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Abstract
An input to a conflict-free variant of a classical problem �, called Conflict- Free �,
consists of an instance I of� coupledwith a graph H , called the conflict graph. A solu-
tion toConflict- Free� in (I , H) is a solution to I in�, which is also an independent
set in H . In this paper, we study conflict-free variants of Maximum Matching and
Shortest Path, which we call Conflict- Free Maximum Matching (CF- MM)
and Conflict- Free Shortest Path (CF- SP), respectively. We show that both
CF- MM and CF- SP are W[1]-hard, when parameterized by the solution size. More-
over, W[1]-hardness for CF- MM holds even when the input graph where we want to
find a matching is itself a matching, and W[1]-hardness for CF- SP holds for conflict
graph being a unit-interval graph. Next, we study these problems with restriction on
the conflict graphs. We give FPT algorithms for CF- MM when the conflict graph is
chordal. Also, we give FPT algorithms for bothCF- MM andCF- SP, when the conflict
graph is d-degenerate. Finally, we design FPT algorithms for variants of CF- MM and
CF- SP, where the conflicting conditions are given by a (representable) matroid.
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1 Introduction

In the recent years, conflict-free variant of classical combinatorial optimization prob-
lems have gained attention from the viewpoint of algorithmic complexity. A typical
input to a conflict-free variant of a classical problem�, whichwe callConflict- Free
�, consists of an instance I of � coupled with a graph H , called the conflict graph.
A solution to Conflict- Free � in (I , H) is a solution to I in �, which is also an
independent set in H . Notice that conflict-free version of the problem introduces the
constraint of “impossible pairs” in the solution that we seek for. Such a constraint of
“impossible pairs” in a solution arises, for example, in the context of program testing
and validation [16,23]. Gabow et al. [16] studied the conflict-free version of finding
paths in a graph, which they showed to be NP-complete.

Conflict-free variants of several classical problems such as, Bin Packing [10,18,
20], Knapsack [31,34], Minimum Spanning Tree [5,6], Maximum Matching

[6], Maximum Flow [32,33], Shortest Path [6] and Set Cover [11] have been
studied in the literature from the viewpoint of algorithmic complexity, approximation
algorithms, and heuristics. It is interesting to note that most of these problems are NP-
hard even when their classical counterparts are polynomial time solvable. Recently,
Jain et al. [19] and Agrawal et al. [1,2] initiated the study of conflict-free problems
in the realm of parameterized complexity. In particular, they studied Conflict- Free
F- Deletion problems for various familiesF , of graphs such as, the family of forests,
independent sets, bipartite graphs, interval graphs, etc.

Maximum Matching and Shortest Path are among the classical graph
problems which are of very high theoretical and practical interest. The Maximum

Matching problem takes as input a graph G, and the objective is to compute a
maximum sized subset Y ⊆ E(G) such that no two edges in Y have a common ver-
tex. Maximum Matching is known to be solvable in polynomial time [12,27]. The
Shortest Path problem takes as input a graph G and vertices s and t , and the objec-
tive is to compute a path between s and t in G with the minimum number of vertices.
The Shortest Path problem, together with its variants such as all-pair shortest path,
single-source shortest path, weighted shortest path, etc. are known to be solvable in
polynomial time [3,7].

Darmann et al. [6] (among other problems) studied the conflict-free variants of
Maximum Matching and Shortest Path. They showed that the conflict-free vari-
ant of Maximum Matching is NP-hard even when the conflict graph is a disjoint
union of edges (matching).Moreover, for the conflict-free variant of Shortest Path,
they showed that the problem is APX-hard, even when the conflict graph belongs to
the family of 2-ladders.

In this paper, we study the conflict-free versions of matching and shortest path from
the viewpoint of parameterized complexity. A parameterized problem � is a subset of
�∗ × N, where � is a fixed, finite alphabet. An instance of a parameterized problem
is a pair (I , k), where I is a classical problem instance and k is an integer, which is
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called the parameter. One of the central notions in parameterized complexity is fixed-
parameter tractability, where given an instance (I , k) of a parameterized problem �,
the goal is to design an algorithm that runs in time f (k)nO(1), where, n = |I | and
f (·) is some computable function, whose value depends only on k. An algorithm with
running time as described above, is called an FPT algorithm. A parameterized problem
that admits an FPT algorithm is said to be in FPT. Not every parameterized problem
admits an FPT algorithm, under reasonable complexity-theoretic assumptions. Similar
to the notion of NP-hardness and NP-hard reductions in classical Complexity Theory,
there are notions of W[t]-hardness, where t ∈ N and parameterized reductions in
parameterized complexity. A parameterized problem which is W[t]-hard, for some
t ∈ N is believed not to admit an FPT algorithm. For more details on parameterized
complexity we refer to the books of Downey and Fellows [9], Flum and Grohe [13],
Niedermeier [29], and Cygan et al. [4].
Our ResultsWe study conflict-free (parameterized) variants ofMaximum Match-

ing and Shortest Path, which we call Conflict Free Maximum Matching

(CF-MM, for short) andConflict Free Shortest Path (CF-SP, for short), respec-
tively. These problems are formally defined below.

Conflict Free Maximum Matching (CF-MM) Parameter: k
Input: A graph G = (V , E), a conflict graph H = (E, E ′), and an integer k.
Question: Is there a matching M of size at least k in G, such that M is an inde-
pendent set in H?

Conflict Free Shortest Path (CF-SP) Parameter: k
Input: A graph G = (V , E), a conflict graph H = (E, E ′), two special vertices s
and t , and an integer k.
Question: Is there an st-path P of length at most k in G, such that E(P) is an
independent set in H?

We show that both CF-MM and CF-SP are W[1]-hard, when parameterized by the
solution size. The W[1]-hardness for CF-MM is obtained by giving an appropriate
reduction from Independent Set, which is known to be W[1]-hard, when parame-
terized by the solution size [4,8]. In fact, our W[1]-hardness result for CF-MM holds
even when the graph where we want to compute a matching is itself a matching. We
show the W[1]-hardness of CF-SP by giving an appropriate reduction from a multi-
colored variant of the problem Unit 2-Track Independent Set (which we prove
to be W[1]-hard). We note that Unit 2-Track Independent Set is known to be
W[1]-hard, which is used to establish W[1]-hardness of its multicolored variant. We
note that our W[1]-hardness result of CF-SP holds even when the conflict graph is a
unit interval graph.

Having shown the W[1]-hardness results, we then restrict our attention to having
conflict graphs belonging to some families of graphs, where the Independent Set

problem is either polynomial time solvable or solvable in FPT time. Two of the very
well-known graph families that we consider are the family of chordal graphs and the
family of d-degenerate graphs. For the CF-MM problem, we give an FPT algorithm,
when the conflict graph belongs to the family of chordal graphs. Our algorithm is based
on adynamic programmingover a “structured” tree decomposition of the conflict graph
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(which is chordal) together with “efficient” computation of representative families at
each step of our dynamic programming routine. Notice that we cannot obtain an FPT
algorithm for the CF-SP problem when the conflict graph is a chordal graph. This
holds because unit-interval graphs are chordal, and the problem CF-SP is W[1]-hard,
even when the conflict graph is a unit-interval graph.

For conflict graphs being d-degenerate, we obtain FPT algorithms for both CF-
MM and CF-SP. These algorithms are based on the computation of an independence
covering family, a notion which was recently introduced by Lokshtanov et al. [25].
We note that even for nowhere dense graphs, such an independence covering family
can be computed efficiently [25]. Since our algorithms are based on computation of
independence covering families, hence, our results hold even when the conflict graph
is a nowhere dense graph.

Finally, we study a variant of CF-MM and CF-SP, where instead of conflicting
conditions being imposed by independent sets in a conflict graph, they are imposed
by independence constraints in a (representable) matroid. We give FPT algorithms for
the above variant of both CF-MM and CF-SP.

2 Preliminaries

Sets and functions We denote the set of natural numbers and the set of integers by N

and Z, respectively. By N≥1 we denote the set {x ∈ N | x ≥ 1}. For n ∈ N, by [n]
and [0, n], we denote the sets {1, 2, . . . , n} and {0, 1, 2, . . . , n}, respectively. For a set
U and p ∈ N, a p-family (over U ) is a family of subsets of U of size p. A function
f : X → Y is injective if for each x, y ∈ X , f (x) = f (y) implies x = y. For a
function f : X → Y and a set S ⊆ X , f |S : S → Y is a function such that for
s ∈ S, we have f |S(s) = f (s). We let ω denote the exponent in the running time of
algorithm for matrix multiplication, the current best known bound for it is ω < 2.373
[35].
Graphs Consider a graph G. By V (G) and E(G) we denote the set of vertices and
edges in G, respectively. For X ⊆ V (G), G[X ] denotes the subgraph of G with vertex
set X and edge set {uv ∈ E(G) | u, v ∈ X}. For Y ⊆ E(G), G[Y ] denotes the
subgraph of G with vertex set ∪uv∈Y {u, v} and edge set Y .

Let G be a graph. An independent set in G is a set X ⊆ V (G) such that for every
u, v ∈ X , uv /∈ E(G). A matching in G is a set Y ⊆ E(G) such that no two distinct
edges in Y have a common vertex. A matching M in G is a maximum matching if for
any matching Y in G, |M | ≥ |Y |. A matching M in G saturates a set X ⊆ V (G),
if every vertex in X is an end point of an edge in M . For v1, v� ∈ V (G), a v1v�-
path P = (v1, v2, . . . , v�−1, v�) in G is a sequence of (distinct) vertices, such that
V (P) ⊆ V (G) and for each i ∈ [�−1], we have vivi+1 ∈ E(G). Moreover, the edges
in {vivi+1 | i ∈ [� − 1]} are called edges in P . The length of a path is the number of
edges in it. A shortest uv-path is a uv-path with minimum number of edges.

