
Vol.:(0123456789)

Algorithmica (2020) 82:2243–2266
https://doi.org/10.1007/s00453-020-00674-x

1 3

On the Distance Identifying Set Meta‑problem 
and Applications to the Complexity of Identifying Problems 
on Graphs

Florian Barbero1 · Lucas Isenmann1   · Jocelyn Thiebaut1

Received: 1 December 2018 / Accepted: 8 January 2020 / Published online: 27 January 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Numerous problems consisting in identifying vertices in graphs using distances are 
useful in domains such as network verification and graph isomorphism. Unifying 
them into a meta-problem may be of main interest. We introduce here a promis-
ing solution named Distance Identifying Set. The model contains Identifying Code 
(IC), Locating Dominating Set (LD) and their generalizations r-IC and r-LD where 
the closed neighborhood is considered up to distance r. It also contains Metric 
Dimension (MD) and its refinement r-MD in which the distance between two ver-
tices is considered as infinite if the real distance exceeds r. Note that while IC = 
1-IC and LD = 1-LD, we have MD = ∞-MD; we say that MD is not local. In this 
article, we prove computational lower bounds for several problems included in Dis-
tance Identifying Set by providing generic reductions from (Planar) Hitting Set 
to the meta-problem. We focus on two families of problems from the meta-problem: 
the first one, called local, contains r-IC, r-LD and r-MD for each positive integer r 
while the second one, called 1-layered, contains LD, MD and r-MD for each posi-
tive integer r. We have: (1) the 1-layered problems are NP-hard even in bipartite 
apex graphs, (2) the local problems are NP-hard even in bipartite planar graphs, 
(3) assuming ETH, all these problems cannot be solved in 2o(

√

n) when restricted 
to bipartite planar or apex graph, respectively, and they cannot be solved in 2o(n) 
on bipartite graphs, and (4) except if �[0] = �[2] , they do not admit parameter-
ized algorithms in 2O(k)

⋅ n
O(1) even when restricted to bipartite graphs. Here k is the 

solution size of a relevant identifying set. In particular, Metric Dimension cannot be 
solved in 2o(n) under ETH, answering a question of Hartung and Nichterlein (Pro-
ceedings of the 28th conference on computational complexity, CCC, 2013).

Keywords  Identifying code · Resolving set · Metric dimension · Distance 
identifying set · Parameterized complexity · W-hierarchy · Meta-problem · Hitting 
set

 *	 Lucas Isenmann 
	 lucas.isenmann@lirmm.fr

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1460-269X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00674-x&domain=pdf


2244	 Algorithmica (2020) 82:2243–2266

1 3

1 � Introduction and Corresponding Works

Problems consisting in identifying each element of a combinatorial structure with 
a hopefully small number of elements have been widely investigated. Here, we 
study a meta identification problem which generalizes three of the most well-
known identification problems in graphs, namely Identifying Code (IC), Locat-
ing Dominating Set (LD) and Metric Dimension (MD). These problems are used 
in network verification [3, 4], fault-detection in networks [24, 30], graph isomor-
phism [2] or logical definability of graphs [25]. The versions of these problems in 
hypergraphs have been studied under different names in [6–8].

Given a graph G with vertex set V, the classical identifying sets are defined as 
follows:

•	 IC: Introduced by Karposky et al. [24], a set C of vertices of G is said to be an 
identifying code if none of the sets N[v] ∩ C are empty, for v ∈ V  and they are 
all distinct.

•	 LD: Introduced by Slater [27, 28], a set C of vertices of G is said to be a locat-
ing-dominating set if none of the sets N[v] ∩ C are empty, for v ∈ V ⧵ C and 
they are all distinct. When not considering the dominating property ( N[v] ∩ C 
may be empty), these sets have been studied in  [2] as distinguing sets and 
in [25] as sieves.

•	 MD: Introduced independently by Harary et al. [18] and Slater [26], a set C of 
vertices of G is said to be a resolving set if C contains one vertex from each 
connected component of G and, for every distinct vertices u and v of G, there 
exists a vertex w of C such that d(w, u) ≠ d(w, v) . The metric dimension of G is 
the minimum size of its resolving sets.

The corresponding minimization problems of the previous identifying sets are 
defined as follows: given a graph G, compute a suitable set C of minimal size, 
if one exists. In this paper, we mainly focus on the computational complexity of 
these minimization problems.

Known results A wide collection of NP-hardness results has been proven for 
the problems.

For IC and LD, the minimization problems are indeed NP-hard [10, 11]. Cha-
ron et al. showed the NP-hardness when restricted to bipartite graphs [9], while 
Auger showed it for planar graphs with arbitrarily large girth [1]. For trees, there 
exists a linear algorithm [27].

Metric Dimension is also NP-hard, even when restricted to Gabriel unit disk 
graphs  [17, 21]. Epstein et  al. [14] showed that MD is polynomial on several 
classes as trees, cycles, cographs, partial wheels, and graphs of bounded cyclo-
matic number, but it remains NP-hard on split graphs, bipartite graphs, co-bipar-
tite and line graphs of bipartite graphs. Diaz et  al.  [12] proved that MD is pol-
ynomial on outerplanar graphs whereas it remains NP-hard on bounded degree 
planar graphs. Additionally, Fernau et  al. provided a linear algorithm for chain 
graphs [16] while Hoffmann et al. gave one for cactus block graphs [22]. Foucaud 
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et al. [15] also proved the NP-hardness of the three problems restricted to interval 
graphs and permutation graphs.

These notions may be considered under the parameterized point of view; see [13] 
for a comprehensive study of Fixed Parameter Tractability (FPT). In the following, 
the parameter k is chosen as the solution size of a suitable set.

For IC and LD, the parameterized problems are clearly FPT since the number of 
vertices of a positive instance is bounded by 2k + k (k vertices may characterize 2k 
neighbors).

Such complexity is not likely to be achievable in the case of MD, since it would 
imply �[2] = ��� (= �[0]) . Indeed, Hartung et  al.  [19, 20] showed MD is �[2]

-hard for bipartite subcubic graphs. The problem is however FPT on families of 
graphs with degree � growing with the number of vertices because the size k of a 
resolving set must satisfy log3(𝛥) < k . Foucaud et al. also provided a FPT algorithm 
on interval graphs [15], which was generalized to graphs of bounded tree-length by 
Belmonte et al. [5] (Fig. 1).

Our contributions In order to unify the previous minimization problems, we 
introduce the concept of distance identifying functions. Given a distance identify-
ing function f and a value r as a positive integer or infinity, the Distance Identifying 
Set meta-problem consists in finding a minimal sized r-dominating set which dis-
tinguishes every couple of vertices of an input graph thanks to the function f. Here, 
we mainly focus on two natural subfamilies of problems of Distance Identifying Set 
named local, in which a vertex cannot discern the vertices outside of its i-neighbor-
hood, for i a fixed positive integer, and 1-layered, where a vertex is able to separate 
its open neighborhood from the distant vertices.

With this approach, we obtain several computational lower bounds for problems 
included in Distance Identifying Set by providing generic reductions from (Planar) 
Hitting Set to the meta-problem. The reductions rely on the classical set/element-
gadget technique, the noteworthy adaptation of the clause/variable-gadget technique 
from SAT to Hitting Set.

We provide a 1-layered generic gadget as well as a local generic gadget. How-
ever, the local planar reduction is slightly more efficient than its 1-layered coun-
terpart: it indeed implies computational lower bounds for planar graphs whereas 

1-layered r-local
smelborpsmelborp

Reduction using
Planar Hitting Set

NP-hard on
bipartite apex graphs

NP-hard on
bipartite planar graphs

with ETH no algorithm running in 2o(
√
n) time for relevant classes of graphs.

Reduction using
Hitting Set

NP-hard on bipartite graphs

with ETH no algorithm running in 2o(n) for bipartite graphs.
with W[2] �= W[0] no parameterized algorithm in 2O(k) · nO(1) for bipartite graphs.

Fig. 1   The computational lower bounds implied by our generic reductions
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the 1-layered reduction requires an auxiliary apex, limiting the consequences to 
apex graphs (see definition in Sect. 2.1).

