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Abstract
We prove that, given two topologically-equivalent upward planar straight-line draw-
ings of an n-vertex directed graph G, there always exists a morph between them such 
that all the intermediate drawings of the morph are upward planar and straight-line. 
Such a morph consists of O(1) morphing steps if G is a reduced planar st-graph, 
O(n) morphing steps if G is a planar st-graph, O(n) morphing steps if G is a reduced 
upward planar graph, and O(n2) morphing steps if G is a general upward planar 
graph. Further, we show that �(n) morphing steps might be necessary for an upward 
planar morph between two topologically-equivalent upward planar straight-line 
drawings of an n-vertex path.

Keywords Graph drawing · Planar morph · Directed graph · Upward planarity

1 Introduction

One of the definitions of the word morph that can be found in English dictionar-
ies is “to gradually change into a different image”. The Graph Drawing community 
defines the morph of graph drawings similarly. Namely, given two drawings �0 and 
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�1 of a graph G, a morph between �0 and �1 is a continuously changing family of 
drawings of G indexed by time t ∈ [0, 1] , such that the drawing at time t = 0 is �0 
and the drawing at time t = 1 is �1 . Further, the way the Graph Drawing community 
adopted the word morph is consistent with its Ancient Greek root 𝜇𝜔𝜌𝜙�́� , which 
means “shape” in a broad sense. Namely, if both �0 and �1 have a certain geomet-
ric property, it is desirable that all the drawings of the morph also have the same 
property. In particular, we talk about a planar, a straight-line, an orthogonal, or a 
convex morph if all the intermediate drawings of the morph are planar (edges do 
not cross), straight-line (edges are straight-line segments), orthogonal (edges are 
polygonal lines composed of horizontal and vertical segments), or convex (the draw-
ings are planar and straight-line, and the faces are delimited by convex polygons), 
respectively.

The state of the art on planar morphs covers more than 100 years, starting from 
the 1914/1917 works of Tietze [35] and Smith [31]. The seminal papers of Cairns 
[14] and Thomassen [34] proved the existence of a planar straight-line morph 
between any two topologically-equivalent planar straight-line drawings of a graph. 
In the last 10 years, the attention of the research community focused on algorithms 
for constructing planar morphs with few morphing steps (see, e.g., [1–8, 12, 13, 28, 
36]). Each morphing step, sometimes simply called step, is a linear morph, in which 
the vertices move along straight-line (possibly distinct) trajectories at uniform speed. 
A unidirectional morph is a linear morph in which the vertex trajectories are all par-
allel. It is known [2, 4] that a planar straight-line morph with a linear number of uni-
directional morphing steps exists between any two topologically-equivalent planar 
straight-line drawings of the same graph, and that this bound is the best possible.

Upward planarity is usually regarded as the natural extension of planarity to 
directed graphs; see, e.g., [10, 11, 16, 18, 19, 23]. A drawing of a directed graph 
is upward planar if it is planar and the edges are represented by curves monotoni-
cally increasing in the vertical direction. Despite the fact that upward planarity is 
a widely-investigated research topic, no algorithm has been devised, up to now, to 
morph upward planar drawings of directed graphs. This paper deals with the fol-
lowing question: Given two topologically-equivalent1 upward planar drawings �0 
and �1 of an upward planar directed graph G, does an upward planar straight-line 
morph between �0 and �1 always exist? In this paper we give a positive answer to 
this question.

Problems related to upward planar graphs are usually more difficult than the corre-
sponding problems for undirected graphs. For example, planarity can be tested in linear 
time [25] while testing upward planarity is NP-complete [23]; all planar graphs admit 
planar straight-line grid drawings with polynomial area [30] while there are upward 
planar graphs that require exponential area in any upward planar straight-line grid 
drawing [20]. On the other hand, we show that, from the morphing point of view, the 
difference between planarity and upward planarity is less sharp; indeed, in some cases, 

1 Two upward planar drawings �
0
 and �

1
 of a connected directed graph G are topologically-equivalent if, 

for each vertex v of G, the left-to-right order of the edges incoming into (outgoing from) v is the same in 
�
0
 as in �

1
.
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upward planar straight-line drawings can be morphed even more efficiently than planar 
straight-line drawings. This is due to the fact that two topologically-equivalent upward 
planar drawings of the same directed graph are, in general, “more similar” to each other 
than two topologically-equivalent planar drawings of the same graph, as the latter do 
not need to comply with the edge orientations.

More in detail, our results are as follows. Let �0 and �1 be topologically-equivalent 
upward planar drawings of an n-vertex upward plane graph G. We show algorithms 
to construct upward planar straight-line morphs between �0 and �1 with the following 
number of morphing steps: 

1. O(1) steps if G is a reduced plane st-graph;
2. O(n) steps if G is a plane st-graph;
3. O(n) steps if G is a reduced upward plane graph;
4. O(n ⋅ f (n)) steps if G is a general upward plane graph, assuming that an O(f(n))-

step algorithm exists to construct an upward planar morph between any two 
upward planar drawings of any n-vertex plane st-graph. This, together with Result 
(2), yields an O(n2)-step upward planar morph for general upward plane graphs.

Further, we show that there exist two topologically-equivalent upward planar drawings 
of an n-vertex upward plane path such that any upward planar morph between them 
consists of �(n) morphing steps.

In order to prove Result (1) we devise a technique that allows us to construct a 
morph in which each morphing step modifies either only the x-coordinates or only the 
y-coordinates of the vertices. Result (2) builds on the techniques in [2] and leverages on 
the arrangement of low-degree vertices in upward planar drawings in order to morph 
maximal plane st-graphs. We then exploit such morphs for general plane st-graphs. In 
order to prove Results (3) and (4) we use an inductive technique for gradually reducing 
the geometric differences between �0 and �1.

The paper is organized as follows. In Sect. 2 we introduce preliminary definitions 
and notation. In Sect. 3 we prove a lower bound on the number of morphing steps that 
might be required by an upward planar morph and we present a technique for construct-
ing upward planar morphs with few morphing steps. In Sect. 4 we study upward pla-
nar morphs of plane st-graphs. In Sect. 5 we study upward planar morphs of general 
upward plane graphs. Finally, in Sect. 6 we present conclusions and open problems.

2  Preliminaries

We assume familiarity with graph drawing [18] and related concepts.

2.1  Graph Drawings

In a drawing of a graph vertices are represented by distinct points of the plane 
and edges are represented by Jordan arcs connecting the points representing their 
end-vertices. In a straight-line drawing the edges are represented by straight-line 
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segments. Let �  be a drawing of a graph G and let H be a subgraph of G. We denote 
by � [H] the restriction of �  to the vertices and edges of H. The following remark 
will simplify the reading hereafter.

Remark 1 In this paper we only consider straight-line drawings. Thus, where it leads 
to no confusion, we will omit the term “straight-line”.

2.2  Planar Drawings, Graphs, and Embeddings

A drawing of a graph is planar if no two edges intersect. A graph is planar if it 
admits a planar drawing. A planar drawing partitions the plane into topologically 
connected regions, called faces. The unique unbounded face is the outer face, 
whereas the remaining faces are the inner faces. Two planar drawings of a connected 
graph are topologically equivalent if they have the same circular order of the edges 
around each vertex and the same cycle bounding the outer face. A planar embed-
ding is an equivalence class of topologically-equivalent planar drawings. A plane 
graph is a planar graph equipped with a planar embedding. In a planar straight-line 
drawing an internal face (the outer face) is strictly convex if its angles are all smaller 
(greater) than � . A planar straight-line drawing is strictly convex if each face is 
strictly convex.

A y-assignment yG ∶ V(G) → ℝ is an assignment of reals to the vertices of 
a graph G. A drawing �  of G satisfies yG if the y-coordinate in �  of each vertex 
v ∈ V(G) is yG(v) . An x-assignment xG for the vertices of G is defined analogously. 
A drawing �  of G induces a y-assignment and x-assignment for the vertices of G 
such that each vertex is assigned with its y-coordinate and with its x-coordinate in �  , 
respectively.

2.3  Connectivity

A k-cut in a connected graph G is a set of k vertices whose removal disconnects G. 
A graph is k-connected if it does not contain any (k − 1)-cut; 2-connected and 3-con-
nected graphs are also called biconnected and triconnected graphs, respectively. The 
maximal biconnected subgraphs of a graph are called blocks. A biconnected plane 
graph G is internally 3-connected if, for every 2-cut {u, v} , u and v are incident to 
the outer face of G and each connected component of the graph G − {u, v} contains a 
vertex incident to the outer face of G. The degree of a vertex in a graph is the num-
ber of edges incident to it. Clearly, a k-connected graph has minimum degree k.

2.4  Directed Graphs

In a directed graph G we denote by uv an edge directed from a vertex u to a vertex v; 
then v is a successor of u, and u is a predecessor of v. A source (resp. sink) of G is 
a vertex with no incoming edge (resp. with no outgoing edge). A directed path con-
sists of the edges uiui+1 , for i = 1,… , n − 1 . A directed cycle consists of the edges 
uiui+1 , for i = 1,… , n , where un+1 = u1 . A graph without directed cycles is acyclic. 
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A transitive edge in a directed graph G is an edge uv such that G contains a directed 
path from u to v different from the edge uv. A reduced graph is a directed graph that 
does not contain any transitive edges. Whenever we do not know or are not inter-
ested in the orientation of an edge connecting two vertices u and v, we denote it by 
(u, v). The underlying graph of a directed graph G is the undirected graph obtained 
from G by omitting the directions from its edges. In this work, when talking about 
the connectivity of a directed graph, we refer to the connectivity of its underlying 
graph. A topological ordering of an n-vertex acyclic graph G = (V ,E) is a number-
ing � ∶ V → {1, 2,… , n} of the vertices of G such that, for each edge uv ∈ E , we 
have 𝜋(u) < 𝜋(v).

2.5  Upward Planar Drawings, Embeddings, and Morphs

A drawing of a directed graph is upward planar if it is planar and each edge uv is 
drawn as a curve monotonically increasing in the y-direction from u to v. A directed 
graph is upward planar if it admits an upward planar drawing.

