
Vol:.(1234567890)

Algorithmica (2021) 83:1012–1053
https://doi.org/10.1007/s00453-020-00726-2

1 3

Runtime Analysis for Self‑adaptive Mutation Rates

Benjamin Doerr1 · Carsten Witt2  · Jing Yang1

Received: 27 November 2018 / Accepted: 14 May 2020 / Published online: 12 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We propose and analyze a self-adaptive version of the (1, �) evolutionary algorithm
in which the current mutation rate is encoded within the individual and thus also
subject to mutation. A rigorous runtime analysis on the OneMax benchmark func-
tion reveals that a simple local mutation scheme for the rate leads to an expected
optimization time (number of fitness evaluations) of O(n�∕ log � + n log n) when �
is at least C ln n for some constant C > 0 . For all values of � ≥ C ln n , this perfor-
mance is asymptotically best possible among all �-parallel mutation-based unbiased
black-box algorithms. Our result rigorously proves for the first time that self-adap-
tation in evolutionary computation can find complex optimal parameter settings on
the fly. In particular, it gives asymptotically the same performance as the relatively
complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen,
Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes
new tools for the analysis of two-dimensional drift processes arising in the analysis
of dynamic parameter choices in EAs, including bounds on occupation probabilities
in processes with non-constant drift.

Keywords  Evolutionary algorithms · Self-adaptive · Runtime analysis

1  Introduction

Evolutionary algorithms are a class of heuristic algorithms that can be applied to solve
optimization problems if no problem-specific algorithm is available. For example, this
may be the case if the structure of the underlying problem is poorly understood or one

Extended version of a paper appearing at the Genetic and Evolutionary Computation Conference
2018 [35]. This version contains all proofs, whereas most of them for reasons of space did not fit into
the conference version. In this version, the main result is valid for all � ≥ C ln(n) , C a sufficiently
large constant, whereas the conference version needed � ≥ (ln n)1+� for an arbitrary 𝜀 > 0.

 *	 Carsten Witt
	 cawi@imm.dtu.dk

1	 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

2	 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

http://orcid.org/0000-0002-6105-7700
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00726-2&domain=pdf

1013

1 3

Algorithmica (2021) 83:1012–1053	

is faced with a so-called black-box scenario, in which the quality of a solution can only
be determined by calling an implementation of the objective function. This implemen-
tation may be implicitly given by, e. g., the outcome of a simulation without revealing
structural relationships between the search point and the function value.

An approach to understand the working principles of evolutionary algorithms is to
analyze the underlying stochastic process and its first hitting time of the set of optimal
or approximate solutions. The runtime analysis community in evolutionary computa-
tion (see, e. g., [2, 31, 41, 54] for introductions to the subject) follows this approach by
partly using methods known from the analysis of classical randomized algorithms and,
more recently and increasingly often, using and adapting tools from the theory of sto-
chastic processes to obtain bounds on the hitting time of optimal solutions for different
classes of evolutionary algorithms and problems. Such bounds will typically depend on
the problem size, the problem type, the evolutionary algorithm, and the values of the
parameters that these heuristic algorithms come with.

One of the core difficulties when using evolutionary algorithms is in fact finding suit-
able values for its parameters. It is well known and supported by ample experimental
(e. g., [8, 58]) and theoretical evidence (e. g., [24, 28, 44, 48, 61]) that already small
changes of the parameters can have a crucial influence on the efficiency of the algorithm.

One elegant way to overcome this difficulty, and in addition the difficulty that
the optimal parameter values may change during a run of the algorithm, is to let the
algorithm optimize the parameters on the fly (we give more details and references on
dynamic parameter choices in Sect. 1.2). Formally speaking, this is an even more com-
plicated task, because instead of a single good parameter value now a suitable func-
tional dependence of the parameter on the search history needs to be provided. Fortu-
nately, a number of natural heuristics like the 1/5-th rule has proven to be effective in
certain cases. In a sense, these are all exogenous parameter control mechanisms which
are added to the evolutionary system.

An even more elegant way is to incorporate the parameter control mechanism
into the evolutionary process, that is, to attach the parameter value to the individual,
to modify it via (extended) variation operators, and to use the fitness-based selection
mechanisms of the algorithm to ensure that good parameter values become dominant in
the population. This self-adaptation of the parameter values has two main advantages:
(1) It is generic, that is, the adaptation mechanism is provided by the algorithm, only
the representation of the parameter in the individual and the extension of the variation
operators have to be provided by the user. (2) It allows to re-use existing algorithms and
much of the existing code.

Despite these advantages, self-adaptation is not used a lot in discrete evolutionary
optimization. From the theory side, there exists some advice on how to set up such a
self-adaptive system, but a real proof for its usefulness is still missing. This is the point
we aim to make some progress on.

1.1 � Our Results

The main result of this work is that we propose a version of the (1, �) evolution-
ary algorithm (EA) with a natural self-adaptive choice of the mutation rate. For

1014	 Algorithmica (2021) 83:1012–1053

1 3

� ≥ C ln n , C a sufficiently large constant, we prove that it optimizes the classic One-
Max benchmark problem in a runtime that is asymptotically optimal among all �
-parallel black-box optimization algorithms and that is better than the known runt-
imes of the (1,�) EA and the (1+�) EA for all static choices of the mutation rate.
Compared to the (also asymptotically optimal) (1+�) EA with fitness-dependent
mutation rate of Badkobeh, Lehre, and Sudholt [9] and the (1+�) EA with self-
adjusting (exogenous) mutation rate of Doerr, Gießen, Witt, and Yang [23] the good
news of our result is that this optimal runtime could be obtained in a generic man-
ner. Note that both the fitness-dependent mutation rate of [9] and the self-adjusting
rate of [23] with its mix of random and greedy rate adjustments would have been
hard to find without a deeper understanding of the mathematics of these algorithms.

Not surprisingly, the proof of our main result has some similarity to the analysis
of the self-adjusting (1+�) EA of [23]. In particular, we also estimate the expected
progress in one iteration and use variable drift analysis. Also, we need a careful
probabilistic analysis of the progress obtained from different mutation rates to esti-
mate which rate is encoded in the new parent individual (unfortunately, we cannot
reuse the analysis of [23] since it is not always strong enough for our purposes). The
reason, and this is also the main technical challenge in this work, is that the (1,�
) EA can lose fitness in one iteration. This happens almost surely when the mutation
rate is too high. For this reason, we need to argue more carefully that such events
do not happen regularly. To do so, among several new arguments, we also need a
stronger version of the occupation probability result [47, Theorem 7] since (1) we
need sharper probability estimates for the case that movements away from the tar-
get are highly unlikely and (2) for our process, the changes per time step cannot be
bounded by a small constant. We expect our new results (Lemmas 6 and 7) to find
other applications in the theory of evolutionary algorithms in the future. Note that
for the (1+�) EA, an excursion into unfavorable rate regions is less a problem as
long as one can show that the mutation rate returns into the good region after a rea-
sonable time. The fact that the (1,�) EA can lose fitness also makes it more difficult
to cut the analysis into regimes defined by fitness levels since it is now possible that
the EA returns into a previous regime.

In this work, we also gained two insights which might be useful in the design of
future self-adaptive algorithms.

Need for non-elitism Given the previous works, it would be natural to try a self-
adaptive version of the (1+�) EA. However, this is risky. While the self-adjusting
EA of [23] copes well with the situation that the current mutation rate is far from
the ideal one and then provably quickly changes the rate to an efficient setting, a
self-adaptive algorithm cannot do so. Since the mutation rate is encoded in the indi-
vidual, a change of the rate can only occur if an offspring is accepted. For an elitist
algorithm like the (1+�) EA, this is only possible when an offspring is generated that
is good enough to compete with the parent(s). Consequently, if the parent individual
in a self-adaptive (1+�) EA has a high fitness, but a detrimental (that is, large) muta-
tion rate, then the algorithm is stuck with this individual for a long time. Already for
the simple OneMax function, such a situation can lead to an exponential runtime.

Needless to say, when using a comma strategy we have to choose � sufficiently
large to avoid losing the current-best solution too quickly. This phenomenon has

1015

1 3

Algorithmica (2021) 83:1012–1053	

been observed earlier, e.g., in [57] it is shown that � ≥ (1 − o(1)) log(e−1)∕e(n) is nec-
essary for the (1,�) EA with mutation rate 1/n to have a polynomial runtime on any
function with unique optimum. We shall not specify a precise leading constant for
our setting, but also require that � ≥ C ln(n) for a sufficiently large constant C.

Tie-breaking towards lower mutation rates To prove our result, we need that the
algorithm in case of many offspring of equal fitness prefers those with the smaller
mutation rate. Given that the usual recommendation for the mutation rate is small,
namely 1

n
 , and that it is well-known that large rates can be very detrimental, it is

natural to prefer smaller rates in case of ties (where, loosely speaking, the offspring
population gives no hint which rate is preferable).

This choice is similar to the classic tie-breaking rule of preferring offspring over
parents in case of equal fitness. Here, again, the fitness indicates no preference, but
the simple fact that one is maybe working already for quite some time with this par-
ent suggests to rather prefer the new individual.

1.2 � Previous Works

This being a theoretical paper, for reasons of space we shall mostly review the rel-
evant theory literature, and also this with a certain brevity. For a broader account of
previous works, we refer to the survey [46]. For a detailed description of the state of
the art in theory of dynamic parameter choices, we refer to the survey [14]. We note
that the use of self-adaptation in genetic algorithms was proposed in the seminal
paper [5] by Bäck. Also, we completely disregard evolutionary optimization in con-
tinuous search spaces due to the very different nature of optimization there (visible,
e.g., from the fact that dynamic parameter changes, including self-adaptive choices,
are very common and in fact necessary to allow the algorithms to approach the opti-
mum with arbitrary precision).

The theoretical analysis of dynamic parameter choices started slow. A first
paper [45] on this topic in 2006 demonstrated the theoretical superiority of dynamic
parameter choices by giving an artificial example problem for which any static
choice of the mutation rate leads to an exponential runtime, whereas a suitable time-
dependent choice leads to a polynomial runtime. Four years later [6], it was shown
that a fitness-dependent choice of the mutation rate can give a constant-factor speed-
up when optimizing the LeadingOnes benchmark function (see [33, Sect. 2.3] for a
simplified proof giving a more general result). The first super-constant speed-up on
a classic benchmark function obtained from a fitness-dependent parameter choice
was shown in [15], soon to be followed by the paper [9] which is highly relevant for
this work. In [9], the (1+�) EA with fitness-dependent mutation rate was analyzed.
For a slightly complicated fitness-dependent mutation rate, an optimization time of
O(n�∕ log � + n log n) was obtained. Also, it was shown that no �-parallel mutation-
based unbiased black-box algorithm can have an asymptotically better optimization
time.

Around that time, several successful self-adjusting (“on-the-fly”) parameter
choices were found and analyzed with mathematical means. In [49], a success-based
multiplicative update of the population size � in the (1+�) EA is proposed and it

1016	 Algorithmica (2021) 83:1012–1053

1 3

is shown that this can lead to a reduction of the parallel runtime. A multiplicative
update inspired by the 1/5-th success rule from evolution strategies automatically
finds parameter settings [12] leading to the same performance as the fitness-depend-
ent choice in [15]. Similar multiplicative update rules have been used to control
the mutation strength for multi-valued decision variables [17] and the time interval
for which a selected heuristic is used in [30]. A learning-based approach was used
in [18] to automatically adjust the mutation strength and obtain the performance
of the fitness-dependent choice of [19]. Again a different approach was proposed
in [23], where the mutation rate for the (1+�) EA was determined on the fly by
creating half the offspring with a smaller and half the offspring with a larger muta-
tion rate than the value currently thought to be optimal. As new mutation rate, with
probability 1

2
 the rate which produced the best offspring was chosen, with probability

1

2
 a random of the two rates was chosen. The three different exogenous approaches

used in these works indicate that a generic approach towards self-adjusting param-
eter choices, such as self-adaptation, would ease the design of such algorithms
significantly.

Surprisingly, prior to this work only a single runtime analysis paper for self-
adapting parameter choices appeared. In [29], Dang and Lehre show several positive
and negative results on the performance of a simple class of self-adapting evolu-
tionary algorithms having the choice between several mutation rates. Among them,
they show that such an algorithm having the choice between an appropriate and a
destructively high mutation rate can optimize the LeadingOnes benchmark function
in the usual quadratic time, whereas the analogous algorithm using a random of the
two mutation rates (and hence in half the cases the right rate) fails badly and needs
an exponential time. As a second remarkable result, they give an example setting
where any constant mutation rate leads to an exponential runtime, whereas the self-
adapting algorithm succeeds in polynomial time. As for almost all such examples,
also this one is slightly artificial and needs quite some assumptions, for example,
that all � individuals are initialized with the 1-point local optimum. Nevertheless,
this result makes clear that self-adaptation can outperform static parameter choices.
In the light of this result, the main value of our results is showing that asymptotic
runtime advantages from self-adaptation can also be obtained in less constructed
examples (of course, at the price that the runtime gap is not exponential).

To complete the picture on previous work relevant to ours, we finally quickly
describe what is known on the performance of the most common mutation-based
algorithms for the OneMax benchmark function. For the simple (1+1) EA, the
expected runtime of Θ(n log n) was determined in [53] (upper bound) and [25]
(lower bound, this result was announced already in 1998). For the (1+�) EA with
� ≤ n1−� , 𝜀 > 0 a constant, an expected runtime (number of fitness evaluations) of

was shown in [27, 42]. These two problems are also the only problems discussed in
this work for which more precise bounds than asymptotic orders of magnitude have
been obtained, however, with significant technical effort [20, 21, 36, 38, 39, 50, 59].

Θ

(
n� log log �

log �
+ n log n

)

1017

1 3

Algorithmica (2021) 83:1012–1053	

For the ( �+1) EA with polynomially bounded � , the expected runtime is
Θ(�n + n log n) , see [61]. Finally, the expected runtime of the ( �+�) EA was
recently [3] determined as

where log+ x ∶= max{1, log x} for all x > 0.
For non-elitist algorithms, unsuitable choices of the parameters or selection

mechanisms can lead to prohibitively large runtimes. The earliest runtime analy-
sis of the (1,�) EA with mutation rate 1/n on OneMax is due to Jägersküpper and
Storch [44], who proved a phase transition from exponential to polynomial runt-
ime in the regime � = Θ(log n) , leaving a gap of at least 21 between the largest � in
the exponential regime and the smallest in the polynomial regime. This result was
improved by Rowe and Sudholt [57], who determined the phase transition point to
be the above-mentioned function log(e−1)∕e(n) , up to lower order terms. Jägersküpper
and Storch [44] also obtain a useful coupling result: if � ≥ c ln n for a sufficiently
large constant c > 0 , the stochastic behavior of the (1+�) EA and (1,�) EA with high
probability are identical for a certain polynomial (with degree depending on c) num-
ber of steps, allowing the above-mentioned results about the (1+�) EA to be trans-
ferred to the (1,�) EA.