The reductions in general graphs are designed to exploit the �[2]-hardness of 
Hitting Set parameterized by the solution size kHS of a hitting set, hereby using:

Theorem 1  (folklore) Let nHS and mHS be the number of elements and sets of an Hit-
ting Set instance, and kHS be its solution size. A parameterized problem with param-
eter k admitting a reduction from Hitting Set verifying k = O(kHS + log(nHS + mHS)) 
does not have a parameterized algorithm running in 2O(k)

⋅ nO(1) time except if 
�[2] = ���.

Proof  Given a reduction from Hitting Set to a parameterized problem � such 
that the reduced parameter satisfies k = O(kHS + log(nHS + mHS)) and the size 
of the reduced instance verifies n = (nHS + mHS)

O(1) , an algorithm for � of run-
ning time 2O(k)

⋅ nO(1) is actually an algorithm for Hitting Set of running time 
2O(kHS)

⋅ (nHS + mHS)
O(1) , meaning that Hitting Set is FPT, a contradiction to its 

�[2]-hardness (otherwise �[2] = ��� ). 	�  ◻

Hence, as each gadget contributes to the resulting solution size of a distance 
identifying set, we set up a binary compression of the gadgets to limit their num-
ber to the logarithm order. To the best of our knowledge, this merging gadgets 
technique has never been used to lower bound the parameterized complexity of a 
problem within the framework of W-hierarchy.

The organization of the paper is as follows. After a short reminder of the 
computational properties of Hitting Set, Sect. 2 contains the definitions of dis-
tance identifying functions and sets, allowing us to precise the computational 
lower bounds we obtain. The Sect.  3 designs the supports of the reductions as 
distance identifying graphs and compressed graph. Finally, the gadgets needed 
for the reductions to apply are given in Sect. 4 as well as the proofs of the main 
theorems.

2 � Definition of the Meta‑problem and Related Concepts

2.1 � Preliminaries

Notations Throughout the paper, we consider simple non oriented graphs.
Given a positive integer n, the set of positive integers smaller than n is denoted 

by [[n]] . By extension, we define [[∞]] = ℕ>0 ∪ {∞} . Given two vertices u,  v of 
a graph G, the distance between u and v corresponds to the number of vertices 
in the shortest path between u and v and is denoted d(u, v). The open neighbor-
hood of u is denoted by N(u), its closed neighborhood is N[u] = N(u) ∪ {u} , and 
for a value r ∈ [[∞]] , the r-neighborhood of u is Nr[u] , that is the set of vertices 
at distance less than r + 1 of u. For r = ∞ , the ∞-neighborhood of u is the set of 
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vertices in the same connected component than u. We recall that a subset D of 
V is called an r-dominating set of G if for all vertices u of V, the set Nr[u] ∩ D 
is non-empty. Thus an ∞-dominating set of G contains at least a vertex for each 
connected component of G.

Given two subsets X and Y of V, the distance d(X, Y) corresponds to the value 
d(X, Y) = min{d(x, y) | x ∈ X, y ∈ Y} . For a vertex u, we will also use d(u, X) and 
d(X, u), defined similarly. The symmetric difference between X and Y is denoted by 
X �Y  , and the 2-combination of a set X is denoted P2(X)

Given two graphs G = (VG,EG) and H = (VH ,EH) , H is an induced subgraph of 
G if VH ⊆ VG and for all vertices u and v of VH , (u, v) ∈ EG if and only if (u, v) ∈ EH . 
We denote H = G[VH] and VG ⧵ VH by VG⧵H . Symmetrically, G is an induced super-
graph of H. A graph G = (V ∪ {a},E) is an apex graph if G[V] is planar, the vertex 
a being its apex.

The (Planar) Hitting Set problem. Consider a universe of n elements 
denoted � = {ui | i ∈ [[n]]} and a set of m non-empty subsets of � denoted 
S = {Si | i ∈ [[m]]} such that every element belongs to at least a subset. Then, a sub-
set of � intersecting every set of S is called an hitting set of S:

Hitting Set

Input: A universe � and a set S of non-empty subsets of � whose union covers 
�.

Output: A minimal-sized hitting set C of S , i.e. a subset of � satisfying ∀Si ∈ S , 
Si ∩ C ≠ �.

The parameterized version Hitting Set(k) decides if there exists a hitting set of 
size k.

Theorem 2  (Downey and Fellows [13]) Hitting Set cannot be solved in 2o(n) time 
under ETH even if m = O(n) . Moreover, Hitting Set(k) is �[2]-hard.

Hitting Set may be translated into a dominating problem on bipartite graphs. 
Given an instance (�,S) of Hitting Set, let us define �(�,S) = (V� ∪ VS,E) as the 
bipartite graph of size n + m such that for each i ∈ [[n]] , there exists a vertex v�

i
 in 

V� , for each j ∈ [[m]] , there exists a vertex vS
j
 in VS , and the edge (v�

i
, vS

j
) is present 

in E if and only if the element ui belongs to the subset Sj . Therefore, a hitting set of S 
is equivalent to a subset C of V� that dominates VS . We call �(�,S) the associated 
graph of (�,S).

Planar Hitting Set

Input: An instance (�,S) of Hitting Set such that �(�,S) is planar.
Output: A hitting set C of S of minimal size.
We also consider the parameterized version Planar Hitting Set(k) of the latter 

problem.

Theorem  3  (folklore) There exists a reduction from the problem SAT to Planar 
Hitting Set(n) producing associated graphs of quadratic size in the number n of 
variables of the instances of SAT. Thus Planar Hitting Set cannot be solved in 
2o(

√

n) under ETH even if m = O(n).
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Proof  Let � be the set of the n variables present in the set C of clauses of an instance 
of SAT. For each variable � of � , we add two new elements u� and ū𝜑 to the uni-
verse �� representing the two possible affectations of variable � , and we create a 
set S𝜑 = {u𝜑, ū𝜑} that we append to the set SC of subsets of �� . The independence 
of the sets S� implies that the existence of a hitting set of size strictly smaller than 
n is impossible. Reciprocally, a potential hitting set of size exactly n must define an 
affectation of the n variables of � . Finally, to determine if an affectation satisfies the 
set of clauses C , for each clause c ∈ C we append to SC the set of elements represent-
ing each literal present in the clause c. The equivalence between the satisfiability of 
C and the existence of a hitting set of SC of size n is immediate by construction. It 
remains to guarantee the planarity of the associated graph �(��,SC) . To do so, we 
actually apply the reduction on a restriction of SAT named Separate Simple Planar 
SAT (See [29] for a precise definition). Adding the sparsification lemma from [23], 
the reduction produces a graph of size linear in n, preserving the computational 
lower bound of Separate Simple Planar SAT. In particular, the latter problem is not 
solvable in 2o(

√

n) under ETH, 	�  ◻

2.2 � The Distance Identifying Set Meta‑problem

Given a graph G = (V ,E) and r ∈ [[∞]] , the classical identifying sets may be 
rewritten:

•	 r-IC: a subset C of V is an r-identifying code of G if it is an r-dominating set and 
for every distinct vertices u, v of V, a vertex w in C verifies w ∈ Nr[u]�Nr[v].

•	 r-LD: a subset C of V is an r-locating dominating set of G if it is an r-dom-
inating set and for every distinct vertices u,  v of V, a vertex w in C verifies 
w ∈ (Nr[u]�Nr[v]) ∪ {u, v}.

•	 r-MD: a subset C of V is an r-resolving set of G if it is an r-dominating set and 
for every distinct vertices u, v of V, a vertex w in C verifies w ∈ Nr[u] ∪ Nr[v] and 
d(u,w) ≠ d(v,w).

It is not hard to check that IC = 1-IC, LD = 1-LD (= 1-MD) and MD = ∞-MD.
A pattern clearly appears: the previous identifying sets only deviate on the crite-

rion that the vertex w must verify. The pivotal idea is to consider an abstract version 
of the criterion which does not depend on the input graph. Hence:

Definition 1  (identifying function) A function f of type: 
G → (V × P2(V) → { true , false }) , is called an identifying function. Given three 
vertices u, v and w of a graph G such that u ≠ v , we write fG[w](u, v) to get the 
resulting boolean. The notation P2(V) implies that fG is symmetric, that is 
fG[w](u, v) = fG[w](v, u).