A chordal graph is a graph with no induced cycles of length at least four. An
interval graph is an intersection graph of line segments (intervals) on the real line,
i.e., its vertex set is a set of intervals, and two vertices are adjacent if and only if
their corresponding intervals intersect. A unit-interval graph is an intersection graph
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of intervals of unit length on the real line. For d ∈ N, a graph is d-degenerate if every
subgraph of it has a vertex of degree at most d. A clique K in G is an (induced)
subgraph, such that for any two distinct vertices u, v ∈ V (K ) we have uv ∈ E(G).
A vertex set S ⊆ V (G) is a clique in G if G[S] is a clique. Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs. If V1 ∩ V2 = ∅, then disjoint union of G1 and G2 is
the graph G = (V1 ∪ V2, E1 ∪ E2). If V1 = V2, then the edge-wise union of G1 and
G2 is the graph G = (V1, E1 ∪ E2).

In the following we state definitions related to tree decomposition and some results
on them, that are used in our algorithms.

Definition 1 A tree decomposition of a graph H is a pair (T , X), where T is a rooted
tree and X = {Xt | t ∈ V (T )}. Every node t of T is assigned a subset Xt ⊆ V (H),
called a bag, such that following conditions are satisfied:

–
⋃

t∈V (T )

Xt = V (H), i.e. each vertex in H is in at least one bag;

– For every edge uv ∈ E(H), there is t ∈ V (T ) such that u, v ∈ Xt ;
– For every vertex v ∈ V (H) the graph T [{t ∈ V (T ) | v ∈ Xt }] is a connected
subtree of T .

To distinguish between vertices of a graph H and vertices of its tree decomposition
(T , X), we refer to the vertices in T as nodes. Since T is a rooted tree, we have a
natural parent-child and ancestor-descendant relationship among nodes in T . For a
node t ∈ V (T ), by desc(t) we denote the set descendant of t in T (including t). For
a node t ∈ V (T ) by Vt we denote the union of all bags in the subtree rooted at t i.e.
Vt = ∪d∈desc(t)Xd and by Ht we denote the graph H [Vt ]. A leaf node of T is a node
with degree exactly one in T , which is different from the root node. All the nodes of
T which are neither the root node nor a leaf node are non-leaf nodes.

We now define a more structured form of tree decomposition that will be used in
the algorithm.

Definition 2 Let (T , X) be a tree decomposition of a graph H with r as the root node.
Then, (T , X) is a nice tree decomposition if for each each leaf � in T and the root r , we
have that X� = Xr = ∅, and each non-leaf node t ∈ V (T ) is of one of the following
types:

1. Introduce node t has exactly one child, say t ′, and Xt = Xt ′ ∪{v}, where v /∈ Xt ′ .
We say that v is introduced at t ;

2. Forget node t has exactly one child, say t ′, and Xt = Xt ′ \ {v}, where v ∈ Xt ′ .
We say that v is forgotten at t ;

3. Join node t has exactly two children, say t1 and t2, and Xt = Xt1 = Xt2 .

Proposition 1 [4,22] Given a tree decomposition (T , X) of a graph H, in polyno-
mial time we can compute a nice tree decomposition (T ′, X ′) of H that has at most
O(k|V (H)|) nodes, where, k is the size of the largest bag in X. Moreover, for each
t ′ ∈ V (T ′), there is t ∈ V (T ) such that X ′

t ′ ⊆ Xt .

A tree decomposition (T , X) of a graph H , where for each t ∈ V (T ), the graph
H [Xt ] is a clique, is called a clique-tree. Next, we state a result regarding computation
of a clique-tree of a chordal graph.
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Proposition 2 [17] Given an n vertex chordal graph H, in polynomial time we can
construct a clique-tree (T , X) of H with O(n) nodes.

Using Proposition 1 and 2 we obtain the following result.

Proposition 3 Given ann vertex chordal graph H, in polynomial timewe can construct
a nice tree decomposition which is also a clique-tree (nice clique-tree), (T , X) of H
with O(n2) nodes.

Matroids and representative sets In the following we state some basic definitions
related to matroids. We refer the reader to [30] for more details. We also state the
definition of representative families and state some results related to them.

Definition 3 A pair M = (U , I), where U is the ground set and I is a family of
subsets of U , is a matroid if the following conditions hold:

– ∅ ∈ I;
– If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I;
– If I1, I2 ∈ I and |I2| < |I1|, then there exists an element x ∈ I1 \ I2, such that

I2 ∪ {x} ∈ I.
An inclusion-wise maximal set in I is called a basis ofM. All bases of a matroid

are of the same size. The size of a basis is called the rank of the matroid. For a matroid
M = (U , I) and sets P, Q ⊆ U , we say that P fits Q if P ∩ Q = ∅ and P ∪ Q ∈ I.

A matroid M = (U , I) is a linear (or representable) matroid if there is a matrix
A over a field F with E as the set of columns, such that: 1) |E | = |U |; 2) there is an
injective function ϕ : U → E , such that X ⊆ U is an independent set in M if and
only if {ϕ(x) | x ∈ X} is a set of linearly independent columns (over F). In the above,
we say that M is representable over F, and A is one of its representation.

In the following, we define some matroids and state results regarding computation
of their representations.

Definition 4 ([4,30]) A matroid M = (U , I) is a partition matroid if the ground set
U is partitioned into sets U1,U2, . . . ,Uk , and for each i ∈ [k], there is an integer ai
associated with Ui . A set S ⊆ U is independent in M if and only if for each i ∈ [k],
|S ∩Ui | ≤ ai .

Proposition 4 [15,26,30] A representation of a partition matroid over Q (the field of
rationals) can be computed in polynomial time.

Definition 5 Let M1 = (U1, I1),M2 = (U2, I2) . . . ,Mt = (Ut , It ) be t matroids
with Ui ∩ Uj = ∅, for all 1 ≤ i �= j ≤ t . The direct sum M1 ⊕ · · · ⊕ Mt ,
of M1,M2, . . . ,Mt is the matroid with ground set U = ∪i∈[t]Ui and X ⊆ U is
independent inM if and only if for each i ∈ [t], X ∩Ui ∈ Ii .
Proposition 5 [26,30]Given matrices A1, A2, . . . , At (over F) representing matroids
M1,M2, . . . ,Mt , respectively, we can compute a representation of their direct sum,
M1 ⊕ · · · ⊕ Mt , in polynomial time.

Next, we state the definition of representative families.
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Definition 6 Let M = (U , I) be a matroid, and A be a p-family of U . We say that
A′ ⊆ A is a q-representative for A if for every set Y ⊆ U of size q, if there is a set
X ∈ A, such that X ∩ Y = ∅ and X ∪ Y ∈ I, then there is a set X ′ ∈ A′ such that
X ′ ∩ Y = ∅ and X ′ ∪ Y ∈ I. If A′ ⊆ A is a q-representative for A then we denote it
by A′ ⊆q

rep A.

In the following, we state some basic propositions regarding q-representative sets,
which will be used later.

Proposition 6 [4,14] If A1 ⊆q
rep A2 and A2 ⊆q

rep A3, then A1 ⊆q
rep A3.

Proposition 7 [4,14] If A1 and A2 are two p-families such that A′
1 ⊆q

rep A1 and
A′

2 ⊆q
rep A2, then A′

1 ∪ A′
2 ⊆q

rep A1 ∪ A2.

Next, we state a result regarding the computation of a q-representative set.

Theorem 1 [4,14]Givenamatrix M (over fieldF) representingamatroidM = (U , I)

of rank k, a p-familyA of independent sets inM, and an integer q such that p+q = k,
there is an algorithm which computes a q-representative family A′ ⊆q

rep A of size at

most
(p+q

p

)
using at most O(|A|((p+q

p

)
pω + (p+q

p

)ω−1))
operations over F.

Let A1 and A2 be two families of sets over U and M = (U , I) be a matroid. We
define their convolution as follows.

A1�A2 = {A1 ∪ A2 | A1 ∈ A1, A2 ∈ A2, A1 ∩ A2 = ∅ and A1 ∪ A2 ∈ I}

Lemma 1 Let M = (U , I) be a matroid, A1 be a p1-family, and A2 be a p2-family.
If A′

1 ⊆k−p1
rep A1 and A′

2 ⊆k−p2
rep A2, then A′

1�A′
2 ⊆k−p1−p2

rep A1�A2.

Proof The proof of this lemma is similar to the proof of Lemma 12.28 in [4]. Let B
be a set of size k − p1 − p2. Suppose there exists a set A1 ∪ A2 ∈ A1�A2 that fits
B. Since, (A1 ∪ A2) ∩ B = ∅, we have |B ∪ A2| = k − p1. This implies that there
exists A′

1 ∈ A′
1 which fits B ∪ A2, i.e., (A′

1 ∪ B ∪ A2) ∈ I and A′
1 ∩ (B ∪ A2) = ∅

which gives |A′
1 ∪ B| = k − p2. This means, there exists A′

2 ∈ A′
2 that fits A′

1 ∪ B,
i.e., (A′

2 ∪ A′
1 ∪ B) ∈ I and A′

2 ∩ (A′
1 ∪ B) = ∅. Since, A′

1 ∩ (B ∪ A2) = ∅
and A′

2 ∩ (A′
1 ∪ B) = ∅, we get (A′

1 ∪ A′
2) ∩ B = ∅. Hence, A′

1 ∪ A′
2 fits B and

(A′
1 ∪ A′

2) ∈ A′
1�A′

2. ��
Next, we give a result regarding computation of convolution (�).