For the ( �,�) EA with � ≥ (1 + �)e� , 𝜀 > 0 a constant, and � = Ω(log n) suffi-
ciently large (as well as for many other non-elitist algorithms under suitable param-
eter settings), a runtime of O(n� log �) was shown in [28], which was improved to
O(n�) in [10]. When � ≤ (1 − �)� and � is at most polynomial in n, then the runtime
of the ( �,�) EA is exponential in n [48, Corollary 1]. More precise results on this
threshold phenomenon were given in [4].

1.3 � Techniques

One of the technical difficulties in our analysis is that our self-adaptive (1,�) EA
can easily lose fitness when the rate parameter is set to an unsuitable value. For
this reason, we cannot use the general approach of the analysis of the self-adjusting
(1+�) EA in [23], which separated the analysis of the rate and the fitness by, in very
simple words, first waiting until the rate is in the desired range and then waiting for
a fitness improvement (of course, taking care of the fact that the rate could leave the
desired range). To analyze the joint process of fitness and rate with its intricate inter-
actions, we in particular use drift analysis with a two-dimensional distance function,
that is, we map (e.g., in Lemma 22) the joint space of fitness and rate suitably into
the non-negative integers in a way that the expected value of this mapping decreases
in each iteration. This allows to use well-known drift theorems.

The use of two-dimensional potential functions is not new in the analysis of evo-
lutionary algorithms. However, so far only very few analyses exist that use this tech-
nique with dynamic parameter values and among these results, we feel that ours, in
particular, Lemma 22, are relatively easy to use. Again in very simple words, the
distance function g defined in the proof of Lemma 22 is the fitness distance plus a

Θ

(
n log n

�
+

n

�∕�
+

n log+ log+ �∕�

log+ �∕�

)
,

1018	 Algorithmica (2021) 83:1012–1053

1 3

pessimistic estimate for the fitness loss that could be caused from the current rate if
this is maladjusted). We thus hope that this work eases future analyses of dynamic
parameter choices by suggesting ways to measure suitably the progress in the joint
space of solution quality and parameter value.

To allow the reader to compare our two-dimensional drift approach with existing
works using similar arguments, we briefly review the main works that use two- or
more-dimensional potential functions. Ignoring that the artificial fitness functions
used in [22, 25, 26, 62] could also be interpreted as n-dimensional potential func-
tions, the possibly first explicit use of a two-dimensional potential function in the
runtime analysis of randomized search heuristics can be found in [60, proof of Theo-
rem 4], a work analyzing how simulated annealing and the Metropolis algorithm
compute minimum spanning trees in a line of connected triangles. In such optimiza-
tion processes, a solution candidate (which is a subset of the edge set of the graph)
can have two undesirable properties. (1) The solution contains a complete triangle,
so one of these three edges has to be removed on the way to the optimal solution. (2)
The solution contains two edges of a triangle, but not the two with smallest weight.
This case, called bad triangle, is the less desirable one as here one edge of the solu-
tion has to be replaced by the missing edge and hence the status of two edges has
to be changed. It turns out that a simple potential function can take care of these
two issues, namely twice the number of bad triangles plus the number of complete
triangles.

When analyzing non-trivial parent populations, then often it does not suffice
to measure the quality of the current state via the maximum fitness in the popu-
lation, but also the number of individuals having this best fitness has to be taken
into account. This was first done in the analysis of the ( �+1) EA in [61]. Since in a
run of this algorithm the population never worsens (in a strong sense), the progress
could be analyzed conveniently via arguments similar to the fitness level method.
Consequently, it was not necessary to define an explicit potential function. In a simi-
lar fashion, the (N + N) EA [11] and the ( �+�) EA [3] were analyzed by regarding
the maximum fitness and the number of individuals having this fitness.

In [51], a vaguely similar approach was taken for non-elitist population-based
algorithms. However, the fact that these algorithms may lose the current-best solu-
tion required a number of non-trivial modifications, most notably, (1) that the poten-
tial is based on the maximum fitness such that at least a proportion of � of the indi-
viduals have at least this fitness (for a suitable constant 0 < 𝛾 < 1 ) instead of the
maximum fitness among all individuals, and (2) that the arguments resembling the
fitness level method had to be replaced by a true drift argument. This approach was
extended in [28] to give a general “level-based” runtime analysis result. A simplified
version of this level theorem was recently given in [10].

What comes closest to our work with respect to the use of two-dimensional
potential functions is [17], where a self-adjusting bit-wise mutation strength for
functions defined not over bit strings, but over {0,… , r − 1}n for some r > 2 is dis-
cussed. The potential function defined in (6) in [17, Sect. 7] is too complicated to
be described here in detail, but it also follows the pattern used in this work, namely
that the potential (to be minimized) is the sum of the fitness distance and a pen-
alty for mutation strengths deviating from their currently ideal value. This potential

1019

1 3

Algorithmica (2021) 83:1012–1053	

function, however, does not admit an easy interpretation of the type “fitness dis-
tance plus expected damage from improper mutation strength” as in our work. Con-
sequently, the proof that indeed the desired progress is obtained with respect to this
potential function is a lengthy (more than 4 pages) case distinction. Apparently una-
ware of the conference version [16], a similar approach, also with a slightly com-
plicated potential function, was developed in [1] to analyze the (1+1) ES with 1/5
success rule.

A very general approach was recently published in [56]. When a process
X0,X1,… admits several distance functions d1,… , dm such that, for all i ∈ [1…m] ,
the i-th distance satisfies E[di(Xt+1) ∣ Xt] ≤ A(d1(Xt),… , dm(Xt))

⊤ for a given matrix
A, then under some natural conditions the first time until all distances are zero can
be bounded in terms of a suitable eigenvalue of A. The assumptions on the distance
functions and the matrix A are non-trivial, but [56] provides a broad selection of
applications of this method. For our problem, we would expect that this method can
be employed as well, however, this would also need an insight similar to the main
insight of our approach, namely that the expected new fitness can be estimated in a
linear fashion from the current fitness and the distance of the current rate from the
ideal value.

1.4 � Organization of This Work

This paper is structured as follows. In Sect. 2, we define the self-adaptive (1,�) EA
proposed in this work. In Sect. 3 we provide the technical tools needed on our analy-
sis, among them two new results on occupation probabilities. Sect. 4 presents the
main theorem. Its proof considers two main regions of different fitness, which are
dealt with in separate subsections. We present some experimental results in Sect. 5
and finish with some conclusions in the last section.

2 � The (1,�) EA With Self‑adapting Mutation Rate

We now define precisely the (1,�) EA with self-adaptive mutation rate proposed in
this work. This algorithm, formulated for the minimization of pseudo-boolean func-
tions f ∶ {0, 1}n → ℝ , is stated in Algorithm 1. We repeat that the main point of
such a self-adaptive algorithm, as compared to other ways of modifying parameter
values during a run, is that the parameter is encoded with the individuals, and is thus
modified via the existing variation-selection cycle of the EA.

To encode the mutation rate into the individual, we extend the individual rep-
resentation by adding the rate parameter. Hence the extended individuals are pairs
(x, r) consisting of a search point x ∈ {0, 1}n and the rate parameter r, which shall
indicate that r/n is the mutation rate this individual was created with.

The extended mutation operator first changes the rate to either r/F or Fr with
equal probability ( F > 1 ). It then performs standard bit mutation with the new rate.

In the selection step, we choose from the offspring population an individual with
best fitness. If there are several such individuals, we prefer individuals having the

1020	 Algorithmica (2021) 83:1012–1053

1 3

smaller rate r/F, breaking still existing ties randomly. In this winning individual,
we replace the rate by F if it was smaller than F to ensure that in the next iterations,
the lower of the two rates is at least 1. We replace the rate by rmax = F⌊logF(n∕(2F))⌋ ,
that is, the largest power of F not exceeding n/(2F), if it was larger than this number.
This ensures that in the next iteration, the larger of the two rates is not larger than
n/2 and that the rate remains a power of F despite the cap.

We formulate the algorithm to start with any initial mutation rate r init such that
F ≤ r init ≤ n∕(2F) and r init is a power of F. For the result we shall show in this work,
the initial rate is not important, but without this prior knowledge we would strongly
recommend to start with the smallest possible rate r init = F . Due to the multiplicative
rate adaptation, the rate can quickly grow if this is profitable. On the other hand, a too
large initial rate might lead to an erratic initial behavior of the algorithm.

For the adaptation parameter, we shall use F = 32 in our runtime analysis. Hav-
ing such a large adaptation parameter eases the already technical analysis, because
now the two competing rates r/F and Fr are different enough to lead to a signifi-
cantly different performance (this is helpful, e.g., in the proof of Lemma 10). For
a practical application, we suspect that a smaller value of F is preferable as it leads
to a more stable optimization process. The choice of the offspring population size
depends mostly on the degree of parallelism one wants to obtain. Clearly, � should
be at least logarithmic in n to prevent a too quick loss of the current-best solution.
For our theoretical analysis, we require � ≥ C ln n for a sufficiently large constant C.

The main result of this work is a mathematical runtime analysis of the per-
formance of the algorithm proposed above on the classic benchmark func-
tion ONEMAX ∶ {0, 1}n → ℝ defined by ONEMAX(x) =

∑n

i=1
xi for all

x = (x1,… , xn) ∈ {0, 1}n . Since such runtime analyses are by now a well-estab-
lished way of understanding the performance of evolutionary algorithms, we only
briefly give the most important details and refer the reader to the textbook [41].

The aim of runtime analysis is predicting how long an evolutionary algorithm takes
to find the optimum or a solution of sufficient quality. As implementation-independent
performance measure usually the number of fitness evaluations performed in a run
of the algorithm is taken. More precisely, the optimization time of an algorithm on
some problem is the number of fitness evaluations performed until for the first time
an optimal solution is evaluated. Obviously, for a (1,�) EA, the optimization time is
essentially � times the number of iterations performed until an optimum is generated.

1021

1 3

Algorithmica (2021) 83:1012–1053	

As in classic algorithms analysis, our main goal is an asymptotic understanding
of how the optimization time depends on the problems size n. Hence all asymptotic
notation in the paper will be with respect to n tending to infinity.

3 � Technical Tools

In this section, we list several tools which are used in our work. Most of them are
standard tools in the runtime analysis of evolutionary algorithms, however, we also
prove two new results on occupation probabilities at the end of this section.

3.1 � Elementary Estimates

We shall frequently use the following estimates.

Lemma 1 

(a)	 For all x ∈ ℝ , 1 + x ≤ ex.
(b)	 For all x ∈ [0,

2

3
] , e−x−x2 ≤ 1 − x . Moreover, for all x ∈ [0,

1

2
] , e−3x∕2 ≤ 1 − x.

(c)	 Weierstrass product inequality: For all p1,… , pn ∈ [0, 1] ,

All these estimates can be proven via elementary means. We note that the second
estimate was proven in [23, Lemma 8(c)]. The third is usually proven via induction,
a possibly more elegant proof via the union bound was given in [34].

3.2 � Probabilistic Tools

In our analysis, we use several standard probabilistic tools including Chernoff
bounds. All these can be found in many textbook or the book chapter [34]. We men-
tion the following variance-based Chernoff bound due to Bernstein [7], which is less
common in this field (but can be found as well in [34]).

Theorem 2  Let X1,… ,Xn be independent random variables. Let b be such
that E(Xi) − b ≤ Xi ≤ E(Xi) + b for all i = 1,… , n . Let X =

∑n

i=1
Xi . Let

�
2 =

∑n

i=1
Var(Xi) = Var(X) . Then for all � ≥ 0,

1 −

n∑

i=1

pi ≤

n∏

i=1

(1 − pi).

Pr(X ≥ E(X) + �) ≤ exp

(
−

�
2

2(�2 +
1

3
b�)

)
,

Pr(X ≤ E(X) − �) ≤ exp

(
−

�
2

2(�2 +
1

3
b�)

)
.

1022	 Algorithmica (2021) 83:1012–1053

1 3

We shall follow the common approach of estimating the expected progress and
translating this via so-called drift theorems into an estimate for the expected optimi-
zation time. We use the variable drift theorem independently found in [43, 52] in a
slightly generalized form.

Theorem 3  (Variable Drift, Upper Bound) Given a stochastic process, let (Xt)t≥0
be a sequence of random variables obtained from mapping the random state at time
t to a finite set S ⊆ {0} ∪ [xmin, xmax] , where xmin > 0 . Let T be the random varia-
ble that denotes the earliest point in time t ≥ 0 such that Xt = 0 . If there exists a
monotone increasing function h(x) ∶ [xmin, xmax] → ℝ

+ such that for all x ∈ S with
Pr (Xt = x) > 0 we have

then for all x� ∈ S with Pr (X0 = x�) > 0

Finally, we mention an elementary fact which we shall use as well. See [13,
Lemma 1] for a proof.

Lemma 4  Let X ∼ Bin (n, p) and k ∈ [0… n] . Then E(X ∣ X ≥ k) ≤ E(X) + k.

3.3 � Occupation Probabilities

To analyze the combined process of fitness and rate in the parent individual, we
need a tool that translates a local statement, that is, how the process changes from
one time step to the next, into a global statement on the occupation probabilities of
the process. Since in our application the local process has a strong drift to the target,
Theorem 7 from [47] is too weak. Also, we cannot assume that the process in each
step moves at most some constant distance. For that reason, we need the following
stronger statement.

Theorem 5  (Theorem 2.3 in [37]) Suppose that (Fk)k≥0 is an increasing family of
sub-�-fields of F and (Yk)k≥0 is adapted to (Fk) . If

then

We apply this theorem in the following lemma that fits into the case in this paper.

E(Xt − Xt+1 ∣ Xt = x) ≥ h(x)

E(T ∣ X0 = x�) ≤
xmin

h(xmin)
+
�

x�

xmin

1

h(x)
dx.

E

(
e𝜂(Yk+1−Yk);Yk > a

||| Fk

)
≤ 𝜌 and E

(
e𝜂(Yk+1−1);Yk ≤ a

||| Fk

)
≤ D,

Pr(Yk ≥ b ∣ F0) ≤ �
ke�(Y0−b) +

1 − �
k

1 − �
De�(a−b).

1023

1 3

Algorithmica (2021) 83:1012–1053	

Lemma 6  Consider a stochastic process Xt , t ≥ 0 , on ℝ such that for some p ≤ 1∕25
the transition probabilities for all t ≥ 0 satisfy Pr(Xt+1 ≥ Xt + a ∣ Xt > 1) ≤ pa+1 for
all a ≥ −1∕2 as well as Pr(Xt+1 ≥ a + 1 ∣ Xt ≤ 1) ≤ pa+1 for all a ≥ 0 . If X0 ≤ 1 then
for all t ≥ 1 and k > 1 it holds that

Proof  We aim at applying Theorem 5.
There are two cases depending on Xt : for Xt ≤ 1 , using the monotonicity of

e�(Xt+1−1) with respect to Xt+1 − 1 , we obtain

using the assumption that Pr(Xt+1 ≥ a + 1 ∣ Xt ≤ 1) ≤ pa+1 for all a ≥ 0 then

and for Xt > 1 , using the monotonicity of e�(Xt+1−Xt) with respect to Xt+1 − Xt , we
have

using the assumption that Pr(Xt+1 ≥ Xt + a ∣ Xt > 1) ≤ pa+1 for all a ≥ −1∕2 then

Using � ∶= ln(1∕(ep)) such that e�p = 1∕e , we have

Theorem 5 yields with a ∶= 1 and b ∶= 1 + k that

Pr(Xt ≥ 1 + k) ≤ 11(ep)k.

