-dimensional 
potential functions is  [17], where a self-adjusting bit-wise mutation strength for 
functions defined not over bit strings, but over {0,… , r − 1}n for some r > 2 is dis-
cussed. The potential function defined in (6) in [17, Sect. 7] is too complicated to 
be described here in detail, but it also follows the pattern used in this work, namely 
that the potential (to be minimized) is the sum of the fitness distance and a pen-
alty for mutation strengths deviating from their currently ideal value. This potential 
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function, however, does not admit an easy interpretation of the type “fitness dis-
tance plus expected damage from improper mutation strength” as in our work. Con-
sequently, the proof that indeed the desired progress is obtained with respect to this 
potential function is a lengthy (more than 4 pages) case distinction. Apparently una-
ware of the conference version [16], a similar approach, also with a slightly com-
plicated potential function, was developed in [1] to analyze the (1+1) ES with 1/5 
success rule.

A very general approach was recently published in  [56]. When a process 
X0,X1,… admits several distance functions d1,… , dm such that, for all i ∈ [1…m] , 
the i-th distance satisfies E[di(Xt+1) ∣ Xt] ≤ A(d1(Xt),… , dm(Xt))

⊤ for a given matrix 
A, then under some natural conditions the first time until all distances are zero can 
be bounded in terms of a suitable eigenvalue of A. The assumptions on the distance 
functions and the matrix A are non-trivial, but  [56] provides a broad selection of 
applications of this method. For our problem, we would expect that this method can 
be employed as well, however, this would also need an insight similar to the main 
insight of our approach, namely that the expected new fitness can be estimated in a 
linear fashion from the current fitness and the distance of the current rate from the 
ideal value.

1.4 � Organization of This Work

This paper is structured as follows. In Sect. 2, we define the self-adaptive (1,�) EA 
proposed in this work. In Sect. 3 we provide the technical tools needed on our analy-
sis, among them two new results on occupation probabilities. Sect. 4 presents the 
main theorem. Its proof considers two main regions of different fitness, which are 
dealt with in separate subsections. We present some experimental results in Sect. 5 
and finish with some conclusions in the last section.

2 � The (1,�) EA With Self‑adapting Mutation Rate

We now define precisely the (1,�) EA with self-adaptive mutation rate proposed in 
this work. This algorithm, formulated for the minimization of pseudo-boolean func-
tions f ∶ {0, 1}n → ℝ , is stated in Algorithm 1. We repeat that the main point of 
such a self-adaptive algorithm, as compared to other ways of modifying parameter 
values during a run, is that the parameter is encoded with the individuals, and is thus 
modified via the existing variation-selection cycle of the EA.

To encode the mutation rate into the individual, we extend the individual rep-
resentation by adding the rate parameter. Hence the extended individuals are pairs 
(x, r) consisting of a search point x ∈ {0, 1}n and the rate parameter r, which shall 
indicate that r/n is the mutation rate this individual was created with.

The extended mutation operator first changes the rate to either r/F or Fr with 
equal probability ( F > 1 ). It then performs standard bit mutation with the new rate.

In the selection step, we choose from the offspring population an individual with 
best fitness. If there are several such individuals, we prefer individuals having the 
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smaller rate r/F, breaking still existing ties randomly. In this winning individual, 
we replace the rate by F if it was smaller than F to ensure that in the next iterations, 
the lower of the two rates is at least 1. We replace the rate by rmax = F⌊logF(n∕(2F))⌋ , 
that is, the largest power of F not exceeding n/(2F), if it was larger than this number. 
This ensures that in the next iteration, the larger of the two rates is not larger than 
n/2 and that the rate remains a power of F despite the cap.

We formulate the algorithm to start with any initial mutation rate r init such that 
F ≤ r init ≤ n∕(2F) and r init is a power of F. For the result we shall show in this work, 
the initial rate is not important, but without this prior knowledge we would strongly 
recommend to start with the smallest possible rate r init = F . Due to the multiplicative 
rate adaptation, the rate can quickly grow if this is profitable. On the other hand, a too 
large initial rate might lead to an erratic initial behavior of the algorithm.

For the adaptation parameter, we shall use F = 32 in our runtime analysis. Hav-
ing such a large adaptation parameter eases the already technical analysis, because 
now the two competing rates r/F and Fr are different enough to lead to a signifi-
cantly different performance (this is helpful, e.g., in the proof of Lemma 10). For 
a practical application, we suspect that a smaller value of F is preferable as it leads 
to a more stable optimization process. The choice of the offspring population size 
depends mostly on the degree of parallelism one wants to obtain. Clearly, � should 
be at least logarithmic in n to prevent a too quick loss of the current-best solution. 
For our theoretical analysis, we require � ≥ C ln n for a sufficiently large constant C.

The main result of this work is a mathematical runtime analysis of the per-
formance of the algorithm proposed above on the classic benchmark func-
tion ONEMAX ∶ {0, 1}n → ℝ defined by ONEMAX(x) =

∑n

i=1
xi for all 

x = (x1,… , xn) ∈ {0, 1}n . Since such runtime analyses are by now a well-estab-
lished way of understanding the performance of evolutionary algorithms, we only 
briefly give the most important details and refer the reader to the textbook [41].

The aim of runtime analysis is predicting how long an evolutionary algorithm takes 
to find the optimum or a solution of sufficient quality. As implementation-independent 
performance measure usually the number of fitness evaluations performed in a run 
of the algorithm is taken. More precisely, the optimization time of an algorithm on 
some problem is the number of fitness evaluations performed until for the first time 
an optimal solution is evaluated. Obviously, for a (1,�) EA, the optimization time is 
essentially � times the number of iterations performed until an optimum is generated.
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As in classic algorithms analysis, our main goal is an asymptotic understanding 
of how the optimization time depends on the problems size n. Hence all asymptotic 
notation in the paper will be with respect to n tending to infinity.

3 � Technical Tools

In this section, we list several tools which are used in our work. Most of them are 
standard tools in the runtime analysis of evolutionary algorithms, however, we also 
prove two new results on occupation probabilities at the end of this section.

3.1 � Elementary Estimates

We shall frequently use the following estimates.

Lemma 1 

(a)	 For all x ∈ ℝ , 1 + x ≤ ex.
(b)	 For all x ∈ [0,

2

3
] , e−x−x2 ≤ 1 − x . Moreover, for all x ∈ [0,

1

2
] , e−3x∕2 ≤ 1 − x.

(c)	 Weierstrass product inequality: For all p1,… , pn ∈ [0, 1] , 

All these estimates can be proven via elementary means. We note that the second 
estimate was proven in [23, Lemma 8(c)]. The third is usually proven via induction, 
a possibly more elegant proof via the union bound was given in [34].

3.2 � Probabilistic Tools

In our analysis, we use several standard probabilistic tools including Chernoff 
bounds. All these can be found in many textbook or the book chapter [34]. We men-
tion the following variance-based Chernoff bound due to Bernstein [7], which is less 
common in this field (but can be found as well in [34]).

Theorem  2  Let X1,… ,Xn be independent random variables. Let b be such 
that E(Xi) − b ≤ Xi ≤ E(Xi) + b for all i = 1,… , n . Let X =

∑n

i=1
Xi . Let 

�
2 =

∑n

i=1
Var(Xi) = Var(X) . Then for all � ≥ 0,

1 −

n∑

i=1

pi ≤

n∏

i=1

(1 − pi).

Pr(X ≥ E(X) + �) ≤ exp

(
−

�
2

2(�2 +
1

3
b�)

)
,

Pr(X ≤ E(X) − �) ≤ exp

(
−

�
2

2(�2 +
1

3
b�)

)
.
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We shall follow the common approach of estimating the expected progress and 
translating this via so-called drift theorems into an estimate for the expected optimi-
zation time. We use the variable drift theorem independently found in [43, 52] in a 
slightly generalized form.

Theorem 3  (Variable Drift, Upper Bound) Given a stochastic process, let (Xt)t≥0 
be a sequence of random variables obtained from mapping the random state at time 
t to a finite set S ⊆ {0} ∪ [xmin, xmax] , where xmin > 0 . Let T be the random varia-
ble that denotes the earliest point in time t ≥ 0 such that Xt = 0 . If there exists a 
monotone increasing function h(x) ∶ [xmin, xmax] → ℝ

+ such that for all x ∈ S with 
Pr (Xt = x) > 0 we have

then for all x� ∈ S with Pr (X0 = x�) > 0

Finally, we mention an elementary fact which we shall use as well. See  [13, 
Lemma 1] for a proof.

Lemma 4  Let X ∼ Bin (n, p) and k ∈ [0… n] . Then E(X ∣ X ≥ k) ≤ E(X) + k.

3.3 � Occupation Probabilities

To analyze the combined process of fitness and rate in the parent individual, we 
need a tool that translates a local statement, that is, how the process changes from 
one time step to the next, into a global statement on the occupation probabilities of 
the process. Since in our application the local process has a strong drift to the target, 
Theorem 7 from [47] is too weak. Also, we cannot assume that the process in each 
step moves at most some constant distance. For that reason, we need the following 
stronger statement.

Theorem 5  (Theorem 2.3 in [37]) Suppose that (Fk)k≥0 is an increasing family of 
sub-�-fields of F  and (Yk)k≥0 is adapted to (Fk) . If

then

We apply this theorem in the following lemma that fits into the case in this paper.

E(Xt − Xt+1 ∣ Xt = x) ≥ h(x)

E(T ∣ X0 = x�) ≤
xmin

h(xmin)
+
�

x�

xmin

1

h(x)
dx.

E

(
e𝜂(Yk+1−Yk);Yk > a

||| Fk

)
≤ 𝜌 and E

(
e𝜂(Yk+1−1);Yk ≤ a

||| Fk

)
≤ D,

Pr(Yk ≥ b ∣ F0) ≤ �
ke�(Y0−b) +

1 − �
k

1 − �
De�(a−b).
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Lemma 6  Consider a stochastic process Xt , t ≥ 0 , on ℝ such that for some p ≤ 1∕25 
the transition probabilities for all t ≥ 0 satisfy Pr(Xt+1 ≥ Xt + a ∣ Xt > 1) ≤ pa+1 for 
all a ≥ −1∕2 as well as Pr(Xt+1 ≥ a + 1 ∣ Xt ≤ 1) ≤ pa+1 for all a ≥ 0 . If X0 ≤ 1 then 
for all t ≥ 1 and k > 1 it holds that

Proof  We aim at applying Theorem 5.
There are two cases depending on Xt : for Xt ≤ 1 , using the monotonicity of 

e�(Xt+1−1) with respect to Xt+1 − 1 , we obtain

using the assumption that Pr(Xt+1 ≥ a + 1 ∣ Xt ≤ 1) ≤ pa+1 for all a ≥ 0 then

and for Xt > 1 , using the monotonicity of e�(Xt+1−Xt) with respect to Xt+1 − Xt , we 
have

using the assumption that Pr(Xt+1 ≥ Xt + a ∣ Xt > 1) ≤ pa+1 for all a ≥ −1∕2 then

Using � ∶= ln(1∕(ep)) such that e�p = 1∕e , we have

Theorem 5 yields with a ∶= 1 and b ∶= 1 + k that

Pr(Xt ≥ 1 + k) ≤ 11(ep)k.