Proposition 8 Let M be a matrix over a field F representing a matroid M = (U , I)

over an n-element ground set, A1 be a p1-family, and A2 be a p2-family, where
p1 + p2 = k. Then A1�A2 can be computed in time O(2knO(1)).

Proof Consider the standard convolution operation, A1 ◦ A2 = {A1 ∪ A2 | A1 ∈
A1, A2 ∈ A2 and A1 ∩ A2 = ∅} defined in [4, Section 12.3.5]. The family A1 ◦ A2
can be computed in O(2kn3) time [4, Exercise 12.12]. Since, A1�A2 = {A1 ∪ A2 |
A1 ∈ A1, A2 ∈ A2, A1∩ A2 = ∅, and A1∪ A2 ∈ I}. Hence, X ∈ A1�A2 if and only
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if X ∈ A1◦A2 and X is a set of linearly independent columns (overF). Testingwhether
a set of vectors is linearly independent over a field can be done in time polynomial
in size of the set (using Gaussian elimination). Therefore, testing if an X ∈ A1 ◦ A2
is linearly independent, can be done in time O(nO(1)). Since |A1 ◦ A2| ≤ |A1||A2|,
familyA1�A2 can be computed inO((2k + |A1||A2|)nO(1)) time. Since, |A1| ≤ 2p1

and |A2| ≤ 2p2 , the running time is bounded by O(2knO(1)). ��
Universal sets and their computation

Definition 7 An (n, k)-universal set is a family F of subsets of [n] such that for any
set S ⊆ [n] of size k, the family {A ∩ S | A ∈ F} contains all 2k subsets of S.

Next, we state a result regarding the computation of a universal set.

Proposition 9 [4,28] For any n, k ≥ 1, we can compute an (n, k)-universal set of size
2kkO(log k) log n in time 2kkO(log k)n log n.

3 W[1]-hardness Results

In this section, we show that Conflict Free Maximum Matching and Conflict
Free Shortest Path are W[1]-hard, when parameterized by the solution size.

3.1 W[1]-hardness ofCF-MM

We show that CF-MM is W[1]-hard, when parameterized by the solution size, even
when the graph where we want to find a matching, is itself a matching (disjoint union
of edges). To prove our result, we give an appropriate reduction from Independent

Set to CF-MM. In the following, we define the problem Independent Set.

Independent Set Parameter: k
Input: A graph G and an integer k.
Question: Is there a set X ⊆ V (G) of size at least k such that X is an independent
set in G?

It is known that Independent Set is W[1]-hard, when parameterized by the size
of an independent set [4,8].

Theorem 2 CF-MM is W [1]-hard, when parameterized by the solution size.

Proof Given an instance (G�, k) of Independent Set, we construct an equivalent
instance (G, H , k) of CF-MM as follows. We first describe the construction of G.
For each v ∈ V (G�), we add an edge vv′ to G. Notice that G is a matching. This
completes the description of G. Next, we move to the construction of H . We have
V (H) = {ev = vv′ | v ∈ V (G�)}. Moreover, for eu, ev ∈ V (H), we add the edge
euev to E(H) if and only if uv ∈ E(G�). We note that H is exactly the same as
G�, with vertices being renamed. This completes the construction of (G, H , k) of
CF-MM. Next, we show that (G�, k) is a yes instance of Independent Set if and
only if (G, H , k) is a yes instance of CF-MM.
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In forward direction, let (G�, k) be a yes instance of Independent Set, and S be
one of its solution. Let S′ = {ev | v ∈ S}. We show that S′ is a solution to CF-MM.
Notice that by construction, S′ is a matching in G, and |S′| = |S| ≥ k. Moreover,
G� is isomorphic to H , with the vertex mapping as ϕ : V (G�) → V (H), where for
v ∈ V (G�), ϕ(v) = ev . Hence, S′ is an independent set in H .

In reverse direction, let (G, H , k) be a yes instance of CF-MM, and S′ be one of
its solution. Let S = {v | ev ∈ S′}. Using an analogous argument as in the forward
direction, we conclude that S is a solution to Independent Set in (G�, k). This
concludes the proof. ��

3.2 W[1]-hardness ofCF-SP

We show that CF-SP is W[1]-hard, when parameterized by the solution size, even
when the conflict graph is a proper interval graph. We refer to this restricted variant of
the problem as Unit Interval CF-SP. To prove our result, we give an appropriate
reduction from a multicolored variant of the problem Unit 2-Track Independent

Set, which we call Unit 2-Track Multicolored IS. In the following, we define
the problemsUnit2-Track Independent Set andUnit 2-Track Multicolored

IS.

Unit 2-Track Independent Set (Unit 2-Track IS) Parameter: k
Input: Two unit-interval graphs G1 = (V , E1) and G2 = (V , E2), and an integer
k.
Question: Is there a set S ⊆ V of size at least k, such that S is an independent set
in both G1 and G2?

Unit 2-Track Multicolored IS (Unit 2-Track MIS)
Parameter: k
Input: Two unit-interval graphs G1 = (V , E1) and G2 = (V , E2), and a partition
V1, V2, . . . , Vk of V .
Question: Is there a set S ⊆ V , such that S is an independent set in both G1 and
G2, and for each i ∈ [k], we have |S ∩ Vi | = 1?

It is known that Unit 2-Track IS is W[1]-hard, when parameterized by the solu-
tion size [21]. We show that the problem Unit 2-Track MIS is W[1]-hard, when
parameterized by the number of sets in the partition. We show this by giving an appro-
priate (Turing) reduction from Unit 2-Track IS. Finally, we give a reduction from
Unit 2-Track MIS to Unit Interval CF-SP, hence obtaining the desired result.

3.3 W[1]-hardness ofUnit 2-Track MIS

We give a (Turing) reduction from Unit 2-Track IS to Unit 2-Track MIS. More-
over, since we want to rule out existence of an FPT algorithm, we spend FPT time to
obtain FPT many instances of Unit 2-Track MIS.

Before proceeding to the reduction from Unit 2-Track IS to Unit 2-Track
MIS, we define the notion of perfect hash family, which will be used in the reduction.
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Definition 8 An (n, k)-perfect hash family F , is a family of functions f : [n] → [k]
such that for every set S ⊆ [n] of size k, there is an f ∈ F , such that f |S is injective.

In the following, we state a result regarding computation of an (n, k)-perfect hash
family.

Theorem 3 [4,28] For any n, k ≥ 1, an (n, k)-perfect hash family of size
ekkO(log k) log n can be constructed in ekkO(log k)n log n time.

Now we are ready to give a (Turing) reduction from Unit 2-Track IS to Unit

2-Track MIS.

Lemma 2 There is a parameterized Turing reduction from Unit 2-Track IS to Unit
2-Track MIS.

Proof Let (G1,G2, k) be an instance ofUnit 2-Track IS, where V (G1) = V (G2) =
[n]. We construct a family C of instances of Unit 2-Track MIS as follows. We
start by computing an (n, k)-perfect hash family F , of size ekkO(log k) log n, in time
ekkO(log k)n log n, using Theorem 3. Now, for each f ∈ F , we construct an instance
I f = (G1,G2, V

f
1 , V f

2 , . . . , V f
k ) ofUnit 2-Track MIS as follows. For i ∈ [k], we

set V f
i = {v ∈ V (G1) | f (v) = i}. Finally, we set C = {I f | f ∈ F}.

We claim that (G1,G2, k) is a yes instance ofUnit 2-Track IS if and only if there
is I f ∈ C such that I f is a yes instance of Unit 2-Track MIS.

In the forward direction, let (G1,G2, k) be a yes instance of Unit 2-Track IS,
and S be one of its solution of size k. Consider f ∈ F such that f |S is injective, which
exists since F is an (n, k)-perfect hash family. By construction of C, we have I f ∈ C.
Moreover, by construction of f , for each i ∈ [k], we have |S ∩ Vi | = 1. Hence, S is a
solution to I f .

In the reverse direction, let I f ∈ C be a yes instance of Unit 2-Track MIS, and
S be one of its solution. Clearly, S is a solution to Unit 2-Track IS in (G1,G2, k)
as I f = (G1,G2, V

f
1 , V f

2 , . . . , V f
k ). This concludes the proof. ��

Theorem 4 Unit 2-Track MIS is W[1]-hard, when parameterized by the solution
size.