D(p, 𝜆) ∶= E(e𝜆(Xt+1−1) ∣ Xt ≤ 1) ≤ E(e𝜆max{⌈Xt+1−1⌉,0} ∣ Xt ≤ 1)

= e0 Pr(Xt+1 ≤ 1 ∣ Xt ≤ 1) +

∞�

a=1

e𝜆a Pr(a < Xt+1 ≤ a + 1 ∣ Xt ≤ 1)

≤ e0 +

∞�

a=1

e𝜆a Pr(Xt > a ∣ Xt ≤ 1),

D(p, �) ≤ 1 +

∞∑

a=1

e�apa = 1 +
e�p

1 − e�p
;

𝜌(p, 𝜆) ∶= E(e𝜆(Xt+1−Xt) ∣ Xt > 1) ≤ E(e𝜆max{⌈2(Xt+1−Xt)⌉∕2,−1∕2} ∣ Xt > 1)

= e−𝜆∕2 Pr
�
Xt+1 − Xt ≤ −

1

2

��� Xt > 1
�

+

∞�

a=0

e𝜆a∕2 Pr
�
a − 1

2
< Xt+1 − Xt ≤

a

2

��� Xt > 1
�

≤ e−𝜆∕2 +

∞�

a=0

e𝜆a∕2 Pr
�
Xt+1 − Xt >

a − 1

2

��� Xt > 1
�
,

�(p, �) = e−�∕2 +

∞∑

a=0

e�a∕2p(a+1)∕2 =
p1∕2

(e�p)1∕2
+

p1∕2

1 − (e�p)1∕2
.

𝜌 ∶= 𝜌(p, 𝜆) ≤ e1∕2p1∕2 +
p1∕2

1 − e−1∕2
≤

e1∕2

5
+

1∕5

1 − e−1∕2
< 0.84,

D ∶= D(p, 𝜆) ≤ 1 + (1∕e)∕(1 − 1∕e) < 1.6.

1024	 Algorithmica (2021) 83:1012–1053

1 3

	� ◻

For the simpler case of a random process that runs on the positive integers and
that has a strong negative drift, we have the following estimate for the occupation
probabilities.

Lemma 7  Consider a random process defined on the positive integers 1, 2,… .
Assume that from each state i different from 1, only the two neighboring states i − 1
and i + 1 can be reached (and there is no self-loop on state i). From state 1, only
state 2 can be reached and the process can stay on state 1. Let pi < 1 be an upper
bound for the transition probability from state i to state i + 1 (valid in each iteration
regardless of the past). Assume that

holds for all i ≥ 2 . Assume that the process starts in state 1. Then at all times, the
probability to be in state i is at most

where as usual we read the empty product as q1 = 1.

Proof  The claimed bound on the occupation probabilities is clearly true at the start
of the process. Assume that it is true at some time. By this assumption and the
assumptions on the process, the probability to be in state i ≥ 2 after one step is at
most

Trivially, the probability to be in state 1 after one step is at most q1 = 1 . Hence, by
induction over time, we see that qi is an upper bound for the probability to be in state
i at all times. 	� ◻

Pr(Xt ≥ 1 + k ∣ X0) ≤ �
te−�(1+k−X0) +

1

1 − �
De−�k

≤ (ep)k +
1.6

1 − 0.84
(ep)k = 11(ep)k.

pi−1 ≥
pi

1 − pi

qi ∶=

i−1∏

j=1

pj

1 − pj
,

qi−1pi−1 + qi+1 = qi−1

(
pi−1 +

pi−1

1 − pi−1

pi

1 − pi

)

≤ qi−1

(
pi−1 +

pi−1

1 − pi−1
pi−1

)

= qi−1
pi−1

1 − pi−1
= qi.

1025

1 3

Algorithmica (2021) 83:1012–1053	

4 � Main Result and Proof

We can now state precisely our main result and prove it.

Theorem 8  Let � ≥ C ln n for a sufficiently large constant C > 0 and � = nO(1) . Let
F = 32 . Then the expected number of generations the self-adapting (1,�) EA takes to
optimize OneMax is

This corresponds to an expected number of fitness evaluations of
O(n�∕ log � + n log n).

The proof of this theorem is based on a careful, technically demanding drift
analysis of both the current OneMax-value kt (which is also the fitness distance,
recall that our goal is the minimization of the objective function) and the cur-
rent rate rt of the parent. In very rough terms, a similar division of the run as in
[23] into regions of large OneMax-value, the far region (Sect. 4.1), and of small
OneMax-value, the near region (Sect. 4.2) is made. The middle region considered
in [23] is subsumed under the far region here.

In the remainder of our analysis, we assume that n is sufficiently large, that
� ≥ C ln n with a sufficiently large constant C, that � = nO(1) , and that F = 32.

4.1 � The Far Region

In this section, we analyze the optimization behavior of our self-adaptive (1,�) EA
in the regime where the fitness distance k is larger than n∕ ln � . Due to our assump-
tion � ≥ C ln n , it is very likely to have at least one copy of the parent among � off-
spring when r = O(ln �) . Thus the (1,�) EA works almost the same as the (1 + �)
EA when r is small, but can lose fitness in general. The following lemma is crucial
in order to analyze the drift of the rate depending on k, which follows a similar
scheme as with the (1 + �) EA proposed in [23].

Roughly speaking, the rate leading to optimal fitness progress is n for
k ≥ n∕2 + �(

√
n ln(�)) , n/2 for k = n∕2 ± o(

√
n log(�)) , and then the optimal rate

quickly drops to r = Θ(log �) when k ≤ n∕2 − �n.
To ease statement of the following lemma, we define two fitness dependent

bounds L(k) and R(k).

Definition 9  Let n∕ ln 𝜆 < k < n∕2 . We define L(k) ∶= (F ln(en∕k))−1 and
U(k) ∶= n(2n − k)∕(22(n − 2k)2).

According to the definition, both L(k) and R(k) monotonically increase when k
increases.

O

(
n

log �
+

n log n

�

)
.

1026	 Algorithmica (2021) 83:1012–1053

1 3

Lemma 10  Consider an iteration of the self-adaptive (1,�) EA with current fitness
distance k and current rate r. Then:

(a)	� If n∕ ln 𝜆 < k and F ≤ r ≤ L(k) ln � , the probability that all best offspring have
been created with rate Fr is at least 1 − O(ln3(�)∕�1∕(4 ln ln �)).

(b)	� If k < n∕2 and n∕(2F) ≥ r ≥ U(k) ln � , then the probability that all best off-
spring have been created with rate r/F is at least 1 − �

1−(23∕22)r∕(U(k) ln �).

Proof of Lemma 10 part (a)  Let q(k, i, r) and Q(k, i, r) be the probability that standard
bit mutation with mutation rate p = r∕n creates from a parent with fitness distance k
an offspring with fitness distance exactly k − i and at most k − i , respectively. Then

and Q(k, i, r) =
∑k

j=i
q(k, j, r) . We aim at finding i such that Q(k, i,Fr) ≥ ln(�)∕�

while Q(k, i, r∕F) = O(ln3(�)∕�1+1∕4(ln ln �)) . Then we use these to bound the proba-
bility that at least one offspring using rate Fr obtains a progress of i or more while at
the same time all offspring using rate r/F obtains less than i progress. Let i∗ be the
largest i such that Q(k, i,Fr) ≥ ln(�)∕� . Using the fact that ln(1 − x) ≥ −x − x2 for
all 0 < x ≤ 1∕2 , note that our algorithm by definition never uses mutation rates
larger than 1/2, we notice that (1 − Fp)n−i ≥ (1 − Fp)n ≥ e−Fr−(Fr)

2∕n . By the assump-
tion that r ≤ L(k) ln � ≤ ln � , we obtain (Fr)2∕n = O(ln2 �∕n) = o(1) . Thus

(1 − Fp)n−i = (1 − o(1))e−Fr . We also notice that
(
k

i

)
= (k∕i)((k − 1)∕(i − 1))⋯

(k − i + 1) > (k∕i)i−1(k − i) = (k∕i)i((k − i)i∕k) > 2(k∕i)i for 2 < i < k − 2 . Thus for
i > 2 we can bound Q(k, i, Fr) by

where the second inquality follows from (1) by regarding the term for j = 0 only.
Let i = max{(F − 1)r, ln �∕(8 ln ln �)} . We prove i∗ ≥ i by distinguishing between
two cases according to which argument maximizes i.

If i = ln �∕(8 ln ln �) , then r ≤ i∕(F − 1) and Fr ≤ 2i . Referring to inequality (2)
and using the fact that k∕n ≥ 1∕ ln � , i < ln 𝜆 , and ln ln(𝜆) > 1 , we obtain

and thus Q(k, i,Fr) ≥ ln(�)∕�.
If i = (F − 1)r , then r ≥ ln �∕(8(F − 1) ln ln �) since F is a constant. Using

r ≤ L(k) ln � , we obtain ln � ≥ ln(en∕k)Fr which is equivalent to (k∕en)Fr ≥ 1∕� .
Furthermore, (k∕n)i > (k∕n)Fr since i = (F − 1)r < Fr . Thus

(1)q(k, i, r) =

k−i∑

j=0

(
k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j

(2)Q(k, i,Fr) ≥ q(k, i,Fr) ≥

(
k

i

)
(Fp)i(1 − Fp)n−i ≥

(
k

i
⋅

Fr

n

)i

e−Fr,

ln(Q(k, i,Fr)) ≥ i ln
(
k

in

)
− Fr ≥ −i ln(ln2 𝜆) − 2i

= −2i ln ln 𝜆 − 2i > −4i ln ln 𝜆 = −
ln 𝜆

2
≥ ln

(
ln 𝜆

𝜆

)

1027

1 3

Algorithmica (2021) 83:1012–1053	

Since Q(k, i, r) is decreasing in i, we obtain i∗ ≥ max{(F − 1)r, ln �∕(8 ln ln �)} .
Using a Chernoff bound and recalling that the expected number of flipped bits is
bounded by FL(k) ln � ≤ ln �∕ ln(2e) , we notice that i∗ ≤ ln � . This upper bound will
be used to estimate Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) in the following part of the proof.

We now prove that Q(k, i∗, r∕F) = o(1∕�) . By comparing each component in
q(k, i, r/F) and q(k, i, Fr), and applying Lemma 1 (b) to estimate (1 − Fr∕n)n and
(1 − r∕(Fn))n with r = O(ln �) = o(n1∕2) for large enough n, we obtain

Therefore Q(k, i∗,Fr)∕Q(k, i∗, r∕F) ≥ F
2i∗
e
−Fr = exp(2i∗ lnF − Fr) ≥ exp(2i∗ ln

F − Fi
∗∕(F − 1)) > exp(3i∗) > 𝜆

1∕(4 ln ln 𝜆) , where in the first inequality, we use the
fact that i∗ ≥ (F − 1)r . To prove Q(k, i∗, r∕F) = O(ln3(�)∕�1+1∕4(ln ln �)) , we first
show Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) = O(ln2 �) . Then we use this to bound
Q(k, i∗,Fr) = O(ln3(�)∕�) according to the definition of i∗ . Finally we obtain
Q(k, i∗, r∕F) ≤ Q(k, i∗,Fr)∕�1∕(4 ln ln �) = O(ln3(�)∕�1+1∕4(ln ln �)) . It remains to bound
Q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) . We show that the majority of q(k, i, r) are from the first
3r terms in the summation of equation (1). Let q(k, i, r)j denote the j-th item (

k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j in equation (1). Then

If j > 3r , then r2∕((i + j + 1)(j + 1)) < 1∕9 , and thus

We notice that

Q(k, i,Fr) ≥
(
k

i
⋅

Fr

n

)i

e−Fr ≥
(

F

F − 1

)(F−1)r(k

en

)Fr

≥ 2r
(
k

en

)Fr

≥
ln �

�
.

q(k, i,Fr)

q(k, i, r∕F)
≥ F2i (1 − Fr∕n)n

(1 − r∕(Fn))n

≥
(
1 − o(1)

)
F2ie−(F−1∕F)r > F2ie−Fr.

q(k, i, r)j+1

q(k, i, r)j
=

k − i − j

i + j + 1
⋅

n − k − j

j + 1
⋅ p2 ⋅ (1 − p)−2 ≤

r2

(i + j + 1)(j + 1)
.

q(k, i, r) ≤

(
3r∑

j=0

q(k, i, r)j

)
+ q(k, i, r)3r

(
k−i∑

j=3r+1

(1∕9)j−3r

)

≤

(
3r∑

j=0

q(k, i, r)j

)
+ q(k, i, r)3r ⋅

1∕9

1 − 1∕9

=

(
3r−1∑

j=0

q(k, i, r)j

)
+

9

8
⋅ q(k, i, r)3r ≤

9

8

3r∑

j=0

q(k, i, r)j.

q(k, i + 1, r)j

q(k, i, r)j
=

(
k

i + j + 1

)(
n − k

j

)
pi+2j+1(1 − p)n−i−2j−1

(
k

i + j

)(
n − k

j

)
pi+2j(1 − p)n−i−2j

=
(k − i − j)p

(i + j + 1)(1 − p)
,

1028	 Algorithmica (2021) 83:1012–1053

1 3

using the fact that
∑3r

j=0
q(k, i, r)j ≤ q(k, i, r) ≤ (9∕8)

∑3r

j=0
q(k, i, r)j for all (k, i, r), we

compute

Since i∗ ≥ (F − 1)r , i∗ ≤ ln � , and k ≥ n∕ ln � = �(ln �) , we obtain

Consequently we have q(k, i∗,Fr)∕Q(k, i∗ + 1,Fr) ≤ q(k, i∗,Fr)∕q(k, i∗ + 1,Fr) = O(ln2 �)
and

So finally Q(k, i∗,Fr) = O(ln3(�)∕�) due to the definition of i∗ , and

A simple union bound shows that with probability 1 − O(ln3(�)∕�1∕(4 ln ln �)) , no off-
spring of rate r/F manages to obtain a progress of i∗ or more. However, the probabil-
ity that an offspring has rate Fr and obtains at least i∗ progress is ln(�)∕(2�) . Thus
the probability that no offspring generated with rate Fr achieves a progress of at
least i∗ is at most (1 − ln(�)∕(2�))� ≤ �

−1∕2 = o(ln3(�)∕�1∕(4 ln ln �)) . This proves the
first statement of the lemma. 	� ◻

Proof of Lemma 10 part (b)  For r̃ ∈ {r∕F,Fr} let the random variable X(k, r̃)
denote the number of flipped bits in k ones and Y(k, r̃) denote the number of
flipped bits in n − k zeros when applying standard bit mutation with probabil-
ity p = r̃∕n . Let Z(k, r̃) ∶= Y(k, r̃) − X(k, r̃) denote the improvement in fitness.
Let Z∗(k, r̃) denote the minimal Z(k, r̃) among all offspring which apply rate r̃ .
E(Z(k, r̃)) = (n − k)r̃∕n − kr̃∕n = (n − 2k)r̃∕n . Our aim is to find a � such that
Pr (Z(k, r∕F) ≤ �) = Θ(1) while Pr (Z(k,Fr) ≤ �) = o(1∕�) , and use this to obtain a
high value for Pr (Z∗(k, r∕F) < Z∗(k,Fr)).