In the following, given an identifying function f and three vertices u, v, w of a 
graph G, we say that w f-distinguishes u and v if and only if fG[w](u, v) is true . By 
extension, given three vertex sets C, X and Y of G, we say that C f-distinguishes 
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X and Y if for every u in X and v in Y, either u = v or there exists w in C verify-
ing fG[w](u, v) . Finally, a graph G of vertex set V is f-distinguished by C when C 
f-distinguishes V and V.

An identifying function may be defined using various criteria such as adja-
cency, coloring or vertex degree. Here, we focus on distance in order to mimic 
the proposed identifying sets.

Definition 2  (distance identifying function) A distance identifying function f is an 
identifying function such that for every graph G and all vertices u, v and w of G with 
u ≠ v : 

(�):	� fG[w](u, v) is false when d(w, u) = d(w, v).

We can now define the distance identifying sets and their associated 
meta-problem.

Definition 3  ((f, r)-distance identifying set) Given a distance identifying function f 
and r ∈ [[∞]] , a (f,r)-distance identifying set of a graph G is an r-dominating set of G 
that f-distinguishes G.

Distance Identifying Set

Input: A distance identifying function f and r ∈ [[∞]] . A graph G.
Output: An (f, r)-distance identifying set of G of minimal size, if one exists.
Given a distance identifying function f and r ∈ [[∞]] as inputs of the meta-

problem, the resulting problem is called (f,  r)-Distance Identifying Set and 
denoted (f, r)-DIS. We also consider the parameterized version Distance Identi-
fying Set(k).

An (f,  r)-DIS problem is not necessarily NP-hard. For instance, let ⊥ be the 
function such that ⊥G[w](u, v) is false for every inputs. Then, (⊥, r)-DIS can trivi-
ally be solved in constant time. We need to consider restrictions in which positive 
outputs appear.

Let i ∈ {0} ∪ [[∞]] , we suggest two criteria. First, we may restrain the range 
of a vertex to its i-neighborhood: a vertex should not distinguish two vertices if 
they do not lie in its i-neighborhood but it should always distinguish them when-
ever exactly one of them lies in that i-neighborhood. Reciprocally, we may ensure 
that a vertex could distinguish the vertices of its i-neighborhood: a vertex should 
distinguish a vertex belonging to its i-neighborhood from all the other vertices, 
assuming the distances are different. Formally, we have:

Definition 4  (i-local function) For i ∈ {0} ∪ [[∞]] , an i-local identifying function f 
is an identifying function such that for every graph G and all vertices u, v and w of 
G with u ≠ v : 
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(�1):	� fG[w](u, v) is true when d(w, u) ≤ i < d(w, v) or, symmetrically, 
d(w, v) ≤ i < d(w, u).

(�2):	� fG[w](u, v) is false when i < min{d(w, u), d(w, v)}.

Definition 5  (i-layered function) For i ∈ {0} ∪ [[∞]] , an i-layered identifying func-
tion f is an identifying function such that for every graph G and all vertices u, v, w of 
G with u ≠ v : 

(�):	� fG[w](u, v) is true when min{d(w, u), d(w, v)} ≤ i and d(w, u) ≠ d(w, v).

A problem (f, r)-DIS is said to be i-layered when the function f is i-layered, and 
it is said to be i-local when f is i-local and r = i . The problem is said local if it is 
i-local for an integer i. We observe that r-IC, r-LD and r-MD are r-local for each 
positive integer r, while MD is not local. However, for each r ∈ [[∞]] , r-MD is r-lay-
ered, thus 1-layered. We also notice that r-LD is 0-layered while r-IC is not, which 
is their unique difference.

2.3 � Detailed Computational Lower Bounds

Using the Distance Identifying Set meta-problem, we get the following lower 
bounds:

Theorem 4  For each 1-layered distance identifying function f and every r ∈ [[∞]] , 
the (f,  r)-Distance Identifying Set problem restricted to bipartite apex graphs is 
NP-hard, and does not admit an algorithm running in 2o(

√

n) time under ETH.

Theorem 5  The local problems restricted to bipartite planar graphs are NP-hard, 
and do not admit an algorithm running in 2o(

√

n) time under ETH.

Theorem 6  Let f be a 1-layered distance identifying function, r ∈ [[∞]] , and g be 
a q-local distance identifying function. Both the (f, r)- and (g, q)-DIS problems are 
NP-hard, and do not admit:

•	 algorithms running in 2o(n) time, except if ETH fails,
•	 parameterized algorithms running in 2O(k)

⋅ nO(1) time, except if W[2] = ���.

even when restricted to bipartite graphs.
The parameter k denotes here the solution size of a relevant distance identifying 

set.

As a side result, Theorem  6 answers a question of Hartung and Nichterlein 
in [20]:

Corollary 1  Under ETH, Metric Dimension cannot be solved in 2o(n).
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Finally, notice that the parameterized lower bound from Theorem 6 may be com-
plemented by an elementary upper bound inspired from the kernel of IC and LD of 
size 2k + k:

Proposition 1  For every r-local distance identifying function f, the (f,  r)-Distance 
Identifying Set problem has a kernel of size (r + 1)k + k where k is the solution size. 

Therefore, if f is computable in polynomial time, enumerating the 
(

n

k

)

 sets of k ver-

tices of an input yields a naive algorithm running in time O(nk+O(1)) ∈ O
∗(r(k

2)) for 
(f, r)-DIS.

The proofs of the Theorems 4 to 6 will be given in Sect. 4.

3 � The Supports of the Reductions for Distance Identifying Set

3.1 � The Distance Identifying Graphs

Consider the associated graph �(�,S) as defined in Sect.  2.1. The differences 
between the Distance Identifying Set meta-problem and the dominating problem 
related to associated graphs actually raise two issues for a reduction based on these 
latter notions to be effective on Distance Identifying Set. First, contrarily to the 
dominating problem where a vertex may only discern its close neighborhood, the 
meta-problem may allow a vertex to discern further than its direct neighborhood. In 
that case, we cannot certify that a vertex v�

i
 does not distinguish a vertex vS

j
 when ui 

is not in Sj , the adjacency not remaining a sufficient argument. Secondly, one may 
object that a vertex v�

i
 formally has to distinguish a vertex vS

j
 from another vertex, 

but that distinguishing a single vertex is not defined.
To circumvent these problems, we suggest the following fix: rather than produc-

ing a single vertex for each Sj ∈ S , the set VS may contain two vertices vS
j
 and v̄S

j
 . 

Then, the role of v�
i

 would be to distinguish them if and only if ui ∈ Sj . To ensure 
that the vertex v�

i
 distinguishes vS

j
 and v̄S

j
 when ui ∈ Sj , we may use the properties 

(�1) and (�) of Definitions 4 and 5 for the r-local and 1-layered problems, respec-
tively. Precisely, when ui ∈ Sj , v�i  should be at distance r to vS

j
 (with r = 1 in the 

1-layered cases) while v̄S
j
 should not be in the r-neighborhood of v�

i
 . Similarly, to 

ensure that v�
i

 cannot distinguish vS
j
 and v̄S

j
 when ui ∉ Sj , we may use properties (�) 

or (�2) of Definitions 2 and 4. Hence, when ui ∉ Sj , vSj  should not be in the r-neigh-
borhood of v�

i
 , or d(v�

i
, vS

j
) and d(v𝛺

i
, v̄S

j
) should be equal.

That fix fairly indicates how to initiate the transformation of the associated graphs 
in order to deliver an equivalence between a hitting set formed by elements of � and 
the vertices of a distance identifying set included in V� . However, it is clearly not 
sufficient since we also have to distinguish the couples of vertices of V� for which 
nothing is required. To solve that problem, we suggest to append to each vertex of 
the associated graph a copy of some gadget with the intuitive requirement that the 
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gadget is able to distinguish the close neighborhood of its vertices from the whole 
graph. We introduce the notion of B-extension:

Definition 6  (B-extension) Let H = (VH ,EH) be a connected graph, and B ⊆ VH . 
An induced supergraph G = (VG,EG) is said to be a B-extension of H if it is con-
nected and for every vertex v of VG⧵H , the set N(v) ∩ VH is either equal to ∅ or B.