D(p, 𝜆) ∶= E(e𝜆(Xt+1−1) ∣ Xt ≤ 1) ≤ E(e𝜆max{⌈Xt+1−1⌉,0} ∣ Xt ≤ 1)

= e0 Pr(Xt+1 ≤ 1 ∣ Xt ≤ 1) +

∞�

a=1

e𝜆a Pr(a < Xt+1 ≤ a + 1 ∣ Xt ≤ 1)

≤ e0 +

∞�

a=1

e𝜆a Pr(Xt > a ∣ Xt ≤ 1),

D(p, �) ≤ 1 +

∞∑

a=1

e�apa = 1 +
e�p

1 − e�p
;

𝜌(p, 𝜆) ∶= E(e𝜆(Xt+1−Xt) ∣ Xt > 1) ≤ E(e𝜆max{⌈2(Xt+1−Xt)⌉∕2,−1∕2} ∣ Xt > 1)

= e−𝜆∕2 Pr
�
Xt+1 − Xt ≤ −

1

2

��� Xt > 1
�

+

∞�

a=0

e𝜆a∕2 Pr
�
a − 1

2
< Xt+1 − Xt ≤

a

2

��� Xt > 1
�

≤ e−𝜆∕2 +

∞�

a=0

e𝜆a∕2 Pr
�
Xt+1 − Xt >

a − 1

2

��� Xt > 1
�
,

�(p, �) = e−�∕2 +

∞∑

a=0

e�a∕2p(a+1)∕2 =
p1∕2

(e�p)1∕2
+

p1∕2

1 − (e�p)1∕2
.

𝜌 ∶= 𝜌(p, 𝜆) ≤ e1∕2p1∕2 +
p1∕2

1 − e−1∕2
≤

e1∕2

5
+

1∕5

1 − e−1∕2
< 0.84,

D ∶= D(p, 𝜆) ≤ 1 + (1∕e)∕(1 − 1∕e) < 1.6.
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	�  ◻

For the simpler case of a random process that runs on the positive integers and 
that has a strong negative drift, we have the following estimate for the occupation 
probabilities.

Lemma 7  Consider a random process defined on the positive integers 1, 2,… . 
Assume that from each state i different from 1, only the two neighboring states i − 1 
and i + 1 can be reached (and there is no self-loop on state i). From state 1, only 
state 2 can be reached and the process can stay on state 1. Let pi < 1 be an upper 
bound for the transition probability from state i to state i + 1 (valid in each iteration 
regardless of the past). Assume that

holds for all i ≥ 2 . Assume that the process starts in state 1. Then at all times, the 
probability to be in state i is at most

where as usual we read the empty product as q1 = 1.

Proof  The claimed bound on the occupation probabilities is clearly true at the start 
of the process. Assume that it is true at some time. By this assumption and the 
assumptions on the process, the probability to be in state i ≥ 2 after one step is at 
most

Trivially, the probability to be in state 1 after one step is at most q1 = 1 . Hence, by 
induction over time, we see that qi is an upper bound for the probability to be in state 
i at all times. 	�  ◻

Pr(Xt ≥ 1 + k ∣ X0) ≤ �
te−�(1+k−X0) +

1

1 − �
De−�k

≤ (ep)k +
1.6

1 − 0.84
(ep)k = 11(ep)k.

pi−1 ≥
pi

1 − pi

qi ∶=

i−1∏

j=1

pj

1 − pj
,

qi−1pi−1 + qi+1 = qi−1

(
pi−1 +

pi−1

1 − pi−1

pi

1 − pi

)

≤ qi−1

(
pi−1 +

pi−1

1 − pi−1
pi−1

)

= qi−1
pi−1

1 − pi−1
= qi.
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4 � Main Result and Proof

We can now state precisely our main result and prove it.

Theorem 8  Let � ≥ C ln n for a sufficiently large constant C > 0 and � = nO(1) . Let 
F = 32 . Then the expected number of generations the self-adapting (1,�) EA takes to 
optimize OneMax is

This corresponds to an expected number of fitness evaluations of 
O(n�∕ log � + n log n).

The proof of this theorem is based on a careful, technically demanding drift 
analysis of both the current OneMax-value kt (which is also the fitness distance, 
recall that our goal is the minimization of the objective function) and the cur-
rent rate rt of the parent. In very rough terms, a similar division of the run as in 
[23] into regions of large OneMax-value, the far region (Sect. 4.1), and of small 
OneMax-value, the near region (Sect. 4.2) is made. The middle region considered 
in [23] is subsumed under the far region here.

In the remainder of our analysis, we assume that n is sufficiently large, that 
� ≥ C ln n with a sufficiently large constant C, that � = nO(1) , and that F = 32.

4.1 � The Far Region

In this section, we analyze the optimization behavior of our self-adaptive (1,�) EA 
in the regime where the fitness distance k is larger than n∕ ln � . Due to our assump-
tion � ≥ C ln n , it is very likely to have at least one copy of the parent among � off-
spring when r = O(ln �) . Thus the (1,�) EA works almost the same as the (1 + �)   
EA when r is small, but can lose fitness in general. The following lemma is crucial 
in order to analyze the drift of the rate depending on k, which follows a similar 
scheme as with the (1 + �) EA proposed in [23].

Roughly speaking, the rate leading to optimal fitness progress is n for 
k ≥ n∕2 + �(

√
n ln(�)) , n/2 for k = n∕2 ± o(

√
n log(�)) , and then the optimal rate 

quickly drops to r = Θ(log �) when k ≤ n∕2 − �n.
To ease statement of the following lemma, we define two fitness dependent 

bounds L(k) and R(k).

Definition 9  Let n∕ ln 𝜆 < k < n∕2 . We define L(k) ∶= (F ln(en∕k))−1 and 
U(k) ∶= n(2n − k)∕(22(n − 2k)2).

According to the definition, both L(k) and R(k) monotonically increase when k 
increases.

O

(
n

log �
+

n log n

�

)
.
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Lemma 10  Consider an iteration of the self-adaptive (1,�) EA with current fitness 
distance k and current rate r. Then: 

(a)	� If n∕ ln 𝜆 < k and F ≤ r ≤ L(k) ln � , the probability that all best offspring have 
been created with rate Fr is at least 1 − O(ln3(�)∕�1∕(4 ln ln �)).

(b)	� If k < n∕2 and n∕(2F) ≥ r ≥ U(k) ln � , then the probability that all best off-
spring have been created with rate r/F is at least 1 − �

1−(23∕22)r∕(U(k) ln �).

Proof of Lemma 10 part (a)  Let q(k, i, r) and Q(k, i, r) be the probability that standard 
bit mutation with mutation rate p = r∕n creates from a parent with fitness distance k 
an offspring with fitness distance exactly k − i and at most k − i , respectively. Then

and Q(k, i, r) =
∑k

j=i
q(k, j, r) . We aim at finding i such that Q(k, i,Fr) ≥ ln(�)∕� 

while Q(k, i, r∕F) = O(ln3(�)∕�1+1∕4(ln ln �)) . Then we use these to bound the proba-
bility that at least one offspring using rate Fr obtains a progress of i or more while at 
the same time all offspring using rate r/F obtains less than i progress. Let i∗ be the 
largest i such that Q(k, i,Fr) ≥ ln(�)∕� . Using the fact that ln(1 − x) ≥ −x − x2 for 
all 0 < x ≤ 1∕2 , note that our algorithm by definition never uses mutation rates 
larger than 1/2, we notice that (1 − Fp)n−i ≥ (1 − Fp)n ≥ e−Fr−(Fr)

2∕n . By the assump-
tion that r ≤ L(k) ln � ≤ ln � , we obtain (Fr)2∕n = O(ln2 �∕n) = o(1) . Thus 

(1 − Fp)n−i = (1 − o(1))e−Fr . We also notice that 
(
k

i

)
= (k∕i)((k − 1)∕(i − 1))⋯

(k − i + 1) > (k∕i)i−1(k − i) = (k∕i)i((k − i)i∕k) > 2(k∕i)i for 2 < i < k − 2 . Thus for 
i > 2 we can bound Q(k, i, Fr) by

where the second inquality follows from (1) by regarding the term for j = 0 only. 
Let i = max{(F − 1)r, ln �∕(8 ln ln �)} . We prove i∗ ≥ i by distinguishing between 
two cases according to which argument maximizes i.

If i = ln �∕(8 ln ln �) , then r ≤ i∕(F − 1) and Fr ≤ 2i . Referring to inequality (2) 
and using the fact that k∕n ≥ 1∕ ln � , i < ln 𝜆 , and ln ln(𝜆) > 1 , we obtain

and thus Q(k, i,Fr) ≥ ln(�)∕�.
If i = (F − 1)r , then r ≥ ln �∕(8(F − 1) ln ln �) since F is a constant. Using 

r ≤ L(k) ln � , we obtain ln � ≥ ln(en∕k)Fr which is equivalent to (k∕en)Fr ≥ 1∕� . 
Furthermore, (k∕n)i > (k∕n)Fr since i = (F − 1)r < Fr . Thus

(1)q(k, i, r) =

k−i∑

j=0

(
k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j

(2)Q(k, i,Fr) ≥ q(k, i,Fr) ≥

(
k

i

)
(Fp)i(1 − Fp)n−i ≥

(
k

i
⋅

Fr

n

)i

e−Fr,

ln(Q(k, i,Fr)) ≥ i ln
(
k

in

)
− Fr ≥ −i ln(ln2 𝜆) − 2i

= −2i ln ln 𝜆 − 2i > −4i ln ln 𝜆 = −
ln 𝜆

2
≥ ln

(
ln 𝜆

𝜆

)
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Since Q(k,  i,  r) is decreasing in i, we obtain i∗ ≥ max{(F − 1)r, ln �∕(8 ln ln �)} . 
Using a Chernoff bound and recalling that the expected number of flipped bits is 
bounded by FL(k) ln � ≤ ln �∕ ln(2e) , we notice that i∗ ≤ ln � . This upper bound will 
be used to estimate Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) in the following part of the proof.

We now prove that Q(k, i∗, r∕F) = o(1∕�) . By comparing each component in 
q(k,  i, r/F) and q(k,  i, Fr), and applying Lemma 1 (b) to estimate (1 − Fr∕n)n and 
(1 − r∕(Fn))n with r = O(ln �) = o(n1∕2) for large enough n, we obtain

Therefore Q(k, i∗,Fr)∕Q(k, i∗, r∕F) ≥ F
2i∗
e
−Fr = exp(2i∗ lnF − Fr) ≥ exp(2i∗ ln

F − Fi
∗∕(F − 1)) > exp(3i∗) > 𝜆

1∕(4 ln ln 𝜆) , where in the first inequality, we use the 
fact that i∗ ≥ (F − 1)r . To prove Q(k, i∗, r∕F) = O(ln3(�)∕�1+1∕4(ln ln �)) , we first 
show Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) = O(ln2 �) . Then we use this to bound 
Q(k, i∗,Fr) = O(ln3(�)∕�) according to the definition of i∗ . Finally we obtain 
Q(k, i∗, r∕F) ≤ Q(k, i∗,Fr)∕�1∕(4 ln ln �) = O(ln3(�)∕�1+1∕4(ln ln �)) . It remains to bound 
Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) . We show that the majority of q(k, i, r) are from the first 
3r terms in the summation of equation (1). Let q(k, i, r)j denote the j-th item (

k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j in equation (1). Then

If j > 3r , then r2∕((i + j + 1)(j + 1)) < 1∕9 , and thus

We notice that

Q(k, i,Fr) ≥
(
k

i
⋅

Fr

n

)i

e−Fr ≥
(

F

F − 1

)(F−1)r( k

en

)Fr

≥ 2r
(
k

en

)Fr

≥
ln �

�
.

q(k, i,Fr)

q(k, i, r∕F)
≥ F2i (1 − Fr∕n)n

(1 − r∕(Fn))n

≥
(
1 − o(1)

)
F2ie−(F−1∕F)r > F2ie−Fr.