Consider an upward planar (straight-line) drawing �  of a directed graph G and 
consider a vertex v of G. The list S(v) = [w1,… ,wk] contains the successors of v 
in “left-to-right order”. That is, consider the horizontal ray � originating at v and 
directed leftwards; rotate � around v in clockwise direction until it becomes again 
horizontal, and append each vertex wi to S(v) when � overlaps with the edge (v,wi) . 
The list P(v) = [z1,… , zl] of the predecessors of  v is defined similarly. Then two 
upward planar drawings of a connected directed graph are topologically equivalent 
if they have the same lists S(v) and P(v) for each vertex v. An upward planar embed-
ding is an equivalence class of topologically-equivalent upward planar drawings. 
An upward plane graph is an upward planar graph equipped with an upward planar 
embedding. If a vertex v in an upward planar graph G is neither a source nor a sink, 
then a planar embedding of G determines S(v) and P(v) . However, if v is a source 
or a sink, then different upward planar drawings might have different lists S(v) or 
P(v) , respectively. In fact, two upward planar drawings of an upward planar graph G 
might not have the same upward planar embedding although the underlying graph of 
G has the same planar embedding in the two drawings; see, for example, Fig. 1.

Fig. 1  Two upward planar 
drawings of the same directed 
graph G (whose underlying 
graph is a simple cycle) with 
the same planar embedding but 
with different upward planar 
embeddings. The angles labeled 
large are gray. Observe that 
S(v
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For biconnected upward planar graphs a different, and yet equivalent, notion of 
upward planar embedding exists; this is described in the following. Consider an 
upward planar (straight-line) drawing �  of a biconnected upward planar graph G. 
Let u, v, and w be three distinct vertices that appear consecutively and in this clock-
wise order along the boundary of a face f of G; note that, since G is biconnected, f is 
delimited by a simple cycle. We denote by ∠(u, v,w) the angle formed by the edges 
(u, v) and (v, w) at v in the interior of f. We say that v is a sink-switch (a source-
switch) of f if the orientations of the edges (u, v) and (v, w) in G are uv and wv (vu 
and vw, respectively). Further, we say that v is a switch of f if it is either a sink-
switch or a source-switch of f, and v is a switch of G if it is a switch of some face of 
G. Two switches u and v of a face f are clockwise (counter-clockwise) consecutive 
if traversing f clockwise (counter-clockwise) no switch is encountered in between 
u and v. The drawing �  determines a large-angle assignment, that is, a labeling, 
for each face f and each three clockwise consecutive vertices u, v, and w of f such 
that v is a switch of f, of the corresponding angle ∠(u, v,w) as large, if it is larger 
than � in �  , or small, it is smaller than � in �  [10]. Two upward planar drawings 
of a biconnected upward planar graph G are then say to be topologically equiva-
lent if they have the same planar embedding and the same large-angle assignment. 
From this notion of topological equivalence, the ones of upward planar embedding 
and upward plane graph can be introduced as before; again, the formerly introduced 
notions coincide with the just introduced ones for upward planar graphs with bicon-
nected underlying graphs (in fact, this correspondence between the two notions 
could be stated for all upward planar graphs, however the definition of clockwise 
consecutive switches we introduced is ambiguous for upward planar graphs whose 
underlying graph is not biconnected). A combinatorial characterization of the large-
angle assignments that correspond to upward planar embeddings is given in [10].

Whenever we talk about an upward planar drawing of an upward plane graph G, 
we always assume, even when not explicitly stated, that the drawing respects the 
upward planar embedding associated to G. Further, whenever we talk about a sub-
graph H of an upward plane graph G, we always assume, even when not explicitly 
stated, that H is associated with the upward planar embedding obtained from the one 
associated to G by removing vertices and edges not in H.

Let �0 and �1 be two upward planar drawings of an upward plane graph G. An 
upward planar morph is a continuous transformation from �0 to �1 indexed by time 
t ∈ [0, 1] in which the drawing �t at each time t ∈ [0, 1] is upward planar. We remark 
that each drawing �t has to respect the upward planar embedding associated to G; 
in particular, since �0 and �1 respect the upward planar embedding associated to G, 
they are topologically equivalent. Observe that the condition that �0 and �1 are topo-
logically equivalent is necessary for an upward planar morph between them to exist.

2.6  Plane st‑graphs

A plane st-graph is an upward plane graph with a single source s and a single sink 
t, and with an upward planar embedding in which s and t are incident to the outer 
face. Refer to Fig. 2. A plane st-graph always admits an upward planar straight-line 
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drawing [19]; in fact, since any upward plane graph can be augmented to a plane st-
graph [19], this result also extends to all upward plane graphs. A cycle in an upward 
plane graph is an st-cycle if it consists of two directed paths. A face f of an upward 
plane graph is an st-face if it is delimited by an st-cycle; the directed paths delimit-
ing an st-face f are called left and right boundary, where the edge of the left bound-
ary incident to the source-switch sf  of f (to the sink-switch tf  of f) immediately pre-
cedes the edge of the right boundary incident to sf  (resp. to tf  ) in the clockwise order 
of the edges incident to sf  (resp. in the counter-clockwise order of the edges incident 
to tf  ). The following is well-known.

Lemma 1 An upward plane graph is a plane st-graph iff all its faces are st-faces.

3  Slow Morphs and Fast Morphs

In this section we first show that “slow” upward planar morphs are sometimes nec-
essary, i.e., there exist pairs of upward planar drawings that require a linear number 
of steps in order to be morphed into one another. Then we devise techniques for con-
structing “fast” upward planar morphs, i.e., upward planar morphs with a constant 
number of steps.

We start by proving the following lower bound.

Theorem  1 There exist two upward planar straight-line drawings of an n-vertex 
upward plane path such that any upward planar morph between them consists of 
�(n) steps.

Proof Assume, for the sake of simplicity, that n is even, and let n = 2k . Consider 
the n-vertex upward plane path P defined as follows (refer to Fig. 3a). The path P 

Fig. 2  An upward planar draw-
ing of a plane st-graph. An 
st-face f is shaded gray; the left 
and the right boundary of f are 
red and blue, respectively (Color 
figure online)

s

t

tf

sf

f



2992 Algorithmica (2020) 82:2985–3017

1 3

contains vertices ui and vi , for i = 1,… , k , and directed edges uivi , for i = 1,… , k , 
and ui+1vi , for i = 1,… , k − 1 . Clearly, P has a unique planar embedding E ; we fix 
the upward planar embedding of P so that S(ui) = [vi, vi−1] , for i = 2,… , k , and so 
that P(vi) = [ui, ui+1] , for i = 1,… , k − 1.

Let �0 and �1 be two upward planar straight-line drawings of P in which 
the bottom-to-top order of the vertices is u1,… , uk, vk,… , v1 (see Fig.  3b) and 
uk,… , u1, v1,… , vk (see Fig.  3c), respectively. Note that, by the upward planar-
ity of �0 , the edge uivi has the edge ui+1vi+1 to its right in �0 , for i = 1,… , k − 1 , 
and the edge ui+1vi has the edge ui+2vi+1 to its left in �0 , for i = 1,… , k − 2 . Let 
⟨�0 = �1,�2,… ,�h+1 = �1⟩ be any upward planar morph from �0 to �1 that con-
sists of h morphing steps. We have the following.

Claim 1.1 For each j = 1, 2,… , min{h + 1, k − 1} , we have that: 

(a) the vertices uj, uj+1,… , uk−1, uk, vk, vk−1,… , vj+1, vj appear in this bottom-to-top 
order in �j;

(b) for i = j,… , k − 1 , the edge uivi has the edge ui+1vi+1 to its right; and
(c) for i = j,… , k − 2 , the edge ui+1vi has the edge ui+2vi+1 to its left.

Proof of the claim We prove the statement by induction on j. The statement is trivial 
for j = 1 , by the definition of �0 = �1.

Consider now any j > 1 . By induction, �j−1 satisfies Properties (a)–(c).
Suppose, for a contradiction, that there exists an index i ∈ {j, j + 1,… , k − 1} 

such that ui+1 lies below ui in �j . The upward planarity of �j−1 and �j implies that 
vi and vi−1 both lie above ui , both in �j−1 and �j . Further, ui+1 lies below vi and vi−1 , 
both in �j−1 and �j ; this comes from Property (a) of �j−1 and from the assumption 
that ui+1 lies below ui in �j . Then ui+1 lies below the horizontal line through the low-
est of vi and vi−1 throughout the linear morph ⟨�j−1,�j⟩ . By Properties (b) and (c) 
of �j−1 , the vertex ui+1 lies in �j−1 inside the bounded region of the plane delimited 
by the edge uivi , by the edge uivi−1 , and by the horizontal line through the lowest of 
vi and vi−1 . However, by the assumption that ui+1 lies below ui in �j , we have that 
ui+1 lies outside the same region in �j . Since ui+1 does not cross the horizontal line 

v3v1u1 u2 u3v2

(a) P

v1
v2
v3

u3
u2
u1

(b) Γ0

v3
v2
v1

u1
u2
u3

(c) Γ1

Fig. 3  Illustration for Theorem 1. a P; b �
0
 ; and c �

1
 . For the sake of readability, �

0
 and �

1
 have curved 

edges. However, the x-coordinates of the vertices can be slightly perturbed in order to make �
0
 and �

1
 

straight-line
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through the lowest of vi and vi−1 throughout the linear morph ⟨�j−1,�j⟩ , it follows 
that ui+1 crosses uivi or uivi−1 during ⟨�j−1,�j⟩ , a contradiction.

An analogous proof shows that vi+1 lies below vi in �j , for i = j, j + 1,… , k − 1 . 
Property (a) for �j follows. Properties (b) and (c) follow by Property (a) and by the 
upward planarity of �j . This concludes the proof of the claim.   ◻

By Claim 1.1 and since uk, uk−1 appear in this bottom-to-top order in �1 = �h+1 , 
we have that h + 1 > k − 1 , hence h ∈ �(n) .   ◻

We remark that the proof of Theorem 1 is similar in spirit to the one, presented 
in [2], to show that a linear number of steps may sometimes be necessary in order 
to morph two planar drawings of the same path into one another. In particular, 
both the proof in [2] and the proof of Theorem 1 exploit a starting “spiral-like” 
drawing of a path; while the proof in [2] requires the morph to unwind the draw-
ing so to eventually become straight, the proof of Theorem 1 requires the morph 
to change the bottom-to-top order of the vertices while preserving the spirality of 
the drawing.