A vertex v of VG⧵H such that N(v) ∩ VH = B is said to be B-adjacent. The B-exten-
sions of H such that VG⧵H contains exactly a B-adjacent vertex or two B-adjacent 
vertices but not connected to each other are called the B-single-extension and the 
B-twin-extension of H, respectively.

Here, the “border” B makes explicit the connections between a copy of a gadget 
H and a vertex outside the copy. In particular, a B-single-extension is formed by a 
gadget with its related vertex v�

i
 , while a B-twin-extension contains a gadget with its 

two related vertices vS
j
 and v̄S

j
 . Piecing all together, we may adapt the associated 

graphs to the meta-problem:

Definition 7  ((H,  B,  r)-distance identifying graph) Let 
(� = {ui | i ∈ [[n]]},S = {Si | i ∈ [[m]]}) be an instance of Hitting Set. Let H be a 
connected graph, B a subset of its vertices, and r a positive integer. The (H, B, r)-
distance identifying graph �[H,B, r](�,S) is as follows.

•	 for each i ∈ [[n]] , the graph �[H,B, r](�,S) contains as induced subgraph a copy 
H�

i
 of H together with a B�

i
-adjacent vertex v�

i
 , where B�

i
 denotes the copy of B.

•	 similarly, for each j ∈ [[m]] , the graph �[H,B, r](�,S) contains a copy HS

j
 of H 

together with two BS

j
-adjacent vertices vS

j
 and v̄S

j
 (the latter vertices are not adja-

cent) and where BS

j
 denotes the copy of B.

•	 finally, for each Sj ∈ S and each ui ∈ Sj , v�i  is connected to vS
j
 by a path of r − 1 

vertices denoted lk
i,j

 with d(v�
i
, lk
i,j
) = k for each k ∈ [[r − 1]].

When the problem is not local, we prefer the following identifying graph:

Definition 8  ((H,  B)-apex distance identifying graph) An (H,  B)-apex distance 
identifying graph �∗[H,B](�,S) is the union of an (H, B,  1)-distance identifying 
graph with an additional vertex a called apex such that:

•	 for each ui ∈ � , the apex a is B�
i

-adjacent to H�
i

 , where B�
i

 (resp. H�
i

 ) denotes 
the copy of B (resp. H).

•	 for each Sj ∈ S , the apex a is adjacent to vS
j
 and v̄S

j
.

See Fig. 2 for an example of an (H, B, r)-distance identifying graph (on the left) 
and an example of (H, B)-apex distance identifying graph (on the right).

Proposition 2  Given an instance (�,S) of Planar Hitting Set where |�| = n , 
|S| = m , the graphs G = �[H,B, r](�,S) and G� = �∗[H,B](�,S)
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•	 are connected and have size bounded by (|H| + 2r)(n + m) , (with r = 1 for G′),
•	 may be built in polynomial time in their size,
•	 are bipartite if the B-single extension of H is bipartite,
•	 are respectively planar and an apex graph if the B-twin-extension of H is pla-

nar.

Proof  The graph G is formed by the union of n B-single-extensions of H, m B-twin-
extensions of H and all the possible paths of r − 1 vertices. As �(�,S) is a bipar-
tite planar graph, the Euler formula implies that the number of paths is bounded by 
2(n + m) − 4 . We conclude that the number of vertices of G is bounded by:

Furthermore, it is clear that G is connected if and only if the associated graph 
�(�,S) is connected. Additionally, we may consider that �(�,S) is connected since 
it is a property decidable in polynomial time, and that the instances corresponding 
to the distinct connected components of �(�,S) may be considered independently.

Finally, all the other items of the proposition are direct by construction. 	�  ◻

Having defined the (apex) distance identifying graphs, the main effort to obtain 
generic reduction from Planar Hitting Set is done. We now define relevant 
gadgets:

Definition 9  ((f, r)-gadgets) Let f be a distance identifying function and r ∈ [[∞]] . 
Let H = (VH ,EH) be a connected graph, and B, C be two subsets of VH . We say that 
the triple (H, B, C) is a (f, r)-gadget if for every B-extension G of H: 

(ph)	� C f-distinguishes VH and VG.
(pb)	� C f-distinguishes NB and VG⧵H ⧵ NB , where NB is the set of B-adjacent vertices 

of G.
(pd)	� C is an r-dominating set of G[VH ∪ NB].
(ps)	� For all (f, r)-distance identifying sets S of G, |C| ≤ |S ∩ VH|.

n(|H| + 1) + m(|H| + 2) + (r − 1)(2(n + m) − 4) = (|H| + 2r)(n + m) − n − 4(r − 1)

vΩ1

BΩ
1

vΩ2

BΩ
2

vΩ3

BΩ
3

vΩ4

BΩ
4

vS1 v̄S1

BS
1

vS2 v̄S2

BS
2

HΩ
1 HΩ

2 HΩ
3 HΩ

4

HS
1 HS

2

vΩ1

BΩ
1

vΩ2

BΩ
2

vΩ3

BΩ
3

vΩ4

BΩ
4

vS1 v̄S1

BS
1

vS2 v̄S2

BS
2

HΩ
1 HΩ

2 HΩ
3 HΩ

4

HS
1 HS

2

Fig. 2   An (H, B, 3)-distance identifying graph and an (H, B)-apex distance identifying graph built on the 
planar instance formed by � = {1, 2, 3, 4} and S = {{1, 2}, {2, 3, 4}}
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Definition 10  (local gadgets) An (f, r)-gadget is a local gadget, if f is an r-local 
identifying function with r ≠ ∞ , and 

(pl)	� for every k ∈ [[r]] , there exists c ∈ C such that d(c,B) = k − 1.

Consistently, we say that an (f, r)-gadget (H, B, C) is bipartite if the B-single-
extension of H is bipartite, and that it is planar if the B-twin-extension of H is 
planar.

Theorem  7  Let (�,S) be an instance of Hitting Set such that |𝛺| = n > 1 , 
|S| = m . Let (H, B, C) be an (f, r)-gadget for a 1-layered identifying function f and 
let (H�,B�,C�) be a local (g, q)-gadget. The following propositions are equivalent:

•	 There exists a hitting set of S of size k.
•	 There exists an (f,  r)-distance identifying set of �∗[H,B](�,S) of size 

k + |C|(n + m).
•	 There exists a (g,  q)-distance identifying set of �[H�,B�, q](�,S) of size 

k + |C�
|(n + m).

Proof  We start by focusing on the equivalence between the first and second items.
Suppose first that P is a hitting set of (�,S) of size k. By denoting C�

i
 and CS

j
 the 

copies of C associated to the copies H�
i

 and HS

j
 of H, we suggest the following set I 

of size k + |C|(n + m) as an (f, r)-distance identifying set of G = �∗[H,B](�,S):

Recall that by construction, G is a B�
i

-extension of H�
i

 (respectively BS

j
-extension of 

HS

j
 ) for any i ∈ [[n]] (respectively j ∈ [[m]] ). This directly implies that I is an r-domi-

nating set of G. Indeed, the condition (pd) of Definition 9 implies that C�
i

 (respec-
tively CS

j
 ) r-dominates H�

i
 plus v�

i
 (respectively of HS

j
 plus vS

j
 , v̄S

j
 ). The remaining 

apex is also r-dominated by any C�
i

 , as it is B�
i

-adjacent for every i ∈ [[n]].
We now have to show that I f-distinguishes G. We begin with the vertices of the 

gadget copies because the condition (ph) implies that C𝛺
i
⊆ I f-distinguishes the ver-

tices of H�
i

 and G for every i ∈ [[n]] , and I f-distinguishes the vertices of HS

j
 and G 

for every j ∈ [[m]] . Thereby, we only have to study the vertices of the form v�
i

 , vS
j
 , 

v̄S
j
 , and the apex a (there is no vertex of the form lk

i,j
 in an apex distance identifying 

graph). To distinguish them, we use the condition (pb) . Recall that n > 1 . Then, for 
each distinct i, i� ∈ [[n]] , we have:

•	 v�
i

 is B�
i

-adjacent but not B�
i′

-adjacent,
•	 a is both B�

i
-adjacent and B�

i′
-adjacent,

•	 a vertex of the form vS
j
 or v̄S

j
 is neither B�

i
-adjacent nor B�

i′
-adjacent.