q(k, i, r)j+1

q(k, i, r)j
=

k − i − j

i + j + 1
⋅

n − k − j

j + 1
⋅ p2 ⋅ (1 − p)−2 ≤

r2

(i + j + 1)(j + 1)
.

q(k, i, r) ≤

(
3r∑

j=0

q(k, i, r)j

)
+ q(k, i, r)3r

(
k−i∑

j=3r+1

(1∕9)j−3r

)

≤

(
3r∑

j=0

q(k, i, r)j

)
+ q(k, i, r)3r ⋅

1∕9

1 − 1∕9

=

(
3r−1∑

j=0

q(k, i, r)j

)
+

9

8
⋅ q(k, i, r)3r ≤

9

8

3r∑

j=0

q(k, i, r)j.

q(k, i + 1, r)j

q(k, i, r)j
=

(
k

i + j + 1

)(
n − k

j

)
pi+2j+1(1 − p)n−i−2j−1

(
k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j

=
(k − i − j)p

(i + j + 1)(1 − p)
,
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using the fact that 
∑3r

j=0
q(k, i, r)j ≤ q(k, i, r) ≤ (9∕8)

∑3r

j=0
q(k, i, r)j for all (k, i, r), we 

compute

Since i∗ ≥ (F − 1)r , i∗ ≤ ln � , and k ≥ n∕ ln � = �(ln �) , we obtain

Consequently we have q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) ≤ q(k, i∗,Fr)∕q(k, i∗ + 1,Fr) = O(ln2 �) 
and

So finally Q(k, i∗,Fr) = O(ln3(�)∕�) due to the definition of i∗ , and

A simple union bound shows that with probability 1 − O(ln3(�)∕�1∕(4 ln ln �)) , no off-
spring of rate r/F manages to obtain a progress of i∗ or more. However, the probabil-
ity that an offspring has rate Fr and obtains at least i∗ progress is ln(�)∕(2�) . Thus 
the probability that no offspring generated with rate Fr achieves a progress of at 
least i∗ is at most (1 − ln(�)∕(2�))� ≤ �

−1∕2 = o(ln3(�)∕�1∕(4 ln ln �)) . This proves the 
first statement of the lemma. 	�  ◻

Proof of  Lemma  10 part  (b)  For r̃ ∈ {r∕F,Fr} let the random variable X(k, r̃) 
denote the number of flipped bits in k ones and Y(k, r̃) denote the number of 
flipped bits in n − k zeros when applying standard bit mutation with probabil-
ity p = r̃∕n . Let Z(k, r̃) ∶= Y(k, r̃) − X(k, r̃) denote the improvement in fitness. 
Let Z∗(k, r̃) denote the minimal Z(k, r̃) among all offspring which apply rate r̃ . 
E(Z(k, r̃)) = (n − k)r̃∕n − kr̃∕n = (n − 2k)r̃∕n . Our aim is to find a � such that 
Pr (Z(k, r∕F) ≤ �) = Θ(1) while Pr (Z(k,Fr) ≤ �) = o(1∕�) , and use this to obtain a 
high value for Pr (Z∗(k, r∕F) < Z∗(k,Fr)).

Let � ∶= E(Z(k, r∕F)) . We notice that Pr(X(k, r∕F) > E(X(k, r∕F)) − 1) ≥ 1∕2 
since the median of binomial distribution X(k,  r/F) is ⌊E(X(k, r∕F)⌋ or 
⌈E(X(k, r∕F)⌉ . Applying Lemma  8 in [32] to Pr(Y(k, r∕F) < E(Y(k, r∕F)) − 1) 
with E(Y(k, r∕F)) = Ω(ln �) = �(1) by assumption r ≥ U(k) ln � and 
E(Y(k, r∕F)) < (n − k)∕2 , we obtain for n sufficiently large that

q(k, i∗ + 1,Fr)

q(k, i∗,Fr)
≥

∑3Fr

j=0
q(k, i∗ + 1,Fr)j

(9∕8)
∑3Fr

j=0
q(k, i∗,Fr)j

≥
8

9
⋅

k − i∗ − 3Fr

i∗ + 3Fr + 1
⋅

p

1 − p
.

q(k, i∗ + 1,Fr)

q(k, i∗,Fr)
= Ω

(
kp

i∗

)
= Ω

(
kr

i∗n

)
= Ω

(
1

ln2 �

)
.

Q(k, i∗,Fr)

Q(k, i∗ + 1,Fr)
= 1 +

q(k, i∗,Fr)

Q(k, i∗ + 1,Fr)
= O(ln2 �).

Q(k, i∗, r∕F) ≤
Q(k, i∗,Fr)

F2i∗e−Fr
= O

(
ln3 �

� ⋅ �1∕(4 ln ln �)

)
.
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Thus Pr(Z(k, r∕F) ≤ 𝛽) > (1∕2)(2∕5) = 1∕5 . We use Bernstein’s inequality (Theo-
rem 2) to bound Pr (Z(k,Fr) ≤ �) and obtain

With Δ = E(Z(k,Fr)) − � = (n − 2k)(Fr∕n − r∕(Fn)) = (n − 2k)(F2 − 1)r∕(Fn) and 
Var(Z(k,Fr)) = Fr(1 − Fr∕n) < Fr , we compute

Given F = 32 and r ≥ U(k) ln � then

With a simple union bound, we obtain Pr(Z∗(k,Fr) ≤ 𝛽) < 𝜆Pr(Z(k,Fr) ≤ 𝛽)

< 𝜆
1−23.9r∕(22U(k) ln 𝜆) . The probability that an offspring has rate r/F and obtains � is 

at least (1∕2)(1∕5) = 1∕10 . Thus the probability that no offspring generated with 
r/F has a Z-value of at least � is at most (1 − 1∕10)� = exp(−Θ(�)) . Therefore 
Pr(Z∗(k,Fr) < Z∗(k, r∕F)) < 𝜆

1−23.9r∕(22U(k) ln 𝜆)(1 − exp(−Θ(𝜆))) = o(𝜆1−23r∕(22U(k) ln 𝜆)) , 
which means with probability at least 1 − �

1−(23r∕(22U(k) ln �) all best offspring have 
been created with rate r/F. 	�  ◻

Lemma 10 will be crucial in order to bound the expected progress on fitness in the 
far region. We notice that ln � = o(

√
n) in the lemma we may allow r > ln 𝜆 when k 

is large and r = Θ(n) when k = n∕2 − Θ(
√
n ln �) . It is easy to show a positive pro-

gress on fitness for r < ln 𝜆 since there will be sufficiently many offspring that do not 
flip zeros. When r ≥ ln � we expect all offspring to flip zeros, but we can still show a 
positive drift when k > 7n∕20 , as stated in the following lemma. The idea is that the 
standard variation of the number of flipping ones is 

√
kr∕n(1 − r∕n) = Θ(

√
r) . This 

makes a deviation compensating bad flips among the remaining n − 2k zeros likely 
enough.

(3)
Pr
�
Y(k, r∕F) < E(Y(k, r∕F)) − 1

�

≥
1

2
−

�
n − k

2𝜋⌊(n − k)p⌋(n − k − ⌊(n − k)p⌋) >
2

5
.

Pr
(
Z(k,Fr) ≤ E(Z(k,Fr)) − Δ

)
≤ exp

(
−

Δ2

2(Var(Z(k,Fr)) + Δ∕3)

)
for all Δ > 0.

Pr(Z(k,Fr) ≤ �) ≤ exp

(
−
1

2
⋅

(F2 − 1)2(n − 2k)2r2

F2n2(Fr + (n − 2k)(F2 − 1)r∕(3Fn))

)

= exp

(
−
1

2
⋅

(F2 − 1)2(n − 2k)2r

F3n2 + Fn(n − 2k)(F2 − 1)∕3

)

≤ exp

(
−
3

2
⋅

(F2 − 1)2(n − 2k)2r

3F3n2 + F3n(n − 2k)

)

= exp

(
−
3

4
⋅

(F2 − 1)2(n − 2k)2r

F3n(2n − k)

)
.

Pr(Z(k,Fr) ≤ 𝛽) < exp

(
−
23.9(n − 2k)2r

n(2n − k)

)
< 𝜆

−
23.9r

22U(k) ln 𝜆 .
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Lemma 11  Let 7n∕20 ≤ k < n∕2 and � = 10−4 . Assume r ≤ min{n2 ln �∕(12

(n − 2k)2), n∕(2F)} . Assume that from a parent with fitness distance k we gener-
ate an offspring using standard bit mutation with mutation rate p = r∕n . Then 
the probability that this offspring has a fitness distance of at most k − s with 
s ∶= �(min{ln �, r} + (n − 2k)r∕n) , is at least �−0.98.

Proof  We first look at the case when r < 1∕(2𝛼) . In this case 
s ≤ 𝛼(r + (n − 2k)r∕n) ≤ 𝛼(2r) < 1 . Then the probability that this offspring has a fit-
ness distance of k − 1 > k − s is at least

Therefore it remains to consider r ≥ 1∕(2�).
Let random variables X and Y denote the number of flips in k one-bits and 

(n − k) zero-bits, respectively, in an offspring using rate p = r∕n . Then X − Y  is 
the decrease of fitness distance. X and Y follow binomial distributions Bin (k, p) and 
Bin (n − k, p) , respectively. Let

Since r ≥ 1∕(2�) ≥ 5000 and n ≤ 20k∕7 , then p = r∕n ≥ 5000 ⋅ 7∕(20k) = 1750∕k . 
Using this and the fact that p ≤ 1∕(2F) , we apply Lemma 8 in [32] and obtain

Similarly Pr(Y ≤ E(Y)) = 2∕5 . Since E(X − Y) = kp − (n − k)p = −(n − 2k)p , we 
bound

Let � ∶= ⌈(n − 2k)p + s⌉ , u ∶= kp and ũ ∶= ⌈u⌉ . We notice that 
u = rk∕n ≥ (1∕(2�))(7∕20) = 1750 . Furthermore, we have 𝛿 < ũ − 2 < u since

(
k

1

)(
r

n

)1(
1 −

r

n

)n−1

= Θ(e−r) = �(�−0.98).

B(x) ∶= Pr(X = x) =

�
k

x

�
px(1 − p)k−x for all x ∈ {0, 1,… , k},

F(x) ∶= Pr(X ≥ x) =

k�

i=⌈x⌉
B(i) for all x ∈ [0, k].

Pr(X > E(X)) >
1

2
−

�
k

2𝜋⌊kp⌋(k − ⌊kp⌋) >
1

2
−

�
1

2kp
>

2

5

Pr
(
X − Y ≥ s

)
≥ Pr

(
X ≥ E(X) + (n − 2k)p + s

)
Pr
(
Y ≤ E(Y)

)

≥
2

5
F
(
kp + (n − 2k)p + s

)
.
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We aim at proving F(u + �) = �(�−0.98) to obtain this lemma. If F(u + �) = Θ(1) 
then the conclusion holds. It remains to consider F(u + �) = o(1) while 
F(u) − F(u + �) ≥ 2∕5 − o(1) as stated in equation (3). For any x ∈ ℤ

≥u we have

Since ũ = ⌈u⌉ then B(ũ) > B(ũ + 1) > ⋯ > B(k) , and thus F(u + 𝛿) ≥ 𝛿B(ũ + 2𝛿) 
as well as F(u) − F(u + 𝛿) ≤ 𝛿B(ũ) . Using the fact that p∕(1 − p) = u∕(k − u) and 
ũ − 1 < u , we see that

We compute the following factorials using Robbins’s Stirling’s approximation in 
[55]

Notice that 12ũ + 1 < 12(ũ + 2𝛿) , we obtain

Therefore

We notice that 2𝛿∕(k − u) ≤ 2𝛿∕(2Fu − u) = 2𝛿∕(63u) < 2∕63 < 1∕2 and 
(2𝛿 + 1)∕(ũ + 2𝛿) < (2𝛿 + 1)∕(3𝛿 + 2) < 2∕3 . Referring to Lemma 1, we compute

𝛿 =⌈(n − 2k)p + s⌉ < (1 + 𝛼)(n − 2k)p + 𝛼min{ln 𝜆, r} + 1

≤(1 + 𝛼)
n − 2k

n
r + 𝛼r + 1 ≤

�
(1 + 𝛼)

3

10
+ 𝛼

�
r + 1

=
3 + 13𝛼

10
⋅

n

k
⋅ u + 1 <

3 + 13𝛼

10
(3u) + 1 < 0.91u + 1

=u − 0.09u + 1 ≤ u − (0.09 ⋅ 1750 − 1) = u − 156.5.