We now establish a tool that will allow us to design algorithms for morphing 
upward planar drawings with few morphing steps. Consider two planar straight-
line drawings � ′ and � ′′ of a plane graph G inducing the same y-assignment. 
Since the drawings are straight-line and have the same y-assignment, a horizontal 
line � intersects a vertex or an edge of G in � ′ if and only if it intersects the same 
vertex or edge in � ′′ . We say that � ′ and � ′′ are left-to-right equivalent if, for any 
horizontal line � , for any vertex or edge � of G, and for any vertex or edge � of G 
such that � intersects both � and � (in � ′ and in � ′′ ), we have that the intersection 
of � with � and the intersection of � with � are in the same left-to-right order both 
in � ′ as in � ′′ . The definition of bottom-to-top equivalent drawings is analogous 
(where we assume that � ′ and � ′′ are planar straight-line drawings inducing the 
same x-assignment). We have the following.

Lemma 2 Any two upward planar drawings � ′ and � ′′ of a plane st-graph G induc-
ing the same y-assignment are left-to-right equivalent.

Proof Since G is a plane st-graph, the drawings � ′ and � ′′ have the same faces. By 
Lemma 1 such faces are st-faces. Also, every horizontal line � crosses an st-face f at 
most twice, and the left-to-right order of these crossings along � is the same in � ′ 
and � ′′ because the left and right boundaries of f are the same in � ′ and � ′′ , given 
that � ′ and � ′′ are topologically equivalent.   ◻

Lemma 3 is due to [2]. We extend it in Lemma 4.

Lemma 3 (Alamdari et al. [2], Corollary 7.2) Consider a unidirectional morph act-
ing on points p, q, and r. If p is on one side of the oriented line through qr at the 
beginning and at the end of the morph, then p is on the same side of the oriented line 
through qr throughout the morph.
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Lemma 4 Let � ′ and � ′′ be two left-to-right or bottom-to-top equivalent planar 
drawings of a plane graph. Then the linear morph M from � ′ to � ′′ is unidirectional 
and planar.

Proof Since � ′ and � ′′ have the same y-assignment (x-assignment), given that they 
are left-to-right (bottom-to-top) equivalent, it follows that all the vertices move 
along horizontal (vertical) trajectories. Thus, M is unidirectional. Also, since � ′ 
and � ′′ are left-to-right (bottom-to-top) equivalent, each horizontal (vertical) line 
crosses the same sequence of vertices and edges in both � ′ and � ′′ . Thus, by Lemma 
3, M is planar.   ◻

Lemma 4 allows us to devise a simple morphing technique between any two 
upward planar drawings �0 and �1 of the same upward plane graph G, when a pair 
of upward planar drawings of G with special properties can be computed. We say 
that the pair (�0,�1) is an hvh-pair if there exist upward planar drawings � ′

0
 and � ′

1
 

of G such that: (1) �0 and � ′
0
 are left-to-right equivalent, (2) � ′

0
 and � ′

1
 are bottom-

to-top equivalent, and (3) � ′
1
 and �1 are left-to-right equivalent. Our morphing tool is 

expressed by the following lemma.

Lemma 5 (Fast morph) Let (�0,�1) be an hvh-pair of upward planar drawings of 
an upward plane graph G. There exists a 3-step upward planar morph from �0 to �1.

Proof By hypothesis there exist drawings � ′
0
 and � ′

1
 of G satisfying Condi-

tions (1), (2), and (3) of the definition of an hvh-pair. By Lemma 4, M1 = ⟨�0,�
�
0
⟩ , 

M2 = ⟨� �
0
,� �

1
⟩ , and M3 = ⟨� �

1
,�1⟩ are planar linear morphs. Therefore, 

M = ⟨�0,�
�
0
,� �

1
,�1⟩ is a 3-step planar morph from �0 to �1 . In order to prove that 

M is an upward planar morph, we need to show that each linear morph Mi is an 
upward planar morph. To this aim, we only need to prove that no edge changes its 
orientation during Mi , for i = 1, 2, 3 . This is trivially true for M1 (for M3 ) since �0 
and � ′

0
 ( �1 and � ′

1
 ) induce the same y-assignment.

We now prove that no directed edge uv changes its orientation during M2 ; refer 
to Fig. 4. By Condition (2) of the definition of an hvh-pair, the x-coordinate of u is 
the same in � ′

0
 and in � ′

1
 , hence it is the same throughout M2 . Denote by x′ such 

x-coordinate. The y-coordinate of u might be different in � ′
0
 and in � ′

1
 ; denote by 

y′
0
 and y′

1
 such coordinates, respectively. Consider a point r that moves (at uniform 

speed along a straight-line trajectory) during M2 from (x� + 1, y�
0
) in �0 to (x� + 1, y�

1
) 

Fig. 4  Illustration for the proof 
of Lemma 5. The edge uv does 
not change its orientation during 
M

2
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in �1 . Note that r moves along a vertical trajectory, hence the movement of r and M2 
define a unidirectional morph. Also observe that the straight-line segment ur is hori-
zontal throughout M2 ; further, v is above the horizontal line through ur both in � ′

0
 

and in � ′
1
 , by the upward planarity of �0 and �1 and by Conditions (1) and (3) of the 

definition of an hvh-pair. By Lemma 3 with p = v , q = u , and r = r we have that the 
y-coordinate of v is greater than the y-coordinate of u throughout M2 . Hence, M2 is 
an upward planar morph.   ◻

We remark that, in each of the 3 morphing steps of the algorithm given in Lemma 
5, either all the vertices move horizontally or they all move vertically. Such horizon-
tal or vertical morphing steps have also been used in [26].

The next lemma will allow us to restrict our attention to biconnected graphs.

Lemma 6 Let �0 and �1 be two upward planar drawings of an n-vertex upward 
plane graph G whose underlying graph is connected. There exist an upward plane 
graph G′ and two upward planar drawings � ′

0
 and � ′

1
 of G′ such that:

• G′ has O(n) vertices;
• G′ is a supergraph of G;
• the underlying graph of G′ is biconnected;
• � �

0
[G] = �0 and � �

1
[G] = �1 ; and

• if G is reduced or an st-graph, then so is G′.

Proof Initialize G� = G , � �
0
= �0 , and � �

1
= �1 . Consider a cutvertex v of G′ . Let u 

and w be two neighbors of v belonging to different blocks of G′ that are consecutive 
in the circular order of the neighbors of v. By relabeling u and w, we may assume 
that one of the following holds true:

• if u and w are both successors of v, then the edge vw immediately follows the 
edge vu in the clockwise order of the edges incident to v (see Fig. 5a);

(a) (b) (c)

Fig. 5  Illustration for Lemma 6. The vertices u and w belong to two blocks �u and �w , respectively, both 
containing the cut-vertex v 
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• if u and w are both predecessors of v, then the edge wv immediately precedes 
the edge uv in the clockwise order of the edges incident to v (see Fig. 5b); or

• u is a successor of v, w is a predecessor of v, and the edge wv immediately fol-
lows the edge vu in the clockwise order of the edges incident to v (see Fig. 5c).

Denote by f the face that is to the right of the edge (u, v) when traversing such 
an edge according to its orientation. Note that the edge (v, w) is also incident to f. 
We add to G′ a new vertex v′ inside f; further, we add to G′ two directed edges con-
necting v′ with u and w inside f. These edges are directed as the edges connecting 
v with u and w, respectively; that is, we add to G′ either the directed edge uv′ , if 
uv ∈ E(G�) , or the directed edge v′u , if vu ∈ E(G�) , and either the directed edge wv′ , 
if wv ∈ E(G�) , or the directed edge v′w , if vw ∈ E(G�).

The described augmentation does not introduce any transitive edges. Further, no 
edge that was already in G′ before the augmentation becomes transitive after the 
augmentation; this is because the edge (u,  w) does not belong to G′ , as u and w 
belong to distinct blocks of G′ . Hence, G′ remains reduced if it was so.

In the case illustrated in Fig. 5a (in Fig. 5b), each of the blocks �u and �w of G′ 
containing u and w before the augmentation contains a distinct sink of G′ (resp. a 
distinct source of G′ ), hence G′ is not an st-graph before the augmentation. In the 
case illustrated in Fig. 5c, it might be that G′ is an st-graph before the augmentation. 
Note that there are only two faces of the augmented graph G′ that do not belong to 
G′ before the augmentation. One of them is delimited by the directed paths wvu and 
wv′u , hence it is an st-face; the other one is obtained from f by replacing the directed 
path wvu with the directed path wv′u , hence it is an st-face as long as f is. It follows 
that, if G′ is an st-graph before the augmentation, then it remains an st-graph after 
the augmentation.

We now describe how to insert v′ and its incident edges into � ′
0
 and � ′

1
 . By stand-

ard continuity arguments, like the ones used in the proof of Fáry’s theorem [21], 
we have that, for i = 0, 1 , there exists a sufficiently small value 𝜖i > 0 such that the 
disk di with radius �i centered at v in � ′

i
 contains no vertex other than v and is not 

traversed by any edge other than those incident to v. We place v′ at distance 𝜖 < 𝜖0, 𝜖1 
from v inside f, as illustrated in Fig. 5a–c; in particular, v′ is placed in the circular 
sector of di delimited by (u, v) and (w, v). By selecting a sufficiently small value 
for � , the edges (u, v�) and (w, v�) can be drawn as straight-line segments that do not 
intersect any edge of G′ . Further, if � is sufficiently small, then the y-coordinate of 
u (the y-coordinate of w) is smaller than the one of v′ if and only if it is smaller 
than the one of v, hence the straight-line segments representing the edges (u, v�) and 
(w, v�) monotonically increase in the y-direction from their sources to their sinks. 
The upward planarity of the drawings � ′

0
 and � ′

1
 of the augmented graph G′ fol-

lows. Note that after the augmentation we have � �
0
[G] = �0 and � �

1
[G] = �0 . This 

is because the same equalities were satisfied before the augmentation and since the 
drawings of G′ before the augmentation were not altered during the augmentation.

Since the graph G′ after the augmentation contains one block less than before the 
augmentation, the repetition of this argument results in a biconnected graph G′ . This 
concludes the proof of the lemma.   ◻
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4  Plane st‑graphs

In this section we present algorithms for constructing upward planar morphs 
between upward planar drawings of plane st-graphs.

4.1  Reduced Plane st‑graphs

We first consider plane st-graphs without transitive edges. We have the following.