I = {v�
i
∶ ui ∈ P} ∪

⋃

i∈ [[n]]

C�

i
∪

⋃

j∈ [[m]]

CS

j
.
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Enumerating the relevant i and i′ , we deduce that every couple of vertices is dis-
tinguished except when they are both of the form vS

j
 or v̄S

j′
 for j, j� ∈ [[m]] . But we 

may distinguish vS
j
 or v̄S

j′
 for distinct j, j′ by applying (pb) on HS

j
.

It remains to distinguish vS
j
 and v̄S

j
 for j ∈ [[m]] . We now use the fact that P is a 

hitting set for (�,S) . By definition of a hitting set, for any set Sj ∈ S , there exists a 
vertex ui ∈ P such that ui ∈ Sj . We observe that d(v𝛺

i
, vS

j
) = 1 < d(v𝛺

i
, v̄S

j
) by con-

struction of G and that v�
i
∈ I by definition of I. Since f is 1-layered, I f-distinguishes 

vS
j
 and v̄S

j
.

In the other direction, assume that I is a distance identifying set of G of 
size k + |C|(n + m) . As every set of S is not empty, we may define a function 
� ∶ [[m]] → [[n]] such that u�(j) ∈ Sj.

We suggest the following set P as a hitting set of S of size at most k:

We claim that the only vertices that may f-distinguish vS
j
 and v̄S

j
 are themselves and 

the vertices v�
i

 such that ui ∈ Sj . To prove so, we apply propriety (�) of Definition 2:

•	 The apex a verifies d(a, vS
j
) = 1 = d(a, v̄S

j
).

•	 A vertex v�
i

 such that ui ∉ Sj verifies d(v𝛺
i
, vS

j
) = 3 = d(v𝛺

i
, v̄S

j
).

•	 A vertex v of H�
i

 verifies d(v, vS
j
) = 2 + d(v,B𝛺

i
) = d(v, v̄S

j
).

•	 A vertex v of HS

j′
 with j ≠ j′ verifies d(v, vS

j
) = 3 + d(v,BS

j
) = d(v, v̄S

j
).

•	 Both vS
j
 and v̄S

j
 are BS

j
-adjacent, so they are at the same distance of any vertex 

of HS

j
.

We deduce that vS
j
 and v̄S

j
 are f-distinguished only if either one on them belongs to 

I (in that case u�(j) ∈ P ∩ Sj ) or there exists v�
i
∈ I such that ui ∈ Sj (and then 

ui ∈ P ∩ Sj).
It remains to show that |P| ≤ k . By the condition (ps) of Definition 9, we know 

that |I ∩ VH�
i
| ≥ |C�

i
| and |I ∩ VHS

j
| ≥ |CS

j
| for any i ∈ [[n]] and j ∈ [[m]] , implying

Now, we prove the equivalence between the first and third items. Consider a q-local 
distance identifying function g, a local (g, q)-gadget (H, B, C) and an instance (�,S) 
of Planar Hitting Set such that |�| = n , |S| = m . We denote the copies of H as H�

i
 

or HS

j
 , the copies of C as C�

i
 and CS

j
 , and the copies of B as B�

i
 and BS

j
 for any 

i ∈ [[n]] and j ∈ [[m]].

P = {ui ∈ 𝛺 | v𝛺
i
∈ I} ∪ {u𝜑(j) ∈ 𝛺 | vS

j
∈ I or v̄S

j
∈ I}

k = �I� − �C�(n + m)

≥
∑

i∈[n]

�I ∩ {v𝛺
i
}� +

∑

j∈[m]

�I ∩ {vS
j
, v̄S

j
}�

≥
∑

v𝛺
i
∈I

1 +
∑

I∩{vS
j
,v̄S
j
}≠�

1 = �P�
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In the first direction, suppose that P is a hitting set of (�,S) of size k, the (g, q)-
distance identifying set I of G = �[H,B, q](�,S) is defined identically as in the 
equivalence of the first and second items of the current theorem:

Using conditions (pd) and (pl) of Definitions 9 and 10, I is a q-dominating set of G. 
Indeed, by (pd) every vertex belonging to a copy of the gadget is q-dominated. Addi-
tionally, every vertex outside of the copies of the gadgets is at distance at most q of 
a copy by construction, but there exists a vertex b ∈ B ∩ C (so a relevant copy in I) 
by (pl).

To prove that I g-distinguishes G, the strategy is differing from the previous 
equivalence only on the lk

i,j
 vertices and when distinguishing vS

j
 and v̄S

j
 as we will see.

Recall that by construction, G is a B�
i

-extension of H�
i

 (respectively BS

j
-extension 

of HS

j
 ) for any i ∈ [[n]] (respectively j ∈ [[m]] ). Distinguishing the vertices of the 

gadget copies is easy, as the condition (ph) implies that C𝛺
i
⊆ I g-distinguishes the 

vertices of H�
i

 and G for every i ∈ [[n]] , and similarly I g-distinguishes the vertices 
of HS

j
 and G for every j ∈ [[m]].

Thereby, we only have to study the vertices of the form v�
i

 , vS
j
 , v̄S

j
 , and the verti-

ces lk
i,j

.
To distinguish them, we mainly use the condition (pb) . We observe that for each 

distinct i, i� ∈ [[n]] (they exist as n > 1 ) :

•	 The vertex v�
i

 is B�
i

-adjacent but not B�
i′

-adjacent.
•	 For every j ∈ [m] , vS

j
 or v̄S

j
 is neither B�

i
-adjacent nor B�

i′
-adjacent.

•	 For every i ∈ [n] , j ∈ [m] and k ∈ [r − 1] , lk
i,j

 is neither B�
i

-adjacent nor B�
i′

-adjacent.

Thus I g-distinguishes v�
i

 and G.
As the vertices of form lk

i,j
 are the only vertices to belong to both the q-neighbour-

hood of B�
i

 and BS

j
 , and as the vertices lk

i,j
 and lk′

i,j
 with k < k′ are g-distinguished by 

the guaranteed vertex c ∈ C�
i

 such that d(c,B�
i
) = q − k − 1 , I g-distinguishes lk

i,j
 and 

G for every relevant i, j and k.
It remains to distinguish vS

j
 and v̄S

j′
 for j, j� ∈ [[m]] . If j and j′ are distinct we may 

use (pb) on the copy HS

j
 of the gadget H. We may assume j = j� . We now use the fact 

that P is a hitting set for (�,S) . By definition of a hitting set, for any set Sj ∈ S , 
there exists a vertex ui ∈ P such that ui ∈ Sj . We observe that 
d(v𝛺

i
, vS

j
) = q < d(v𝛺

i
, v̄S

j
) (when ui ∈ Sj ) by construction of G and I indeed g-distin-

guishes vS
j
 and v̄S

j
 because g is q-local.

In the other direction, assume that I is a distance identifying set of G of size 
k + |C|(n + m) . The hitting set P may now depend on lk

i,j
 . Let define 

Li = {v�
i
} ∪ {lk

i,j
| k ∈ [[r − 1]] and ui ∈ Sj} . As every set of S is not empty, we may 

I = {v�
i
∶ ui ∈ P} ∪

⋃

i∈[n]

C�

i
∪

⋃

j∈[m]

CS

j
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define a function � ∶ [[m]] → [[n]] such that u�(j) ∈ Sj . We suggest the following set P 
as a hitting set of S of size at most k:

Consider j ∈ [[m]] , let us show that the only vertices that may g-distinguish the cou-
ple (vS

j
, v̄S

j
) are themselves and the vertices from Li (and not only v�

i
 ) such that 

ui ∈ Sj . Every vertex from HS

j
 is at the same distance to vS

j
 and v̄S

j
 and thus cannot 

g-distinguishes them because of the distance property (�) . Every vertex not in HS

j
 , 

not in Li for every i ∈ [[n]] such that ui ∈ Sj and different from vS
j
 and v̄S

j
 is at distance 

at least q + 1 of the two latter vertices. Thus, because of the propriety (�2) of Defini-
tion 4 (a vertex cannot distinguish two vertices outside of its q-neighbourhood) any 
of these vertices does not q-distinguish vS

j
 and v̄S

j
 . We deduce that vS

j
 and v̄S

j
 are 

g-distinguished if and only if either one of them belongs to I (in that case 
u�(j) ∈ P ∩ Sj ) or there exists i ∈ [[n]] such that ui ∈ Sj and I ∩ Li ≠ �.