Let � ∶= E(Z(k, r∕F)) . We notice that Pr(X(k, r∕F) > E(X(k, r∕F)) − 1) ≥ 1∕2
since the median of binomial distribution X(k, r/F) is ⌊E(X(k, r∕F)⌋ or
⌈E(X(k, r∕F)⌉ . Applying Lemma 8 in [32] to Pr(Y(k, r∕F) < E(Y(k, r∕F)) − 1)
with E(Y(k, r∕F)) = Ω(ln �) = �(1) by assumption r ≥ U(k) ln � and
E(Y(k, r∕F)) < (n − k)∕2 , we obtain for n sufficiently large that

q(k, i∗ + 1,Fr)

q(k, i∗,Fr)
≥

∑3Fr

j=0
q(k, i∗ + 1,Fr)j

(9∕8)
∑3Fr

j=0
q(k, i∗,Fr)j

≥
8

9
⋅

k − i∗ − 3Fr

i∗ + 3Fr + 1
⋅

p

1 − p
.

q(k, i∗ + 1,Fr)

q(k, i∗,Fr)
= Ω

(
kp

i∗

)
= Ω

(
kr

i∗n

)
= Ω

(
1

ln2 �

)
.

Q(k, i∗,Fr)

Q(k, i∗ + 1,Fr)
= 1 +

q(k, i∗,Fr)

Q(k, i∗ + 1,Fr)
= O(ln2 �).

Q(k, i∗, r∕F) ≤
Q(k, i∗,Fr)

F2i∗e−Fr
= O

(
ln3 �

� ⋅ �1∕(4 ln ln �)

)
.

1029

1 3

Algorithmica (2021) 83:1012–1053	

Thus Pr(Z(k, r∕F) ≤ 𝛽) > (1∕2)(2∕5) = 1∕5 . We use Bernstein’s inequality (Theo-
rem 2) to bound Pr (Z(k,Fr) ≤ �) and obtain

With Δ = E(Z(k,Fr)) − � = (n − 2k)(Fr∕n − r∕(Fn)) = (n − 2k)(F2 − 1)r∕(Fn) and
Var(Z(k,Fr)) = Fr(1 − Fr∕n) < Fr , we compute

Given F = 32 and r ≥ U(k) ln � then

With a simple union bound, we obtain Pr(Z∗(k,Fr) ≤ 𝛽) < 𝜆Pr(Z(k,Fr) ≤ 𝛽)

< 𝜆
1−23.9r∕(22U(k) ln 𝜆) . The probability that an offspring has rate r/F and obtains � is

at least (1∕2)(1∕5) = 1∕10 . Thus the probability that no offspring generated with
r/F has a Z-value of at least � is at most (1 − 1∕10)� = exp(−Θ(�)) . Therefore
Pr(Z∗(k,Fr) < Z∗(k, r∕F)) < 𝜆

1−23.9r∕(22U(k) ln 𝜆)(1 − exp(−Θ(𝜆))) = o(𝜆1−23r∕(22U(k) ln 𝜆)) ,
which means with probability at least 1 − �

1−(23r∕(22U(k) ln �) all best offspring have
been created with rate r/F. 	� ◻

Lemma 10 will be crucial in order to bound the expected progress on fitness in the
far region. We notice that ln � = o(

√
n) in the lemma we may allow r > ln 𝜆 when k

is large and r = Θ(n) when k = n∕2 − Θ(
√
n ln �) . It is easy to show a positive pro-

gress on fitness for r < ln 𝜆 since there will be sufficiently many offspring that do not
flip zeros. When r ≥ ln � we expect all offspring to flip zeros, but we can still show a
positive drift when k > 7n∕20 , as stated in the following lemma. The idea is that the
standard variation of the number of flipping ones is

√
kr∕n(1 − r∕n) = Θ(

√
r) . This

makes a deviation compensating bad flips among the remaining n − 2k zeros likely
enough.

(3)
Pr
�
Y(k, r∕F) < E(Y(k, r∕F)) − 1

�

≥
1

2
−

�
n − k

2𝜋⌊(n − k)p⌋(n − k − ⌊(n − k)p⌋) >
2

5
.

Pr
(
Z(k,Fr) ≤ E(Z(k,Fr)) − Δ

)
≤ exp

(
−

Δ2

2(Var(Z(k,Fr)) + Δ∕3)

)
for all Δ > 0.

Pr(Z(k,Fr) ≤ �) ≤ exp

(
−
1

2
⋅

(F2 − 1)2(n − 2k)2r2

F2n2(Fr + (n − 2k)(F2 − 1)r∕(3Fn))

)

= exp

(
−
1

2
⋅

(F2 − 1)2(n − 2k)2r

F3n2 + Fn(n − 2k)(F2 − 1)∕3

)

≤ exp

(
−
3

2
⋅

(F2 − 1)2(n − 2k)2r

3F3n2 + F3n(n − 2k)

)

= exp

(
−
3

4
⋅

(F2 − 1)2(n − 2k)2r

F3n(2n − k)

)
.

Pr(Z(k,Fr) ≤ 𝛽) < exp

(
−
23.9(n − 2k)2r

n(2n − k)

)
< 𝜆

−
23.9r

22U(k) ln 𝜆 .

1030	 Algorithmica (2021) 83:1012–1053

1 3

Lemma 11  Let 7n∕20 ≤ k < n∕2 and � = 10−4 . Assume r ≤ min{n2 ln �∕(12

(n − 2k)2), n∕(2F)} . Assume that from a parent with fitness distance k we gener-
ate an offspring using standard bit mutation with mutation rate p = r∕n . Then
the probability that this offspring has a fitness distance of at most k − s with
s ∶= �(min{ln �, r} + (n − 2k)r∕n) , is at least �−0.98.

Proof  We first look at the case when r < 1∕(2𝛼) . In this case
s ≤ 𝛼(r + (n − 2k)r∕n) ≤ 𝛼(2r) < 1 . Then the probability that this offspring has a fit-
ness distance of k − 1 > k − s is at least

Therefore it remains to consider r ≥ 1∕(2�).
Let random variables X and Y denote the number of flips in k one-bits and

(n − k) zero-bits, respectively, in an offspring using rate p = r∕n . Then X − Y is
the decrease of fitness distance. X and Y follow binomial distributions Bin (k, p) and
Bin (n − k, p) , respectively. Let

Since r ≥ 1∕(2�) ≥ 5000 and n ≤ 20k∕7 , then p = r∕n ≥ 5000 ⋅ 7∕(20k) = 1750∕k .
Using this and the fact that p ≤ 1∕(2F) , we apply Lemma 8 in [32] and obtain

Similarly Pr(Y ≤ E(Y)) = 2∕5 . Since E(X − Y) = kp − (n − k)p = −(n − 2k)p , we
bound

Let � ∶= ⌈(n − 2k)p + s⌉ , u ∶= kp and ũ ∶= ⌈u⌉ . We notice that
u = rk∕n ≥ (1∕(2�))(7∕20) = 1750 . Furthermore, we have 𝛿 < ũ − 2 < u since

(
k

1

)(
r

n

)1(
1 −

r

n

)n−1

= Θ(e−r) = �(�−0.98).

B(x) ∶= Pr(X = x) =

�
k

x

�
px(1 − p)k−x for all x ∈ {0, 1,… , k},

F(x) ∶= Pr(X ≥ x) =

k�

i=⌈x⌉
B(i) for all x ∈ [0, k].

Pr(X > E(X)) >
1

2
−

�
k

2𝜋⌊kp⌋(k − ⌊kp⌋) >
1

2
−

�
1

2kp
>

2

5

Pr
(
X − Y ≥ s

)
≥ Pr

(
X ≥ E(X) + (n − 2k)p + s

)
Pr
(
Y ≤ E(Y)

)

≥
2

5
F
(
kp + (n − 2k)p + s

)
.

1031

1 3

Algorithmica (2021) 83:1012–1053	

We aim at proving F(u + �) = �(�−0.98) to obtain this lemma. If F(u + �) = Θ(1)
then the conclusion holds. It remains to consider F(u + �) = o(1) while
F(u) − F(u + �) ≥ 2∕5 − o(1) as stated in equation (3). For any x ∈ ℤ

≥u we have

Since ũ = ⌈u⌉ then B(ũ) > B(ũ + 1) > ⋯ > B(k) , and thus F(u + 𝛿) ≥ 𝛿B(ũ + 2𝛿)
as well as F(u) − F(u + 𝛿) ≤ 𝛿B(ũ) . Using the fact that p∕(1 − p) = u∕(k − u) and
ũ − 1 < u , we see that

We compute the following factorials using Robbins’s Stirling’s approximation in
[55]

Notice that 12ũ + 1 < 12(ũ + 2𝛿) , we obtain

Therefore

We notice that 2𝛿∕(k − u) ≤ 2𝛿∕(2Fu − u) = 2𝛿∕(63u) < 2∕63 < 1∕2 and
(2𝛿 + 1)∕(ũ + 2𝛿) < (2𝛿 + 1)∕(3𝛿 + 2) < 2∕3 . Referring to Lemma 1, we compute

𝛿 =⌈(n − 2k)p + s⌉ < (1 + 𝛼)(n − 2k)p + 𝛼min{ln 𝜆, r} + 1

≤(1 + 𝛼)
n − 2k

n
r + 𝛼r + 1 ≤

�
(1 + 𝛼)

3

10
+ 𝛼

�
r + 1

=
3 + 13𝛼

10
⋅

n

k
⋅ u + 1 <

3 + 13𝛼

10
(3u) + 1 < 0.91u + 1

=u − 0.09u + 1 ≤ u − (0.09 ⋅ 1750 − 1) = u − 156.5.

B(x + 1)

B(x)
=

k − x

x + 1
⋅

p

1 − p
≤

u − up

u − up + 1 − p
< 1.

B(ũ + 2𝛿)

B(ũ)
=

(k − ũ)⋯ (k − (ũ + 2𝛿) + 1)

(ũ + 1)⋯ (ũ + 2𝛿)
⋅

p2𝛿

(1 − p)2𝛿

≥
(k − (ũ − 1) − 2𝛿)2𝛿

(ũ + 1)⋯ (ũ + 2𝛿)
⋅

u2𝛿

(k − u)2𝛿
≥

(
1 −

2𝛿

k − u

)2𝛿 u2𝛿

(ũ + 1)⋯ (ũ + 2𝛿)
.

(ũ + 2𝛿)! ≤
√
2𝜋(ũ + 2𝛿)

�
ũ + 2𝛿

e

�ũ+2𝛿

exp

�
1

12(ũ + 2𝛿)

�
,

ũ! ≥
√
2𝜋ũ

�
ũ

e

�ũ

exp
�

1

12ũ + 1

�
.

1

(ũ + 1)⋯ (ũ + 2𝛿)
=

ũ!

(ũ + 2𝛿)!
≥

√
ũ

ũ + 2𝛿

ũũe2𝛿

(ũ + 2𝛿)ũ+2𝛿
≥

√
ũ

ũ + 2𝛿

uũe2𝛿

(ũ + 2𝛿)ũ+2𝛿
.

B(ũ + 2𝛿)

B(ũ)
≥

(
1 −

2𝛿

k − u

)2𝛿
√

ũ

ũ + 2𝛿

uũ+2𝛿e2𝛿

(ũ + 2𝛿)ũ+2𝛿

=

√
ũ

ũ + 2𝛿
exp

(
2𝛿 ln

(
1 −

2𝛿

k − u

)
+ (ũ + 2𝛿) ln

(
u

ũ + 2𝛿

)
+ 2𝛿

)

≥

√
ũ

ũ + 2𝛿
exp

(
2𝛿 ln

(
1 −

2𝛿

k − u

)
+ (ũ + 2𝛿) ln

(
1 −

2𝛿 + 1

ũ + 2𝛿

)
+ 2𝛿

)
.

1032	 Algorithmica (2021) 83:1012–1053

1 3

where the last inequality used that ũ∕(ũ + 2𝛿) ≥ 1∕3 since 𝛿 ≤ ũ . Using n∕k ≤ 20∕7
and r ≤ n2 ln �∕(12(n − 2k)2) , we obtain

Plugging the last estimate into inequality (4), we obtain B(ũ + 2𝛿)∕B(ũ) = 𝜔(𝜆−0.98) .
Thus F(u + �)∕(F(u) − F(u + �)) = �(�−0.98) and F(u + �) = �(�−0.98) which
proves the statement in this lemma. 	� ◻

For k < 7n∕20 , we need a more careful analysis, where we will estimate the
expected progress on fitness averaged over the random rates the algorithm may
have at a time. Hence, we assume a fixed current fitness but a random current
rate and compute the average drift of fitness with respect to the distribution on
the rates. This approach is similar to the one by Jägersküpper [40], who computes
the average drift of the Hamming distance to the optimum when the (1+1) EA is
optimizing a linear function, where the average is taken with respect to a distribu-
tion on all search points with a certain Hamming distance.

Of course, we want to exploit that a rate yielding near-optimal fitness progress
is used most of the time such that too high (or too low) rates do not have a signifi-
cant impact. To this end, Lemma 6 about occupation probabilities will be crucial.

We now define two fitness dependent bounds rl(k) and ru(k) . We show in
Lemma 13 that for any rate, if r/F or Fr is within the bounds, then the algorithm
has logarithmic drift on fitness.

Definition 12  Let n∕ ln 𝜆 < k < n∕2 . We define

(4)

2𝛿 ln
(
1 −

2𝛿

k − u

)
≥ −

3

2
⋅

4𝛿2

k − u
= −

6𝛿2

u∕p − u
≥ −

6𝛿2

2Fu − u
≥ −

𝛿
2

10u
,

(ũ + 2𝛿) ln
(
1 −

2𝛿 + 1

ũ + 2𝛿

)
≥ −(2𝛿 + 1) −

(2𝛿 + 1)2

ũ + 2𝛿
≥ −2𝛿 −

4𝛿2

u
− 3,

B(ũ + 2𝛿)

B(ũ)
≥

√
ũ

ũ + 2𝛿
exp

(
−
41𝛿2

10u
− 3

)
≥

√
1

3
e−3 exp

(
−
41𝛿2

10u

)
.

41𝛿2

10u
=

41n

10k
⋅

⌈(1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r}⌉2
r

≤
41n

10k
⋅

((1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r} + 1)2

r

≤
41n

10k
⋅

�
((1 + 𝛼)((n − 2k)∕n)r + 𝛼min{ln 𝜆, r})2

r
+ 2(1 + 𝛼)

n − 2k

n
+ 2𝛼 +

1

r

�

≤
82

7
⋅

�
(1 + 𝛼)2

�
n − 2k

n

�2

r + 2(1 + 𝛼)
n − 2k

n
𝛼 ln 𝜆 + 𝛼

2 ln 𝜆 + 1

�

≤
82

7
⋅

�
(1 + 𝛼)2 ln 𝜆

12
+

3(1 + 𝛼)𝛼

5
ln 𝜆 + 𝛼

2 ln 𝜆 + 1

�
< 0.978 ln 𝜆 +

82

7
.