Lemma 7 Any two upward planar drawings of a reduced plane st-graph G form an 
hvh-pair.

Proof By Lemma 6 we can assume that the reduced plane st-graph G is biconnected. 
Let �0 and �1 be any two upward planar drawings of G. We show that �0 and �1 form 
an hvh-pair by exhibiting two upward planar drawings � ′

0
 and � ′

1
 of G that satisfy 

Conditions (1), (2), and (3) of the definition of an hvh-pair.
We construct drawings � ′

0
 and � ′

1
 as follows (refer to Figs. 6 and 7). Consider the 

weak dual multi-graph D of G, which is defined as follows. The multi-graph D has 
a vertex vf  for each internal face f of G and a directed edge vf vg if the faces f and g 
of G share an edge e in G and f lies to the left of g when traversing e according to 
its orientation. The concept of weak dual multi-graph has been used, e.g., in [29, 33, 
33]. Observe that D is acyclic [32]. We now present a structural decomposition of G 
guided by D which has been used, e.g., in [22, 27]. Let T = {v1,… , vk} be a topo-
logical ordering of the vertices of D and let P0 be the left boundary of the outer face 
of G. The ordering T  defines a sequence P1 , P2 , ..., Pk of directed paths such that, 
for each i = 1,… , k , the path Pj is the right boundary of the face of G correspond-
ing to the vertex vj of D. For j = 1,… , k , the graph Gj =

⋃j

i=0
Pi is a plane st-graph 

which is obtained by attaching the directed path Pj to two non-adjacent vertices on 
the right boundary of the outer face of Gj−1 ; further, Gk = G . Note that, since G is a 
reduced plane st-graph, no path Pj consists of a single edge.

The drawings � ′
0
 and � ′

1
 are simultaneously and iteratively constructed by adding, 

for j = 1,… , k , the path Pj to the already constructed drawings � ′
0
 and � ′

1
 of Gj−1 . 

Fig. 6  Illustration for the proof of Lemma 7. a The drawing � ′
i
 of G

0
= P

0
 . b The drawing � ′

i
 of G

1
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Note that, after Pj has been drawn in � ′
0
 and � ′

1
 , the right boundary of the outer face 

of Gj is a directed path, hence it is represented by a y-monotone curve in both � ′
0
 and 

� ′
1
.
For i = 0, 1 , we denote by yi(v) the y-coordinate of a vertex v in �i.
We obtain drawings � ′

0
 and � ′

1
 of G0 = P0 by placing its vertices along the line 

x = 0 at the y-coordinates they have in �0 and �1 , respectively, and by drawing its 
edges as straight-line segments (see Fig. 6a). It is easy to see that �0[G0] , � ′

0
 , � ′

1
 , and 

�1[G0] fulfill Conditions (1)–(3) of the definition of an hvh-pair.
Suppose now that, for some j ∈ {1,… , k} , the drawings � ′

0
 and � ′

1
 are upward 

planar straight-line drawings of Gj−1 such that �0[Gj−1] , � ′
0
 , � ′

1
 , and �1[Gj−1] fulfill 

Conditions (1)–(3) of the definition of an hvh-pair.
We show how to add the path Pj = u0u1 … u

�−1u� to both � ′
0
 and � ′

1
 so that the 

resulting drawings together with �0[Gj] and �1[Gj] fulfill Conditions (1)–(3) of the 
definition of an hvh-pair. Note that u0 and u

�
 belong to the right boundary of the 

outer face of Gj−1 , hence they are already present in � ′
0
 and � ′

1
 . Since all the edges of 

Pj are going to be drawn as straight-line segments, it suffices to show how to draw 
the internal vertices of Pj in � ′

0
 and � ′

1
 . For i = 0, 1 , we assign to the internal vertices 

of Pj in � ′
i
 the same y-coordinates they have in �i . Also, we assign to all such verti-

ces, in both drawings, the same x-coordinate x∗
j
 , which has a “sufficiently large” 

value determined as follows.
If j = 1 , then we set x∗

j
= 1 (see Fig. 6b).

If j > 1 , then we proceed as follows. Refer to Fig. 7.
For i = 0, 1 , let �i(u0) be a ray emanating from u0 with positive slope, directed 

rightwards, not intersecting � ′
i
 , except at u0 , and such that the intersection point ai of 

(a) (b)

(c) (d)

Fig. 7  Illustration for the proof of Lemma 7. Computation of the points ai and bi in � ′
i
 for the cases � = 2 

(a) and � > 2 (b), respectively. Drawing of the path Pj for the cases � = 2 (c) and � > 2 (d)
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�i(u0) with the horizontal line y = yi(u1) lies to the right of every vertex in � ′
i
 . Anal-

ogously, for i = 0, 1 , let �i(u�) be a ray emanating from u
�
 with negative slope, 

directed rightwards, not intersecting � ′
i
 , except at u

�
 , and such that the intersection 

point bi of �i(u�) with the horizontal line y = yi(u�−1) lies to the right of every vertex 
in � ′

i
 . Refer to Fig.  7a, b for the cases in which � = 2 and � > 2 , respectively. 

Observe that u1 and u
�−1 coincide if Pj is a path of length 2, i.e., if � = 2 . We set x∗

j
 

as the maximum of the x-coordinates of a0 , b0 , a1 , and b1.
The obtained drawings � ′

0
 and � ′

1
 of Gj are planar, as the slopes of the straight-line 

segments representing the edge u0u1 in � ′
0
 and � ′

1
 are smaller than or equal to those 

of �0(u0) and �1(u0) , respectively, as the slopes of the straight-line segments repre-
senting the edge u

�−1u� in � ′
0
 and � ′

1
 are larger than or equal to those of �0(u�) and 

�1(u�) , respectively, and as the vertical line x = x∗
j
 lies to the right of all the vertices 

of Gj−1 both in � ′
0
 and in � ′

1
 . The drawings � ′

0
 and � ′

1
 are upward, given that the verti-

ces of Gj have the same y-coordinates they have in �0 and �1 , respectively, and given 
that �0 and �1 are upward drawings.

In order to conclude the proof, we show that the obtained drawings, together with 
�0[Gj] and �1[Gj] , fulfill Conditions (1)–(3) of the definition of an hvh-pair. Since 
( �0,� ′

0
 ) and ( �1 , � ′

1
 ) are pairs of upward planar drawings of Gj inducing the same 

y-assignment, by Lemma 2, Conditions (1) and (3) hold true. In order to prove Con-
dition  (2), first recall that by construction � ′

0
 and � ′

1
 have the same x-assignment. 

Also, since all the intermediate vertices of any path Pj are drawn on the vertical line 
x = x∗

j
 in both � ′

0
 and � ′

1
 , and the circular ordering of the edges around each vertex is 

the same in both � ′
0
 and � ′

1
 , we have that the sequence of vertices and edges crossed 

by each vertical line in � ′
0
 and � ′

1
 is the same, thus implying Condition (2).   ◻

Combining Lemma 5 with Lemma 7 we obtain the following result.

Theorem  2 Let �0 and �1 be any two upward planar straight-line drawings of a 
reduced plane st-graph. There exists a 3-step upward planar morph from �0 to �1.

4.2  General Plane st‑graphs

We now turn our attention to general plane st-graphs. We restate here, in terms of 
plane st-graphs, a result by Hong and Nagamochi [24] that was originally formu-
lated in terms of hierarchical plane (undirected) graphs.

Theorem 3 (Hong and Nagamochi [24], Theorem 8) Consider an internally 3-con-
nected plane st-graph G and let yG be a y-assignment for the vertices of G such that 
each vertex v is assigned a value yG(v) that is greater than those assigned to its pre-
decessors. There exists a strictly-convex upward planar drawing of G satisfying yG.

We use Theorem 3 to prove the following lemma, which allows us to restrict our 
attention to maximal plane st-graphs.
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Lemma 8 Let �0 and �1 be two upward planar drawings of an n-vertex plane st-
graph G. Suppose that an algorithm A exists that constructs an f(r)-step upward pla-
nar morph between any two upward planar drawings of an r-vertex maximal plane 
st-graph. Then, there exists an O(f(n))-step upward planar morph from �0 to �1.

Proof By Lemma 6, we can assume that G is biconnected.
We augment G to a maximal plane st-graph G∗ as follows (refer to Fig. 8a). For 

each internal face f of G we add to G: (1) a vertex vf  into f, (2) a directed edge from 
the source-switch sf  of f to vf  , and (3) directed edges from vf  to every other vertex 
incident to f. We also add a vertex v∗ into the outer face of G, and add directed edges 
from v∗ to all the vertices incident to the outer face of G. The resulting graph G∗ is a 
maximal plane st-graph (and in particular it is internally-3-connected) and contains 
O(n) vertices.

Denote by y0
G

 the y-assignment for the vertices of G that is induced by �0 . We 
define a y-assignment y0

G∗ for the vertices of G∗ by setting:

• y0
G∗ (v) = y0

G
(v) for each vertex v ∈ V(G);

• for each vertex vf  of G∗ inserted into an internal face f of G, a value for y0
G∗ (vf ) 

that is larger than y0
G∗ (sf ) and smaller than y0

G∗ (v) , for every other vertex v inci-
dent to f; and

• for the vertex v∗ of G∗ inserted into the outer face of G, a value for y0
G∗ (v

∗) that is 
smaller than y0

G∗ (v) , for every vertex v ≠ v∗ of G∗.

We similarly define a y-assignment y1
G∗ for the vertices of G∗ using the y-coordinates 

of �1.
Note that, for i = 0, 1 , each vertex v of G∗ has been assigned a value yi

G∗ that is 
greater than those assigned to its predecessors. We can hence use Theorem 3 to con-
struct strictly-convex upward planar drawings � ∗

0
 and � ∗

1
 of G∗ satisfying y0

G∗ and y1
G∗ , 

respectively (refer to Fig. 8b).

(a) (b)

Fig. 8  Illustration for the proof of Lemma 8. a A biconnected plane st-graph G (shown with black ver-
tices and thick edges) and its augmentation to a maximal plane st-graph G∗ (by the addition of the white 
vertices and white-arrowed edges). b The construction of an upward planar drawing � ∗

i
 of G∗ in which 

each vertex of G∗ that is also in G has the same y-coordinate as in �i
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By Lemma 2 we have that the drawings � ∗
0
[G] and �0 are left-to-right equivalent. 