The proof that |P| ≤ k is provided by (ps) , we know that |I ∩ VH�
i
| ≥ |C�

i
| and 

|I ∩ VHS

j
| ≥ |CS

j
| for any i ∈ [[n]] and j ∈ [[m]] . Considering the following partition of 

I

We get

Because |I| = k + |C|(n + m) , we conclude that |P| ≤ k.
Obviously, the second and third items are equivalent since they are both equiva-

lent to the first item, which concludes the proof. 	�  ◻

3.2 � Binary Compression of Gadgets

The Theorem 7 is a powerful tool to get reductions, in particular in the planar cases. 
However, the number of involved gadgets does not allow to use Theorem 1. This 
limitation is due to the uses of a gadget per vertex to identify in the distance iden-
tifying graphs. Using power set, we may obtain a better order: given k gadgets, we 
may identify 2k − 1 vertices (we avoid to identify a vertex with the empty subset of 
gadgets). Thus, we will consider binary representations of integers as sequences of 
bits, with weakest bit at last position. For a positive integer n, we define the integer 
bn = 1 + ⌊log2(n)⌋ and introduce a new graph:

P = {ui ∈ 𝛺 | I ∩ Li ≠ �} ∪ {u𝜑(j) ∈ 𝛺 | vS
j
∈ I or v̄S

j
∈ I}

I =
(

⨆

i∈[[n]]

(I ∩ H𝛺

i
)

)

⨆

(

⨆

j∈[[m]]

(I ∩ HS

j
)

)

⨆

(

⨆

i∈[[n]]

(I ∩ Li)
)

⨆

(

⨆

j∈[[m]]

(I ∩ {vS
j
, v̄S

j
)}

)

|I| ≥ |C|(n + m) +
∑

i∈[[n]]

|I ∩ Li| +
∑

j∈[[m]]

|I ∩ {vS
j
, v̄S

j
}|

≥ |C|(n + m) +
∑

I∩Li≠�

1 +
∑

I∩{vS
j
,v̄S
j
}≠�

1

= |C|(n + m) + |P|
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Definition 11  ((H, B, r)-compressed graph) Let (�,S) be an instance of Hitting 
Set, with � = {ui | i ∈ [[n]]} and S = {Si | i ∈ [[m]]} . Let H be a connected graph, B 
be a subset of its vertices, and r be a positive integer. The (H,B,r)-compressed graph 
� [H,B, r](�,S) is defined as follows. � [H,B, r](�,S) contains as induced sub-
graphs bn+1 copies of H denoted H�

i
 for i ∈ [[bn+1]] and bm other copies of H denoted 

HS

j
 for j ∈ [[bm]] . Then:

•	 For each j ∈ [[m]] , we add two non-adjacent vertices vS
j
 and v̄S

j
 . They are BS

k
-adja-

cent for each k ∈ [[bm]] such that the kth bit of the binary representation of j is 1.
•	 For each i ∈ [[n]] , we add r vertices denoted lj−1

i
 with j ∈ [[r]] to form a fresh path 

such that d(v�
i
, l
j−1

i
) = j − 1 where v�

i
= l0

i
 . We make v�

i
 B�

k
-adjacent for each 

k ∈ [[bn+1]] such that the kth bit of the binary representation of i is 1.
•	 For each Sj ∈ S and each ui ∈ Sj , we add the edge (lr−1

i
, vS

j
).

•	 We add r vertices denoted aj−1 with j ∈ [[r]] to form the induced path such that 
d(a0, aj−1) = j − 1 . The vertex a0 is B�

k
-adjacent for every k ∈ [[bn+1]] , and we add 

the edges (ar−1, vS
j
) and (ar−1, v̄S

j
) for each j ∈ [[m]].

By definition of bn+1 , for every i ∈ [[n]] , one of the last bn+1 bits of the binary 
representation of i is 0. So, a0 has a distinct characterization in the power set 
formed by the gadgets H�

i
 . See Fig.  3 for an example of (H,  B,  r)-compressed 

graph.

Proposition 3  The graph G = � [H,B, r](�,S) built on an instance (�,S) of Hitting 
Set:

•	 is connected and has size at most |H|(bn+1 + bm) + r(n + 1) + 2m , where |�| = n 
and |S| = m,

•	 may be built in polynomial time in its size, and
•	 is bipartite if the B-single extension of H is bipartite.

Fig. 3   The (H, B, 2)-compressed 
graph where � = {1, 2, 3, 4} and 
S = {{1, 2}, {2, 3, 4}}
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Proof  The graph G is formed by the union of bn+1 + bm copies of H, one vertex per 
variable, two vertices per clause, n paths of r − 1 vertices and one path of size r. 
Thus, in total, the number of vertices is

Finally, the two last items of the proposition are also direct by construction. 	�  ◻

Theorem 8  Let (�,S) be an instance of Hitting Set such that |�| = n , |S| = m . Let 
(H, B, C) be an (f, r)-gadget for a 1-layered identifying function f and let (H�,B�,C�) 
be a local (g, q)-gadget. The following propositions are equivalent:

•	 There exists a hitting set of S of size k.
•	 There exists an (f, r)-distance identifying set of the graph � [H,B, 1](�,S) which 

size is k + |C|(bn+1 + bm).
•	 There exists a (g, q)-distance identifying set of the graph � [H�,B�, q](�,S) which 

size is k + |C�
|(bn+1 + bm).

Proof  Suppose again that P is a hitting set of (�,S) of size k. By denoting C�
i

 and 
CS

j
 the copy of C (respectively C′ ) associated to the copy H�

i
 and HS

j
 of H (respec-

tively H′ ), we suggest the following set I of size k + |C|(bn+1 + bm) as an (f, r)-dis-
tance identifying set of G = � [H,B, 1](�,S) (respectively (g, q)-distance identify-
ing set of G� = � [H�,B�, q](�,S)):

By construction, G is a B�
i

-extension of H�
i

 (respectively BS

j
-extension of HS

j
 ) for 

any i ∈ [[bn+1]] (respectively j ∈ [[bm]] ). This directly implies that I is an r-dominat-
ing set of G (respectively q-dominating set G′).

We only have to show that I f-distinguishes G (respectively g-distinguishes G′ ). 
Distinguishing the vertices of the gadget copies is still easy using the first item of 
Definition 9. Thereby, we only have to study the vertices of the form vS

j
 , v̄S

j
 , lk

i
 , and 

ak . To distinguish them, we mainly use the second item of Definition 9 together with 
the characteristic function of the power set of the gadgets. We deduce that every 
couple of vertices is distinguished except when the two vertices are of the form vS

j
 or 

v̄S
j
 for j ∈ [[m]] (or if they are both of the form ak or lk

i
 for k ∈ [[q − 1]] for G′ , G not 

containing such vertices).
Let us now distinguish vS

j
 and v̄S

j
 for j ∈ [[m]] . To do so, we use the fact that P is a 

hitting set for (�,S) . By definition of a hitting set, for any set Sj ∈ S , there exists a 
vertex ui ∈ P such that ui ∈ Sj . We observe that d(v𝛺

i
, vS

j
) = 1 < d(v𝛺

i
, v̄S

j
) by con-

struction of G (respectively d(v𝛺
i
, vS

j
) = q < d(v𝛺

i
, v̄S

j
) by construction of G′ ) and that 

v�
i
∈ I by definition of I. Since f is 1-layered (respectively g is q-local), I f-distin-

guishes and g-distinguishes vS
j
 and v̄S

j
.