1033

1 3

Algorithmica (2021) 83:1012–1053	

where L(k) and U(k) are defined as in Definition 9.

We notice that Lemma 10 can be applied to all r > ru
or r < rl because for all 7n∕20 ≤ k < n∕2 , we have
ru∕(U(k) ln �) = 22n∕(12(2n − k)) ≥ 22∕(12(2 − 0.35)) = 10∕9 . For k < n∕ ln 𝜆 , we
set rl to the minimal possible value of r. Finally note that ru is non-decreasing in k
due to the monotonicity of n2∕(n − 2k)2 and U(k).

Lemma 13  Let n∕𝜆 < k < n∕2.
Let Δ(k, r) denote the fitness gain of the best offspring using rate in {r∕F,Fr} .

(a)	� The negative drift of fitness for too high rates r ≥ Fru is bounded by

(b)	� When k ≥ 7n∕20 the positive drift of fitness for good rate r ≤ Fru is bounded
by

(c)	� When n∕𝜆 < k < 7n∕20 the positive drift of fitness for good rate r ≤ Fru is
bounded by

Proof  The probability of using rate r/F is 1/2. Thus with probability at least
1 − (1∕2)� = 1 − o(1∕n3) , at least one offspring uses rate r/F. For this offspring, the
expected loss is (n − 2k)r∕(Fn) . If the complementary event (hereinafter called fail-
ure) of probability o(1∕n3) happens, we estimate Δ(k, r) pessimistically by −n . This
proves the first statement.

To prove the second item, we take i = 10−4((n − 2k)r∕(Fn) +min{ln �, r∕F}) .
According to Lemma 11, the probability that an offspring uses rate r/F and
achieves progress of i or more is at least �−0.98∕2 . Thus for � offspring, we obtain
Pr(Δ(k, r) ≥ i) ≥ 1 − (1 − �

−0.98∕2)� = 1 − O(exp(−�0.02∕2)) = 1 − o(1) . If the fail-
ure event happens, we estimate Δ(k, r) pessimistically by −(n − 2k)r∕(Fn) = O(i) .
Thus the statement holds.

For the third item, we take i ∶= min{r, ln(�)∕ ln(en∕k)}∕F . Notice that for
k < 7n∕20 we have ru(k) < ru(7n∕20) = (25∕27) ln 𝜆 < 0.93 ln 𝜆 . Applying

ru(k) ∶=

{
n2 ln(𝜆)∕(12(n − 2k)2) if 7n∕20 ≤ k < n∕2,

10U(k) ln(𝜆)∕9 if n∕ ln 𝜆 < k < 7n∕20.

rl(k) ∶=

{
L(k) ln(𝜆)∕2 if n∕ ln 𝜆 ≤ k < n∕2,

F if n∕𝜆 < k < n∕ ln 𝜆.

E(Δ(k, r)) ≥ −
(
1 + o(1)

)n − 2k

n

r

F
.

E(Δ(k, r)) ≥
(
1 − o(1)

)
⋅ 10−4

(
n − 2k

n
⋅

r

F
+min

{
ln �,

r

F

})
.

E(Δ(k, r)) ≥
(
1 − o(1)

)
min

{
r

F
,

ln �

F ln(en∕k)

}
.

1034	 Algorithmica (2021) 83:1012–1053

1 3

Lemma 1(b) with r∕F ≤ ru(k) = o(
√
n) we obtain (1 − r∕(Fn))n ≥ (1 − o(1))e−r∕F .

Therefore the probability that one offspring using rate r∕F < 0.93 ln 𝜆 makes a pro-
gress of at least i is lower bounded by (assuming n large enough)

Thus for � offspring, we obtain Pr(Δ(k, r) ≥ i) ≥ 1 − (1 − �
−0.98∕2)�= 1 − o(1∕ ln(�)) .

If the failure event happens we estimate Δ(k, r) pessimistically by
−(n − 2k)r∕(Fn) = O(ln �) . The contribution of failure events is o(1) which is also
o(i). Therefore the third statement holds. 	� ◻

As discussed, our aim is to show that rt∕F or Frt stays in the right range fre-
quently enough such that the overall average drift is still logarithmic. We notice that
small rates rt < rl intuitively do not have a negative effect, therefore we focus on
the probability that rt < Fru . Since ru decreases monotonically in k, we need to ana-
lyze whether r still stays in the right range if there are large jumps in fitness dis-
tance k. Intuitively, the speed at which the mutation rate is decreased is much higher
than than the decrease of fitness distance. To make this rigorous, we first look at the
probability of large jumps, as detailed in the following lemma.

Lemma 14  Assume r ≤ n∕2 and let Z(k, r) denote the fitness-distance increase
when applying standard bit mutation with probability p = r∕n to an individual with
k ones. Then

for all Δ ≥ 0.

Proof  Without loss of generality, we assume that the individual has k leading ones
and n − k trailing zeros. Let random variables Z1,… , Zn be the contribution to fit-
ness distance increase in each position after standard bit mutation. Then

The random variables Z1,… , Zn are independent and Z(k, r) =
∑n

i=1
Zi . Similarly

as in the proof of Lemma 10 (b), we have E(Z(k, r)) = −kp + (n − 2k)p = (n − 2k)p
and Var(Z(k, r)) =

∑n

i=1
Var(Zi) = np(1 − p) = (1 − p)r . To apply Bernstein’s

inequality (Theorem 2), we construct Z̃i such that Z̃i = Zi + p for all 1 ≤ i ≤ k and
Z̃i = Zi − p for all k < i ≤ n . Therefore E(Z̃i) = 0 and Var(Z̃i) = Var(Zi).

(
k

i

)(
r

Fn

)i(
1 −

r

Fn

)n

≥

(
k

i
⋅

r

Fn

)i
(
(1 − o(1))e−

r

F

)

>

(
k

en

)i

e−0.94 ln 𝜆 ≥ 𝜆
−1∕F−0.94

> 𝜆
−0.98.

Pr(Z(k, r) ≤ (n − 2k)r∕n − Δ) ≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)
,

Pr(Z(k, r) ≥ (n − 2k)r∕n + Δ) ≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)

Pr(Zi = −1) = p and Pr(Zi = 0) = 1 − p for all 1 ≤ i ≤ k;

Pr(Zi = 1) = p and Pr(Zi = 0) = 1 − p for all k < i ≤ n.

1035

1 3

Algorithmica (2021) 83:1012–1053	

By assuming r ≤ n∕2 , we have p ≤ 1∕2 and thus p − 1 ≤ Z̃i ≤ 1 − p for all
1 ≤ i ≤ n . Using the fact that

∑n

i=1
Z̃i = Z(k, r) − E(Z(k, r)) , Theorem 2 yields with

b ∶= 1 − p and �2 ∶= (1 − p)pn = (1 − p)r that

Similarly the lower tail bound holds. 	� ◻

We now use Lemma 14 to show that once rt ≥ Fru(kt) , there will be a strong drift
for rt∕ru(kt) to decrease down to 1.

Lemma 15  Let kt < n∕2 . Let � ∶= logF(3∕
√
10) and Xt ∶= logF(rt∕ru(kt)) − � with

ru(kt) defined in Definition 12, we have

Proof  Using the fact that rt+1 ∈ {Frt, rt∕F} , we see that

According to the monotonicity that ru(k) increases with respect to k, we notice that
kt ≥ kt+1 is a necessary condition for Xt+1 − Xt ≥ 1 . We also notice that Xt ≥ � is
equivalent to rt∕ru(kt) ≥ 3∕

√
10 , which is sufficient to apply Lemma 10(b) since

ru(k) ≥ (10∕9)U(k) ln � as defined in Definition 12.
We first consider the case kt+1 ≥ kt (equivalent to ru(kt+1) ≥ ru(kt) ). In

this case Xt+1 − Xt ≤ 1 thus Pr(Xt+1 ≥ 1 ∩ kt+1 ≥ kt ∣ Xt < 0) = 0 and
Pr(Xt+1 − 1 ≥ 1 ∩ kt+1 ≥ kt ∣ Xt ≤ 1) = 0 . It remains to consider

If rt+1 = rt∕F then Xt+1 − Xt ≤ −1 . Clearly Xt+1 − Xt ≥ a ≥ −1∕2 is impossible. It
also makes Xt+1 ≥ 1 with 0 ≤ Xt ≤ 1 impossible. Thus, the two probabilities above are
bounded by Pr (rt+1 = Frt ∩ kt+1 ≥ kt ∣ Xt ≥ �) ≤ Pr (rt+1 = Frt ∣ Xt ≥ �) = �

−Ω(1)
according to Lemma 10(b).

It remains to consider kt+1 < kt (equivalent to ru(kt+1) < ru(kt) ). We make a case
distinction based on the value of (n − 2kt)

2.

Pr(Z̃i = −1 + p) = p and Pr(Z̃i = p) = 1 − p for all 1 ≤ i ≤ k;

Pr(Z̃i = 1 − p) = p and Pr(Z̃i = −p) = 1 − p for all k < i ≤ n.

Pr

(
n∑

i=1

Z(k, r) − E(Z(k, r)) ≥ Δ

)
≤ exp

(
−Δ2

2(1 − p)(r + Δ∕3)

)
.

Pr(Xt+1 − Xt ≥ a ∣ Xt > 1) ≤ 𝜆
−Ω(a+1) for all a ≥ −1∕2,

Pr(Xt+1 − 1 ≥ a ∣ Xt ≤ 1) ≤ 𝜆
−Ω(a+1) for all a > 0.

Xt+1 − Xt ∈

{
1 + logF

(
ru(kt)

ru(kt+1)

)
,−1 + logF

(
ru(kt)

ru(kt+1)

)}
.

Pr(Xt+1 − Xt ≥ a ∩ kt+1 ≥ kt ∣ Xt > 1) with − 1∕2 ≤ a ≤ 1, and

Pr(Xt+1 − 1 ≥ a ∩ kt+1 ≥ kt ∣ 0 ≤ Xt ≤ 1) with 0 < a < 1.

1036	 Algorithmica (2021) 83:1012–1053

1 3

Case 1: (n − 2kt)
2
< 2Fn ln 𝜆 . In this case, r

u
(k

t
) = n

2 ln �∕(12(n − 2k
t
)2) ≥

n∕(24F) which means that Xt < 1 for all rates r ≤ n∕(2F) . Thus
Pr(Xt+1 − Xt < a ∩ kt+1 < kt ∣ Xt > 1) = 0 . When computing
Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt ≤ 1) , we notice that Xt+1 ≥ 1 + a implies
logF((n∕2F)∕ru(kt+1)) ≥ 1 + a + � . Furthermore,

Therefore a necessary condition for Xt+1 ≥ 1 + a while Xt ≤ 1 and (n − kt)
2 ≤ 2Fn ln �

is kt − kt+1 ≥ ((4F(1+a)∕2∕101∕4 −
√
2F)∕2)

√
n ln 𝜆 > (6Fa∕2 − 4)

√
n ln 𝜆 . We notice

that E(kt+1 − kt) > 0 , applying Lemma 14 and using a union bound we obtain for
Δ ∶= (6Fa∕2 − 4)

√
n ln 𝜆 > 2

√
n ln 𝜆 that

Therefore Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt ≤ 1) = 𝜆
−Ω(1+a).

Case 2: (n − 2kt)
2 ≥ 2Fn ln � . Let

then Xt+1 − Xt ∈ {1 + logF(�
2
t
),−1 + logF(�

2
t
)} . We rewrite for Xt > 1 and

a ≥ −1∕2

as well as for Xt ≤ 1 and a > 0

where the second item in the above inequality (6) is furthermore bounded in (7) by
making a distinction between Xt ≥ � ∧ a ≤ 2 and the remaining cases.

Applying Lemma 10(b) we see that both Pr
(
rt+1 = Frt ∣ Xt

)
�a≤2 from (5) and

Pr
(
rt+1 = Frt ∣ Xt

)
�Xt≥�∧a≤2

 from (7) are of order �−Ω(1) . This Ω(1) exponent is

n∕2F

ru(kt+1)
=

12(n − kt+1)
2

(2F)n ln �
≥ F1+a+� =

3F1+a

√
10

if and only if (n − kt+1)
2
≥

16F1+an ln �√
10

.

Pr(kt − kt+1 > Δ ∣ Xt ≤ 1) = Pr(kt+1 − kt < −Δ ∣ Xt ≤ 1)

< Pr(kt+1 − kt < E(kt+1 − kt) − Δ ∣ Xt ≤ 1)

< 𝜆 exp

(
−Δ2

2(n∕2 + Δ∕3)

)
< 𝜆 exp

(
−Δ2

n + Δ

)
= 𝜆

−Ω(1+a).

�
2
t
∶= ru(kt)∕ru(kt+1) = (n − 2kt+1)

2∕(n − 2kt)
2,

(5)

Pr(X
t+1 − X

t
≥ a ∩ k

t+1 < k
t
∣ X

t
)

≤Pr(r
t+1 = r

t
∕F ∩ 𝜎

2

t
≥ F

a+1 ∣ X
t
) + Pr(r

t+1 = Fr
t
∩ 𝜎

2

t
≥ F

a−1 ∣ X
t
)

≤Pr(𝜎2

t
≥ F

a+1 ∣ X
t
) + Pr(𝜎2

t
≥ F

a−1 ∣ X
t
)1

a>2 + Pr(r
t+1 = Fr

t
∣ X

t
)1

a≤2,

(6)

Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt ∣ Xt) = Pr(Xt+1 − Xt ≥ 1 + a − Xt ∩ kt+1 < kt ∣ Xt)

≤Pr(rt+1 = rt∕F ∩ 𝜎
2
t
≥ Fa+2−Xt ∣ Xt) + Pr(rt+1 = Frt ∩ 𝜎

2
t
≥ Fa−Xt ∣ Xt)

≤Pr(𝜎2
t
≥ Fa+1 ∣ Xt) + Pr(rt+1 = Frt ∩ 𝜎

2
t
≥ Fa−Xt ∣ Xt),

(7)
Pr(r

t+1 = Fr
t
∩ 𝜎

2

t
≥ F

a−X
t ∣ X

t
)

≤Pr(𝜎2

t
≥ F

a−X
t ∣ X

t
)1

X
t
<𝜏∨a>2 + Pr(r

t+1 = Fr
t
∣ X

t
)1

X
t
≥𝜏∧a≤2.