Therefore, by Lemma 4, the linear morph M0 from �0 to � ∗
0
[G] is planar. Such a 

morph is also upward since both �0 and � ∗
0
[G] are upward planar and left-to-right 

equivalent. Analogously, the linear morph M1 from � ∗
1
[G] to �1 is upward planar.

We now apply algorithm A to construct an f(n)-step upward planar morph from 
� ∗
0
 to � ∗

1
 and restrict such a morph to the vertices and edges of G to obtain an f(n)-

step upward planar morph M01 from � ∗
0
[G] to � ∗

1
[G].

An upward planar morph M from �0 to �1 is finally obtained as the concatenation 
of M0 , M01 , and M1 . The number of steps of M is equal to the number of steps of 
M01 plus two, hence it is in O(f(n)). This concludes the proof.   ◻

In the following we will present an algorithm that constructs an upward planar 
morph between two upward planar drawings of a maximal plane st-graph. Before 
doing so, we need to introduce one more tool. By polygon we mean a closed curve 
formed by straight-line segments. We say that a vertex of a polygon P sees a dif-
ferent vertex of P if the open straight-line segment between the two vertices lies in 
the interior of P. We also say that v sees P if it sees all the vertices of P that are not 
adjacent to v along P. We have the following.

Lemma 9 Let �  be an upward planar drawing of an internally 3-connected plane 
st-graph G. There exists a strictly-convex upward planar drawing � ′ of G such that 
M = ⟨� ,� �⟩ is an upward planar morph.

Further, if v is incident to an internal face f of G and sees the polygon Pf  bound-
ing f in �  , then v sees the polygon bounding f throughout M.

Proof Denote by yG the y-assignment for the vertices of G induced by �  . By Theo-
rem 3, there exists a strictly-convex upward planar drawing � ′ of G satisfying yG . 
Thus, by Lemma 2 and since G is a plane st-graph, we have that �  and � ′ are left-
to-right-equivalent drawings. By  Lemma 4, the linear morph M from �  to � ′ is 
planar. Since �  and � ′ are upward and left-to-right equivalent, it follows that M is 
an upward planar morph.

Consider an internal face f of G and let v be any vertex incident to f that sees the 
polygon Pf  bounding f in �  . Since the polygon P′

f
 representing the boundary of f in 

� ′ is strictly convex, v also sees P′
f
 . Augment G to an upward plane st-graph G∗ by 

introducing (suitably oriented) edges connecting v to the vertices incident to f that 
are not already adjacent to v; note that, by means of these edges, f has been split into 
triangular faces of G∗ . Draw these edges in �  and � ′ as straight-line segments, 
obtaining two upward planar drawings �∗ and � �

∗
 of G∗ (this is possible since v sees 

Pf  in �  and P′
f
 in � ′ ). Since �∗ and � �

∗
 are upward planar drawings of G∗ inducing the 

same y-assignment and since G∗ is a plane st-graph, they are left-to-right equivalent, 
by Lemma 2. Therefore, by Lemma 4, we have that the linear morph M∗ = ⟨�∗,�

�
∗
⟩ 

is planar. Note that M∗ = ⟨�∗,�
�
∗
⟩ coincides with M = ⟨� ,� �⟩ when restricted to 

the vertices and edges of G. Hence, the open straight-line segments connecting v to 
the vertices incident to f that are not adjacent to v in G lie inside the polygon 
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bounding f throughout M . This implies that v sees the polygon bounding f through-
out M .   ◻

An internal vertex v of a maximal plane graph G is simple if the neighbors of v 
induce a cycle in the underlying graph of G. We have the following.

Lemma 10 Any maximal plane graph with at least four vertices contains a simple 
vertex of degree at most 5.

Proof Consider any maximal plane graph G. By Euler’s formula, there exists at least 
one internal vertex v of G of degree at most 5. If v is simple, then we are done. Oth-
erwise, G contains an edge between two non-consecutive neighbors w and z of v. 
Then the subgraph G′ of G induced by the vertices inside or on the boundary of the 
3-cycle (v, w, z) is a maximal plane graph with at least four vertices, as it contains a 
neighbor of v different from w and z; further, G′ has less vertices than G. Hence, the 
same argument can now be repeated on G′ ; eventually, this leads to finding a simple 
vertex of degree at most 5.   ◻

Given two upward planar straight-line drawings �0 and �1 of a maximal plane 
st-graph G, our strategy for constructing an upward planar morph from �0 to �1 con-
sists of the following steps: 

1. we find a simple vertex v of G of degree at most 5;
2. we remove v and its incident edges from G, �0 , and �1 , obtaining upward planar 

drawings � −
0

 and � −
1

 of an upward plane graph G−;
3. we triangulate G− , � −

0
 , and � −

1
 by inserting edges incident to a former neighbor 

u of v, obtaining upward planar drawings � ′
0
 and � ′

1
 of a maximal plane st-graph 

G′;
4. we apply induction in order to construct an upward planar morph M′ from � ′

0
 to 

� ′
1
 ; and

5. we remove from M′ the edges incident to u that are not in G and insert v and its 
incident edges in M′ , thus obtaining an upward planar morph from �0 to �1.

In order for this strategy to work, we need that u satisfies certain properties, which 
are expressed in the upcoming definition of distinguished neighbor; further, we need 
to perform one initial (and one final) upward planar morph so to convexify the poly-
gon representing what will be called a characteristic cycle.

Let v be a simple vertex with degree at most 5 in a maximal plane st-graph G; this 
exists by Lemma 10. Let G(v) be the subgraph of G induced by v and its neighbors.

A predecessor u of v in G is a distinguished predecessor if u and v satisfy the fol-
lowing conditions: (a) for each predecessor w of v, there is a directed path in G(v) 
from w to v through u; (b) u is the only predecessor of v, if its degree is 3; and (c) v 
has at most two predecessors, if its degree is 4 or 5.

A successor u of v in G is a distinguished successor if u and v satisfy the follow-
ing conditions: (a) for each successor w of v, there is a directed path in G(v) from 
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v to w through u; (b) u is the only successor of v, if its degree is 3; and (c) v has at 
most two successors, if its degree is 4 or 5.

A neighbor of v is a distinguished neighbor if it is either a distinguished prede-
cessor or successor of v. Examples of distinguished neighbors are in Fig. 9. We are 
going to exploit the following.

Lemma 11 Let v be a simple vertex with degree at most 5 in a maximal plane st-
graph G. Then v has at most one distinguished predecessor, at most one distin-
guished successor, and at least one distinguished neighbor.

Proof Suppose, for a contradiction, that v has (at least) two distinguished predeces-
sors u1 and u2 . Since u1 is a distinguished predecessor of v and u2 is a predecessor 
of v, it follows that G contains a directed path u2 … u1v ; further, since u2 is a dis-
tinguished predecessor of v and u1 is a predecessor of v, it follows that G contains a 
directed path u1 … u2v . The union of these directed paths contains a directed cycle, 
a contradiction to the fact that G is an st-graph. It follows that v has at most one 
distinguished predecessor. An analogous argument proves that v has at most one dis-
tinguished successor.

Let P and S be the sets of predecessors and successors of v in G, respectively.
If the degree of v is 3, then either |P| = 1 or |S| = 1 . In the former case the only 

predecessor of v is a distinguished predecessor of v, while in the latter case the only 
successor of v is a distinguished successor of v.

Assume next that the degree of v is 4 or 5. We prove that, if |P| ≤ 2 , then v has 
at least one distinguished predecessor. If |P| = 1 , then the only predecessor of v is a 
distinguished predecessor of v. Further, if |P| = 2 , then let s and p be the two prede-
cessors of v in G. Since G is maximal, it contains either the directed edge sp or the 

v

(a)

v

(b)

v

(c)

v

(d)

v

s1

s2

t1 t2

(e)

v

s1

s2
t1 t2

(f )

v

s1

s2

t1 t2

(g)
s1

t1 t2

v

s2

(h)

Fig. 9  Distinguished predecessors (enclosed by red squares), distinguished successors (enclosed by red 
circles), and characteristic cycles (filled yellow). Note that, in (e), (g), and (h), the vertex s

2
 is not a 

distinguished successor of v; indeed, although for every successor w of v there is a directed path in G(v) 
from v to w through s

2
 , we have that v has more than two successors (Color figure online)
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directed edge ps. In the former case p is a distinguished predecessor of v, while in 
the latter case s is a distinguished predecessor of v. An analogous proof shows that, 
if |S| ≤ 2 , then v has at least one distinguished successor. This completes the proof, 
given that |P| ≤ 2 or |S| ≤ 2 , since the degree of v is at most 5.   ◻

We define the characteristic cycle C(v) of the vertex v as follows. Let cG(v) 
be the subgraph of G induced by the neighbors of v. Since v is simple, the 
underlying graph of cG(v) is a cycle. If cG(v) is an st-cycle, as in Fig. 9a–d, then 
C(v) ∶= cG(v) ; in particular, this is always the case if v has degree 3. Otherwise, 
cG(v) has two sources s1 and s2 and two sinks t1 and t2 . Throughout the rest of 
this section, we always assume that, if cG(v) has two sources s1 and s2 and two 
sinks t1 and t2 , then G contains the edges s1v and vs2 ; indeed, the cases in which 
G contains the edges s2v and vs1 , or t1v and vt2 , or t2v and vt1 are analogous. This 
assumption implies that v has at least three successors, namely s2 , t1 , and t2 , and 
hence no distinguished successor. Suppose also, w.l.o.g., that s1, t1, s2 , and t2 
appear in this clockwise order along cG(v) . If v has degree 4, as in Fig. 9e, then 
C(v) is composed of the edges s1v , vs2 , s2t2 , and s1t2 . Otherwise, v has degree 5, 
as in Fig.  9f–h. Let v1 be the distinguished predecessor of v. The directed path 
P1 = v1vs2 splits cG(v) into two paths P2 and P3 with length 2 and 3, respectively. 
Then C(v) is composed of P1 and P3 . We have the following structural lemma.

Lemma 12 Let v be a simple vertex with degree at most 5 in a maximal plane st-
graph G. The characteristic cycle C(v) is an st-cycle which contains all the distin-
guished neighbors of v. Further, all the vertices of cG(v) not belonging to C(v) are 
adjacent to all the distinguished neighbors of v.