B(x + 1)

B(x)
=

k − x

x + 1
⋅

p

1 − p
≤

u − up

u − up + 1 − p
< 1.

B(ũ + 2𝛿)

B(ũ)
=

(k − ũ)⋯ (k − (ũ + 2𝛿) + 1)

(ũ + 1)⋯ (ũ + 2𝛿)
⋅

p2𝛿

(1 − p)2𝛿

≥
(k − (ũ − 1) − 2𝛿)2𝛿

(ũ + 1)⋯ (ũ + 2𝛿)
⋅

u2𝛿

(k − u)2𝛿
≥

(
1 −

2𝛿

k − u

)2𝛿 u2𝛿

(ũ + 1)⋯ (ũ + 2𝛿)
.

(ũ + 2𝛿)! ≤
√
2𝜋(ũ + 2𝛿)

�
ũ + 2𝛿

e

�ũ+2𝛿

exp

�
1

12(ũ + 2𝛿)

�
,

ũ! ≥
√
2𝜋ũ

�
ũ

e

�ũ

exp
�

1

12ũ + 1

�
.

1

(ũ + 1)⋯ (ũ + 2𝛿)
=

ũ!

(ũ + 2𝛿)!
≥

√
ũ

ũ + 2𝛿

ũũe2𝛿

(ũ + 2𝛿)ũ+2𝛿
≥

√
ũ

ũ + 2𝛿

uũe2𝛿

(ũ + 2𝛿)ũ+2𝛿
.

B(ũ + 2𝛿)

B(ũ)
≥

(
1 −

2𝛿

k − u

)2𝛿
√

ũ

ũ + 2𝛿

uũ+2𝛿e2𝛿

(ũ + 2𝛿)ũ+2𝛿

=

√
ũ

ũ + 2𝛿
exp

(
2𝛿 ln

(
1 −

2𝛿

k − u

)
+ (ũ + 2𝛿) ln

(
u

ũ + 2𝛿

)
+ 2𝛿

)

≥

√
ũ

ũ + 2𝛿
exp

(
2𝛿 ln

(
1 −

2𝛿

k − u

)
+ (ũ + 2𝛿) ln

(
1 −

2𝛿 + 1

ũ + 2𝛿

)
+ 2𝛿

)
.
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where the last inequality used that ũ∕(ũ + 2𝛿) ≥ 1∕3 since 𝛿 ≤ ũ . Using n∕k ≤ 20∕7 
and r ≤ n2 ln �∕(12(n − 2k)2) , we obtain

Plugging the last estimate into inequality (4), we obtain B(ũ + 2𝛿)∕B(ũ) = 𝜔(𝜆−0.98) . 
Thus F(u + �)∕(F(u) − F(u + �)) = �(�−0.98) and F(u + �) = �(�−0.98) which 
proves the statement in this lemma. 	� ◻

For k < 7n∕20 , we need a more careful analysis, where we will estimate the 
expected progress on fitness averaged over the random rates the algorithm may 
have at a time. Hence, we assume a fixed current fitness but a random current 
rate and compute the average drift of fitness with respect to the distribution on 
the rates. This approach is similar to the one by Jägersküpper [40], who computes 
the average drift of the Hamming distance to the optimum when the (1+1) EA is 
optimizing a linear function, where the average is taken with respect to a distribu-
tion on all search points with a certain Hamming distance.

Of course, we want to exploit that a rate yielding near-optimal fitness progress 
is used most of the time such that too high (or too low) rates do not have a signifi-
cant impact. To this end, Lemma 6 about occupation probabilities will be crucial.

We now define two fitness dependent bounds rl(k) and ru(k) . We show in 
Lemma 13 that for any rate, if r/F or Fr is within the bounds, then the algorithm 
has logarithmic drift on fitness.

Definition 12  Let n∕ ln 𝜆 < k < n∕2 . We define

(4)

2𝛿 ln
(
1 −

2𝛿

k − u

)
≥ −

3

2
⋅

4𝛿2

k − u
= −

6𝛿2

u∕p − u
≥ −

6𝛿2

2Fu − u
≥ −

𝛿
2

10u
,

(ũ + 2𝛿) ln
(
1 −

2𝛿 + 1

ũ + 2𝛿

)
≥ −(2𝛿 + 1) −

(2𝛿 + 1)2

ũ + 2𝛿
≥ −2𝛿 −

4𝛿2

u
− 3,

B(ũ + 2𝛿)

B(ũ)
≥

√
ũ

ũ + 2𝛿
exp

(
−
41𝛿2

10u
− 3

)
≥

√
1

3
e−3 exp

(
−
41𝛿2

10u

)
.

41𝛿2

10u
=

41n

10k
⋅

⌈(1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r}⌉2
r

≤
41n

10k
⋅

((1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r} + 1)2

r

≤
41n

10k
⋅

�
((1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r})2

r
+ 2(1 + 𝛼)

n − 2k

n
+ 2𝛼 +

1

r

�

≤
82

7
⋅

�
(1 + 𝛼)2

�
n − 2k

n

�2

r + 2(1 + 𝛼)
n − 2k

n
𝛼 ln 𝜆 + 𝛼

2 ln 𝜆 + 1

�

≤
82

7
⋅

�
(1 + 𝛼)2 ln 𝜆

12
+

3(1 + 𝛼)𝛼

5
ln 𝜆 + 𝛼

2 ln 𝜆 + 1

�
< 0.978 ln 𝜆 +

82

7
.
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where L(k) and U(k) are defined as in Definition 9.

We notice that Lemma  10 can be applied to all r > ru 
or r < rl because for all 7n∕20 ≤ k < n∕2 , we have 
ru∕(U(k) ln �) = 22n∕(12(2n − k)) ≥ 22∕(12(2 − 0.35)) = 10∕9 . For k < n∕ ln 𝜆 , we 
set rl to the minimal possible value of r. Finally note that ru is non-decreasing in k 
due to the monotonicity of n2∕(n − 2k)2 and U(k).

Lemma 13  Let n∕𝜆 < k < n∕2.
Let Δ(k, r) denote the fitness gain of the best offspring using rate in {r∕F,Fr} . 

(a)	� The negative drift of fitness for too high rates r ≥ Fru is bounded by

(b)	� When k ≥ 7n∕20 the positive drift of fitness for good rate r ≤ Fru is bounded 
by

(c)	� When n∕𝜆 < k < 7n∕20 the positive drift of fitness for good rate r ≤ Fru is 
bounded by

Proof  The probability of using rate r/F is 1/2. Thus with probability at least 
1 − (1∕2)� = 1 − o(1∕n3) , at least one offspring uses rate r/F. For this offspring, the 
expected loss is (n − 2k)r∕(Fn) . If the complementary event (hereinafter called fail-
ure) of probability o(1∕n3) happens, we estimate Δ(k, r) pessimistically by −n . This 
proves the first statement.

To prove the second item, we take i = 10−4((n − 2k)r∕(Fn) +min{ln �, r∕F}) . 
According to Lemma  11, the probability that an offspring uses rate r/F and 
achieves progress of i or more is at least �−0.98∕2 . Thus for � offspring, we obtain 
Pr(Δ(k, r) ≥ i) ≥ 1 − (1 − �

−0.98∕2)� = 1 − O(exp(−�0.02∕2)) = 1 − o(1) . If the fail-
ure event happens, we estimate Δ(k, r) pessimistically by −(n − 2k)r∕(Fn) = O(i) . 
Thus the statement holds.

For the third item, we take i ∶= min{r, ln(�)∕ ln(en∕k)}∕F . Notice that for 
k < 7n∕20 we have ru(k) < ru(7n∕20) = (25∕27) ln 𝜆 < 0.93 ln 𝜆 . Applying 

ru(k) ∶=

{
n2 ln(𝜆)∕(12(n − 2k)2) if 7n∕20 ≤ k < n∕2,

10U(k) ln(𝜆)∕9 if n∕ ln 𝜆 < k < 7n∕20.

rl(k) ∶=

{
L(k) ln(𝜆)∕2 if n∕ ln 𝜆 ≤ k < n∕2,

F if n∕𝜆 < k < n∕ ln 𝜆.

E(Δ(k, r)) ≥ −
(
1 + o(1)

)n − 2k

n

r

F
.

E(Δ(k, r)) ≥
(
1 − o(1)

)
⋅ 10−4

(
n − 2k

n
⋅

r

F
+min

{
ln �,

r

F

})
.

E(Δ(k, r)) ≥
(
1 − o(1)

)
min

{
r

F
,

ln �

F ln(en∕k)

}
.



1034	 Algorithmica (2021) 83:1012–1053

1 3

Lemma 1(b) with r∕F ≤ ru(k) = o(
√
n) we obtain (1 − r∕(Fn))n ≥ (1 − o(1))e−r∕F . 

Therefore the probability that one offspring using rate r∕F < 0.93 ln 𝜆 makes a pro-
gress of at least i is lower bounded by (assuming n large enough)

Thus for � offspring, we obtain Pr(Δ(k, r) ≥ i) ≥ 1 − (1 − �
−0.98∕2)�= 1 − o(1∕ ln(�)) . 

If the failure event happens we estimate Δ(k, r) pessimistically by 
−(n − 2k)r∕(Fn) = O(ln �) . The contribution of failure events is o(1) which is also 
o(i). Therefore the third statement holds. 	�  ◻

As discussed, our aim is to show that rt∕F or Frt stays in the right range fre-
quently enough such that the overall average drift is still logarithmic. We notice that 
small rates rt < rl intuitively do not have a negative effect, therefore we focus on 
the probability that rt < Fru . Since ru decreases monotonically in k, we need to ana-
lyze whether r still stays in the right range if there are large jumps in fitness dis-
tance k. Intuitively, the speed at which the mutation rate is decreased is much higher 
than than the decrease of fitness distance. To make this rigorous, we first look at the 
probability of large jumps, as detailed in the following lemma.

Lemma 14  Assume r ≤ n∕2 and let Z(k,  r) denote the fitness-distance increase 
when applying standard bit mutation with probability p = r∕n to an individual with 
k ones. Then

for all Δ ≥ 0.

Proof  Without loss of generality, we assume that the individual has k leading ones 
and n − k trailing zeros. Let random variables Z1,… , Zn be the contribution to fit-
ness distance increase in each position after standard bit mutation. Then

The random variables Z1,… , Zn are independent and Z(k, r) =
∑n

i=1
Zi . Similarly 

as in the proof of Lemma 10 (b), we have E(Z(k, r)) = −kp + (n − 2k)p = (n − 2k)p 
and Var(Z(k, r)) =

∑n

i=1
Var(Zi) = np(1 − p) = (1 − p)r . To apply Bernstein’s 

inequality (Theorem 2), we construct Z̃i such that Z̃i = Zi + p for all 1 ≤ i ≤ k and 
Z̃i = Zi − p for all k < i ≤ n . Therefore E(Z̃i) = 0 and Var(Z̃i) = Var(Zi).