1037

1 3

Algorithmica (2021) 83:1012–1053	

sufficient to prove the lemma for a ≤ 2 . We also notice that the event �2
t
≥ Fa−�

subsumes all the other remaining events in inequalities (5), (6), and (7). Therefore
it remains to validate Pr

(
�
2
t
≥ Fa−� ∣ Xt

)
≤ �

−Ω(a+1) for a ≥ 0 . To ease representa-
tion, let s ∶= F(a−𝜏)∕2 − 1 ≥ F−𝜏∕2 − 1 = (10∕9)1∕4 − 1 > 1∕40 . Since s = Ω(1 + a) ,
proving Pr (�t ≥ 1 + s ∣ Xt) = O

(
�
−Ω(s)

)
 is sufficient to conclude the analysis of this

case and therefore the lemma. We rewrite

Let Δ ∶= (s∕2 + p)(n − 2kt) for 0 < p ≤ 1∕2 . Applying Lemma 14 and using a
union bound we obtain

We notice that Δ ≥ (s∕2)
√
2Fn ln(�) = 4s

√
n ln(�) and (s∕2 + p)2∕((1 − p)p)

attains the minimal value s(2 + s) > 2s when p = s∕(2(s + 1)) . Using the fact that
(n − 2kt)

2∕n ≥ 2F ln(�) and s > 1∕40,

	� ◻

We finally use Lemmas 15 and 6 to obtain a logarithmic drift on average. After
this major effort, it is a matter of a relatively straightforward drift analysis of fitness
distance to obtain the following bound on the time to leave the far region.

Theorem 16  The (1,�) EA with self-adapting mutation rate reaches a OneMax-
value of k ≤ n∕� within an expected number of O(n∕ log �) iterations, regardless
of the initial mutation rate. Furthermore, with probability at least 1 − o(1) , it holds
kt� ≤ 2n∕� and rt� ≤ (7∕9) ln � for some t� = O(n∕ log �).

Proof  We first argue that within an expected number of O(
√
n) genera-

tions we will have kt < n∕2 . Consider the case that kt ≥ n∕2 and let the inde-
pendent random variables X and Y denote the number of flips in kt one-
bits and (n − kt) zero-bits, respectively, in an offspring using rate p = r∕n .
Referring to [34] for p ∈ [2∕n, 1∕2] we obtain, using similar arguments in the

Pr(�t ≥ 1 + s ∣ Xt) = Pr

(
n − 2kt+1

n − 2kt
≥ 1 + s ∣ Xt

)

= Pr(kt − kt+1 ≥ s(n − 2kt)∕2 ∣ Xt).

Pr(𝜎t ≥ 1 + s ∣ Xt) < 𝜆 exp

(
max

0<p≤1∕2

{
−Δ2

2(1 − p)(pn + Δ∕3)

})

<𝜆 exp

(
max

0<p≤1∕2

{
−Δ

2(1 + 1∕3)
1pn≤Δ +

−Δ2

2(1 − p)(pn)(1 + 1∕3)
1pn>Δ

})

<𝜆 exp

(
− min

0<p≤1∕2

{
Δ

3
1pn≤Δ +

Δ2

3(1 − p)(pn)
1pn>Δ

})

Pr(𝜎t ≥ 1 + s ∣ Xt) < 𝜆 exp

�
−min

�
s
√
n ln 𝜆1pn≤Δ +

(2s)2F ln 𝜆

3
1pn>Δ

��

< 𝜆 exp
�
−min

�
s
√
n ln(𝜆)1pn≤Δ + 42s ln(𝜆)1pn>Δ

��
= 𝜆

−Ω(s).

1038	 Algorithmica (2021) 83:1012–1053

1 3

proof Lemma 10(b) that Pr(X ≥ E(X) + 1) = Θ(1) and Pr(Y ≤ E(Y)) = Θ(1) . Then
Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1) . Since E(X) ≥ E(Y) , the probability that an
offspring choose rates r̃ ∈ {rt∕F,Frt} with 2 ≤ r̃ ≤ n∕2 and have X − Y ≥ 1 is at
least 1∕2 ⋅ Θ(1) = Θ(1) . Since the best of � = Ω(ln n) offspring is selected, the prob-
ability that kt+1 ≤ kt − 1 holds is at least 1 − exp(−Θ(�)) = 1 − o(1∕n2) . By an addi-
tive drift theorem, it takes O(max{k0 − n∕2, 0}) = O(

√
n) iterations from the initial

random search point to reach a parent with fitness distance less than n/2.
Without loss of generality, we can now assume k0 < n∕2 . Consider the number of

one-bits flips X and zero-bits flips Y in a parent with fitness distance kt < n∕2 and
rate 2 ≤ r < n∕2 . As argued above Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1) . Since
kt − (E(X) − E(Y)) = kt − (kt − (n − kt))r∕n = kt(1 − r∕n) + (n − kt)(r∕n) < n∕2
for all r < n∕2 , the probability that an offspring has fitness dis-
tance at most n∕2 − 1 is Θ(1) . Thus for � = Ω(ln n) offspring, we have
Pr(kt+1 < n∕2) ≥ 1 − exp(−Θ(𝜆)) = 1 − o(1∕n2) . Since that we aim at proving a hit-
ting time of O(n∕ ln �) and only consider phases of this length, we may furthermore
assume kt < n∕2 for all t ≥ 0 , which only introduces an o(1) error term by a union
bound.

Define random variables Xt ∶= logF(rt∕ru(kt)) − � with 𝜏 = logF(3∕
√
10) < 0 .

We notice that when (n − 2kt)
2 ≤ 2Fn ln � we have Xt < 1 . If rt ≥ Fru(kt) , according

to Lemma 10(b), with probability 1 − o(1) we have rt−1 = rt∕F . Therefore within
O(ln n) iterations we will obtain Xt ≤ 1.

The idea of the remaining proof is to compute an average drift for any fixed dis-
tance using the distribution of mutation rates, and then to apply the variable drift
theorem to obtain a runtime bound. Applying Lemmas 15 and 6 to the Xt , we see that

Let r(i), i ∈ ℤ, denote the rate between (Firu(k),F
i+1ru(k)] corresponding to fitness

distance k. Thus, for all i ≥ 1 , we obtain

According to Lemma 13, E(Δ(k, r(i))) ≥ −(1 + o(1))(n − 2k)r(i)∕n) for i ≥ 1 and
E(Δ(k, r(0))) ≥ Ω((n − 2k)r(0)∕n) . The contribution of the negative drift is a lower
order term compared to the contribution of the positive drift. Let Δ(k) denote the
average drift at distance k. We obtain

We notice that
∑

i≤0 Pr(r
(i)) = 1 − o(1) and E(Δ(k, r(i))) > 0 for all i ≤ 0 . Accord-

ing to Lemma 10(a), with at least constant probability rt = Ω(rl(kt)) . Since for any
rate r = Ω(rl(k)) and r ≤ Fru the drift is E(Δ(k, r)) ≥ Θ(ln(�)∕ ln(n∕kt)) according to
Lemma 13, the average drift satisfies

Using the variable drift theorem (Theorem 3) and the fact that

Pr
(
rt ≥ F1+a+𝜏ru(kt)

)
≤ 𝜆

−Ω(a) for all a > 0.

Pr
(
r(i)

)
≤ Pr

(
rt > Firu(kt)

)
≤ Pr

(
rt ≥ F1+(i−1−𝜏)+𝜏ru(kt)

)
≤ 𝜆

−Ω(i−1−𝜏).

Δ(k) =
∑

i∈ℤ

E(Δ(k, r(i)))Pr(r(i)) ≥ (1 − o(1))
∑

i≤0

E(Δ(k, r(i)))Pr(r(i)).

Δ(k)
≥ Θ(ln(�)∕ ln(n∕k)).

1039

1 3

Algorithmica (2021) 83:1012–1053	

the expected time to reduce the fitness distance to at most n∕� condition-
ing on the assumption that kt < n∕2 for some t = O(

√
n) and kt� < n∕2 for all

t ≤ t� = O(n∕ log �) is then Θ(n∕ log �) . Thus the runtime bound of O(n∕ log �) holds
with probability Ω(1) due to Markov’s inequality. Using a restart argument we then
obtain the claimed expected runtime since the expected number of repetition of a
phase of length O(n∕ log �) is O(1).

To prove the second statement of the theorem, we notice
that the corresponding upper bound on the rate for kt = o(n) is
ru(kt) ≤ (10∕9)(U(kt)) ln 𝜆 = ((10∕9)(2∕22) + o(1)) ln 𝜆 < (1∕9) ln 𝜆 and the occu-
pation probability satisfies Pr(rt ≤ (7∕9)F ln � ∣ kt = o(n)) ≥ 1 − �

−Ω(1) = 1 − o(1) .
Therefore with probability 1 − o(1) , the first iteration such that kt ≤ 2n∕� has rate
rt ≤ (7∕9) ln � . We then argue for this iteration that with high probability it satisfies
rt+1 = rt∕F and kt+1 ≤ 2n∕� . The probability of being no worse than parent using
mutation probability p ≤ (7∕9) ln(�)∕n is at least (1 − p)n ≥ (1 − o(1))𝜆−7∕9 > 𝜆

−8∕9 .
Therefore,

Furthermore Pr(rt+1 = Frt ∣ kt = o(n), rt ≥ (7∕9) ln �) ≤ �
1−(23∕22)7 = o(1) . Then we

obtain an iteration with kt ≤ 2n∕� and rt ≤ (7∕9) ln � with probability 1 − o(1) . 	� ◻

4.2 � The Near Region

We now analyze the regime in which the fitness distance satisfies k = kt = O(n∕�) ,
the so-called near region. In this region, the probability that a fixed offspring created
with rate r is better than its parent is Θ(1

�

r

er
) , see Lemma 17. Consequently, the prob-

ability to make progress is only Θ(r

er
) . This implies that the optimal rate r is constant

(and by taking care of the constants, we shall see that the optimal rate value for the
parent is r = F , the minimal possible value).

The superiority of small rate values is sufficiently strong to show that the rate drifts
towards these values (Lemmas 19 and 20), however, for small values of � we cannot
show that in this regime, which takes at least an expected number of Ω(n∕�) iterations,
it never happens that the rate increases to a value which lets all offspring be worse than
the parent (this happens from r ≥ C� for a suitable constant C on). Consequently, we
cannot exclude the possibility that the algorithms loses fitness occasionally.

To analyze the progress of the algorithm (proof of Lemma 22), we devise a
potential function based on the current fitness and rate and show that the expected
progress with respect to this potential is high enough. This allows to use the multi-
plicative drift theorem to argue that within a desired time, we reach the optimum.

Naturally, we also have to argue that the process does not leave the near region
except with small probability. This is done in Lemma 21.

∫

n∕2

n∕�

ln(n∕k)

ln(�)
dk =

(
k ln(n) − k ln(k) + k

)||
n∕2

n∕�

ln �
=

Θ(n)

ln �
,

Pr(kt+1 ≤ kt ∣ rt ≤ (7∕9)F ln �) ≥ 1 −
(
1 − �

−8∕9∕2
)�

= 1 − o(1).

1040	 Algorithmica (2021) 83:1012–1053

1 3

We start with determining the probability of making progress in one mutation
and similar events.

Lemma 17  Let 0 < k ≤ 3n∕𝜆 , and r = o(�1∕4) . Let x ∈ {0, 1}n with fitness distance
f (x) = k . Let y ∈ {0, 1} be obtained from x by flipping each bit independently with
probability r/n. Consider the probabilities

that is, the probabilities that the offspring is better than the parent, that is is equally
good, and that none of the 0-bits of the parent were flipped in the generation of the
offspring.

Then

Proof  We regard the number X of flips in the k one-bits (“good flips” which reduce
the fitness distance) and the number Y of flips in the (n − k) zero-bits of the parent
(“bad flips” which increase the fitness distance). Then p−(r) is at least

where the last estimate uses Lemma 1 (b).
Since r = o(�1∕4) , we have kr∕n = o(1) , kr2∕n = o(1) , and (kr2∕n)1.5 = o(kr∕n) .

This allows to bound p−(r) from above by

p−(r) ∶= Pr(f (y) < f (x)),

p0(r) ∶= Pr(f (y) = f (x)),

p�(r) ∶= Pr(∀i ∈ [1… n] ∶ xi = 0 ⟹ yi = 0),

(1 − o(1))
kr

n
e−r < p−(r) < (1 + o(1))

kr

n
e−r,

(1 − o(1))e−r < p0(r) < (1 + o(1))e−r,

(1 − o(1))e−r < p�(r) < (1 + o(1))e−r.

p−(r) ≥ Pr(X = 1, Y = 0) =
kr

n

(
1 −

r

n

)n−1

≥ (1 − o(1))
kr

n
e−r,

p−(r) < Pr(X ∈ {1, 2},Y = 0) +

2k−1�

i=3

Pr(X + Y = i,X > Y)

<
kr

n

�
1 −

r

n

�n−1

+
k2r2

2n2

�
1 −

r

n

�n−2

+

2k−1�

i=3

(i − 1)
�
r

n

�i�
1 −

r

n

�n−i
�

k

⌈i∕2⌉

��
n − k

⌊i∕2⌋

�

<
kr

n

�
1 −

r

n

�n−2�
1 −

r

n
+

kr

2n

�
+

2k−1�

i=3

�
r

n

�i�
1 −

r

n

�n−i

(kn)i∕2

< (1 + o(1))
kr

n

�
1 −

r

n

�n

+

2k−1�

i=3

�
kr2

n

�i∕2�
1 −

r

n

�n−i

< (1 + o(1))
kr

n
e−r.

1041

1 3

Algorithmica (2021) 83:1012–1053	

Similarly for p0(r) we have

Using again the fact that kr2∕n = o(1) , we have

Finally, for p�(r) we compute p�(r) = Pr(Y = 0) = (1 −
r

n
)n−k = (1 ± o(1))e−r . 	� ◻

Lemma 18  Consider one iteration of the self-adaptive (1,�) EA starting with an
individual of fitness distance k and rate r = o(�−1∕4) . Then the probability that there
is an offspring which uses rate r/F and which inherits all 0-bits from the parent (and
thus is at least as good as the parent), is at least 1 − exp(−

1

2
�(1 − o(1))e−r∕F).

Proof  We compute

	� ◻

The following lemma is the counterpart of Lemma 10 (b), where now the opti-
mal rate is the smallest possible value F. Again, we regard the event that all best
offspring are created with the higher rate, since—due to our tie-breaking rule—
only this leads to an increase of the rate. Different from Lemma 10 (b), now the
probability of making a rate-increasing step is no o(1) in general. If kt = Θ(n∕�)
and rt = O(1) , we still have a small constant probability of increasing the rate.

Lemma 19  Let 0 < k ≤ 3n∕𝜆 . The probability that all best offspring have been cre-
ated with rate Fr is at most (1 + o(1))

�kFr

n
e−Fr when r < ln 𝜆 . This probability is at

most exp(−9r) for all r.

Proof  Let first r < ln 𝜆 . According to Lemma 17,

Therefore with probability at least 1 − �p−(Fr) = 1 − (1 + o(1))
�Fkr

n
e−Fr , no off-

spring of rate Fr is better than its parent. Furthermore, by Lemma 18, with

p0(r) > Pr(X = Y = 0) =
(
1 −

r

n

)n

≥ (1 − o(1))e−r.

p0(r) = Pr(X = Y = 0) +

k∑

i=1

Pr(X = Y = i)

=
(
1 −

r

n

)n

+

k∑

i=1

(
k

i

)(
n − k

i

)(
r

n

)2i(
1 −

r

n

)n−2i

< e−r +

k∑

i=1

(
kr2

n

)i

e−r < (1 + o(1))e−r.