Proof If cG(v) is an st-cycle, then by construction C(v) coincides with cG(v) , hence 
C(v) is an st-cycle which contains all the neighbors (and in particular all the distin-
guished neighbors) of v, and there are no vertices of cG(v) not belonging to C(v). In 
the following we hence assume that cG(v) is not an st-cycle.

If v has degree 4, then by construction C(v) consists of two directed paths, namely 
s1vs2t2 and s1t2 , hence it is an st-cycle which contains the only distinguished neigh-
bor (namely s1 ) of v. The only vertex of cG(v) not belonging to C(v), namely t1 , is 
adjacent to s1.

If v has degree 5, then observe that v is neither a source nor a sink of C(v), as 
C(v) contains the directed edges v1v and vs2 ; further, s2 is neither a source nor a sink 
of C(v), as C(v) contains the directed edge vs2 and the directed edge of P3 outgoing 
s2 . Since the underlying graph of C(v) is a cycle with 5 vertices, it follows that C(v) 
has one source and one sink, hence it is an st-cycle. Further, by construction C(v) 
contains v1 , hence it contains all the distinguished neighbors of v. Finally, the only 
vertex of cG(v) not belonging to C(v) is the internal vertex of P2 , which is adjacent to 
v1 .   ◻

Characteristic cycles are used in order to prove the following.
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Lemma 13 Let v be a simple vertex with degree at most 5 in a maximal plane st-
graph G. Let �  be any upward planar drawing of G. There exists an upward planar 
morph ⟨� ,� ′⟩ , where in � ′ each of the distinguished neighbors of v sees the polygon 
representing cG(v).

Proof By Lemma 12 the distinguished neighbors of v belong to C(v). If the polygon 
P representing C(v) in �  is convex, then each distinguished neighbor of v sees P, 
and hence the open straight-line segments connecting v with the vertices of C(v) 
lie in the interior of the polygon representing cG(v) in �  . Again by Lemma 12, the 
vertices of cG(v) that are not in C(v) are adjacent to the distinguished neighbors of 
v, each of which hence sees the polygon representing cG(v) in �  . Then we can just 
define � � ∶= �  ; note that no morph is actually needed in order to obtain the desired 
drawing � ′ from � .

If P is not convex, then we show how an upward planar morph can be exploited 
to transform �  into an upward planar drawing � ′ in which the polygon representing 
C(v) is convex, thus bringing us back to the previous case. Let G◦ be the subgraph 
of G obtained by removing all the vertices and edges in the interior of C(v) and let 
� ◦ be � [G◦] . Observe that only v and its incident edges might be removed from G in 
order to obtain G◦.

We prove that G◦ is 3-connected. Suppose, for a contradiction, that G◦ contains a 
2-cut {a, b} . If v was removed from G in order to obtain G◦ , then {a, b, v} is a 3-cut 
of G. Since G is maximal, any 3-cut induces a separating triangle, i.e., a 3-cycle with 
vertices both on the inside and on the outside. However, since v is simple, it is not 
part of any separating triangle, a contradiction. Assume next that v was not removed 
from G in order to obtain G◦ . If v ∈ {a, b} , then {a, b} is also a 2-cut of G, contra-
dicting the fact that G is maximal (and hence 3-connected). Finally, if v ∉ {a, b} , 
then {a, b, v} is a 3-cut of G, and a contradiction can be derived as in the case in 
which v was removed from G.

Since G◦ is 3-connected and C(v) is an st-cycle (by Lemma 12), we can apply 
Lemma 9 to construct an upward planar drawing � ♢ of G◦ such that C(v) is strictly 
convex in � ♢ and ⟨� ,� ♢⟩ is an upward planar morph.

We obtain our desired upward planar drawing � ′ of G from � ♢ as follows.
If G◦ contains v, then we simply augment � ♢ by drawing the edges that are in G 

but not in G◦ as straight-line segments, thus obtaining � ′ . The convexity of C(v) in 
� ♢ implies that no crossings are introduced because of this augmentation. Further, 
as in the proof of Lemma 9, we have that �  and � ′ have the same y-assignment, 
hence by Lemma 2 they are left-to-right equivalent, and thus by Lemma 4 the linear 
morph ⟨� ,� ′⟩ is upward planar.

If G◦ does not contain v, then we need to determine a placement for v in � ♢ in 
order to obtain � ′ . We insert v in the interior of the convex polygon representing 
C(v) in � ♢ , so that its y-coordinate is the same as in �  . We draw the edges incident 
to v as straight-line segments. This ensures that �  and � ′ have the same y-assign-
ment and hence, as in the previous case, that the linear morph between them is 
upward planar.   ◻
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The following concludes our discussion on maximal plane st-graph.

Theorem 4 Let �0 and �1 be two upward planar straight-line drawings of an n-ver-
tex maximal plane st-graph G. There exists an O(n)-step upward planar morph from 
�0 to �1.

Proof The proof is by induction on n. In the base case we have n = 3 , hence �0 and 
�1 are two triangles. We show that �0 and �1 form an hvh-pair. Denote by u and w 
the source and the sink of G, respectively. Observe that the third vertex of G, call it 
v, is on the same side of the edge uw in �0 and in �1 , as �0 and in �1 have the same 
upward planar embedding; assume that v lies to the right of uw, the other case is 
symmetric. For i = 0, 1, let � ′

i
 be a drawing of G such that the x-coordinate of u and 

w is 0, the x-coordinate of v is 1, and y-coordinate of each vertex is the same as in �i . 
It is easy to see that � ′

0
 and � ′

1
 are upward planar drawings of G and that these draw-

ings, together with �0 and �1 , satisfy Conditions (1)–(3) of the definition of an hvh-
pair. Thus, by Lemma 5, there exists a 3-step upward planar morph from �0 to �1.

Suppose next that n > 3 . By Lemma 10, G contains a simple vertex v of degree at 
most 5. By Lemma 11, v has at least one distinguished neighbor, which we denote 
by u. Assume for the remainder of the proof that u is a predecessor of v, the case in 
which it is a successor of v being symmetric. By Lemma 13, there exists an upward 
planar morph from �0 to an upward planar drawing � v

0
 in which u sees the polygon 

representing cG(v) . Analogously, there exists an upward planar morph from �1 to an 
upward planar drawing � v

1
 in which u sees the polygon representing cG(v).

In order to obtain the morph from � v
0
 to � v

1
 we are going to apply induction. For 

this sake, we define an (n − 1)-vertex maximal plane st-graph G′ , and two upward 
planar drawings � ′

0
 and � ′

1
 of it. The graph G′ is obtained from G by removing v 

and by inserting a directed edge uq for each successor q of v that is not adjacent to 
u in G. These edges are all added inside cG(v) . Note that, by the definition of distin-
guished predecessor, either u is the only predecessor of v, or v has one predecessor p 
different from u, where G contains the directed edge pu. The drawings � ′

0
 and � ′

1
 are 

obtained from � v
0
 and � v

1
 , respectively, by removing v and its incident edges and by 

drawing the edges of G′ not in G as straight-line segments.
For i = 0, 1 , since u sees the polygon representing cG(v) in � v

i
 , we have that � ′

i
 is 

planar. We prove that � ′
i
 is upward. Every successor q of v has a y-coordinate larger 

than the one of v in � V
i

 ; since u has a y-coordinate smaller than the one of v in � v
i
 , 

it follows that the edge from u to q is monotonically increasing in the y-direction in 
� ′
i
 . Since all the edges of G′ that are also in G are drawn as in � v

i
 and since � v

i
 is an 

upward drawing, it follows that � ′
i
 is an upward planar drawing of G′ . Observe that 

G′ is an st-graph; indeed, it suffices to note that the edges that are removed from 
G do not result in any new source or sink in G′ : (1) no successor q of v becomes 
a source in G′ , as a directed edge uq is inserted in G′ if it is not in G; (2) no prede-
cessor p of v different from u, if any, becomes a sink in G′ , as the directed edge pu 
belongs to G; and (3) u does not become a sink in G′ as v has at least one successor 
in G. Finally, note that G′ is maximal, since G is maximal and the edges added to G′ 
triangulate the interior of cG(v) . It follows that G′ is a maximal plane st-graph.
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By induction, there exists an upward planar morph 
M

� = ⟨� �
0
= �0,�1,… ,�k = � �

1
⟩ from � ′

0
 to � ′

1
 , for some positive integer k. In 

the following we transform M′ into an upward planar morph M between two new 
upward planar drawings �0 and �k of G; such drawings coincide with � v

0
 and � v

1
 , 

respectively, when restricted to the vertices and edges of G − v . This will be done by 
inserting v at a suitable point in the drawing of G′ at any time instant of the morph 
M

′ and by drawing the edges incident to v as straight-line segments. We will later 
show that M is actually composed of k linear morphs.2

Let 𝜀 > 0 be a sufficiently small value such that the following properties are satis-
fied throughout M′ : 

(a) for each successor q of v in G, it holds true that y(q) > y(u) + 𝜀;
(b) if v has a predecessor p ≠ u in G, then y(p) < y(u) − 𝜀 ; and
(c) for any segment s of cG(v) not incident to u, the line through s does not intersect 

the disk � with radius � centered at u.

Since M′ is an upward planar morph and since G′ contains edges from u to every 
successor q of v and from every predecessor p of v to u, it follows that such a value 
� exists; in particular, standard continuity arguments, like the ones used in the proof 
of Fáry’s Theorem [21], ensure that Property (c) is satisfied for a sufficiently small 
value 𝜀 > 0.

We distinguish the cases in which v has degree 3 or greater than 3 in G.
If v has degree 3 in G, then let a, b, and c be the neighbors of v in G, where a = u . 

We choose three values �, � , and � , as discussed below, and then place v at the point 
� ⋅ a + � ⋅ b + � ⋅ c at any time instant of M′ (a, b, and c here represent the points at 
which the corresponding vertices are placed at any time instant of M′ ). We choose 
�, � , and � as any positive values such that � + � + � = 1 and such that the point 
� ⋅ a + � ⋅ b + � ⋅ c lies in � throughout M′ . Note that v lies inside the triangle cG(v) 
for any positive values of �, � , and � such that � + � + � = 1 (indeed, the position of 
v is a convex combination of the ones of a, b, and c); further, choosing � sufficiently 
close to 1 ensures that v is at distance at most � from u, and hence lies inside � , 
throughout M′.