Proof Follows from Lemma 2 and W[1]-hardness of Unit 2-Track IS. ��

3.4 W[1]-hardness ofUnit Interval CF-SP

Wegive a parameterized reduction fromUnit 2-Track MIS toUnit Interval CF-
SP. Let (G1,G2, V1, . . . , Vk) be an instance ofUnit 2-Track MIS. We construct an
instance (G ′, H , s, t, k′) of Unit Interval CF-SP as follows. For each v ∈ V (G1),
we add a path on 3 vertices namely, (v1, v2, v3) in G ′. For notational convenience, for
v ∈ V (G1), by e12(v) and e23(v) we denote the edges v1v2 and v2v3, respectively.
Consider i ∈ [k − 1]. For u ∈ Vi and v ∈ Vi+1, we add the edge zuv = u3v1 to
E(G ′) (see Figure 1). Moreover, by Zi , we denote the set {zuv | u ∈ Vi , v ∈ Vi+1}.
We add two new vertices s and t to V (G ′), and add all the edges in Z0 = {sv1 | v ∈

123



Algorithmica (2020) 82:1939–1965 1949

Fig. 1 An illustration of the construction of G′ in W[1]-hardness of Unit Interval CF-SP

V1} and Zk = {v3t | v ∈ Vk} to E(G ′). Next, we move to the construction of H .
Note that H must be a unit-interval graph on the vertex set E(G ′) = (∪i∈[0,k]Zi ) ∪
(∪v∈V (G1){e12(v), e23(v)}). In H , each vertex in ∪i∈[0,k]Zi is an isolated vertex. Let
E12 = {e12(v) | v ∈ V (G1)} and E23 = {e23(v) | v ∈ V (G1)}. For e12(u), e12(v) ∈
E12, we add the edge e12(u)e12(v) to E(H) if and only if uv ∈ E(G1). Similarly,
for e23(u), e23(v) ∈ E23, we add the edge e23(u)e23(v) to E(H) if and only if uv ∈
E(G2). Observe that H [E12] is isomorphic to G1, with bijection φ1 : V (G1) → E12
with φ1(v) = e12(v). Similarly, H [E23] is isomorphic to G2 with bijection φ2 :
V (G2) → E23 with φ2(v) = e23(v). By construction, H is a disjoint union of unit-
interval graphs, and hence is a unit-interval graph. Finally, we set k′ = 3k + 1. This
completes the description of the reduction.

In the following lemma we show that the instance (G1,G2, V1, . . . , Vk) of Unit
2-Track MIS and the instance (G ′, H , s, t, k′) ofUnit Interval CF-SP are equiv-
alent.

Lemma 3 (G1,G2, V1, . . . , Vk) is a yes instance of Unit 2-Track MIS if and only
if (G ′, H , s, t, k′) is a yes instance of Unit Interval CF-SP.

Proof In the forward direction, let (G1,G2, V1, . . . , Vk) be a yes instance of Unit
2-Track MIS, and S = {v1, v2, . . . , vk} be one of its solution, such that vi ∈ Vi .
We claim that P = (s, v11, v

1
2, v

1
3, . . . , v

k
1, v

k
2, v

k
3, t) is a conflict-free path (on 3k + 1

edges) in G ′. By the construction of G ′, it follows that P is a path in G ′. Next, we
show that E(P) is an independent set in H . Let v03 = s and vk+1

1 = t . By construction,
each edge in {vi3vi+1

1 | i ∈ [0, k]} ⊆ ∪[0,k]Zi is an isolated vertex in H . Also, for each
i ∈ [k], we have that {e12(vi ), e23(vi )} is an independent set in H . Next, consider
i, j ∈ [k], where i �= j . By construction e12(vi )e23(v j ), e23(vi )e12(v j ) /∈ E(H).
Moreover, e12(vi )e12(v j ) /∈ E(H) since S in an independent set in G1. Similarly,
e23(vi )e23(v j ) /∈ E(H) as S is an independent set in G2. In the above, we have
considered every pair of edges in E(P), and argued that no two of them are adjacent
to each other in H . Hence, it follows that P is a solution to Unit Interval CF-SP
in (G ′, H , s, t, k′).

In the reverse direction, let P be a solution to Unit Interval CF-SP in
(G ′, H , s, t, k′). By the construction of G ′, the path P must be of the form
(s, v11, v

1
2, v

1
3, . . . , v

k
1, v

k
2, v

k
3, t).We claim that S = {v1, v2, . . . , vk} is an independent

set in both G1 and G2. Suppose not, then there is an edge viv j , i �= j and i, j ∈ [k]
say, in G1 (the case when it is in G2 is symmetric). But then e12(vi )e12(v j ) is an edge
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in H , contradicting that E(P) is an independent set in H . Hence, we have that S is
an independent set both in G1 and G2. Moreover, since P is a path of length at most
3k + 1, it must hold that for each i ∈ [k], we have vi ∈ Vi . Hence, S is a solution to
Unit 2-Track MIS in (G1,G2, V1, . . . , Vk). ��
Theorem 5 Unit Interval CF-SP isW[1]-hard, when parameterized by the solution
size.

Proof Follows from the construction of instance (G ′, H , s, t, k′) of Unit Interval

CF-SP, for the given instance (G1,G2, V1, . . . , Vk)ofUnit 2-Track MIS, Lemma3,
and Theorem 4. ��

4 FPT Algorithm for CF-MMwith Chordal Conflict

In this section, we show that CF-MM is FPT, when the conflict graph belongs to
the family of chordal graphs. We call this restricted version of CF-MM as Chordal
Conflict Matching. Towards designing an algorithm for Chordal Conflict

Matching, we first give an FPT algorithm for a restricted version of Chordal Con-

flict Matching, where we want to compute a matching for a bipartite graph. We
call this variant ofChordal Conflict Matching asChordal Conflict Bipar-

tite Matching (CCBM). We then employ the algorithm forCCBM to design an FPT
algorithm for Chordal Conflict Matching.

4.1 FPT algorithm forCCBM

Wedesign an FPT algorithm for the problemCCBM, where the conflict graph is chordal
and the graph where we want to compute a matching is a bipartite graph. The problem
CCBM is formally defined below.

Chordal Conflict Bipartite Matching (CCBM) Parameter: k
Input:A bipartite graph G = (V , E)with vertex bipartition L, R, a conflict graph
H = (E, E ′), and an integer k.
Question: Is there amatchingM ⊆ E of size k inG, such thatM is an independent
set in H?

The FPT algorithm for CCBM is based on a dynamic programming routine over a
tree decomposition of the conflict graph H and representative sets on the graph G. Let
(G, L, R, H , k) be an instance of CF-MM, where G is a bipartite graph on n vertices,
with vertex bipartition L, R, and H is a chordal graph with V (H) = E(G).

In the following, we construct three matroids ML = (E, IL),MR = (Ec, IR),
andM = (E ∪ Ec, I). MatroidsML andMR are partition matroids and the matroid
M is the direct sum of ML and MR . The ground set of ML is E = E(G). The set
Ec contains a copy of edges in E , i.e., Ec = {ec | e ∈ E}. We create two (disjoint)
sets E and Ec, because M is the direct sum of ML and MR , and we want their
ground sets to be disjoint. Next, we describe the partition E of E into |L| sets and |L|
integers, one for each set in the partition, for the partition matroidML . For u ∈ L , let
Eu = {uv | uv ∈ E}. Notice that for u, v ∈ L , where u �= v, we have Eu ∩ Ev = ∅.
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Moreover, ∪u∈E Eu = E . We let E = {Eu | u ∈ L}, and for each u ∈ L , we set
au = 1. Similarly, we define the partition Ec of Ec with respect to set R. That is, we
let Ec = {Ec

u = {(uv)c | uv ∈ E(G)} | u ∈ R}. Furthermore, for u ∈ R, we let
auc = 1. We define the following notation, which will be used later. For Z ⊆ E , we
let Zc = {ec | e ∈ Z} ⊆ Ec.

In the following proposition, we show a relation between a matching in G and an
independent set in the matroid ML ⊕ MR

Proposition 10 Q ⊆ E(G) is a matching in G with vertex bipartition L and R if and
only if Q ∪ Qc is an independent set in the matroidM = ML ⊕ MR.

Proof In the forward direction, let Q be a matching in the bipartite graphG = (V , E),
where V = L ∪ R. Since, ML = (E, IL) is a partition matroid with partition
E = {Eu | u ∈ L} and au = 1, for each u ∈ L , Q ∩ L is an independent set in ML .
Similarly, Qc ∩ R is an independent inMR . Since,M = ML ⊕MR , it follows that
Q ∪ Qc is an independent set inM.

In the reverse direction, consider Q ⊆ E such that Q ∪ Qc is an independent set
in M. Since, M = ML ⊕ MR , Q is independent in ML and Qc is independent in
MR . Since, Q and Qc both have copies of the same edge, no two edges in Q share
an end point in G. Hence, Q forms a matching in G. ��

To capture the independence property on the conflict graph, we rely on the fact
that a chordal graph admits a nice clique-tree (Proposition 3). This allows us to do
dynamic programming over a nice clique-tree. At each step of our dynamic program-
ming routine, using representative sets, we ensure that we store a family of sets which
are enough to recover (some) independent set inM, if a solution exists.

We now move to the formal description of the algorithm. The algorithm starts by
computing a nice clique-tree (T , X) of H in polynomial time, using Proposition 3.
Let r ∈ V (T ) be the root of the (rooted) tree T . For Xt ∈ X , we let Xt = {∅} ∪ {{v} |
v ∈ Xt }. Recall that for t ∈ V (T ), Ht is the graph H [Vt ], where Vt = ∪d∈desc(t)Xd .

In the following, we state some notations, which will be used in the algorithm. For
each t ∈ V (T ), Y ∈ Xt , and an integer p ∈ [0, k] we define a family P p

t,Y as follows.

P p
t,Y ={Z ∪ Zc | Z ⊆ V (Ht )(⊆ E), |Z | = p, Z ∩ Xt = Y , Z ∪ Zc ∈ I and Ht [Z ]

is edgeless}

For a familyF of subsets of E ∪ Ec,F is called a paired-family if for each F ∈ F ,
there is Z ⊆ E , such that F = Z ∪ Zc.

In the followingdefinition,we state the entries in our dynamic programming routine.

Definition 9 For each t ∈ V (T ), Y ∈ Xt and p ∈ [0, k], we have an entry c[t,Y , p],
which stores a paired-family F(t,Y , p) of subsets of E ∪ Ec of size 2p, such that for
each F = Z ∪ Zc ∈ F , the following conditions are satisfied.