(
k

i

)(
r

Fn

)i(
1 −

r

Fn

)n

≥

(
k

i
⋅

r

Fn

)i
(
(1 − o(1))e−

r

F

)

>

(
k

en

)i

e−0.94 ln 𝜆 ≥ 𝜆
−1∕F−0.94

> 𝜆
−0.98.

Pr(Z(k, r) ≤ (n − 2k)r∕n − Δ) ≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)
,

Pr(Z(k, r) ≥ (n − 2k)r∕n + Δ) ≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)

Pr(Zi = −1) = p and Pr(Zi = 0) = 1 − p for all 1 ≤ i ≤ k;

Pr(Zi = 1) = p and Pr(Zi = 0) = 1 − p for all k < i ≤ n.
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By assuming r ≤ n∕2 , we have p ≤ 1∕2 and thus p − 1 ≤ Z̃i ≤ 1 − p for all 
1 ≤ i ≤ n . Using the fact that 

∑n

i=1
Z̃i = Z(k, r) − E(Z(k, r)) , Theorem 2 yields with 

b ∶= 1 − p and �2 ∶= (1 − p)pn = (1 − p)r that

Similarly the lower tail bound holds. 	�  ◻

We now use Lemma 14 to show that once rt ≥ Fru(kt) , there will be a strong drift 
for rt∕ru(kt) to decrease down to 1.

Lemma 15  Let kt < n∕2 . Let � ∶= logF(3∕
√
10) and Xt ∶= logF(rt∕ru(kt)) − � with 

ru(kt) defined in Definition 12, we have

Proof  Using the fact that rt+1 ∈ {Frt, rt∕F} , we see that

According to the monotonicity that ru(k) increases with respect to k, we notice that 
kt ≥ kt+1 is a necessary condition for Xt+1 − Xt ≥ 1 . We also notice that Xt ≥ � is 
equivalent to rt∕ru(kt) ≥ 3∕

√
10 , which is sufficient to apply Lemma  10(b) since 

ru(k) ≥ (10∕9)U(k) ln � as defined in Definition 12.
We first consider the case kt+1 ≥ kt (equivalent to ru(kt+1) ≥ ru(kt) ). In 

this case Xt+1 − Xt ≤ 1 thus Pr(Xt+1 ≥ 1 ∩ kt+1 ≥ kt ∣ Xt < 0) = 0 and 
Pr(Xt+1 − 1 ≥ 1 ∩ kt+1 ≥ kt ∣ Xt ≤ 1) = 0 . It remains to consider

If rt+1 = rt∕F then Xt+1 − Xt ≤ −1 . Clearly Xt+1 − Xt ≥ a ≥ −1∕2 is impossible. It 
also makes Xt+1 ≥ 1 with 0 ≤ Xt ≤ 1 impossible. Thus, the two probabilities above are 
bounded by Pr (rt+1 = Frt ∩ kt+1 ≥ kt ∣ Xt ≥ �) ≤ Pr (rt+1 = Frt ∣ Xt ≥ �) = �

−Ω(1) 
according to Lemma 10(b).

It remains to consider kt+1 < kt (equivalent to ru(kt+1) < ru(kt) ). We make a case 
distinction based on the value of (n − 2kt)

2.

Pr(Z̃i = −1 + p) = p and Pr(Z̃i = p) = 1 − p for all 1 ≤ i ≤ k;

Pr(Z̃i = 1 − p) = p and Pr(Z̃i = −p) = 1 − p for all k < i ≤ n.

Pr

(
n∑

i=1

Z(k, r) − E(Z(k, r)) ≥ Δ

)
≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)
.

Pr(Xt+1 − Xt ≥ a ∣ Xt > 1) ≤ 𝜆
−Ω(a+1) for all a ≥ −1∕2,

Pr(Xt+1 − 1 ≥ a ∣ Xt ≤ 1) ≤ 𝜆
−Ω(a+1) for all a > 0.

Xt+1 − Xt ∈

{
1 + logF

(
ru(kt)

ru(kt+1)

)
,−1 + logF

(
ru(kt)

ru(kt+1)

)}
.

Pr(Xt+1 − Xt ≥ a ∩ kt+1 ≥ kt ∣ Xt > 1) with − 1∕2 ≤ a ≤ 1, and

Pr(Xt+1 − 1 ≥ a ∩ kt+1 ≥ kt ∣ 0 ≤ Xt ≤ 1) with 0 < a < 1.
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Case 1: (n − 2kt)
2
< 2Fn ln 𝜆 . In this case, r

u
(k

t
) = n

2 ln �∕(12(n − 2k
t
)2) ≥

n∕(24F) which means that Xt < 1 for all rates r ≤ n∕(2F) . Thus 
Pr(Xt+1 − Xt < a ∩ kt+1 < kt ∣ Xt > 1) = 0 . When computing 
Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt ≤ 1) , we notice that Xt+1 ≥ 1 + a implies 
logF((n∕2F)∕ru(kt+1)) ≥ 1 + a + � . Furthermore,

Therefore a necessary condition for Xt+1 ≥ 1 + a while Xt ≤ 1 and (n − kt)
2 ≤ 2Fn ln � 

is kt − kt+1 ≥ ((4F(1+a)∕2∕101∕4 −
√
2F)∕2)

√
n ln 𝜆 > (6Fa∕2 − 4)

√
n ln 𝜆 . We notice 

that E(kt+1 − kt) > 0 , applying Lemma 14 and using a union bound we obtain for 
Δ ∶= (6Fa∕2 − 4)

√
n ln 𝜆 > 2

√
n ln 𝜆 that

Therefore Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt ≤ 1) = 𝜆
−Ω(1+a).

Case 2: (n − 2kt)
2 ≥ 2Fn ln � . Let

then Xt+1 − Xt ∈ {1 + logF(�
2
t
),−1 + logF(�

2
t
)} . We rewrite for Xt > 1 and 

a ≥ −1∕2

as well as for Xt ≤ 1 and a > 0

where the second item in the above inequality (6) is furthermore bounded in (7) by 
making a distinction between Xt ≥ � ∧ a ≤ 2 and the remaining cases.

Applying Lemma  10(b) we see that both Pr
(
rt+1 = Frt ∣ Xt

)
�a≤2 from (5) and 

Pr
(
rt+1 = Frt ∣ Xt

)
�Xt≥�∧a≤2

 from (7) are of order �−Ω(1) . This Ω(1) exponent is 

n∕2F

ru(kt+1)
=

12(n − kt+1)
2

(2F)n ln �
≥ F1+a+� =

3F1+a

√
10

if and only if (n − kt+1)
2
≥

16F1+an ln �√
10

.

Pr(kt − kt+1 > Δ ∣ Xt ≤ 1) = Pr(kt+1 − kt < −Δ ∣ Xt ≤ 1)

< Pr(kt+1 − kt < E(kt+1 − kt) − Δ ∣ Xt ≤ 1)

< 𝜆 exp

(
−Δ2

2(n∕2 + Δ∕3)

)
< 𝜆 exp

(
−Δ2

n + Δ

)
= 𝜆

−Ω(1+a).

�
2
t
∶= ru(kt)∕ru(kt+1) = (n − 2kt+1)

2∕(n − 2kt)
2,

(5)

Pr(X
t+1 − X

t
≥ a ∩ k

t+1 < k
t
∣ X

t
)

≤Pr(r
t+1 = r

t
∕F ∩ 𝜎

2

t
≥ F

a+1 ∣ X
t
) + Pr(r

t+1 = Fr
t
∩ 𝜎

2

t
≥ F

a−1 ∣ X
t
)

≤Pr(𝜎2

t
≥ F

a+1 ∣ X
t
) + Pr(𝜎2

t
≥ F

a−1 ∣ X
t
)1

a>2 + Pr(r
t+1 = Fr

t
∣ X

t
)1

a≤2,

(6)

Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt) = Pr(Xt+1 − Xt ≥ 1 + a − Xt ∩ kt+1 < kt ∣ Xt)

≤Pr(rt+1 = rt∕F ∩ 𝜎
2
t
≥ Fa+2−Xt ∣ Xt) + Pr(rt+1 = Frt ∩ 𝜎

2
t
≥ Fa−Xt ∣ Xt)

≤Pr(𝜎2
t
≥ Fa+1 ∣ Xt) + Pr(rt+1 = Frt ∩ 𝜎

2
t
≥ Fa−Xt ∣ Xt),

(7)
Pr(r

t+1 = Fr
t
∩ 𝜎

2

t
≥ F

a−X
t ∣ X

t
)

≤Pr(𝜎2

t
≥ F

a−X
t ∣ X

t
)1

X
t
<𝜏∨a>2 + Pr(r

t+1 = Fr
t
∣ X

t
)1

X
t
≥𝜏∧a≤2.
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sufficient to prove the lemma for a ≤ 2 . We also notice that the event �2
t
≥ Fa−� 

subsumes all the other remaining events in inequalities (5), (6), and (7). Therefore 
it remains to validate Pr

(
�
2
t
≥ Fa−� ∣ Xt

)
≤ �

−Ω(a+1) for a ≥ 0 . To ease representa-
tion, let s ∶= F(a−𝜏)∕2 − 1 ≥ F−𝜏∕2 − 1 = (10∕9)1∕4 − 1 > 1∕40 . Since s = Ω(1 + a) , 
proving Pr (�t ≥ 1 + s ∣ Xt) = O

(
�
−Ω(s)

)
 is sufficient to conclude the analysis of this 

case and therefore the lemma. We rewrite

Let Δ ∶= (s∕2 + p)(n − 2kt) for 0 < p ≤ 1∕2 . Applying Lemma  14 and using a 
union bound we obtain

We notice that Δ ≥ (s∕2)
√
2Fn ln(�) = 4s

√
n ln(�) and (s∕2 + p)2∕((1 − p)p) 

attains the minimal value s(2 + s) > 2s when p = s∕(2(s + 1)) . Using the fact that 
(n − 2kt)

2∕n ≥ 2F ln(�) and s > 1∕40,

	�  ◻

We finally use Lemmas 15 and 6 to obtain a logarithmic drift on average. After 
this major effort, it is a matter of a relatively straightforward drift analysis of fitness 
distance to obtain the following bound on the time to leave the far region.

Theorem  16  The (1,�)  EA with self-adapting mutation rate reaches a OneMax-
value of k ≤ n∕� within an expected number of O(n∕ log �) iterations, regardless 
of the initial mutation rate. Furthermore, with probability at least 1 − o(1) , it holds 
kt� ≤ 2n∕� and rt� ≤ (7∕9) ln � for some t� = O(n∕ log �).

Proof  We first argue that within an expected number of O(
√
n) genera-

tions we will have kt < n∕2 . Consider the case that kt ≥ n∕2 and let the inde-
pendent random variables X and Y denote the number of flips in kt one-
bits and (n − kt) zero-bits, respectively, in an offspring using rate p = r∕n . 
Referring to [34] for p ∈ [2∕n, 1∕2] we obtain, using similar arguments in the 

Pr(�t ≥ 1 + s ∣ Xt) = Pr

(
n − 2kt+1

n − 2kt
≥ 1 + s ∣ Xt

)

= Pr(kt − kt+1 ≥ s(n − 2kt)∕2 ∣ Xt).