Suppose now that v has degree 4 or 5 in G. Since u is a distinguished predecessor 
of v, we have that v has at most two predecessors in G, one of which is u. If v has no 
predecessor other than u, then v has at least three successors in G; let w be a succes-
sor of v not adjacent to u in G. If v has a predecessor p different from u, then v has 
at least two successors in G; let w be the one adjacent to p in G. Note that, in both 
cases, the directed edge uw belongs to G′ but not to G and connects u with a succes-
sor w of v. We compute a value � , as discussed below, and then place v at the point 
� ⋅ u + (1 − �) ⋅ w at any time instant of M′ (u and w here represent the points at 

2 This insertion problem has been studied and solved in [2] for planar morphs of undirected graphs. Here 
we cannot immediately reuse the results in [2], as we need to preserve the upwardness of the drawing 
throughout the morph. However, the property that every drawing of G′ in M′ is upward significantly sim-
plifies the problem of inserting v in M′ so to obtain an upward planar morph of G.
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which the corresponding vertices are placed at any time instant of M′ ). We choose 
� as any positive value smaller than 1 such that the point � ⋅ u + (1 − �) ⋅ w lies in � 
throughout M′ . Note that v is on the straight-line segment representing the edge uw 
for any positive value of � smaller than 1 (indeed, the position of v is a convex com-
bination of the ones of u and w); further, choosing � sufficiently close to 1 ensures 
that v is at distance at most � from u, and hence lies inside � , throughout M′.

In both cases, the choice of � ensures that at any time instant of M the drawing of 
G is upward planar. In particular, Properties (a) and (b), together with the fact that 
every drawing of G′ in M′ is upward, directly ensure that every drawing of G in M 
is upward. Further, Property (c), together with the fact that every drawing of G′ in 
M

′ is planar, ensures that every drawing of G in M is planar. In particular, the open 
straight-line segment between any point of � and any vertex of cG(v) not adjacent 
to u lies in the interior of the polygon representing cG(v) ; hence the directed edges 
from v to its successors cause no crossings throughout M . Further, if v has a prede-
cessor p different from u, the fact that v lies on the straight-line segment connecting 
u with the neighbor of p in G ensures that the open straight-line segment between p 
and v lies in the interior of the polygon representing cG(v) throughout M.

We now prove that M consists of k morphing steps. Assume that the degree of v 
is 3, the discussion for the case in which the degree of v is 4 or 5 being analogous 
and simpler. Denote by �i the drawing of G obtained from �i by placing v at the 
point � ⋅ ai + � ⋅ bi + � ⋅ ci , as discussed above, where by ai , bi , and ci denote the 
positions of the vertices a, b, and c in �i , respectively. Hence, at any time t ∈ [0;1] 
of the linear morph ⟨�i,�i+1⟩ , the position of v is

Hence, the position of v at any time instant of the linear morph ⟨�i,�i+1⟩ is given by 
the convex combination with coefficients � , � , and � of the positions of a, b, and c. 
It follows that the upward planar morph M defined above coincides with the k-step 
morph ⟨�0,�1,… ,�k⟩.

Figure 10 provides a schema for our algorithm.
Finally, denote by f(n) the number of morphing steps of the described algorithm. 

We have f (3) = 3 and f (n) = 4 + f (n − 1) , if n > 3 . Indeed, in the inductive case the 
upward planar morph from �0 to �1 consists of:

(1 − t) ⋅ (� ⋅ ai + � ⋅ bi + � ⋅ ci) + t ⋅ (� ⋅ ai+1 + � ⋅ bi+1 + � ⋅ ci+1)

= �((1 − t) ⋅ ai + t ⋅ ai+1) + �((1 − t) ⋅ bi + t ⋅ bi+1) + �((1 − t) ⋅ ci + t ⋅ ci+1).

Fig. 10  A description of the algorithm for morphing two upward planar straight-line drawings of the 
n-vertex maximal plane st-graph G when n > 3 . Each filled arrow represents a single morphing step, 
while each empty arrow represents the transformation of a drawing of one graph into a drawing of 
another graph
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• a first morphing step from the given drawing �0 to the drawing � v
0
 in which u 

sees the polygon representing cG(v);
• a second morphing step ⟨� v

0
,�0⟩ (note that only v moves during this morphing 

step);
• the morph M = ⟨�0,�1,… ,�k⟩ , whose number k of steps is the same as in 

M
′ , which is the inductively constructed morph of the (n − 1)-vertex maximal 

plane st-graph G′ ; hence k = f (n − 1);
• a second to last morphing step ⟨�k,�

v
1
⟩ , where in � v

1
 the vertex u sees the poly-

gon representing cG(v) (note that only v moves during this morphing step); and
• a final morphing step from the drawing � v

1
 to the given drawing �1.

The recurrence equation for f(n) solves to f (n) = 4n − 9 . This concludes the proof 
of the theorem.   ◻

We finally get the following.

Corollary 1 Let �0 and �1 be two upward planar drawings of an n-vertex plane st-
graph. There exists an O(n)-step upward planar morph from �0 to �1.

Proof The statement follows by Lemma 8 and Theorem 4.   ◻

5  Upward Plane Graphs

In this section we deal with general upward plane graphs. In order to morph two 
upward planar drawings of an upward plane graph G we are going to augment 
the upward planar drawings of G to two upward planar drawings of a (possibly 
reduced) plane st-graph G′ and then to use the results of Sect.  4 for morphing 
the obtained upward planar drawings of G′ . The augmentation process itself uses 
upward planar morphs. In the following we formally describe this strategy.

Let G be an upward plane graph whose underlying graph is biconnected, let 
f be a face of G which is not an st-face, and let u, v, and w be three clockwise 
consecutive switches of f. Further, let v− and v+ be the vertices preceding and suc-
ceeding v in clockwise order along the boundary of f, respectively, and let u− and 
u+ be the vertices preceding and succeeding u in clockwise order along the bound-
ary of f, respectively. We say that [u, v, w] is a pocket for f if ∠(v−, v, v+) = ����� 
and ∠(u−, u, u+) = ����� . The following is well-known.

Lemma 14 (Bertolazzi et al. [10]) Let G be an upward plane graph whose underly-
ing graph is biconnected and let f be a face of G that is not an st-face. Then, there 
exists a pocket [u, v, w] for f.

Next, we give a lemma that shows how to “simplify” a face of an upward plane 
graph that is not an st-graph, by removing one of its pockets.
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Lemma 15 Let G be an n-vertex (reduced) upward plane graph whose underlying 
graph is biconnected, let f be a face of G that is not an st-face, let [u,  v, w] be a 
pocket for f, and let �  be an upward planar drawing of G.

Suppose that an algorithm A ( AR ) exists that constructs an f(r)-step ( fR(r)-step) 
upward planar morph between any two upward planar drawings of an r-vertex 
(reduced) plane st-graph.

Then, there exists an O(f(n))-step (an O(fR(n))-step) upward planar morph from 
�  to an upward planar drawing � ∗ of G in which the open straight-line segment 
between u and w lies inside f and in which u lies below w, if the directed path 
between u and v along the boundary of f is directed from v to u, or u lies above w, 
otherwise.

Proof Suppose that the directed path pvu between u and v along the boundary of f is 
directed from v to u (refer to Fig. 11a); the case in which it is directed from u to v 
can be treated symmetrically.

The proof is structured as follows. First, we show that there exists an upward pla-
nar drawing � ′ of G such that (see Fig. 11b): 

1. the upward planar drawings of two directed paths p′ and p′′ from u to w can be 
inserted in � ′ in the interior of f; and

2. there exists an O(f(n))-step (an O(fR(n))-step) upward planar morph M′ from �  
to � ′.

Second, we show that there exists an upward planar drawing � ∗ of G such that (see 
Fig. 11c): 

3. the open straight-line segment between u and w lies inside f and u lies below w, 
and

(a) (b) (c)

Fig. 11  Illustrations for the proof of Lemma 15. a The upward planar drawing �  of G; in particular, the 
illustration shows the face f whose boundary contains the pocket [u, v, w]. b The upward planar drawing 
� ′ of G (plus the directed paths p′ and p′′ ). c The upward planar drawing � ∗ of G (plus the directed edge 
uw)
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4. there exists an O(f(n))-step (an O(fR(n))-step) upward planar morph M∗ from � ′ 
to � ∗.

The lemma follows from the existence of the drawings � ′ and � ∗ above, since com-
posing M′ with M∗ yields the desired upward planar morph with O(f(n)) steps (with 
O(fR(n)) steps).

The drawing � ′ is constructed in four phases.
In phase 1 we augment �  to an upward planar drawing �1 of an upward plane 

graph G1 . The goal of this phase is to insert in the drawing the part of the path p′ 
from a vertex v′ to w and the part of the path p′′ from a vertex v′′ to w; moreo-
ver, an st-face g incident to v′ , v′′ , and u is also created. Refer to Fig.  12. Let 
pvu = vu1 … uku and pvw = vw1 …whw be the directed paths from v to u and from 
v to w, respectively, that belong to the boundary of f. In order to construct �1 and G1 
we insert, for some sufficiently small 𝜖 > 0 , the following directed paths inside f into 
�  and G: 

(a) a directed path q1 = vv�w�
1
…w�

h
w , where w′

i
 is on the same horizontal line as 

wi , at horizontal distance �∕2 from it, while v′ is above v, at distance �∕2 from 
it, along the bisector of the angle ∠(v−, v, v+);

(b) a directed path q2 = v�v��w��
1
…w��

h
w , where w′′

i
 is on the same horizontal line as 

wi , at horizontal distance � from it, while v′′ is above v and v′ , at distance � from 
v, along the bisector of the angle ∠(v−, v, v+);

(c) a directed path q3 = v��u�
1
… u�

k
u� , where u′

i
 is on the same horizontal line as ui , 

at horizontal distance � from it, while u′ is above u, at distance � from it, along 
the bisector of the angle ∠(u−, u, u+) ; and

(d) a directed edge uu′.

It is easy to see that the resulting drawing �1 has no crossings and that the directed 
paths q1 , q2 , q3 , and uu′ are upwardly drawn inside f, provided that � is small enough. 
Note that there is an st-face g of G1 that is delimited by the directed path composed 
of vv′v′′ and of q3 and by the directed path composed of pvu and of uu′.