1. |Z | = p;
2. Z ∩ Xt = Y ;
3. Z is a matching in G, i.e., Z and Zc are independent sets in ML and MR ,

respectively;
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4. Z is an independent set in Ht .

Moreover, F �= ∅ if and only if P p
t,Y �= ∅.

Consider t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. Observe that P p
t,Y is a valid candidate

for c[t,Y , p], which also implies that (G, H , k) is a yes instance of CCBM if and
only if c[r ,∅, k] �= ∅. However, we cannot set c[t,Y , p] = P p

t,Y as the size of P p
t,Y

could be exponential in n, and the goal here is to obtain an FPT algorithm. Hence, we
will store a much smaller subfamily (of size at most

(2k
2p

)
) of P p

t,Y in c[t,Y , p], which
will be computed using representative sets. Moreover, as we have a structured form
of a tree decomposition (nice clique-tree) of H , we compute the entries of the table
based on the entries of its children, which will be given by recursive formulae. For leaf
nodes, which form base cases for recursive formulae, we compute all entries directly.

Next, we give (recursive) formulae for the computation of the table entries. Consider
t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. We compute the entry c[t,Y , k] based on the
following cases.
Leaf node t is a leaf node. In this case, we have Xt = ∅, and hence Xt = {∅}. If
p = 0, then P p

t,∅ = {∅}, and P p
t,∅ = ∅, otherwise. Since, P p

t,∅ is a valid candidate for

c[t,Y , p], we set c[t,Y , p] = P p
t,∅. Note that c[t,Y , p] has size at most 1 ≤ (2k

2p

)
,

and we can compute c[t,Y , p] in polynomial time.
Introduce node Suppose t is an introduce node with child t ′ such that Xt = Xt ′ ∪ {e},
where e /∈ Xt ′ . If Y �= ∅ and p < 1, then we set c[t,Y , p] = ∅. Otherwise, we
compute the entry as described below. Before computing the entry c[t,Y , p], we first
compute a set P̃ p

t,Y as follows.

P̃ p
t,Y =

{
c[t ′,Y , p] if Y �= {e};
c[t ′,∅, p − 1]�{{e, ec}} otherwise.

(1)

Next, we compute P̂ p
t,Y ⊆2k−2p

rep P̃ p
t,Y of size

(2k
2p

)
, using Theorem 1. Finally, we set

c[t,Y , p] = P̂ p
t,Y .

CorrectnessTo show the correctness, it is enough to show that c[t,Y , p] ⊆2k−2p
rep P p

t,Y .
If Y �= ∅ and p < 1, then we correctly set c[t,Y , p] = ∅. Hereafter, we assume
that Y �= ∅ then p ≥ 1. If Y �= {e}, then the claim follows from the fact that
c[t,Y , p] = c[t ′,Y , p] and P p

t,Y = P p
t ′,Y . Therefore, we consider the case when

Y = {e}. In this case, we observe the following towards proving the claim.

1. P p
t,Y = P p−1

t ′,∅ �{{e, ec}}.
2. c[t ′,∅, p − 1] ⊆2k−2(p−1)

rep P p−1
t ′,∅ .

From item 1 and 2, and Lemma 1, it follows that c[t ′,∅, p − 1]�{{e, ec}} ⊆2k−2p
rep

P p
t,Y . This together with Proposition 6, and the fact that P̂ p

t,Y ⊆2k−2p
rep c[t ′,∅, p −

1]�{{e, ec}} implies that c[t,Y , p] = P̂ p
t,Y ⊆2k−2p

rep P p
t,Y .
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Forget node Suppose t is a forget node with child t ′ such that Xt = Xt ′ \ {e}, where
e ∈ Xt ′ . Before computing the entry c[t,Y , p], we first compute a set P̃ p

t,Y as follows.

P̃ p
t,Y =

{
c[t ′,Y , p] if Y �= ∅;
c[t ′,∅, p] ∪ c[t ′, {e}, p] otherwise.

(2)

Next, we compute P̂ p
t,Y ⊆2k−2p

rep P̃ p
t,Y of size

(2k
2p

)
, using Theorem 1. Finally, we set

c[t,Y , p] = P̂ p
t,Y .

CorrectnessTo show the correctness, it is enough to show that c[t,Y , p] ⊆2k−2p
rep P p

t,Y .
If Y �= ∅, then the claim follows from the fact that c[t,Y , p] = c[t ′,Y , p], and
P p
t,Y = P p

t ′,Y . Therefore, we consider the case when Y = ∅. In this case, we observe
the following towards proving the claim.

1. c[t ′,∅, p] ⊆2k−2p
rep P p

t ′,∅.
2. c[t ′, {e}, p] ⊆2k−2p

rep P p
t ′,{e}.

3. P p
t,Y = P p

t ′,∅ ∪ P p
t ′,{e}.

From item 1 to 3, and Proposition 7, it follows that c[t ′,∅, p]∪c[t ′, {e}, p] ⊆2k−2p
rep

P p
t,Y . This together with Proposition 6, and the fact that P̂ p

t,Y ⊆2k−2p
rep c[t ′,∅, p] ∪

c[t ′, {e}, p] implies that c[t,Y , p] = P̂ p
t,Y ⊆2k−2p

rep P p
t,Y .

Join node Suppose t is a join node with children t1 and t2, such that Xt = Xt1 = Xt2 .
If Y �= ∅ and p < 1, then we set c[t,Y , p] = ∅. Otherwise, we compute the entry as
described below. Before computing the entry c[t,Y , p], we first compute a set P̃ p

t,Y
as follows.

P̃ p
t,Y =

⎧
⎪⎨

⎪⎩

⋃

i∈[0,p]
(c[t1,∅, i]�c[t2,∅, p − i]) if Y = ∅;

⋃

i∈[p]
(c[t1,Y , i]�c[t2,∅, p − i]) otherwise.

(3)

Next, we compute P̂ p
t,Y ⊆2k−2p

rep P̃ p
t,Y of size

(2k
2p

)
, using Theorem 1. Finally, we set

c[t,Y , p] = P̂ p
t,Y .

CorrectnessTo show the correctness, it is enough to show that c[t,Y , p] ⊆2k−2p
rep P p

t,Y .
If Y �= ∅ and p < 1, then we correctly set c[t,Y , p] = ∅. Hereafter, we assume that
whenever Y �= ∅, we have p ≥ 1. Next, we consider the following cases depending
on whether or not Y = ∅.
– Y = ∅. In this case, we have P p

t,Y = ∪i∈[0,p](P i
t1,∅�P

p−i
t1,∅ ). Moreover, for

i ∈ [0, p], we have that c[t1,∅, i] ⊆2k−2i
rep P i

t1,∅ and c[t2,∅, p − i] ⊆2k−2(p−i)
rep

P p−i
t1,∅ . Above arguments together with Proposition 7 and Lemma 1 implies that

c[t,Y , p] ⊆2k−2p
rep P p

t,Y .

– Y �= ∅. In this case, we start by arguing that P̂ p
t,Y = ∪i∈[p](c[t1,Y , i]�c[t2,∅, p−

i]) ⊆2k−2p
rep P p

t,Y . To this end, consider a set A ∈ P p
t,Y of size 2p and a set
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B ⊆ E ∪ Ec of size 2k − 2p such that A ∪ B ∈ I and A ∩ B = ∅. Observe
that by construction of P p

t,Y , A ⊆ V (Ht ) ∪ (V (Ht ))
c, A ∩ Xt = Y . Let A1 =

A ∩ V (Ht1), A2 = A \ A1, and i∗ = |A1|. Since A ∈ P p
t,Y , and P p

t,Y is a
paired-family, it holds that Ac

1 ∪ Ac
2 ⊆ A. Let B2 = B ∪ A1 ∪ Ac

1, and note

that |B2| = 2k − 2(p − i∗). Moreover, c[t2,∅, p − i∗] ⊆2k−2(p−i∗)
rep P p−i∗

t2,∅ , and

therefore, there is Ã2 ∪ Ãc
2 ∈ c[t2,∅, p − i∗] such that ( Ã2 ∪ Ãc

2) ∪ B2 ∈ I
and ( Ã2 ∪ Ãc

2) ∩ B2 = ∅. Next, consider B1 = B ∪ ( Ã2 ∪ Ãc
2), and note that

|B1| = 2k − 2p + 2(p − i∗) = 2k − 2i∗. Since, c[t1,Y , i∗] ⊆2k−2i∗
rep P i∗

t1,Y
,

therefore, there is Ã1 ∪ Ãc
1 ∈ c[t1, T , i∗] such that B1 ∪ ( Ã1 ∪ Ãc

1) ∈ I and
B1 ∩ ( Ã1 ∪ Ãc

1) = ∅. The above arguments imply that ( Ã1 ∪ Ãc
1)∪ ( Ã2 ∪ Ãc

2) ∈ I
and ( Ã1 ∪ Ãc

1)∩ ( Ã2 ∪ Ãc
2) = ∅. Hence, by definition of the convolution operation

(�), we have ( Ã1 ∪ Ãc
1) ∪ ( Ã2 ∪ Ãc

2) ∈ c[t1,Y , i∗]�c[t2,∅, p − i∗]. Moreover,
B ∪ ( Ã1 ∪ Ãc

1) ∪ ( Ã2 ∪ Ãc
2) ∈ I and B ∩ ( Ã1 ∪ Ãc

1) ∪ ( Ã2 ∪ Ãc
2) = ∅. Therefore,

∪i∈[p](c[t1,Y , i]�c[t2,∅, p − i]) ⊆2k−2p
rep P p

t,Y . This together with Proposition 6

implies that c[t,Y , p] ⊆2k−2p
rep P p

t,Y .