Pr(𝜎t ≥ 1 + s ∣ Xt) < 𝜆 exp

(
max

0<p≤1∕2

{
−Δ2

2(1 − p)(pn + Δ∕3)

})

<𝜆 exp

(
max

0<p≤1∕2

{
−Δ

2(1 + 1∕3)
1pn≤Δ +

−Δ2

2(1 − p)(pn)(1 + 1∕3)
1pn>Δ

})

<𝜆 exp

(
− min

0<p≤1∕2

{
Δ

3
1pn≤Δ +

Δ2

3(1 − p)(pn)
1pn>Δ

})

Pr(𝜎t ≥ 1 + s ∣ Xt) < 𝜆 exp

�
−min

�
s
√
n ln 𝜆1pn≤Δ +

(2s)2F ln 𝜆

3
1pn>Δ

��

< 𝜆 exp
�
−min

�
s
√
n ln(𝜆)1pn≤Δ + 42s ln(𝜆)1pn>Δ

��
= 𝜆

−Ω(s).
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proof Lemma 10(b) that Pr(X ≥ E(X) + 1) = Θ(1) and Pr(Y ≤ E(Y)) = Θ(1) . Then 
Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1) . Since E(X) ≥ E(Y) , the probability that an 
offspring choose rates r̃ ∈ {rt∕F,Frt} with 2 ≤ r̃ ≤ n∕2 and have X − Y ≥ 1 is at 
least 1∕2 ⋅ Θ(1) = Θ(1) . Since the best of � = Ω(ln n) offspring is selected, the prob-
ability that kt+1 ≤ kt − 1 holds is at least 1 − exp(−Θ(�)) = 1 − o(1∕n2) . By an addi-
tive drift theorem, it takes O(max{k0 − n∕2, 0}) = O(

√
n) iterations from the initial 

random search point to reach a parent with fitness distance less than n/2.
Without loss of generality, we can now assume k0 < n∕2 . Consider the number of 

one-bits flips X and zero-bits flips Y in a parent with fitness distance kt < n∕2 and 
rate 2 ≤ r < n∕2 . As argued above Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1) . Since 
kt − (E(X) − E(Y)) = kt − (kt − (n − kt))r∕n = kt(1 − r∕n) + (n − kt)(r∕n) < n∕2 
for all r < n∕2 , the probability that an offspring has fitness dis-
tance at most n∕2 − 1 is Θ(1) . Thus for � = Ω(ln n) offspring, we have 
Pr(kt+1 < n∕2) ≥ 1 − exp(−Θ(𝜆)) = 1 − o(1∕n2) . Since that we aim at proving a hit-
ting time of O(n∕ ln �) and only consider phases of this length, we may furthermore 
assume kt < n∕2 for all t ≥ 0 , which only introduces an o(1) error term by a union 
bound.

Define random variables Xt ∶= logF(rt∕ru(kt)) − � with 𝜏 = logF(3∕
√
10) < 0 . 

We notice that when (n − 2kt)
2 ≤ 2Fn ln � we have Xt < 1 . If rt ≥ Fru(kt) , according 

to Lemma  10(b), with probability 1 − o(1) we have rt−1 = rt∕F . Therefore within 
O(ln n) iterations we will obtain Xt ≤ 1.

The idea of the remaining proof is to compute an average drift for any fixed dis-
tance using the distribution of mutation rates, and then to apply the variable drift 
theorem to obtain a runtime bound. Applying Lemmas 15 and 6 to the Xt , we see that

Let r(i), i ∈ ℤ, denote the rate between (Firu(k),F
i+1ru(k)] corresponding to fitness 

distance k. Thus, for all i ≥ 1 , we obtain

According to Lemma  13, E(Δ(k, r(i))) ≥ −(1 + o(1))(n − 2k)r(i)∕n) for i ≥ 1 and 
E(Δ(k, r(0))) ≥ Ω((n − 2k)r(0)∕n) . The contribution of the negative drift is a lower 
order term compared to the contribution of the positive drift. Let Δ(k) denote the 
average drift at distance k. We obtain

We notice that 
∑

i≤0 Pr(r
(i)) = 1 − o(1) and E(Δ(k, r(i))) > 0 for all i ≤ 0 . Accord-

ing to Lemma 10(a), with at least constant probability rt = Ω(rl(kt)) . Since for any 
rate r = Ω(rl(k)) and r ≤ Fru the drift is E(Δ(k, r)) ≥ Θ(ln(�)∕ ln(n∕kt)) according to 
Lemma 13, the average drift satisfies

Using the variable drift theorem (Theorem 3) and the fact that

Pr
(
rt ≥ F1+a+𝜏ru(kt)

)
≤ 𝜆

−Ω(a) for all a > 0.

Pr
(
r(i)

)
≤ Pr

(
rt > Firu(kt)

)
≤ Pr

(
rt ≥ F1+(i−1−𝜏)+𝜏ru(kt)

)
≤ 𝜆

−Ω(i−1−𝜏).

Δ(k) =
∑

i∈ℤ

E(Δ(k, r(i)))Pr(r(i)) ≥ (1 − o(1))
∑

i≤0

E(Δ(k, r(i)))Pr(r(i)).

Δ(k)
≥ Θ(ln(�)∕ ln(n∕k)).
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the expected time to reduce the fitness distance to at most n∕� condition-
ing on the assumption that kt < n∕2 for some t = O(

√
n) and kt� < n∕2 for all 

t ≤ t� = O(n∕ log �) is then Θ(n∕ log �) . Thus the runtime bound of O(n∕ log �) holds 
with probability Ω(1) due to Markov’s inequality. Using a restart argument we then 
obtain the claimed expected runtime since the expected number of repetition of a 
phase of length O(n∕ log �) is O(1).

To prove the second statement of the theorem, we notice 
that the corresponding upper bound on the rate for kt = o(n) is 
ru(kt) ≤ (10∕9)(U(kt)) ln 𝜆 = ((10∕9)(2∕22) + o(1)) ln 𝜆 < (1∕9) ln 𝜆 and the occu-
pation probability satisfies Pr(rt ≤ (7∕9)F ln � ∣ kt = o(n)) ≥ 1 − �

−Ω(1) = 1 − o(1) . 
Therefore with probability 1 − o(1) , the first iteration such that kt ≤ 2n∕� has rate 
rt ≤ (7∕9) ln � . We then argue for this iteration that with high probability it satisfies 
rt+1 = rt∕F and kt+1 ≤ 2n∕� . The probability of being no worse than parent using 
mutation probability p ≤ (7∕9) ln(�)∕n is at least (1 − p)n ≥ (1 − o(1))𝜆−7∕9 > 𝜆

−8∕9 . 
Therefore,

Furthermore Pr(rt+1 = Frt ∣ kt = o(n), rt ≥ (7∕9) ln �) ≤ �
1−(23∕22)7 = o(1) . Then we 

obtain an iteration with kt ≤ 2n∕� and rt ≤ (7∕9) ln � with probability 1 − o(1) . 	�  ◻

4.2 � The Near Region

We now analyze the regime in which the fitness distance satisfies k = kt = O(n∕�) , 
the so-called near region. In this region, the probability that a fixed offspring created 
with rate r is better than its parent is Θ( 1

�

r

er
) , see Lemma 17. Consequently, the prob-

ability to make progress is only Θ( r

er
) . This implies that the optimal rate r is constant 

(and by taking care of the constants, we shall see that the optimal rate value for the 
parent is r = F , the minimal possible value).

The superiority of small rate values is sufficiently strong to show that the rate drifts 
towards these values (Lemmas 19 and 20), however, for small values of � we cannot 
show that in this regime, which takes at least an expected number of Ω(n∕�) iterations, 
it never happens that the rate increases to a value which lets all offspring be worse than 
the parent (this happens from r ≥ C� for a suitable constant C on). Consequently, we 
cannot exclude the possibility that the algorithms loses fitness occasionally.

To analyze the progress of the algorithm (proof of Lemma  22), we devise a 
potential function based on the current fitness and rate and show that the expected 
progress with respect to this potential is high enough. This allows to use the multi-
plicative drift theorem to argue that within a desired time, we reach the optimum.

Naturally, we also have to argue that the process does not leave the near region 
except with small probability. This is done in Lemma 21.

∫

n∕2

n∕�

ln(n∕k)

ln(�)
dk =

(
k ln(n) − k ln(k) + k

)||
n∕2

n∕�

ln �
=

Θ(n)

ln �
,

Pr(kt+1 ≤ kt ∣ rt ≤ (7∕9)F ln �) ≥ 1 −
(
1 − �

−8∕9∕2
)�

= 1 − o(1).
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We start with determining the probability of making progress in one mutation 
and similar events.

Lemma 17  Let 0 < k ≤ 3n∕𝜆 , and r = o(�1∕4) . Let x ∈ {0, 1}n with fitness distance 
f (x) = k . Let y ∈ {0, 1} be obtained from x by flipping each bit independently with 
probability r/n. Consider the probabilities

that is, the probabilities that the offspring is better than the parent, that is is equally 
good, and that none of the 0-bits of the parent were flipped in the generation of the 
offspring.

Then

Proof  We regard the number X of flips in the k one-bits (“good flips” which reduce 
the fitness distance) and the number Y of flips in the (n − k) zero-bits of the parent 
(“bad flips” which increase the fitness distance). Then p−(r) is at least

where the last estimate uses Lemma 1 (b).
Since r = o(�1∕4) , we have kr∕n = o(1) , kr2∕n = o(1) , and (kr2∕n)1.5 = o(kr∕n) . 

This allows to bound p−(r) from above by

p−(r) ∶= Pr(f (y) < f (x)),

p0(r) ∶= Pr(f (y) = f (x)),

p�(r) ∶= Pr(∀i ∈ [1… n] ∶ xi = 0 ⟹ yi = 0),

(1 − o(1))
kr

n
e−r < p−(r) < (1 + o(1))

kr

n
e−r,

(1 − o(1))e−r < p0(r) < (1 + o(1))e−r,

(1 − o(1))e−r < p�(r) < (1 + o(1))e−r.

p−(r) ≥ Pr(X = 1, Y = 0) =
kr

n

(
1 −

r

n

)n−1

≥ (1 − o(1))
kr

n
e−r,

p−(r) < Pr(X ∈ {1, 2},Y = 0) +

2k−1�

i=3

Pr(X + Y = i,X > Y)

<
kr

n

�
1 −

r

n

�n−1

+
k2r2

2n2

�
1 −

r

n

�n−2

+

2k−1�

i=3

(i − 1)
�
r

n

�i�
1 −

r

n

�n−i
�

k

⌈i∕2⌉

��
n − k

⌊i∕2⌋

�

<
kr

n

�
1 −

r

n

�n−2�
1 −

r

n
+

kr

2n

�
+

2k−1�

i=3

�
r

n

�i�
1 −

r

n

�n−i

(kn)i∕2

< (1 + o(1))
kr

n

�
1 −

r

n

�n

+

2k−1�

i=3

�
kr2

n

�i∕2�
1 −

r

n

�n−i

< (1 + o(1))
kr

n
e−r.
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Similarly for p0(r) we have

Using again the fact that kr2∕n = o(1) , we have

Finally, for p�(r) we compute p�(r) = Pr(Y = 0) = (1 −
r

n
)n−k = (1 ± o(1))e−r . 	�  ◻

Lemma 18  Consider one iteration of the self-adaptive (1,�)  EA starting with an 
individual of fitness distance k and rate r = o(�−1∕4) . Then the probability that there 
is an offspring which uses rate r/F and which inherits all 0-bits from the parent (and 
thus is at least as good as the parent), is at least 1 − exp(−

1

2
�(1 − o(1))e−r∕F).