For G′ , it remains to distinguish ak and lk
i
 for k ∈ [[q − 1]] and i ∈ [[n]] . We recall 

that in a (g, q)-local gadget (H�,B�,C�) , there exists c ∈ C� such that d(c,B�) = k − 1 

(bn+1 + bm)|H| + n + 2m + n(r − 1) + r = |H|(bn+1 + bm) + r(n + 1) + 2m

I = {v�
i
∶ ui ∈ P} ∪

⋃

i∈ [[bn+1]]

C�

i
∪

⋃

j∈ [[bm+1]]

CS

j
.
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for each k ∈ [[q]] . Then we may use the characteristic function of the power set 
together with property (�1) of a q-local function to distinguish them.

In the other direction, assume that I is an (f, r)-distance identifying set of G of 
size k + |C|(bn+1 + bm) (respectively (g,  q)-distance identifying set of G of size 
k + |C�

|(bn+1 + bm) ). As every set of S is not empty, we may define a function 
� ∶ [[m]] → [[n]] such that u�(j) ∈ Sj.

We suggest the following set P as a hitting set of S of size at most k:

The size of P is ensured by the fourth item of Definition 9 of a gadget.
We claim that the only vertices that may f-distinguish the couple (vS

j
, v̄S

j
) are 

themselves and the vertices of form lk
i
 such that ui ∈ Sj . To prove so, we apply prop-

erty (�) from Definition 2 (a vertex cannot distinguish two vertices at the same dis-
tance from it) on the following enumeration on G:

•	 The vertices ak verify d(ak, vS
j
) = r − k = d(ak, v̄S

j
) for each k ∈ [[r − 1]].

•	 A vertex lk
i
 such that ui ∉ Sj verifies d(lk

i
, vS

j
) = 2 + r − k = d(lk

i
, v̄S

j
) because of 

ar−1.
•	 A vertex v of H�

i
 verifies d(v, vS

j
) = d(v,B𝛺

i
) + 1 + r = d(v, v̄S

j
) because of the 

path formed by the vertices of form ak.
•	 A vertex v of HS

j′
 with j ≠ j′ verifies d(v, vS

j
) = d(v,BS

j�
) + 3 = d(v, v̄S

j
) because of 

ar−1.
•	 Both vS

j
 and v̄S

j
 are BS

j
-adjacent, so they are at the same distance of any vertex of 

HS

j
.

The enumeration on G′ is identical when replacing r by q. We deduce that vS
j
 and v̄S

j
 

are f-distinguished if and only if either one on them belongs to I (in that case 
u�(j) ∈ P ∩ Sj ) or if there exists lk

i
∈ I such that ui ∈ Sj and k + 1 ∈ [[r]] (and then 

ui ∈ P ∩ Sj ). 	�  ◻

4 � On Providing Gadgets to Establish Generic Reductions

In this section, we finalize the reductions by furnishing some gadgets and combining 
them with the suitable theorems and propositions from Sect. 3. The existence of the 
gadgets rely on the following tool lemma:

Lemma 1  (Twins Lemma) Let x and y be two vertices of a graph G such that 
N(x) = N(y) . Then any distance identifying set of G contains either x or y.

Proof  Because N(x) = N(y) , for every vertex u of G, if u ∉ {x, y} , then 
d(u, x) = d(u, y) . Thus, by property (�) of a distance identifying set, u may distin-
guish x and y if and only if u ∈ {x, y} , implying that a distance identifying set must 
contain either x or y. 	�  ◻

P = {ui ∈ 𝛺 | lk
i
∈ I for any k ∈ [[r − 1]]} ∪ {u𝜑(j) ∈ 𝛺 | vS

j
∈ I or v̄S

j
∈ I}
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The gadgets are defined as follows:

Definition 12  (The 1-layered gadget) Let H be the bipartite planar graph such that:

•	 Its ten vertices are denoted b, b̄ , u1 , ū1 , u2 , ū2 , v1 , v̄1 , v2 and v̄2.
•	 The vertices u1, u2, ū1 and ū2 form a cycle as well as the vertices v1, v2, v̄1 and v̄2.
•	 The vertices b and b̄ are adjacent to u1 , ū1 , v1 and v̄1.

We define the sets B = {b, b̄} and C = {b, u1, u2, v1, v2}.
The triple (H, B, C) is called the 1-layered gadget (see Fig. 4).

Proposition 4  The 1-layered gadget is a bipartite planar (f, r)-gadget for any 1-lay-
ered distance identifying function f and r ∈ [[∞]].

Proof  We have to check the four conditions to be an (f,  r)-gadget. Consider a 
B-extension G of H. Clearly, (pd) is satisfied as C is even a 1-dominating set of 
VH ∪ NB . The condition (ps) is also easily verified using the Twins Lemma 1 on the 
distinct pairs (b, b̄) , (u1, ū1) , (u2, ū2) , (v1, v̄1) and (v2, v̄2) . To prove (ph) and (pb) , we 
only have to study vertices not belonging to C. Remark that:

•	 The vertex ū1 is the only one outside of C that is adjacent to u2.
•	 The vertex v̄1 is the only one outside of C that is adjacent to v2
•	 The vertex ū2 is the only one outside of C that is adjacent to u1 and not adjacent 

to v1.
•	 The vertex v̄2 is the only one outside of C that is adjacent to v1 and not adjacent 

to u1.
•	 The vertex b̄ is the only one outside C both adjacent to u1 and v1
•	 A B-adjacent vertex is not adjacent to u1 nor to v1 but is adjacent to b
•	 Finally, a vertex from VG⧵H which is not B-adjacent is neither adjacent to u1 , v1 

nor b.

Fig. 4   The 1-layered gadget 
(H, B, C). The set C contains the 
colored vertices and the set B 
contains the square vertices

b b̄

u1

u2

ū1

ū2

v1

v2

v̄1

v̄2
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Therefore properties (ph) and (pb) are satisfied by (H,  B,  C) which is a 1-layered 
gadget for f. 	�  ◻

Definition 13  (r-local gadget) Given a positive integer r, let Hr be the bipartite pla-
nar graph of size (2r + 2)2 such that:

•	 Its vertices are denoted uj
i
 and dj

i
 for i ∈ [[2r + 2]] and j ∈ [[r + 1]].

•	 For i ∈ [[2r + 2]] and j ∈ [[r + 1]] , we define Ui = {uk
i
| k ∈ [[r + 1]]} , 

Uj = {u
j

k
| k ∈ [[2r + 2]]} , Di = {dk

i
| k ∈ [[r + 1]]} and Dj = {d

j

k
| k ∈ [[2r + 2]]} . 

Furthermore, as the vertices ui
j
 (resp. di

j
 ) will form a cycle, we consider in the fol-

lowing that if i ∉ [[2r + 2]] , u1
i
= u1

1+((i−1) (mod 2r+2))
 (resp. d1

i
= d1

1+((i−1) (mod 2r+2)))

).
•	 For each i ∈ [[2r + 2]] , the vertex u1

i
 is adjacent to d1

i
 , the vertices of Ui form a 

path such that d(u1
i
, u

j

i
) = j − 1 for each j ∈ [[r + 1]] and the vertices of Di form a 

path such that d(d1
i
, d

j

i
) = j − 1 for each j ∈ [[r + 1]].

•	 The vertices of U1 form a cycle such that u1
i
 is adjacent to u1

i+1
 for each 

i ∈ [[2r + 2]] , and the vertices of D1 form a cycle such that d1
i
 is adjacent to d1

i+1
 

for each i ∈ [[2r + 2]].

We define the sets Br = {u1
1
, d1

2r+2
} and Cr = U1 ∪ D1.

The triple (Hr,Br,Cr) is called the r-local gadget (see Fig. 5).

Proposition 5  Let f be an r-local distance identifying function. Then the r-local 
gadget is an (f, r)-local gadget.

Proof  By construction, for each i ∈ [[2r + 2]] , the r-neighborhood of ur+1
i

 is Ui . An 
r-local distance identifying set must contain a vertex of Ui to r-dominate ur+1

i
 . Sym-

metrically, it must contain a vertex of Di to r-dominate dr+1
i

 . Therefore, Cr has opti-
mal size and (ps) is verified. The condition (pd) is trivially verified, and the condition 
(pl) is also easily verified because of the vertices u1

i
 for i ∈ [[r + 1]].