This completes the description of the (recursive) formulae and their correctness for
computing all entries of the table. The correctness of the algorithm follows from the
correctness of the (recursive) formulae, and the fact that (G, H , k) is a yes instance
of CCBM if and only if c[r ,∅, k] �= ∅. Next, we move to the running time analysis of
the algorithm.

Lemma 4 The algorithm presented for CCBM runs in timeO(2O(ωk)nO(1)), where n
is the number of vertices in G.

Proof We do the running time analysis based on time required to compute an entry
c[t,Y , k], for t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. We consider the following cases.
Leaf node For leaf nodes the entries c[t,Y , k] can be computed in polynomial time.
Introduce node The algorithm first computes a family P̃ p

Y ,t from Equation 1, which

takes 22knO(1) time (using Proposition 8). Moreover, |P̃ p
Y ,t | ≤ max{(2k2p

)
,
( 2k
2(p−1)

)}.
The algorithm then computes P̂ p

Y ,t ⊆2k−2p
rep P̃ p

Y ,t using Theorem 1, which takes time

bounded by O(2O(ωk)nO(1)).
Forget node The algorithm first computes a family P̃ p

Y ,t from Equation 1, which takes

at most
(2k
2p

)
time by standard set union operation. Moreover, |P̃ p

Y ,t | ≤ 2
(2k
2p

)
. The

algorithm then computes P̂ p
Y ,t ⊆2k−2p

rep P̃ p
Y ,t . This takes time |P̃ p

Y ,t |
(2k
2p

)ω−1
nO(1) ≤

(2k
2p

)ω
nO(1) ≤ 4ωknO(1). Therefore, the time required to compute an entry at forget

node is at most O(2O(ωk)nO(1)).
Join node The algorithm first computes a family P̃ p

Y ,t from Equation 3, which takes

at most 22knO(1) time by Proposition 8 and standard set union operation. More-
over, |P̃ p

Y ,t | ≤ 2O(ωk). Now the algorithm applies Theorem 1 on P̃ p
Y ,t and computes

P̂ p
Y ,t ⊆2k−2p

rep P̃ p
Y ,t . This takes time bounded by O(2O(ωk)nO(1)). Therefore, the time

required to compute an entry at join node is at most O(2O(ωk)nO(1)).
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The time to compute an entry c[t,Y , k] is at most O(2O(ωk)nO(1)). Moreover, the
number of entries is bounded by |V (T )| · k · n ∈ nO(1). Thus, the running time of the
algorithm is bounded by O(2O(ωk)nO(1)). ��

Due to the correctness of the algorithm presented for CCBM, and Lemma 4, we
obtain the following result.

Theorem 6 CCBM admits an FPT algorithm running in time O(2O(ωk)nO(1)).

4.2 FPT algorithm forChordal Conflict Matching

Wedesign an FPT algorithm forChordal Conflict Matching, using the algorithm
forCCBM (Theorem6). Let (G, H , k) be an instance ofCF-MM, where H is a chordal
graph and G is a graph on n vertices. We assume that G is a graph on vertex set [n],
which can easily be achieved by renaming vertices.

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 9.
For each set A ∈ F , the algorithm constructs an instance IA = (GA, L A, RA, HA, k)
of CCBM as follows. We have V (GA) = V (G), L A = A, R = V (G) \ A, E(GA) =
{uv ∈ E(G) | u ∈ LA, v ∈ RA}, and HA = H [E(GA)]. Note that HA is a chordal
graph because chordal graphs are closed under induced subgraphs and disjoint unions.
The algorithmdecides the instance IA usingTheorem6, for each A ∈ F . The algorithm
outputs yes if and only if there is A ∈ F , such that IA is a yes instance of CCBM. We
next prove the correctness of the algorithm and the running time.

Theorem 7 The algorithm presented for CF-MM is correct, Moreover, it runs in time
2O(ωk)kO(log k)nO(1), where ω < 2.373 is the exponent of matrix multiplication and
n is the number of vertices in the input graph.

Proof Let (G, H , k) be an instance of CF-MM, where H is a chordal graph and G is a
graph on vertex set [n]. Clearly, if the algorithm outputs yes, then indeed (G, H , k) is
a yes instance ofCF-MM. Next, we argue that if (G, H , k) is a yes instance ofCF-MM

then the algorithm returns yes. Suppose there is a solution M ⊆ E(G) to CF-MM

in (G, H , k). Let S = {i, j | i j ∈ M}, and L = {i | there is j ∈ [n] such that i j ∈
M and i < j}. Observe that |S| = 2k. Since F is an (n, 2k)-universal set, there is
A ∈ F such that A ∩ S = L . Note that S is a solution to CCBM in IA. This together
with Theorem 6 implies that the algorithmwill return yes as output. Next, we prove the
claimed running time of the algorithm. The algorithm computes (n, 2k)-universal set
of sizeO(22kkO(log k) log n), in timeO(22kkO(log k) n log n), using Proposition 9. Then
for each A ∈ F , the algorithm creates an instance IA of CCBM in polynomial time.
Furthermore, it resolves the IA of CCBM in time O(2O(ωk)nO(1)) using Theorem 6.
Hence, the running time of the algorithm is bounded by 2O(ωk)kO(log k)nO(1). ��

5 FPT algorithms for CF-MM and CF-SPwithmatroid constraints

In this section, we study the problems CF-MM and CF-SP, where the conflicting
condition is being an independent set in a (representable) matroid. Due to technical
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reasons (which will be clear later) for the above variant of CF-MM, we will only
consider the case when the matroid is repsesentable over Q (the field of rationals).

5.1 FPT algorithm forMatroid CF-MM

We study a variant of the problem CF-MM, where the conflicting condition is being
an independent set in a matroid representable over Q. We call this variant of CF-MM

as Rational Matroid CF-MM (Rat Mat CF-MM, for short), which is formally
defined below.

Rational Matroid CF-MM (Rat Mat CF-MM) Parameter: k
Input:A graph G, a matrix AM (representing a matroidM overQ) with columns
indexed by E(G), and an integer k.
Question: Is there a matching M ⊆ E(G) of size at most k, such that the set of
columns in M are linearly independent (over Q)?

We design an FPT algorithm for Rat Mat CF-MM. Towards designing an algo-
rithm for Rat Mat CF-MM, we first give an FPT algorithm for a restricted version
of Rat Mat CF-MM, where the graph in which we want to compute a matching
is a bipartite graph. We call this variant of Rat Mat CF-MM as Rat Mat CF-
Bipartite Matching (Rat Mat CF-BM). We then employ the algorithm for Rat
Mat CF-BM to design an FPT algorithm for Rat Mat CF-MM.

5.1.1 FPT algorithm forRat Mat CF-BM

We design an FPT algorithm for the problemRat Mat CF-BM, where the conflicting
condition is being an independent set in amatroid (representable overQ) and the graph
where we want to compute a matching is a bipartite graph. This problem is formally
defined below.

Rat Mat CF-Bipartite Matching (Rat Mat CF-BM)
Parameter: k
Input: A bipartite graph G = (V , E) with vertex bipartition L, R, a matrix AM
(representing a matroidM over Q) with columns indexed by E , and an integer k.
Question: Is there a matching M ⊆ E of size k in G, such that the set of columns
in M are linearly independent (over Q)?

Our algorithm takes an instance of Rat Mat CF-BM and generates an instance of
3-Matroid Intersection, and then employs the known algorithm for 3-Matroid

Intersection to resolve the instance. In the following,we formally define the problem
3-Matroid Intersection.

3-Matroid Intersection Parameter: k
Input: Matrices AM1 , AM2 , and AM3 over F (representing matroids M1,M2,
andM3, respectively, on the same ground set E) with columns indexed by E , and
an integer k.
Question: Is there a set M ⊆ E of size k, such that M is independent in eachMi ,
for i ∈ [3]?
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Before moving further, we briefly explain why we needed an additional constraint
that the inputmatrix is representable overQ. Firstly,wewill be using partitionmatroids
which are representable only on fields of large enough size, and we want all the
matroids, i.e. the one which is part of the input and the ones that we create, to be
representable over the same field. Secondly, the algorithmic result (with the desired
running time) we use for 3-Matroid Intersection works only for certain types of
fields.

Next, we state an algorithmic result regarding 3-Matroid Intersection [24],
which is be used by the algorithm. We note that we only state a restricted form of
the algorithmic result for 3-Matroid Intersection in [24], which is enough for our
purpose.

Proposition 11 (Proposition 4.8 [24] (partial)) 3-Matroid Intersection can be
solved in O(23ωk‖AM‖O(1)) time, when the matroids are represented over Q.

We are now ready to prove the desired result.

Theorem 8 Rat Mat CF-BM can be solved in O(23ωk‖AM‖O(1)) time.

Proof Let (G = (V , E), L, R, AM, k) be an instance of Rat Mat CF-BM, where
thematrix AM represents amatroidM = (E, I) overQ. LetML = (E, IL),MR =
(E, IR) be the partition matroids as defined in Sect. 4. Next we compute matrix repre-
sentations AML and AMR of matroids ML ,MR , respectively, using Proposition 4.
Now, we solve 3-Matroid Intersection on the instance (M, AML , AMR , k) (over
Q) using Proposition 11, and return the same answer, as returned by the algorithm in
it. The correctness follows directly from the following. S ⊆ E is a matching in G if
and only if S is an independent set inML andMR , that is S ∈ IL ∩ IR . The claimed
running time follows from Proposition 4 and Proposition 11. ��

5.1.2 FPT algorithm forRat Mat CF-MM

We design an FPT algorithm for Rat Mat CF-MM, using the algorithm for Rat
Mat CF-BM (Theorem 6). Let (G, AM, k) be an instance of Rat Mat CF-MM,
where the matrix AM represents a matroid M = (E, I) over Q. We assume that G
is a graph with the vertex set [n], which can easily be achieved by renaming vertices.