Proof  We compute

	�  ◻

The following lemma is the counterpart of Lemma 10 (b), where now the opti-
mal rate is the smallest possible value F. Again, we regard the event that all best 
offspring are created with the higher rate, since—due to our tie-breaking rule—
only this leads to an increase of the rate. Different from Lemma 10 (b), now the 
probability of making a rate-increasing step is no o(1) in general. If kt = Θ(n∕�) 
and rt = O(1) , we still have a small constant probability of increasing the rate.

Lemma 19  Let 0 < k ≤ 3n∕𝜆 . The probability that all best offspring have been cre-
ated with rate Fr is at most (1 + o(1))

�kFr

n
e−Fr when r < ln 𝜆 . This probability is at 

most exp(−9r) for all r.

Proof  Let first r < ln 𝜆 . According to Lemma 17,

Therefore with probability at least 1 − �p−(Fr) = 1 − (1 + o(1))
�Fkr

n
e−Fr , no off-

spring of rate Fr is better than its parent. Furthermore, by Lemma  18, with 

p0(r) > Pr(X = Y = 0) =
(
1 −

r

n

)n

≥ (1 − o(1))e−r.

p0(r) = Pr(X = Y = 0) +

k∑

i=1

Pr(X = Y = i)

=
(
1 −

r

n

)n

+

k∑

i=1

(
k

i

)(
n − k

i

)(
r

n

)2i(
1 −

r

n

)n−2i

< e−r +

k∑

i=1

(
kr2

n

)i

e−r < (1 + o(1))e−r.

1 −
(
1 −

1

2
p�(

r

F
)
)�

≥ 1 −
(
1 −

1

2
(1 − o(1))e−r∕F

)�

≥ 1 − exp(−
1

2
�(1 − o(1))e−r∕F).

p−(Fr) ≤ (1 + o(1))
Fkr

n
e−Fr and p0(r∕F) ≥ (1 − o(1))e−r∕F.
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probability at most exp(−(1 − o(1))
1

2
� exp(−r∕F)) ≤ exp(−(1 − o(1))

1

2
�
1−1∕F) there 

is no offspring using rate r/F and being equally good as its parent. Hence, the prob-
ability that a best offspring has been created with rate r/F is more than

Note that for r < ln 𝜆 , the second bound follows from the first. If r ≥ ln � , then the 
second bound follows from applying Lemma 10 to U(k) = 1∕11 + o(1) . 	�  ◻

We shall use the lemma above twice, first to bound the probability to have a 
certain rate (which will be needed to estimate the negative fitness drift) and sec-
ond to estimate that a suitable two-dimensional drift is of the right order. We start 
with the occupation probability argument for the rate values.

Lemma 20  Consider a run of the self-adaptive (1,�) EA started with some search 
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . While the current search point 
of the algorithm has a fitness distance of at most 3n∕� , the probability that the cur-
rent rate is Fi is at most exp(−8Fi−1) for all i ∈ ℕ

≥2.

Proof  If the current search point has fitness distance at most 3n∕� and the current 
rate is r, then by Lemma 19 the rate in the next iteration is Fr with probability at 
most exp(−9r) ; note that this estimate is not affected by a possible cap of the rate at 
rmax.

Consequently, the random process describing the rates is such that from rate Fi , 
i ∈ [1… logF(rmax)] , we go to rate Fi+1 with probability at most pi = exp(−9Fi) . 
Otherwise, we go to rate Fi−1 if i ≥ 2 and stay at rate F if i = 1 . By Lemma 7, note 
that we obviously have pi∕(1 − pi) ≤ pi−1 , in each iteration (such that the fitness dis-
tance has never gone above 3n∕� ) and for each i ≥ 2 the probability qi that the cur-
rent rate is Fi is at most

	�  ◻

We use these occupation probabilities to estimate the drift away from the opti-
mum (“negative drift”). From this we derive the statement that with high prob-
ability, the fitness distance does not increase to above 3n∕� in n� iterations.

Lemma 21  Consider a run of the self-adaptive (1,�) EA started with some search 
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . Then the probability that the 
process within the first n� iterations reaches a search point (as parent individual) 
with fitness distance more than 3n∕� , is o(1).

1 − (1 + o(1))
𝜆Fkr

n
e−Fr − exp(−(1 − o(1))

1

2
𝜆
1−1∕F) > 1 − (1 + o(1))

𝜆Fkr

n
e−Fr.

qi ≤

i−1∏

j=1

pj

1 − pj
≤

pi−1

1 − pi−1
≤ exp(−8Fi−1).



1043

1 3

Algorithmica (2021) 83:1012–1053	

Proof  Denote by Xt the fitness distance at time t. We start by bounding the negative 
drift E(max{0,Xt − Xt−1}) of the X process while it is at most 3n∕� . If the current 
rate is   r, then by Lemma 18 with probability at least 1 − exp(−

1

2
�(1 − o(1))e−r∕F) 

there is an individual that used rate r/F and that did not flip any zero-bit into a one-
bit. Let us call this event “A” and note that, naturally, under this event the drift can-
not be negative as the individual without flipped zeros has at an least as good fitness 
as the parent.

We now analyze the case that A does not hold. Consider an individual conditional on 
that it uses rate r/F and at least one zero-bit was flipped into a one-bit. The number of 
such bad bits follows a distribution (X ∣ X ≥ 1) with X ∼ Bin (n − Xt−1, r∕Fn) and has 
expectation at most 1 + r∕F by Lemma 4. For an individual using rate rF, the expected 
number of bad flips is (n − k)

rF

n
≤ rF . Consequently, noting that 1 + r∕F ≤ rF when 

r ≥ F and F ≥

√
2 , the expected number of bad flips in all individuals (conditional on 

not A) is at most �rF and this is an upper bound on the negative drift.
In summary, in an iteration starting with rate r, the negative drift is at most

With Lemma 20, we can estimate the probability to have a certain rate. Hence the 
expected negative drift is

Note that1 for i ≥ ⌈logF(ln �) + 1 −
1

5
⌉ = i∗ , we have � ≤ exp(2Fi−1) and thus 

exp(−8Fi−1)�Fi+1 = exp(−(1 − o(1))8Fi−1)� ≤ exp(−(1 − o(1))6Fi−1) . Naturally, 
exp(−

1

2
�(1 − o(1))e−F

i−1

) ≤ 1 . Hence

For i < logF(ln 𝜆) + 1 −
1

5
 , we have exp(− 1

2
�(1 − o(1))e−F

i−1

) ≤ exp(−
1

2
(1 − o(1))�1∕2) and 

exp(−8Fi−1)�Fi+1 = O(�) . Hence

(8)�rF exp(−
1

2
�(1 − o(1))e−r∕F).

E(max{0,Xt − Xt−1}) ≤

logF rmax∑

i=1

Pr(r = Fi)�FiF exp(−
1

2
�(1 − o(1))e−F

i∕F)

≤

∞∑

i=2

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

)

+ �F2 exp(−
1

2
�(1 − o(1))e−1).

∞∑

i=i∗

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

) ≤

∞∑

i=i∗

exp(−(1 − o(1))6Fi−1)

≤ exp(−(1 − o(1))6Fi∗−1) ≤ �
−3(1−o(1)).

1  In this part of the proof, we use the fact that F = 32 . This does not mean that for other not too small 
values of F we would not obtain similar results, but it increases the readability to work with this concrete 
value.
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Consequently, E(max{0,Xt − Xt−1}) ≤ �
−3(1−o(1)).

Define inductively Y0 = 0 and Yt = Yt−1 +max{0,Xt − Xt−1} , if 
max{Xs ∣ s ∈ [0… t − 1]} ≤ 3n∕� and Yt = Yt−1 otherwise. In other words, the Y 
process collects all the moves of the X process that go away from the optimum until 
the X process goes above 3n∕�.

By our above computation, we have E(Yt) ≤ t�−3(1−o(1)) . Consequently, by Mark-
ov’s inequality, we have

for all t ∈ ℕ . In particular, for t = n� , we have Pr(Yt ≥ n∕�) ≤ �
−1+o(1) . Note that 

Yt ≤ n∕� implies Xs ≤ 3n∕� for all s ≤ t.

Lemma 22  Consider a run of the self-adaptive (1,�) EA started with some search 
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . Then with probability at least 3

4
 

there is a T∗ = O(n ln(n∕� + 2)∕�) such that kT∗ = 0.

Proof  Since we are proving an asymptotic statement, we can assume that n is as 
large as we find convenient. Consider a run of the self-adjusting (1,�) EA from our 
starting position. Let T be the first time that the fitness distance is larger than 3n∕� , 
if such a time exists, and T = ∞ otherwise. Let kt denote the fitness distance at time 
t and rt the rate used in iteration t, if t ≤ T  , and (kt, rt) ∶= (0,F) otherwise. We show 
that the process (kt, rt) reaches (0, F) in time T∗ with probability at least 1 − 1∕e2.

We use a two-dimensional drift argument. Let � = 2F and define g ∶ ℕ × ℕ → ℝ 
by g(k, r) = k + �(r − F) for all k and r. We show that if for some t we have 
(k, r) = (kt, rt) , then (k�, r�) ∶= (kt+1, rr+1) satisfies

when assuming n to be sufficiently large.
There is nothing to show in the artificial case when k > 3n∕𝜆 as we have, by 

definition, g(k�, r�) = 0 in this case. Among the interesting cases, we consider first 
that r = F . We obtain an improvement in fitness in particular if there is an offspring 
that uses rate r∕F = 1 , flips exactly one of the k missing bits, and flips no other bit. 
Hence the probability to make a positive fitness progress is at least

where we used (1 − 1

n
)n−1 ≥

1

e
 , k𝜆

2en
≤

3

2e
<

3

2
⋅

1

2
 and Lemma  1 (b). The expected 

negative progress is at most �F2 exp(−(1 + o(1))
1

2e
�) as shown in (8). This negative 

i∗−1∑

i=1

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

)

≤ O(log log �)O(�) exp(−
1

2
(1 − o(1))�1∕2) = o(�−3).

Pr(Yt ≥ t�−2) ≤ �
−1+o(1)

(9)E(g(k�, r�)) ≤ g(k, r)(1 −
�

10n
)

1 − (1 −
1

2
(1 −

1

n
)n−1

k

n
)� ≥ 1 − (1 −

k

2en
)� ≥ 1 − exp(−

k�

2en
) ≥

k�

3en
,
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drift can be assumed to be O(n−2) by taking the implicit constant in the assumption 
� = Ω(log n) large enough.

Consequently, E(k�) ≤ k −
1

3e

�k

n
+ O(n−2).

Regarding r′ , we note that by Lemma  19 we have 

Pr(r� = F2) ≤ (1 + o(1))
�k

n
F2 exp(−F2) and r� = F otherwise. Hence 

E(r�) = F + (1 + o(1))(F − 1)F3 �k

n
exp(−F2) . Consequently,

Let now be r > F . Note that the minimum fitness loss among the offspring is at 
most the minimum number of bits flipped, which in expectation is at most the 
number of bits flipped in the first offspring, which is exactly Fr. Consequently, 
we have E(k�) ≤ k + Fr . For r′ , we note that by Lemma  19, we have r� = Fr 
with probability at most exp(−9r) and we have r� = r

F
 otherwise. Consequently, 

E(r�) ≤ Fr exp(−9r) +
r

F
 . This yields

where we used that � ≤ 2n ; note that 𝜆 > 2n gives k0 = 0.
We have thus shown  (9) for all (k,  r). Since we start the process with a 

g-potential of at most g(2n∕�,F) = 2n

�
 , the multiplicative drift theorem with tail 

bounds  [22, Theorem  5] gives that after t = ⌈ 10n

�
(2 + ln(

2n

�
))⌉ iterations, we have 

Pr(g(kt, rt) > 0) ≤
1

e2
 . Consequently, with probability 1 − 1

e2
 , the potential is zero at 

time t, which implies kt = 0 or kt >
3n

𝜆
 . By Lemma 21, note that � = Ω(log n) implies 

t = O(n) = o(n�) , the probability that kt >
3n

𝜆
 is o(1), hence with probability at least 

3

4
 , we have indeed kt = 0 . 	�  ◻

Theorem 23  Assume k0 ≤
2n

�
 and r0 ≤

7

9
ln � . Then there is a t = O(n ln(n∕� + 2)∕�) 

such that with probability at least 1
2
 , we have kt = 0.