1 −
(
1 −

1

2
p�(

r

F
)
)�

≥ 1 −
(
1 −

1

2
(1 − o(1))e−r∕F

)�

≥ 1 − exp(−
1

2
�(1 − o(1))e−r∕F).

p−(Fr) ≤ (1 + o(1))
Fkr

n
e−Fr and p0(r∕F) ≥ (1 − o(1))e−r∕F.

1042	 Algorithmica (2021) 83:1012–1053

1 3

probability at most exp(−(1 − o(1))
1

2
� exp(−r∕F)) ≤ exp(−(1 − o(1))

1

2
�
1−1∕F) there

is no offspring using rate r/F and being equally good as its parent. Hence, the prob-
ability that a best offspring has been created with rate r/F is more than

Note that for r < ln 𝜆 , the second bound follows from the first. If r ≥ ln � , then the
second bound follows from applying Lemma 10 to U(k) = 1∕11 + o(1) . 	� ◻

We shall use the lemma above twice, first to bound the probability to have a
certain rate (which will be needed to estimate the negative fitness drift) and sec-
ond to estimate that a suitable two-dimensional drift is of the right order. We start
with the occupation probability argument for the rate values.

Lemma 20  Consider a run of the self-adaptive (1,�) EA started with some search
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . While the current search point
of the algorithm has a fitness distance of at most 3n∕� , the probability that the cur-
rent rate is Fi is at most exp(−8Fi−1) for all i ∈ ℕ

≥2.

Proof  If the current search point has fitness distance at most 3n∕� and the current
rate is r, then by Lemma 19 the rate in the next iteration is Fr with probability at
most exp(−9r) ; note that this estimate is not affected by a possible cap of the rate at
rmax.

Consequently, the random process describing the rates is such that from rate Fi ,
i ∈ [1… logF(rmax)] , we go to rate Fi+1 with probability at most pi = exp(−9Fi) .
Otherwise, we go to rate Fi−1 if i ≥ 2 and stay at rate F if i = 1 . By Lemma 7, note
that we obviously have pi∕(1 − pi) ≤ pi−1 , in each iteration (such that the fitness dis-
tance has never gone above 3n∕� ) and for each i ≥ 2 the probability qi that the cur-
rent rate is Fi is at most

	� ◻

We use these occupation probabilities to estimate the drift away from the opti-
mum (“negative drift”). From this we derive the statement that with high prob-
ability, the fitness distance does not increase to above 3n∕� in n� iterations.

Lemma 21  Consider a run of the self-adaptive (1,�) EA started with some search
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . Then the probability that the
process within the first n� iterations reaches a search point (as parent individual)
with fitness distance more than 3n∕� , is o(1).

1 − (1 + o(1))
𝜆Fkr

n
e−Fr − exp(−(1 − o(1))

1

2
𝜆
1−1∕F) > 1 − (1 + o(1))

𝜆Fkr

n
e−Fr.

qi ≤

i−1∏

j=1

pj

1 − pj
≤

pi−1

1 − pi−1
≤ exp(−8Fi−1).

1043

1 3

Algorithmica (2021) 83:1012–1053	

Proof  Denote by Xt the fitness distance at time t. We start by bounding the negative
drift E(max{0,Xt − Xt−1}) of the X process while it is at most 3n∕� . If the current
rate is r, then by Lemma 18 with probability at least 1 − exp(−

1

2
�(1 − o(1))e−r∕F)

there is an individual that used rate r/F and that did not flip any zero-bit into a one-
bit. Let us call this event “A” and note that, naturally, under this event the drift can-
not be negative as the individual without flipped zeros has at an least as good fitness
as the parent.

We now analyze the case that A does not hold. Consider an individual conditional on
that it uses rate r/F and at least one zero-bit was flipped into a one-bit. The number of
such bad bits follows a distribution (X ∣ X ≥ 1) with X ∼ Bin (n − Xt−1, r∕Fn) and has
expectation at most 1 + r∕F by Lemma 4. For an individual using rate rF, the expected
number of bad flips is (n − k)

rF

n
≤ rF . Consequently, noting that 1 + r∕F ≤ rF when

r ≥ F and F ≥

√
2 , the expected number of bad flips in all individuals (conditional on

not A) is at most �rF and this is an upper bound on the negative drift.
In summary, in an iteration starting with rate r, the negative drift is at most

With Lemma 20, we can estimate the probability to have a certain rate. Hence the
expected negative drift is

Note that1 for i ≥ ⌈logF(ln �) + 1 −
1

5
⌉ = i∗ , we have � ≤ exp(2Fi−1) and thus

exp(−8Fi−1)�Fi+1 = exp(−(1 − o(1))8Fi−1)� ≤ exp(−(1 − o(1))6Fi−1) . Naturally,
exp(−

1

2
�(1 − o(1))e−F

i−1

) ≤ 1 . Hence

For i < logF(ln 𝜆) + 1 −
1

5
 , we have exp(− 1

2
�(1 − o(1))e−F

i−1

) ≤ exp(−
1

2
(1 − o(1))�1∕2) and

exp(−8Fi−1)�Fi+1 = O(�) . Hence

(8)�rF exp(−
1

2
�(1 − o(1))e−r∕F).

E(max{0,Xt − Xt−1}) ≤

logF rmax∑

i=1

Pr(r = Fi)�FiF exp(−
1

2
�(1 − o(1))e−F

i∕F)

≤

∞∑

i=2

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

)

+ �F2 exp(−
1

2
�(1 − o(1))e−1).

∞∑

i=i∗

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

) ≤

∞∑

i=i∗

exp(−(1 − o(1))6Fi−1)

≤ exp(−(1 − o(1))6Fi∗−1) ≤ �
−3(1−o(1)).

1  In this part of the proof, we use the fact that F = 32 . This does not mean that for other not too small
values of F we would not obtain similar results, but it increases the readability to work with this concrete
value.

1044	 Algorithmica (2021) 83:1012–1053

1 3

Consequently, E(max{0,Xt − Xt−1}) ≤ �
−3(1−o(1)).

Define inductively Y0 = 0 and Yt = Yt−1 +max{0,Xt − Xt−1} , if
max{Xs ∣ s ∈ [0… t − 1]} ≤ 3n∕� and Yt = Yt−1 otherwise. In other words, the Y
process collects all the moves of the X process that go away from the optimum until
the X process goes above 3n∕�.

By our above computation, we have E(Yt) ≤ t�−3(1−o(1)) . Consequently, by Mark-
ov’s inequality, we have

for all t ∈ ℕ . In particular, for t = n� , we have Pr(Yt ≥ n∕�) ≤ �
−1+o(1) . Note that

Yt ≤ n∕� implies Xs ≤ 3n∕� for all s ≤ t.

Lemma 22  Consider a run of the self-adaptive (1,�) EA started with some search
point of fitness distance k0 ≤ 2n∕� and rate r0 = F . Then with probability at least 3

4

there is a T∗ = O(n ln(n∕� + 2)∕�) such that kT∗ = 0.

Proof  Since we are proving an asymptotic statement, we can assume that n is as
large as we find convenient. Consider a run of the self-adjusting (1,�) EA from our
starting position. Let T be the first time that the fitness distance is larger than 3n∕� ,
if such a time exists, and T = ∞ otherwise. Let kt denote the fitness distance at time
t and rt the rate used in iteration t, if t ≤ T  , and (kt, rt) ∶= (0,F) otherwise. We show
that the process (kt, rt) reaches (0, F) in time T∗ with probability at least 1 − 1∕e2.

We use a two-dimensional drift argument. Let � = 2F and define g ∶ ℕ × ℕ → ℝ
by g(k, r) = k + �(r − F) for all k and r. We show that if for some t we have
(k, r) = (kt, rt) , then (k�, r�) ∶= (kt+1, rr+1) satisfies

when assuming n to be sufficiently large.
There is nothing to show in the artificial case when k > 3n∕𝜆 as we have, by

definition, g(k�, r�) = 0 in this case. Among the interesting cases, we consider first
that r = F . We obtain an improvement in fitness in particular if there is an offspring
that uses rate r∕F = 1 , flips exactly one of the k missing bits, and flips no other bit.
Hence the probability to make a positive fitness progress is at least

where we used (1 − 1

n
)n−1 ≥

1

e
 , k𝜆

2en
≤

3

2e
<

3

2
⋅

1

2
 and Lemma 1 (b). The expected

negative progress is at most �F2 exp(−(1 + o(1))
1

2e
�) as shown in (8). This negative

i∗−1∑

i=1

exp(−8Fi−1)�Fi+1 exp(−
1

2
�(1 − o(1))e−F

i−1

)

≤ O(log log �)O(�) exp(−
1

2
(1 − o(1))�1∕2) = o(�−3).

Pr(Yt ≥ t�−2) ≤ �
−1+o(1)

(9)E(g(k�, r�)) ≤ g(k, r)(1 −
�

10n
)

1 − (1 −
1

2
(1 −

1

n
)n−1

k

n
)� ≥ 1 − (1 −

k

2en
)� ≥ 1 − exp(−

k�

2en
) ≥

k�

3en
,

1045

1 3

Algorithmica (2021) 83:1012–1053	

drift can be assumed to be O(n−2) by taking the implicit constant in the assumption
� = Ω(log n) large enough.

Consequently, E(k�) ≤ k −
1

3e

�k

n
+ O(n−2).

Regarding r′ , we note that by Lemma 19 we have

Pr(r� = F2) ≤ (1 + o(1))
�k

n
F2 exp(−F2) and r� = F otherwise. Hence

E(r�) = F + (1 + o(1))(F − 1)F3 �k

n
exp(−F2) . Consequently,

Let now be r > F . Note that the minimum fitness loss among the offspring is at
most the minimum number of bits flipped, which in expectation is at most the
number of bits flipped in the first offspring, which is exactly Fr. Consequently,
we have E(k�) ≤ k + Fr . For r′ , we note that by Lemma 19, we have r� = Fr
with probability at most exp(−9r) and we have r� = r

F
 otherwise. Consequently,

E(r�) ≤ Fr exp(−9r) +
r

F
 . This yields

where we used that � ≤ 2n ; note that 𝜆 > 2n gives k0 = 0.
We have thus shown (9) for all (k, r). Since we start the process with a

g-potential of at most g(2n∕�,F) = 2n

�
 , the multiplicative drift theorem with tail

bounds [22, Theorem 5] gives that after t = ⌈ 10n

�
(2 + ln(

2n

�
))⌉ iterations, we have

Pr(g(kt, rt) > 0) ≤
1

e2
 . Consequently, with probability 1 − 1

e2
 , the potential is zero at

time t, which implies kt = 0 or kt >
3n

𝜆
 . By Lemma 21, note that � = Ω(log n) implies

t = O(n) = o(n�) , the probability that kt >
3n

𝜆
 is o(1), hence with probability at least

3

4
 , we have indeed kt = 0 . 	� ◻

Theorem 23  Assume k0 ≤
2n

�
 and r0 ≤

7

9
ln � . Then there is a t = O(n ln(n∕� + 2)∕�)

such that with probability at least 1
2
 , we have kt = 0.

Proof  We first show that with good probability we quickly reach the initial situation of
Lemma 22. The probability of observing R∗ − 1 ∶= logF(r0) − 1 ≤ logF(

7

9
ln �) − 1

rate-decreasing steps in a row by Lemma 19 is at least

by the Weierstrass product inequality (Lemma 1 (c)).

E(g(k, r) − g(k�, r�)) ≥
1

3e

�k

n
− O(n−2) − �(1 + o(1))(F − 1)F3 �k

n
exp(−F2)

=
�k

n
(
1

3e
− �(F − 1)F3 exp(−F2) − o(1))

≥
�k

n

1

10
= g(k, r)

�

10n
.

E(g(k, r) − g(k�, r�)) ≥ −Fr + �(r − Fr exp(−9r) −
r

F
)

≥ r(−F + � − F exp(−9F2) −
1

F
)

≥ r(−F + � −
2

F
) ≥ 31r = r + 30r ≥ F2 + 30r

≥ 322 + 30r ≥
�

10n
(k + �r) ≥ g(k, r)

�

10n
,

R∗∏

i=2

(
1 − exp(−9Fi)

)
≥ 1 −

R∗∑

i=2

exp(−9Fi) ≥ 1 − 0.001

1046	 Algorithmica (2021) 83:1012–1053

1 3

The probability of not flipping any zero-bits in at least one offspring,
resulting in not increasing fitness distance, is for rate r ≤

7

9
ln � at least

1 − exp(−
1

2
�(1 − o(1))e−r∕F) by Lemma 18. By a union bound over R∗ − 1 iterations,

the probability of decreasing the initial rate to F in O(log log �) iterations without
losing fitness is at least 1 − 0.001 − (R∗ − 1) exp(−

1

2
�(1 − o(1))e−r∕F) ≥ 5∕6 for suf-

ficiently large n.
We can now apply Lemma 22 and obtain that with probability at least 3

4
 we have

found the optimum within t = O(n ln(n∕� + 2)∕�) iterations. This shows the claim. 	
� ◻

4.3 � Proof of Theorem 8

From the analyses of the two regimes in the previous two subsections, we now
easily derive our main result, which is that the self-adaptive (1,�) EA optimizes
OneMax within an expected number of O(n�∕ log � + n log n) fitness evaluations
when � = Ω(log n) is sufficiently large, � is at most polynomial in n, and F = 32.

Proof  Starting with an arbitrary initialization, Theorem 16 along with a Markov
bound yield that with probability Ω(1) after t = O(n∕ log �) iterations a search point
is reached such that kt ≤ 2n∕� and rt < 0.6(ln 𝜆) . Assuming this to happen, the
assumptions of Theorem 23 are satisfied. Hence, after another O((n log n)∕�) itera-
tions the optimum is found with probability at least 1/2. Altogether, with probability
Ω(1) the optimum is found from an arbitrary initial OneMax-value and rate within
T∗ = O(n∕ log � + (n log n)∕�) iterations. The claimed expected time now follows by
a standard restart argument, more precisely by observing that after expected O(1)
repetitions of a phase of length T∗ the optimum is found. 	� ◻

5 � Experiments

To gain some insight that cannot be derived from our asymptotic analysis, we per-
formed a few numerical experiments. To this end we implemented the (1,�) EA in
C++11 using the default random engine to generate pseudo-random numbers. The
runtime is still measured via the number of generations until optimum is found.

We first see in Fig. 1 how fitness distance and mutation strength evolve in one run
for n = 100 , � = 12 and F = 1.2 . We used this small value of n to increase the read-
ability of the figure, we used larger values for n in the remainder. Given the small
value of n, we used a small mutation update factor of 1.2 instead of the value F = 32
used in our theoretical analysis. This run uses Algorithm 1 with r init = F . We see
that the algorithm prefers large mutation strengths at the beginning and small muta-
tion strengths near the end of the optimization process. We also see that fitness dis-
tance can increase occasionally, in particular, when the rate is higher (in the plot,
this happened in iteration 52 and iteration 88).