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 9.
For each set X ∈ F , the algorithm constructs an instance IX = (GX , LX , RX , AM, k)
ofRat Mat CF-BM as follows.We have V (GX ) = V (G), LX = X , R = V (G)\X ,
E(GX ) = {uv ∈ E(G) | u ∈ LX , v ∈ RX }. The algorithm decides the instance IX
using Theorem 8, for each X ∈ F . The algorithm outputs yes if and only if there
is X ∈ F , such that IX is a yes instance of Rat Mat CF-BM. We next prove the
correctness of the algorithm and the running time.

Theorem 9 The algorithm presented for Rat Mat CF-MM is correct. Moreover, it
runs in time O(2(3ω+2)kkO(log k)‖AM‖O(1)nO(1)).

Proof Let (G, AM, k) be an instance of Rat Mat CF-MM, where matrix AM
represent a matroid M = (E, I) over field F. Clearly, if the algorithm outputs yes,
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then indeed (G, AM, k) is a yes instance of Rat Mat CF-MM. Next, we argue that
if (G, AM, k) is a yes instance of Rat Mat CF-MM then the algorithm returns yes.
Suppose there is a solution M ⊆ E(G) to Rat Mat CF-MM in (G, AM, k). Let
S = {i, j | i j ∈ M}, and L = {i | there is j ∈ [n] such that i j ∈ M and i < j}.
Observe that |S| = 2k. Since F is an (n, 2k)-universal set, there is X ∈ F such that
X ∩ S = L . Note that S is a solution to Rat Mat CF-BM in IX . This together with
Theorem 8 implies that the algorithm will return yes as the output. Next, we prove
the claimed running time of the algorithm. The algorithm computes (n, 2k)-universal
set of size O(22kkO(log k) log n), in time O(22kkO(log k) n log n), using Proposition 9.
Then for each X ∈ F , the algorithm creates an instance IX of Rat Mat CF-BM
in polynomial time. Furthermore, it resolves the IX of Rat Mat CF-BM in time
O(23ωk‖AM‖O(1)) using Theorem 8. Hence, the running time of the algorithm is
bounded by O(2(3ω+2)kkO(log k)‖AM‖O(1)nO(1)). ��

5.2 FPT algorithm forMatroid CF-SP

In this section, we design an FPT algorithm for Matroid CF-SP. In the following,
we formally define the problem Matroid CF-SP.

Matroid CF-SP Parameter: k
Input: A graph G, (distinct) vertices s, t ∈ V (G), a matrix AM (representing a
matroidM, over a field F) with columns indexed by E(G), and an integer k.
Question: Is there a set M ⊆ E(G) of size at most k, such that there is an st-path
in G[M] and the set of columns in M are linearly independent (over F)?

Our algorithm is based on a dynamic programming over representative families. Let
(G, s, t, AM, k) be an instance ofMatroid CF-SP. Beforemoving to the description
of the algorithm, we need to define some notations.

For distinct vertices u, v ∈ V (G) and an integer p, we define the following.

P p
uv ={X ⊆ E(G) | |X | = p, there is a uv-path in G[X ] containing all edges

in X , andX ∈ I} (4)

By the definition of convolution of sets, it is easy to see that

P p
uv =

⋃

wv∈E(G)

P p−1
uw �{{wv}}

Now we are ready to describe our algorithm Alg-Mat-CF-SP forMatroid CF-SP.
We aim to store, for each v ∈ V (G) \ {s}, p ≤ k, and q ≤ k − p, a q-representative
set P̂ pq

sv , of P p
sv , of size

(p+q
q

)
. Notice that for each v ∈ V (G) \ {s}, we can compute

P1
sv in polynomial time, since P1

sv = {sv} if sv ∈ E(G), and is empty otherwise.

Moreover, since |P1
sv| ≤ 1, therefore, we can set P̂1q

sv = P1
sv , for each q ≤ k − 1.

Next, we iteratively compute, for each p ∈ {2, 3, . . . , k}, in increasing order, for each
q ≤ k − p, a q-representative P̂ pq

sv , of P p
sv . The algorithm Alg-Mat-CF-SP is given in

Algorithm 1.
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Algorithm 1: Alg-Mat-CF-SP
Input: A graph G, (distinct) vertices s, t ∈ V (G), a matrix AM (over F), and an integer k.
Output: If there is M ⊆ E(G) of size at most k, such that there is an s − t path in G[M] and the set

of columns in M are linearly independent (over F) then yes. Otherwise, no.
1 for each v ∈ V (G) \ {s} do
2 if sv ∈ E(G) then P1

sv = {sv} else P1
sv = ∅ for q = 0 to k − 1 do

3 Set P̂1q
sv = P1

sv ;
4 end
5 end
6 for p = 2 to k do
7 for q = 0 to k − p do
8 for each v ∈ V (G) \ {s} do
9 Let P̃ pq

sv = ∪wv∈E(G)P̂(p−1)(q+1)
sw �{{wv}};

10 Compute P̂ pq
sv ⊆k−p

rep P̃ pq
sv using Theorem 1;

11 end
12 end
13 end
14 for p = 1 to k do
15 for q = 0 to k − p do
16 if P̂ pq

st �= ∅ then
17 return yes;
18

19 end
20 end
21 return no;

Next, we prove a lemma which will be useful in establishing the correctness of
Alg-Mat-CF-SP.

Lemma 5 For each p ∈ [k], q ∈ [0, k − p], and v ∈ V (G) \ {s}, the family P̂ pq
sv

computed by Alg-Mat-CF-SP is a q-representative of P p
sv , and is of size at most

(p+q
q

)
.

Moreover, the algorithm computes all sets in {P̂ pq
sv | p ∈ [k], q ∈ [0, k − p], v ∈

V (G) \ {s}} in time O(2O(ωk)nO(1)).

Proof We prove the claim by induction on p. Consider v ∈ V (G) \ {s}. For p = 1,
the set P1

sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, for each q ∈
[0, k − 1], Alg-Mat-CF-SP sets P̂1q

sv = P1
sv . Hence, for each q ∈ [0, k − 1], we have

P̂1q
sv ⊆q

rep P1
sv . Moreover, the set P̂1q

sv is computed by the algorithm in polynomial
time.

For induction hypothesis, we assume that for t ∈ N≥1, for each p ≤ t , q ∈
[0, k − p], and v ∈ V (G) \ {s}, we have P̂ pq

sv ⊆q
rep P p

sv . Next, consider p = t + 1,
q ∈ [0, k− (t +1)], and v ∈ V (G)\ {s}. The step of the algorithm, where it computes
P̂(t+1)q
sv , it has already computed (correctly), for each p ≤ t , q ∈ [0, k − p], and

u ∈ V (G)\{s}, the set P̂ pq
su ⊆q

rep P p
su . This follows from the iteration of the algorithm

over p from 1 to k in increasing order at Step 6 (and Step 1). The algorithm sets
P̃(t+1)q
sv = ∪wv∈E(G)P̂(t)(q+1)

sw �{{wv}}, and then sets P̂(t+1)q
sv to be theq-representative

set of P̃(t+1)q
sv returned by Theorem 1, which is of size at most

(t+1+q
t+1

)
. If we show
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that P̃(t+1)q
sv ⊆q

rep P t+1
sv , then by Proposition 6 it will follow that P̂(t+1)q

sv ⊆q
rep P t+1

sv .

But P̃(t+1)q
sv ⊆q

rep P t+1
sv follows from Lemma 1 and Proposition 7. Also, note that each

entry can be computed in time O(2O(ωk)nO(1)). ��
Using Lemma 5, we obtain the following theorem.

Theorem 10 The algorithm Alg-Mat-CF-SP is correct. Moreover, it runs in time
O(2O(ωk)nO(1)).

Proof Let (G, s, t, AM, k) be an instance of Matroid CF-SP. We claim that
(G, s, t, AM, k) is a yes instance of Matroid CF-SP if and only if Alg-Mat-CF-SP
outputs yes. In the forward direction, let (G, s, t, AM, k)be a yes instance ofMatroid

CF-SP. Since, using Lemma 5, Alg-Mat-CF-SP computes a q-representative of P p
sv of

size at most
(p+q

q

)
, for each p ∈ [k], q ∈ [0, k − p], and v ∈ V (G) \ {s}, therefore,

the algorithm also computes a q-representative family for Pk
st . By the definition of

representative set and construction of our family Pk
st , P̂k

st also contains a s − t path
and hence, the algorithm outputs yes. In the reverse direction, if the algorithm outputs
yes then by construction of family P̂k

st , if P ∈ P̂k
st , then it is a conflict-free s − t path

in G. This completes the correctness of our algorithm. Moreover, the running time
bound of the algorithm follows from Lemma 5. ��

Theorem 10 will also result into an FPT algorithm for CF-SP when the conflict
graph is a cluster graph.

Corollary 1 Conflict Free Shortest Path parameterized by the solution size is
FPT, when the conflict graph is a cluster graph.