Fig. 5   The 2-local gadget. The 
set C

r
 contains the red and B

r
 

contains the square vertices
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We have to prove (ph) and (pb) . We first focus on vertices of Hr . We repeatedly 
use the property (�1) of Definition 4 when two vertices present different inter-
sections between Cr and their respective r-neighborhood. For j ∈ [[r + 1]] , let 
uUr(j) = 2r + 3 − 2j be the number of r-neighbors of uj

i
 (with i ∈ [[2r + 2]] ) belong-

ing to the line U1 of the code. Similarly, let dUr(j) = max(0, uUr(j) − 2) be the 
number of r-neighbors of dj

i
 belonging to U1 , let uDr(j) = dUr(j) be the number of 

r-neighbors of uj
i
 belonging to D1 and let dDr(j) = uUr(j) be the number of r-neigh-

bors of dj
i
 belonging to D1.

As uUr > uDr while dUr < dDr , Cr distinguishes uj
i
 and dj

′

i′
 for any relevant i, j, i′ 

and j′ . Now, as the graph is symmetrical, we only have to consider vertices of form 
u
j

i
.
For integers j and j′ such that 0 < j < j� < r + 2 , we have uUr(j) > uUr(j

�) , and 
therefore Cr distinguishes uj

i
 and uj

′

i′
 , for any relevant i, i′, j and j′ such that j ≠ j′.

It remains to distinguish uj
i
 and uj

i′
 for i ≠ i′ . A vertex uj

i
 is adjacent to every u1

k
 

such that i − r − 1 + j ≤ k ≤ i + r + 1 − j , an interval of size uUr(j) < 2r + 2 . We 
deduce that the r-neighbors of uj

i
 belonging to U1 and the r-neighbors of uj

i′
 belong-

ing to U1 are different since they can be represented by two non-empty and non-
covering intervals shifted by i − i� (and 0 < i − i� < 2r + 2).

We now have to consider the Br-extensions of Hr . Let the graph G of vertex set 
VG be a Br-extension of the graph Hr of vertex set VH , and let NB be the set of Br

-adjacent vertices. Note that u1
1
 was already at distance 2 of d1

2r+2
 so the Br-adjacent 

vertices do not introduce any short cut. To distinguish u ∈ VH and v ∈ VG⧵H , it is 
sufficient to observe that by symmetry of the graph Hr , the number of r-neighbors 
of v belonging to U1 is equal to the number of r-neighbors of v belonging to D1 , 
which is not the case for u (recall functions uUr and uDr , and functions dUr and 
dDr ). Finally, to distinguish u ∈ NB and v ∈ VG⧵H ⧵ NB , we just have to use the guar-
anteed vertex c ∈ Cr such that d(c,Br) = r − 1 and property (�1) . This concludes the 
proof of the conditions (ph) and (pb).

We lastly observe that because Hr is a bipartite planar graph, the r-local gadget is 
planar since |Br| = 2 , and it is bipartite since d(u1

1
, d1

2r+2
) = 2 . 	�  ◻

With Propositions 4 to 5, we can now prove the Theorems 4 to 6.

Proof  (Theorems 4 and 6 for each 1-layered identifying function f and r ∈ [[∞]]).
We first suggest a reduction from Planar Hitting Set to (f, r)-DIS based on the 

bipartite planar 1-layered gadget (H, B, C). Let (�,S) be an instance of Planar Hit-
ting Set with |�| = n and |S| = m such that m = O(n) . According to Proposition 2, 
the bipartite apex graph G = �∗[H,B](�,S) has size n′ linear in n + m = O(n) and 
may be built in polynomial-time in its size. Recall that (H, B, C) is an (f, r)-gadget 
by Proposition 4. By Theorem 7, G admits an (f, r)-distance identifying set of size 
k� = k + |C|(n + m) if and only if S admits a hitting set of size k. Thus, an algorithm 
solving (f, r)-DIS in 2o(

√

n�) would solve Planar Hitting Set in time 2o(
√

n) , a contra-
diction to Theorem 3 (assuming ETH).

We adapt the previous argumentation to get a reduction from Hitting Set to 
(f, r)-DIS, the instance (�,S) belonging now to the Hitting Set problem. According 
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to Proposition  3, the bipartite graph G = � [H,B, 1](�,S) has size n′ linear in 
n + m = O(n) and may also be built in polynomial-time in its size. By Theorem 8, G 
admits an (f, r)-distance identifying set of size k� = k + |C|(bn+1 + bm) if and only if 
S admits a hitting set of size k. Thus, an algorithm solving (f, r)-DIS in 2o(n�) would 
solve Hitting Set in time 2o(n) , contradicting Theorem  2 when assuming ETH. 
Moreover, a parameterized algorithm solving (f, r)-DIS in 2O(k)

⋅ n�
O(1) would be in 

contradiction with Theorem 1 when assuming �[2] ≠ ��� . 	�  ◻

Proof  (Theorems 5 and 6 for each r-local identifying function f) First, we suggest a 
reduction from Planar Hitting Set to (f, r)-DIS based on the bipartite planar local 
(f, r)-gadget (H, B, C). Let (�,S) be an instance of Planar Hitting Set with |�| = n 
and |S| = m such that m = O(n) . According to Proposition 2, the (bipartite) planar 
graph G = �[H,B, r](�,S) has size n′ linear in n + m = O(n) and may be built in 
polynomial-time in its size. By Theorem 7, G admits an (f, r)-distance identifying 
set of size k� = k + |C|(n + m) if and only if S admits a hitting set of size k. Thus, 
an algorithm solving (f, r)-DIS in 2o(

√

n�) would solve Planar Hitting Set in time 
2o(

√

n) , a contradiction to Theorem 3 (assuming ETH).
We adapt the previous argumentation to get a reduction from Hitting Set to (f, r)-

DIS, the instance (�,S) belonging now to the Hitting Set problem. In this case, 
we only have to assume the existence of a (bipartite) local (f, r)-gadget (H, B, C). 
According to Proposition 3, the bipartite graph G = � [H,B, r](�,S) has size n′ lin-
ear in n + m = O(n) and may also be built in polynomial-time in its size. By Theo-
rem 8, G admits an (f, r)-distance identifying set of size k� = k + |C|(bn+1 + bm) if 
and only if S admits a hitting set of size k. Thus, an algorithm solving (f, r)-DIS in 
2o(n

�) would solve Hitting Set in time 2o(n) , contradicting Theorem 2 when assuming 
ETH. Moreover, a parameterized algorithm solving (f, r)-DIS in 2O(k)

⋅ n�
O(1) would 

be in contradiction with Theorem 1 when assuming �[2] ≠ ��� . 	�  ◻

5 � Conclusion

In this paper, we showed generic tools to analyze identifying problems and their 
computational lower bounds. Questions about upper bounds naturally arise. While 
the general 2o(n) lower bound under ETH is clearly tight, because the naive algorithm 
consisting in enumerating all the subsets of vertices has a complexity of 2O(n) , it is 
unknown whether the planar/apex 2o(

√

n) lower bound is tight. Furthermore, there 
is still a gap between the computational lower bound provided by Theorem 6 and 
the elementary upper bound from Proposition  1 in the local cases. We wonder if 
local problems may be solved in kO(k)

⋅ nO(1) . Notice that a polynomial kernel would 
imply such a complexity (but the converse is not true). For non-local problems, an 
FPT upper bound is globally unknown. In particular, �[2]-hard problems like MD 
cannot admit FPT algorithms unless �[2] = ��� . Then, which non-local problem 
is �[2]-hard? We mention that we actually get an FPT reduction from Hitting Set 
to some scarce non-local problems (however including MD) proving their �[2]
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-hardness, but the family of involved problems is not precise nor wide. Nevertheless, 
we remark that most of our reductions may be generalized to the oriented version of 
Distance Identifying Set sometimes even for strongly connected graphs –this is due 
to the fact that the paths in our distance identifying graphs and gadgets may often be 
seen as oriented–.
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