In phase 2 we augment �1 to an upward planar drawing �2 of a plane st-graph 
G2 . The goal of this phase is to triangulate every face of G1 different from g. Refer 
to Fig.  13. In order to construct �2 , we insert edges drawn as straight-line seg-
ments into every face of �1 , except for g, until no further edge can be inserted while 

Fig. 12  Construction of the 
drawing � ′ ; only what happens 
to the face f is shown. The draw-
ing �

1
 of G

1
 . The face g is gray
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maintaining planarity; each inserted edge is oriented from the endpoint with the low-
est y-coordinate to the endpoint with the highest y-coordinate in �1 (if the end-points 
of an edge have the same y-coordinate, then we insert two new adjacent vertices, 
slightly above and below the middle point of that edge, and then keep on inserting 
edges). This concludes the construction of the drawing �2 of G2 . Since �1 is upward 
and planar, it follows that �2 is upward and planar as well. Further, G2 is an st-graph 
by Lemma 1, since g is an st-face, as argued above, and since all the faces of G2 dif-
ferent from g are also delimited by st-cycles, as otherwise more edges could have 
been introduced while maintaining the planarity of �2 ; note that every internal face 
of �2 different from g is delimited by an upwardly drawn 3-cycle, while more than 3 
vertices might be incident to the outer face of �2.

In phase 3 we replace each directed edge uv of G2 that does not belong to G (and 
has been inserted in phase 1 or 2) with a directed path (u,wuv, v) and insert wuv at an 
arbitrary internal point of the edge uv in �2 . Clearly, the resulting graph G3 is a plane 
st-graph and it is reduced if G is. Further, the resulting drawing �3 is an upward pla-
nar drawing of G3.

In phase 4 we augment G3 to a plane st-graph G4 by adding two directed edges 
uv′ and uv′′ inside g; this completes the insertion of the paths p′ and p′′ into the 
graph. Observe that G4 is a plane st-graph, by Lemma 1, since the directed edges 
uv′ and uv′′ split g into three st-faces. Further, G4 is reduced if G is. Let p′ be the 
directed path composed of uv′ and of the (subdivided) directed path q1 and let p′′ be 
the directed path composed of uv′ and of the (subdivided) directed path q2 . Observe 
that the st-cycle D of G4 composed of p′ and p′′ does not enclose any vertex of G, 
although it encloses vertices of G4 not in G. We construct an upward planar straight-
line drawing �4 of G4 by means of, e.g., the algorithm by Di Battista and Tamassia 
[19]. Refer to Fig. 14.

Now let � � = �4[G] . Property (1) then follows from the fact that upward planar 
drawings of the directed paths p′ and p′′ from u to w can be inserted in � ′ as they are 
drawn in �4 . Further, since G3 has O(n) vertices, by applying algorithm A ( AR ) we 
can construct an O(f(n))-step (an O(fR(n))-step) upward planar morph M3,4 from �3 
to �4[G3] . Since � = �3[G] and � � = �4[G] , the restriction of M3,4 to the vertices 
and edges of G provides an O(f(n))-step (an O(fR(n))-step) upward planar morph M′ 
from �  to � ′ , which proves Property (2).

The drawing � ∗ is constructed as follows.

Fig. 13  Construction of the 
drawing � ′ ; only what happens 
to the face f is shown. The draw-
ing �

2
 of G

2
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First, we remove from �4 and G4 all the vertices and edges enclosed by D . Let �5 
and G5 be the resulting drawing and the resulting graph, respectively. We have that 
G5 is a plane st-graph by Lemma 1; indeed, the face d of G5 delimited by D is an st-
face, as D is composed of the directed paths p′ and p′′ , and every other face of G5 is 
an st-face since it is also a face of G4 , which is a plane st-graph. Moreover, �5 is an 
upward planar drawing of G5 , given that �4 is an upward planar drawing of G4.

Second, we augment G5 to a plane st-graph G6 by inserting the directed edge uw 
inside d. We construct an upward planar straight-line drawing �6 of G6 by means of, 
e.g., the algorithm by Di Battista and Tamassia [19].

Now let � ∗ = �6[G] . Property (3) then follows from the fact that the directed edge 
uw lies inside f and is upwardly drawn in �6 . Further, since G6 has O(n) vertices, 
by applying algorithm A ( AR ) we can construct an O(f(n))-step (an O(fR(n))-step) 
upward planar morph M5,6 from �5 to �6[G5] . Since � � = �5[G] and � ∗ = �6[G] , 
the restriction of M5,6 to the vertices and edges of G provides an O(f(n))-step (an 
O(fR(n))-step) upward planar morph M∗ from � ′ to � ∗ , which proves Property (4). 
This concludes the proof of the lemma.   ◻

We are now ready to prove the following.

Theorem 5 Let �0 and �1 be two upward planar straight-line drawings of an n-ver-
tex (reduced) upward plane graph G.

Suppose that an algorithm A ( AR ) exists that constructs an f(r)-step (an fR(r)
-step) upward planar morph between any two upward planar straight-line drawings 
of an r-vertex (reduced) plane st-graph.

There exists an O(n ⋅ f (n))-step (an O(n ⋅ fR(n))-step) upward planar morph from 
�0 to �1.

Proof By Lemma 6, we can assume that G is biconnected.
Denote by �(G) the number of switches labeled large in the upward pla-

nar embedding of G. In order to prove the statement, we show that there exists a 
((2𝓁(G) − 3) ⋅ f (n))-step (a ((2𝓁(G) − 3) ⋅ fR(n))-step) upward planar morph from �0 
to �1 , if G is a (reduced) upward plane graph. Since �(G) ∈ O(n) , the statement fol-
lows. The proof is by induction on �(G).

Fig. 14  Construction of the 
drawing � ′ ; only what happens 
to the face f is shown. The draw-
ing �

4
 of G

4
 ; the paths p′ and p′′ 

are thick and red (Color figure 
online)
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In the base case �(G) = 2 and thus G is a (reduced) plane st-graph (the two 
switches labeled large are those incident to the outer face of G). Hence, by apply-
ing algorithm A ( AR ) to �0 and �1 , we obtain an f(n)-step (an fR(n)-step) upward 
planar morph from �0 to �1.

In the inductive case �(G) > 2 . Then there exists a face f of G that is not an st-
face. Thus, by Lemma 14, there exists a pocket [u, v, w] for f. By Lemma 15, we can 
construct upward planar drawings � ′

0
 and � ′

1
 of G in which the open straight-line 

segment between u and w lies inside f and in which u lies below w (assuming that a 
directed path exists in f from v to u, the other case being symmetric), and such that 
there exists an f(n)-step (an fR(n)-step) upward planar morph Mstart from �0 to � ′

0
 

and an f(n)-step (an fR(n)-step) upward planar morph Mfinish from � ′
1
 to �1.

Let G∗ be the plane graph obtained from G by splitting f with a directed edge uw. 
The graph G∗ is an upward plane graph whose upward planar embedding is con-
structed by assigning to each switch in G∗ the same label small or large it has in 
G. Then �(G∗) = �(G) − 1 , since u is not a switch in G∗ . Further, G∗ is reduced if G 
is reduced, since there exists no directed path in G passing first through u and then 
through w, given that u is a sink of G.

Let � ∗
0
 and � ∗

1
 be the upward planar straight-line drawings of G∗ obtained by 

drawing the directed edge uw as a straight-line segment connecting u and w in � ′
0
 

and in � ′
1
 , respectively. By the inductive hypothesis and since V(G∗) = V(G) , we can 

construct a ((2𝓁(G∗) − 3) ⋅ f (n))-step (a ((2𝓁(G∗) − 3) ⋅ fR(n))-step) upward planar 
morph from � ∗

0
 to � ∗

1
 . Observe that, since G ⊂ G∗ , restricting each drawing in M∗ to 

the vertices and edges of G yields a 
(
(2𝓁(G) − 5) ⋅ f (n)

)
-step upward planar morph 

M
− of G from � ′

0
 to � ′

1
 . Therefore, by concatenating morphs Mstart , M

− , and 
Mfinish , we obtain a 

(
(2𝓁(G) − 3) ⋅ f (n)

)
-step (a 

(
(2𝓁(G) − 3) ⋅ fR(n)

)
-step) upward 

planar morph of G from �0 to �1 . This concludes the proof.   ◻

Theorem 2, Corollary 1, and Theorem 5 imply the following main result.

Theorem 6 Let �0 and �1 be two upward planar straight-line drawings of the same 
n-vertex (reduced) upward plane graph. There exists an O(n2)-step (an O(n)-step) 
upward planar morph from �0 to �1.

6  Conclusions and Open Problems

In this paper, we addressed for the first time the problem of morphing upward planar 
straight-line drawings. We proved that an upward planar morph between any two 
upward planar straight-line drawings of the same upward plane graph always exists; 
such a morph consists of a quadratic number of linear morphing steps. The quadratic 
bound can be improved to linear for reduced upward plane graphs and for plane st-
graphs, and to constant for reduced plane st-graphs. It is straight-forward to imple-
ment our algorithms so that they run in polynomial time in the real RAM model 
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of computation, in which arithmetic operations on the reals can be carried out in 
constant time.

Our algorithms assume the (undirected) connectivity of the upward planar graph 
whose drawings have to be morphed. However, we believe that the techniques pre-
sented in [2] in order to deal with disconnected graphs can be applied also to our 
setting with only minor modifications.

Several problems are left open by our research. In our opinion the most interesting 
question is whether an O(1)-step upward planar morph between any two upward pla-
nar drawings of the same maximal plane st-graph exists; note that no o(n) bound is 
indeed known. In case of a positive answer, by Lemma 8 and Theorem 5, an optimal 
O(n)-step upward planar morph would exist between any two upward planar draw-
ings of the same n-vertex upward plane graph. In case of a negative answer, it would 
be interesting to find broad classes of upward plane graphs that admit upward pla-
nar morphs with a sub-linear number of steps. In particular, we ask whether series-
parallel digraphs [9, 15] admit upward planar morphs with O(1) steps. Moreover, for 
visualization purposes, it would be interesting to study upward planar morphs with 
polynomially-bounded resolution. For instance, Barrera-Cruz et al. [7] presented an 
algorithm for constructing morphs with a linear number of steps between any two 
upward planar grid drawings �0 and �1 of n-vertex rooted trees, in which each inter-
mediate grid drawing has linear width and height, where the input size is measured 
by n and by the width and the height of �0 and �1.
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