Proof Let (G, H , k) be an instance ofCF-SP, where H is a cluster graph.We construct
a partition matroid, MH = (U , I), corresponding to graph H as follows. We define
ground set as U = V (H). Now, partition U as Ui = V (Ci ), for each clique Ci in H
and ai = 1, for Ui ∈ U . By the construction of MH , we have for S ⊆ V (H), S is
an independent set in H if and only if S is independent in MH . Next, we compute
a matrix M representing MH , using Proposition 4 in polynomial time. Now we use
Alg-Mat-CF-SP with input (G, M, k), and return the same output. The correctness of
our algorithm follows from correctness of the algorithmAlg-Mat-CF-SP (Theorem 10),
and by construction of the instance (G, M, k). Note that the matrix M representing
MH can be computed in polynomial time. This together with Theorem 10 implies the
claimed running time bound, This concludes the proof. ��

6 FPT Algorithm for d-degenerate Conflict Graphs

In this section, we show that CF-MM and CF-SP both are in FPT, when the con-
flict graph H is a d-degenerate graphs. These algorithms are based on the notion of
independence covering family, which was introduced in [25].

Before moving onto description of our algorithms, we define the notion of inde-
pendence covering family.
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Algorithm 2: Alg-CF-MM (Alg-CF-SP)
Input: A graph G,((distinct) vertices s, t ∈ V (G)), a conflict graph H , an integer k, and a

k-independence covering family F of H .
Output: If there a set M ⊆ E of size k in G such that M is a matching in G (there is an s − t path in

G[M]) and M is an independent set in H , then yes, and no otherwise.
1 for each I ∈ F do
2 Let GI be the graph with V (GI ) = V (G) and E(GI ) = I ;
3 if GI has a matching (path) of size k then
4 return yes;
5

6 end
7 return no ;

Definition 10 ([25]) For a graph H � and an integer k, a k-independence covering
family,I (H �, k), is a family of independent sets in H � such that for any independent
set I ′ in H � of size at most k, there is a set I ∈ I (H �, k) such that I ′ ⊆ I .

Our algorithms rely on the construction of k-independence covering family, for a
family of graphs. But before dwelling into these details, we first design an algorithm
for an annotated version of the CF-MM and CF-SP problems, which we call Anno-
tated CF-MM and Annotated CF-SP, respectively. In the Annotated CF-MM

(Annotated CF-SP) problem, the input to CF-MM (CF-SP) is annotated with a
k-independence covering family.

6.1 Algorithms forAnnotated CF-MM andAnnotated CF-SP

In this section, we study the problemsAnnotated CF-MM andAnnotated CF-SP,
which are formally defined below.

Annotated CF-MM Parameter: k + |F |
Input: A graph G = (V , E), a conflict graph H = (E, E ′), an integer k, and a
k-independence covering family F of H .
Question: Is there a matching M ⊆ E of size k inG such that M is an independent
set in H?

Annotated CF-SP Parameter: k + |F |
Input: A graph G = (V , E), (distinct) vertices s, t ∈ V , a conflict graph H =
(E, E ′), an integer k, and a k-independence covering family F of H .
Question: Is there a set M ⊆ E of size at most k, such that there is an s − t path
in G[M] and M is an independent set in H?

The algorithm that we design for Annotated CF-MM runs in time polynomial
in the size of the input. We give the algorithm Alg-CF-MM (Alg-CF-SP) (Algorithm 2)
for Annotated CF-MM (Annotated CF-SP).

In the following lemma we prove the correctness of Alg-CF-MM (Alg-CF-SP).

Lemma 6 The algorithm Alg-CF-MM (Alg-CF-SP) is correct. Moreover, the algorithm
runs in time polynomial in the size of the input.
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Proof Let (G, (s, t), H , k,F) be an instance of Annotated CF-MM (Annotated
CF-SP). We show that (G, (s, t), H , k,F) is a yes instance of Annotated CF-MM

(Annotated CF-SP) if and only if Alg-CF-MM (Alg-CF-SP) outputs yes.
Note that the reverse direction easily follows from the fact that F is a family of

independent sets in H . Therefore, we only need to prove the forward direction. In
the forward direction, let (G, (s, t), H , k,F) be a yes instance of Annotated CF-
MM (Annotated CF-SP) and S be one of its solution. Since F is a k-independence
covering family, there is I ∈ F such that S ⊆ I (see Definition 10). Hence, in the
iteration where the algorithm considers I in its for loop, the graph GI has S as a
matching (there is an s− t path in GI [S]). Therefore, the algorithm outputs yes at this
iteration.

The running time analysis follows from the fact that maximum matching (shortest
path) can be computed in polynomial time [12,27]([3,7]). ��

Next,weuseAlg-CF-MM(Alg-CF-SP) togetherwith IndependenceCoveringLemma
of [25] to obtain algorithms for CF-MM (CF-SP) when the conflict graph is d-
degenerate or nowhere dense graph. Towards this we state some lemmata from [25]
that we use in our algorithms.

Proposition 12 [25, Lemma 1.1] There is a randomized algorithm running in poly-
nomial time, that given a d-degenerate graph H � and an integer k as input, outputs
an independent set I , such that for every independent set I ′ of size at most k in graph
H �, the probability that I ′ ⊆ I is at least (

(k(d+1)
k

) · k(d + 1))−1.

Proposition 13 [25, Lemmas 3.2 and 3.3] There are two deterministic algorithmsA1
andA2, which given a d-degenerate graph H � and an integer k, output independence
covering families I1(H �, k) and I2(H �, k), respectively, such that the following
conditions are satisfied.

– A1 runs in time O(|I1(H �, k)| · (n + m)), where |I1(H �, k)| = (k(d+1)
k

) ·
2o(k(d+1)) · log n.

– A2 runs in timeO(|I2(H �, k)|·(n+m)), where |I2(H �, k)| = (k2(d+1)2

k

)·(k(d+
1))O(1) · log n.
Next, using Proposition 12 and 13, togetherwithAlg-CF-MM (Alg-CF-SP), we obtain

randomized and deterministic algorithms, respectively forCF-MM (CF-SP), when the
conflict graph is a d-degenerate graph.

Theorem 11 There is a randomized algorithm, which given an instance (G, H , k) of
CF-MM(CF-SP), where H is a d-degenerate graph, in time

(k(d+1)
k

) · k(d +1) ·nO(1),
either reports a failure or correctly outputs that the input is a yes instance of CF-
MM(CF-SP). Moreover, if the input is a yes instance of CF-MM(CF-SP), then the
algorithm outputs correct answer with a constant probability.

Proof Let (G, (s, t), H , k)be an instanceCF-MM (CF-SP),where H is ad-degenerate
graph.

We repeat the following procedure (
(k(1+d)

k

) · k(d + 1)) many times.

1. The algorithm computes an independent set I in (H , k) using Proposition 12.
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2. The algorithm calls Alg-CF-MM (Alg-CF-SP) with input (G, (s, t)H , k, {I }).
The algorithm outputs yes, if in one of the calls to Alg-CF-MM (Alg-CF-SP), it

receives a yes. Otherwise, the algorithm outputs no. The running time analysis of
the above procedure follows from Proposition 12 and Lemma 6. Also, given a yes
instance, the guarantee on success probability follows fromProposition 12, the number
of repetitions, and Lemma 6. Moreover, from Lemma 6 the yes output returned by the
algorithm is indeed the correct output to CF-MM(CF-SP)for the given instance. This
concludes the proof. ��

Theorem 12 CF-MM (CF-SP) admits a deterministic algorithm running in time min
{(k(d+1)

k

) ·2o(k(d+1)) · log n,
(k2(d+1)2

k

) ·(k(d+1))O(1) · log n} ·nO(1), when the conflict
graph is a d-degenerate graph.

Proof Let (G, (s, t), H , k)be an instanceCF-MM (CF-SP),where H is ad-degenerate
graph. The algorithm starts by computing a k-independence covering familyI (H , k)
of H , using Proposition 13. Next, we call Alg-CF-MM (Alg-CF-SP) with the input
(G, (s, t), H , k, I (H , k)). The correctness and running time analysis of the above
procedure follows from Proposition 13 and Lemma 6. This completes the proof. ��

7 Conclusion

We studied conflict-free (parameterized) variants ofMaximum Matching (CF-MM)
and Shortest Path (CF-SP). We showed that both CF-MM and CF-SP are W[1]-
hard, when parameterized by the solution size. In fact, our W[1]-hardness result for
CF-MM holds even when the graph where we want to compute a matching is itself
a matching and W[1]-hardness result of CF-SP holds even when the conflict graph
is a unit interval graph. Then, we restricted our attention to having conflict graphs
belonging to some families of graphs, where the Independent Set problem is either
polynomial time solvable or solvable in FPT time. In particular, we considered the
family of chordal graphs and the family of d-degenerate graphs. For the CF-MM

problem, we gave an FPT algorithm, when the conflict graph belongs to the family of
chordal graphs. We observed that, we cannot obtain an FPT algorithm for the CF-SP
problem when the conflict graph is a chordal graph. This holds because unit-interval
graphs are chordal, and the problem CF-SP is W[1]-hard, even when the conflict
graph is a unit-interval graph. For conflict graphs being d-degenerate, we obtained
FPT algorithms for both CF-MM and CF-SP. Our results hold even when the conflict
graph is a nowhere dense graph. Finally, we studied a variant of CF-MM and CF-SP,
where instead of conflicting conditions being imposed by independent sets in a conflict
graph, they are imposed by independence constraints in a (representable) matroid. We
gave FPT algorithms for the above variant of both CF-MM and CF-SP.

An interesting question is to obtain (parameterized) dichotomy results for CF-MM

and CF-SP, based on the families of graphs where the input graphs belong to. Another
direction could be studying kernelization complexity for different families of graphs,
and also to see what all FPT problems remain FPT with the conflicting constraints.
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