1047

1 3

Algorithmica (2021) 83:1012–1053	

In Fig. 2, we display the average runtime over 100 runs of different versions of
the (1,�) EA on OneMax for n = 105 and � = 100, 200,… , 1000 along with error
bars for their standard deviation. For our self-adaptive (1,�) EA (Algorithm 1), we
used the update strengths F ∈ {1.2, 2, 32} . We did experiments also for F = 1.05 ,
but the results were clearly inferior, so to avoid overloading this figure we do not
visualize them. We always set the initial mutation strength to r init = F . We further
regard the classic (1,�) EA using a static mutation rate of 1

n
 and the (1,�) EA with fit-

ness-dependent mutation rate p = max{
ln �

n ln(en∕d)
,
1

n
} as presented in [9].

The results clearly show that the update factor of F = 32 used in our mathemati-
cal analysis gives sub-optimal results for these values of � and n. Recalling the
working principle of the self-adaptive (1,�) EA, this is not overly surprising. Even
using the minimal possible rate r = F , the algorithm creates half of the offspring
using an incredible large mutation probability of F2∕n = 1024∕n . It is quite clear
that this cannot be overly effective, but this can also be seen from the figure. The
runtime of the self-adaptive (1,�) EA with F = 32 is very close to the runtime of the
static (1,�) EA for half the �-value, suggesting that half the offspring created by the
self-adaptive (1,�) EA, most likely the ones created with a mutation rate of F2∕n ,
had no impact on the process.

The results in Fig. 2 also show that the fitness-dependent mutation strength of [9]
leads to a very good performance. In principle, of course, it is clear that the best
fitness-dependent rate gives better results than any self-regulating rate since the lat-
ter needs to use also sub-optimal rates to find out what is the best rate. That the rate
suggested in [9], a paper mostly concerned with asymptotic runtimes, shows such
good results, is remarkable.

To ease the comparison of the algorithms having a similar performance, we plot
in Fig. 3 these runtimes relative to the one of the classic (1,�) EA, i. e., we divide
the average runtime by the value of the classic (1,�) EA. This shows that in most

Fig. 1   Development of fitness distance and mutation strength in one run of self-adapting (1,�) EA on
OneMax ( n = 100 , F = 1.2 , � = 12)

1048	 Algorithmica (2021) 83:1012–1053

1 3

cases, the EAs using a dynamic mutation rate outperform the classic (1,�) EA. We
also notice that the self-adaptive EA appears to outperform the one using the fitness-
dependent rate for sufficiently large values of � , e.g., for � ≥ 200 when F = 1.2.

To understand how our tie-breaking rule influences the performance, we also ran
the self-adapting (1,�) EA without the bias towards smaller rates when breaking ties.
In Fig. 4, we again plot the average runtimes over 100 runs relative to the results

Fig. 2   Average runtime over 100 runs of five variants of the (1,�) EA on OneMax for n = 10
5

Fig. 3   Average runtime of three dynamic (1,�) EA s relative to the average runtime of the static (1,�) EA
on OneMax ( n = 10

5)

1049

1 3

Algorithmica (2021) 83:1012–1053	

of static (1,�) EA. We use the three update factors 1.2, 2, and 32 and the two tie-
breaking rule of preferring the smaller rate in case of ties (as in our theoretical anal-
ysis) and random tie-breaking, that is, choosing uniformly at random an offspring
with maximal fitness and taking its rate as the new rate of the algorithm. While for
the two larger factors F = 2 and F = 32 no significant differences are visible, we
see that for F = 1.2 random tie-breaking surpasses biased tie-breaking significantly
when � becomes larger than 200.

To understand how the tie-breaking rule influences the mutation strength chosen
by the algorithm, we plot in Fig. 5 the mutation strength used at each fitness distance
with a setting of n = 10000 , � = 500 , and F = 1.2 . We regarded one exemplary runs
of our algorithm with each tie breaking rule. In each of these two experiments, we
determined the set of all pairs (dt, rt) such that in iteration t, the fitness distance of
the parent individual was dt and its rate was rt . We then plotted these sets, where to
increase the readability we connected the points to polygonal curves. This visualiza-
tion clearly shows that random tie breaking lets the algorithm pick larger rates more
frequently. Together with the better runtimes, it appears that biased tie-breaking has
a small negative effect on the choice of the mutation strength.

Finally, we regard the question of how to set the initial rate r init . From the general
experience that larger mutation rates are more profitable at the start of the search
process, one could guess that it is a good idea to start with the largest possible rate
rmax = F⌊logF(n∕(2F))⌋ instead of the smallest possible rate rmin = F . For the settings
used in Fig. 5, that is, n = 10,000 , � = 500 , and F = 1.2 , we obtain (as average of
100 runs) the runtimes given in Table 1. So indeed an initialization with a larger
rate gives some improvement. Since it might be a particularity of the OneMax test
function that huge rates are initially beneficial, we would not give out a general rec-
ommendation to start with the rate rmax , but only state that we observed moderate

Fig. 4   Relative average runtime of self-adapting (1,�) EA s with different tie breaking rules on OneMax
( n = 10

5)

1050	 Algorithmica (2021) 83:1012–1053

1 3

performance differences from using different initial rates, making the initial rate
not the most critical parameter of the algorithm, but still one that can be worth
optimizing.

6 � Conclusions

In this work, we have designed and analyzed a self-adaptive (1,�) EA using
a simple scheme for mutating the mutation rate. We have proven that for
� = Ω(log n) it achieves an expected runtime (number of fitness evaluations) of
O(n�∕ log � + n log n) on OneMax, which is the best possible asymptotic runtime
for �-parallel mutation-based unbiased black-box algorithms. Hence, we have identi-
fied a simple and natural example where self-adaptation of strategy parameters in
discrete EAs can lead to provably optimal runtimes that beat all known static param-
eter settings. Moreover, a relatively complicated and partly unintuitive self-adjust-
ing scheme for the mutation rate proposed in [23] can be replaced by our simple

Table 1   Comparison of the
average runtime of 100 runs
for different initial mutation
rates ( n = 10000 , � = 500 , and
F = 1.2)

Average runtime Biased ties breaking Random
ties break-
ing

r
init

= rmin
2137 2011

r
init

= rmax
2080 1974

Fig. 5   Mutation strengths used at a certain fitness distance level in two example runs of the self-adapting
(1,�) EA on OneMax ( n = 10000 , � = 500 , F = 1.2 ). For comparison, also the fitness-dependent rate
proposed in [9] is plotted. Recall that a mutation strength of r in the self-adapting runs means that in
average half the offspring use the rate r/F and half use the rate rF 

1051

1 3

Algorithmica (2021) 83:1012–1053	

endogenous scheme. Experimental results confirm that our scheme achieves runt-
imes that are comparable with a (1,�) EA using a fitness-dependent and asymptoti-
cally optimal mutation rate.

The analysis of this (1,�) EA has revealed a non-trivial stochastic process in the
cross product of fitness distances and mutation rates. We have advanced the tech-
niques for the analysis of such two-dimensional processes, both via two new lemmas
on occupation probabilities and by proposing suitable potential functions allowing
to use classic drift theorems.

Altogether, we are optimistic that our research helps pave the ground for further
uses and analyses of self-adaptive EAs.

Acknowledgements  The authors thank Christian Gießen for useful discussions on this topic. This
work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-
LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, opera-
tions research and their interactions with data sciences. This publication is based upon work from COST
Action CA15140, supported by COST.

References

	 1.	 Akimoto, Y., Auger, A., Glasmachers, T.: Drift theory in continuous search spaces: expected hitting
time of the (1 + 1)-ES with 1/5 success rule. In: Proceedings of GECCO ’18, pp. 801–808. ACM
(2018)

	 2.	 Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing,
Singapore (2011)

	 3.	 Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (� + �) EA optimizing OneMax.
In: Proceedings of GECCO ’18, pp. 1459–1466. ACM (2018)

	 4.	 Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the
(�, �) EA. In: Proceedings of GECCO ’19, pp. 1461–1469. ACM (2019)

	 5.	 Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of ECAL ’92, pp. 263–271. MIT
Press (1992)

	 6.	 Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes prob-
lem. In: Proceedings of PPSN ’10, pp. 1–10. Springer (2010)

	 7.	 Bernstein, S.N.: On a modification of Chebyshev’s inequality and of the error formula of Laplace. Ann.
Sci. Inst. Sav. Ukraine, Sect. Math. 1 4, 38–49 (1924)

	 8.	 Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Berlin (2009)
	 9.	 Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings

of PPSN ’14, pp. 892–901. Springer (2014)
	10.	 Corus, D., Dang, D.-C.D.-C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms

and other search processes. IEEE Trans. Evol. Comput. 22, 707–719 (2018)
	11.	 Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of

population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern. Part
B 39, 1092–1106 (2009)

	12.	 Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in
discrete settings. In: Proceedings of GECCO ’15, pp. 1335–1342. ACM (2015)

	13.	 Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1 + (�, �)) genetic
algorithm. Algorithmica 80, 1658–1709 (2018)

	14.	 Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable perfor-
mance gains through dynamic parameter choices. In: Doerr, B., Neumann, F. (eds.) Theory of Evolu-
tionary Computation: Recent Developments in Discrete Optimization, pp. 271–321. Springer, Berlin
(2020)

	15.	 Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based genetic algorithms. In:
Proceedings of GECCO ’13, pp. 781–788. ACM (2013)

1052	 Algorithmica (2021) 83:1012–1053

1 3

	16.	 Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision
variables. In: Proceedings of PPSN ’16, pp. 782–791. Springer (2016)

	17.	 Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision
variables. Algorithmica 80, 1732–1768 (2018)

	18.	 Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms standard bit mutation.
In: Proceedings of PPSN ’16, pp. 824–834. Springer (2016)

	19.	 Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theor. Com-
put. Sci. 801, 1–34 (2020)

	20.	 Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of GECCO ’10,
pp. 1457–1464. ACM (2010)

	21.	 Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In:
Proceedings of GECCO ’11, pp. 2083–2090. ACM (2011)

	22.	 Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
	23.	 Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 + �) evolutionary algorithm with self-adjusting muta-

tion rate. Algorithmica 81, 593–631 (2019)
	24.	 Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing

monotone functions. Evol. Comput. 21, 1–21 (2013)
	25.	 Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput.

Sci. 276, 51–81 (2002)
	26.	 Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
	27.	 Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+� ) evolutionary algorithm—differ-

ent asymptotic runtimes for different instances. Theor. Comput. Sci. 561, 3–23 (2015)
	28.	 Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: From classical optimisation to

partial information. Algorithmica 75, 428–461 (2016)
	29.	 Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of

PPSN ’16, pp. 803–813. Springer (2016)
	30.	 Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heu-

ristics with adaptive learning periods. In: Proceedings of GECCO ’18, pp. 1015–1022. ACM (2018)
	31.	 Doerr, B., Neumann, F.: Theory of Evolutionary Computation—Recent Developments in Discrete

Optimization. Springer, Berlin (2019)
	32.	 Doerr, B.: An elementary analysis of the probability that a binomial random variable exceeds its expec-

tation. Stat. Probab. Lett. 139, 67–74 (2018)
	33.	 Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theor. Comput. Sci. 773,

115–137 (2019)
	34.	 Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neu-

mann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pp. 1–87. Springer, Berlin (2020). https​://arxiv​.org/abs/1801.06733​

	35.	 Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Proceedings of
GECCO ’18, pp. 1475–1482. ACM (2018)

	36.	 Gießen, C., Witt, C.: The interplay of population size and mutation probability in the (1 + � ) EA on
OneMax. Algorithmica 78, 587–609 (2017)

	37.	 Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv.
Appl. Probab. 13, 502–525 (1982)

	38.	 Hwang, H.-K., Panholzer, A., Rolin, N., Tsai, T.-H., Chen, W.-M.: Probabilistic analysis of the
(1+1)-evolutionary algorithm. Evol. Comput. 26, 299–345 (2018)

	39.	 Hwang, H.-K., Witt, C.: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic
combinatorial tools. In: Proceedings of FOGA ’19, pp. 1–12. ACM (2019)

	40.	 Jägersküpper, J.: Combining Markov-chain analysis and drift analysis - the (1+1) evolutionary algo-
rithm on linear functions reloaded. Algorithmica 59, 409–424 (2011)

	41.	 Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Springer, Berlin
(2013)

	42.	 Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evol. Comput. 13, 413–440 (2005)

	43.	 Johannsen, D.: Random combinatorial structures and randomized search heuristics. PhD thesis, Saar-
land University (2010)

	44.	 Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy—and when not.
In: Proceedings of FOCI ’07, pp. 25–32. IEEE (2007)

https://arxiv.org/abs/1801.06733

1053

1 3

Algorithmica (2021) 83:1012–1053	

	45.	 Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discret. Algorithms 4,
181–199 (2006)

	46.	 Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: trends and
challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

	47.	 Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of
FOGA ’15, pp. 40–51. ACM (2015)

	48.	 Lehre, P.K.: Negative drift in populations. In: Proceedings of PPSN ’10, pp. 244–253. Springer (2010)
	49.	 Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary

algorithms. In: Proceedings of FOGA ’11, pp. 181–192. ACM (2011)
	50.	 Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In:

Proceedings of ISAAC ’14, pp. 686–697. Springer (2014)
	51.	 Lehre, P.K., Yao, X.: On the impact of mutation–selection balance on the runtime of evolutionary algo-

rithms. IEEE Trans. Evol. Comput. 16, 225–241 (2012)
	52.	 Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize net-

work communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2,
243–284 (2009)

	53.	 Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Proceedings of
PPSN ’92, pp. 15–26. Elsevier (1992)

	54.	 Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and
Their Computational Complexity. Springer, Berlin (2010)

	55.	 Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)
	56.	 Rowe, J.E.: Linear multi-objective drift analysis. Theor. Comput. Sci. 736, 25–40 (2018)
	57.	 Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, � ) evolutionary algorithm.

Theor. Comput. Sci. 545, 20–38 (2014)
	58.	 Smit, S.K., Eiben, A.E.: Beating the ‘world champion’ evolutionary algorithm via REVAC tuning. In:

Proceedings of CEC ’10, pp. 1–8. IEEE Press (2010)
	59.	 Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE

Trans. Evol. Comput. 17, 418–435 (2013)
	60.	 Wegener, I.: Simulated annealing beats Metropolis in combinatorial optimization. In: Proceedings of

ICALP ’05, pp. 589–601. Springer (2005)
	61.	 Witt, C.: Runtime analysis of the ( � + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14,

65–86 (2006)
	62.	 Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions.

Comb. Probab. Comput. 22, 294–318 (2013)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Runtime Analysis for Self-adaptive Mutation Rates
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Previous Works
	1.3 Techniques
	1.4 Organization of This Work

	2 The (1,) EA With Self-adapting Mutation Rate
	3 Technical Tools
	3.1 Elementary Estimates
	3.2 Probabilistic Tools
	3.3 Occupation Probabilities

	4 Main Result and Proof
	4.1 The Far Region
	4.2 The Near Region
	4.3 Proof of Theorem 8

	5 Experiments
	6 Conclusions
	Acknowledgements
	References