Proof  We first show that with good probability we quickly reach the initial situation of 
Lemma 22. The probability of observing R∗ − 1 ∶= logF(r0) − 1 ≤ logF(

7

9
ln �) − 1 

rate-decreasing steps in a row by Lemma 19 is at least

by the Weierstrass product inequality (Lemma 1 (c)).

E(g(k, r) − g(k�, r�)) ≥
1

3e

�k

n
− O(n−2) − �(1 + o(1))(F − 1)F3 �k

n
exp(−F2)

=
�k

n
(
1

3e
− �(F − 1)F3 exp(−F2) − o(1))

≥
�k

n

1

10
= g(k, r)

�

10n
.

E(g(k, r) − g(k�, r�)) ≥ −Fr + �(r − Fr exp(−9r) −
r

F
)

≥ r(−F + � − F exp(−9F2) −
1

F
)

≥ r(−F + � −
2

F
) ≥ 31r = r + 30r ≥ F2 + 30r

≥ 322 + 30r ≥
�

10n
(k + �r) ≥ g(k, r)

�

10n
,

R∗∏

i=2

(
1 − exp(−9Fi)

)
≥ 1 −

R∗∑

i=2

exp(−9Fi) ≥ 1 − 0.001
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The probability of not flipping any zero-bits in at least one offspring, 
resulting in not increasing fitness distance, is for rate r ≤

7

9
ln � at least 

1 − exp(−
1

2
�(1 − o(1))e−r∕F) by Lemma 18. By a union bound over R∗ − 1 iterations, 

the probability of decreasing the initial rate to F in O(log log �) iterations without 
losing fitness is at least 1 − 0.001 − (R∗ − 1) exp(−

1

2
�(1 − o(1))e−r∕F) ≥ 5∕6 for suf-

ficiently large n.
We can now apply Lemma 22 and obtain that with probability at least 3

4
 we have 

found the optimum within t = O(n ln(n∕� + 2)∕�) iterations. This shows the claim. 	
� ◻

4.3 � Proof of Theorem 8

From the analyses of the two regimes in the previous two subsections, we now 
easily derive our main result, which is that the self-adaptive (1,�) EA optimizes 
OneMax within an expected number of O(n�∕ log � + n log n) fitness evaluations 
when � = Ω(log n) is sufficiently large, � is at most polynomial in n, and F = 32.

Proof  Starting with an arbitrary initialization, Theorem  16 along with a Markov 
bound yield that with probability Ω(1) after t = O(n∕ log �) iterations a search point 
is reached such that kt ≤ 2n∕� and rt < 0.6(ln 𝜆) . Assuming this to happen, the 
assumptions of Theorem 23 are satisfied. Hence, after another O((n log n)∕�) itera-
tions the optimum is found with probability at least 1/2. Altogether, with probability 
Ω(1) the optimum is found from an arbitrary initial OneMax-value and rate within 
T∗ = O(n∕ log � + (n log n)∕�) iterations. The claimed expected time now follows by 
a standard restart argument, more precisely by observing that after expected O(1) 
repetitions of a phase of length T∗ the optimum is found. 	�  ◻

5 � Experiments

To gain some insight that cannot be derived from our asymptotic analysis, we per-
formed a few numerical experiments. To this end we implemented the (1,�) EA in 
C++11 using the default random engine to generate pseudo-random numbers. The 
runtime is still measured via the number of generations until optimum is found.

We first see in Fig. 1 how fitness distance and mutation strength evolve in one run 
for n = 100 , � = 12 and F = 1.2 . We used this small value of n to increase the read-
ability of the figure, we used larger values for n in the remainder. Given the small 
value of n, we used a small mutation update factor of 1.2 instead of the value F = 32 
used in our theoretical analysis. This run uses Algorithm 1 with r init = F . We see 
that the algorithm prefers large mutation strengths at the beginning and small muta-
tion strengths near the end of the optimization process. We also see that fitness dis-
tance can increase occasionally, in particular, when the rate is higher (in the plot, 
this happened in iteration 52 and iteration 88).
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In Fig. 2, we display the average runtime over 100 runs of different versions of 
the (1,�) EA on OneMax for n = 105 and � = 100, 200,… , 1000 along with error 
bars for their standard deviation. For our self-adaptive (1,�) EA (Algorithm 1), we 
used the update strengths F ∈ {1.2, 2, 32} . We did experiments also for F = 1.05 , 
but the results were clearly inferior, so to avoid overloading this figure we do not 
visualize them. We always set the initial mutation strength to r init = F . We further 
regard the classic (1,�) EA using a static mutation rate of 1

n
 and the (1,�) EA with fit-

ness-dependent mutation rate p = max{
ln �

n ln(en∕d)
,
1

n
} as presented in [9].

The results clearly show that the update factor of F = 32 used in our mathemati-
cal analysis gives sub-optimal results for these values of � and n. Recalling the 
working principle of the self-adaptive (1,�) EA, this is not overly surprising. Even 
using the minimal possible rate r = F , the algorithm creates half of the offspring 
using an incredible large mutation probability of F2∕n = 1024∕n . It is quite clear 
that this cannot be overly effective, but this can also be seen from the figure. The 
runtime of the self-adaptive (1,�) EA with F = 32 is very close to the runtime of the 
static (1,�) EA for half the �-value, suggesting that half the offspring created by the 
self-adaptive (1,�) EA, most likely the ones created with a mutation rate of F2∕n , 
had no impact on the process.

The results in Fig. 2 also show that the fitness-dependent mutation strength of [9] 
leads to a very good performance. In principle, of course, it is clear that the best 
fitness-dependent rate gives better results than any self-regulating rate since the lat-
ter needs to use also sub-optimal rates to find out what is the best rate. That the rate 
suggested in  [9], a paper mostly concerned with asymptotic runtimes, shows such 
good results, is remarkable.

To ease the comparison of the algorithms having a similar performance, we plot 
in Fig. 3 these runtimes relative to the one of the classic (1,�) EA, i. e., we divide 
the average runtime by the value of the classic (1,�) EA. This shows that in most 

Fig. 1   Development of fitness distance and mutation strength in one run of self-adapting (1,�)  EA on 
OneMax ( n = 100 , F = 1.2 , � = 12)
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cases, the EAs using a dynamic mutation rate outperform the classic (1,�) EA. We 
also notice that the self-adaptive EA appears to outperform the one using the fitness-
dependent rate for sufficiently large values of � , e.g., for � ≥ 200 when F = 1.2.

To understand how our tie-breaking rule influences the performance, we also ran 
the self-adapting (1,�) EA without the bias towards smaller rates when breaking ties. 
In Fig. 4, we again plot the average runtimes over 100 runs relative to the results 

Fig. 2   Average runtime over 100 runs of five variants of the (1,�) EA on OneMax for n = 10
5

Fig. 3   Average runtime of three dynamic (1,�) EA s relative to the average runtime of the static (1,�) EA 
on OneMax ( n = 10

5)
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of static (1,�) EA. We use the three update factors 1.2, 2, and 32 and the two tie-
breaking rule of preferring the smaller rate in case of ties (as in our theoretical anal-
ysis) and random tie-breaking, that is, choosing uniformly at random an offspring 
with maximal fitness and taking its rate as the new rate of the algorithm. While for 
the two larger factors F = 2 and F = 32 no significant differences are visible, we 
see that for F = 1.2 random tie-breaking surpasses biased tie-breaking significantly 
when � becomes larger than 200.

To understand how the tie-breaking rule influences the mutation strength chosen 
by the algorithm, we plot in Fig. 5 the mutation strength used at each fitness distance 
with a setting of n = 10000 , � = 500 , and F = 1.2 . We regarded one exemplary runs 
of our algorithm with each tie breaking rule. In each of these two experiments, we 
determined the set of all pairs (dt, rt) such that in iteration t, the fitness distance of 
the parent individual was dt and its rate was rt . We then plotted these sets, where to 
increase the readability we connected the points to polygonal curves. This visualiza-
tion clearly shows that random tie breaking lets the algorithm pick larger rates more 
frequently. Together with the better runtimes, it appears that biased tie-breaking has 
a small negative effect on the choice of the mutation strength.

Finally, we regard the question of how to set the initial rate r init . From the general 
experience that larger mutation rates are more profitable at the start of the search 
process, one could guess that it is a good idea to start with the largest possible rate 
rmax = F⌊logF(n∕(2F))⌋ instead of the smallest possible rate rmin = F . For the settings 
used in Fig. 5, that is, n = 10,000 , � = 500 , and F = 1.2 , we obtain (as average of 
100 runs) the runtimes given in Table 1. So indeed an initialization with a larger 
rate gives some improvement. Since it might be a particularity of the OneMax test 
function that huge rates are initially beneficial, we would not give out a general rec-
ommendation to start with the rate rmax , but only state that we observed moderate 

Fig. 4   Relative average runtime of self-adapting (1,�) EA s with different tie breaking rules on OneMax 
( n = 10

5)
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performance differences from using different initial rates, making the initial rate 
not the most critical parameter of the algorithm, but still one that can be worth 
optimizing.

6 � Conclusions

In this work, we have designed and analyzed a self-adaptive (1,�)  EA using 
a simple scheme for mutating the mutation rate. We have proven that for 
� = Ω(log n) it achieves an expected runtime (number of fitness evaluations) of 
O(n�∕ log � + n log n) on OneMax, which is the best possible asymptotic runtime 
for �-parallel mutation-based unbiased black-box algorithms. Hence, we have identi-
fied a simple and natural example where self-adaptation of strategy parameters in 
discrete EAs can lead to provably optimal runtimes that beat all known static param-
eter settings. Moreover, a relatively complicated and partly unintuitive self-adjust-
ing scheme for the mutation rate proposed in  [23] can be replaced by our simple 

Table 1   Comparison of the 
average runtime of 100 runs 
for different initial mutation 
rates ( n = 10000 , � = 500 , and 
F = 1.2)

Average runtime Biased ties breaking Random 
ties break-
ing

r
init

= rmin
2137 2011

r
init

= rmax
2080 1974

Fig. 5   Mutation strengths used at a certain fitness distance level in two example runs of the self-adapting 
(1,�)  EA on OneMax ( n = 10000 , � = 500 , F = 1.2 ). For comparison, also the fitness-dependent rate 
proposed in  [9] is plotted. Recall that a mutation strength of r in the self-adapting runs means that in 
average half the offspring use the rate r/F and half use the rate rF 
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endogenous scheme. Experimental results confirm that our scheme achieves runt-
imes that are comparable with a (1,�) EA using a fitness-dependent and asymptoti-
cally optimal mutation rate.

The analysis of this (1,�) EA has revealed a non-trivial stochastic process in the 
cross product of fitness distances and mutation rates. We have advanced the tech-
niques for the analysis of such two-dimensional processes, both via two new lemmas 
on occupation probabilities and by proposing suitable potential functions allowing 
to use classic drift theorems.

Altogether, we are optimistic that our research helps pave the ground for further 
uses and analyses of self-adaptive EAs.
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