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Abstract
We study the problem of finding shortest paths in the plane among h convex obsta-
cles, where the path is allowed to pass through (violate) up to k obstacles, for k ≤ h . 
Equivalently, the problem is to find shortest paths that become obstacle-free if k 
obstacles are removed from the input. Given a fixed source point s, we show how 
to construct a map, called a shortest k-path map, so that all destinations in the same 
region of the map have the same combinatorial shortest path passing through at 
most k obstacles. We prove a tight bound of �(kn) on the size of this map, and show 
that it can be computed in O(k2n log n) time, where n is the total number of obstacle 
vertices.

Keywords  Shortest paths · Polygonal obstacles · Continuous Dijkstra · Obstacle 
crossing · Visibility

1  Introduction

Given a set of polygonal obstacles in the plane and an integer parameter k, which k 
obstacles should we remove to obtain the shortest obstacle-free path between two 
points s and t? Equivalently, what is the shortest path that is allowed to violate (pass 
through) up to k obstacles? We call a path violating at most k obstacles a k-path, 
generalizing a traditional obstacle-free path, which is a 0-path. More precisely, we 
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assume a polygonal environment P containing h disjoint convex obstacles in the 
plane, with a total of n vertices, all lying inside a rectangle R (the outer bound-
ary). The complement of the obstacles within R is called free space. Given a fixed 
source point s in free space, we want to compute shortest k-paths, for k ≤ h , to all 
other points of free space. The description of these shortest paths can be compactly 
encoded as a finite partition of the plane, called the shortest k-path map. We use the 
notation �k(t) to denote the shortest k-path from s to t, with the fixed source s being 
implicit, and denote the length of this path by dk(t).

In this paper, we investigate structural and computational aspects of shortest 
k-paths. The problem differs from the 0-path problem in nontrivial ways even in 
the plane. In particular, two shortest 0-paths originating at a common source can-
not intersect, by the triangle inequality, and this non-crossing property of 0-paths 
is an essential ingredient for computing them in optimal time [19]. In contrast, two 
shortest k-paths can cross each other, for any k > 0 . The geometric k-path problem 
is interesting both theoretically, as part of the broad category of optimization with 
violations [8, 25] or network augmentation problems [3, 13], and practically, for 
applications such as robot motion planning, where it may be beneficial to modify a 
robot’s environment to shorten frequently used paths. (The geometric k-path prob-
lem can be seen as a more complex form of network augmentation, since removal 
of a single obstacle can create many additional “edges” in the path space.) Besides 
robot motion planning, the problem can also model situations in which the obstacles 
are “avoidable” at additional cost, for instance by paying a bridge or tunnel toll in a 
road network.

Our approach to solving the k-path problem is to compute a shortest k-path map 
SPMk , which is a partition of the plane into equivalence classes of cells (regions), 
where all destination points inside a cell have the same combinatorial structure of 
shortest k-paths to s. Once the map is known, the shortest k-path to any destination 
can be computed by performing a point location query on the map [10, 22].

1.1 � Our Results

We show that SPMk has O(kn) regions and O(kn) edges and that this bound is tight 
(Sect. 3). We present an O(k2n log n) time and O(kn log n) space algorithm for com-
puting SPMk (Sect.  4) using the continuous Dijkstra framework, which constructs 
each SPMj for 0 ≤ j ≤ k sequentially. The running time of the algorithm is optimal 
for k = O(1).

1.2 � Related Work

The problem of computing shortest paths in the presence of obstacles has a long 
history in computational geometry, dating back to the 1970s. The case of polygonal 
obstacles in the plane, in particular, has been a subject of intense research [4, 5, 14, 
21, 26, 27, 29, 30, 32], culminating in an optimal O(n log n) time algorithm using the 
continuous Dijkstra framework [19]. Many other variations of the problem, includ-
ing shortest paths inside a simple polygon [15, 18, 23], among weighted regions 
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[28], and among curved obstacles [9, 20], have also been studied. The general fla-
vor of our problem is related to geometric optimization where a small number of 
constraints can be violated. This line of work has been pursued in [8, 16, 25, 31], in 
the context of low-dimensional linear programming, separability with outliers, and 
geometric optimization. Our problem can also be viewed as a form of network aug-
mentation, where the goal is to add edges to the network to improve connectivity, 
diameter, or spanning ratio, etc. [1, 3, 7, 13].

The prior work most closely related to our problem is a recent result by Mahesh-
wari et  al. [24], which presents an O(n3) time algorithm for computing the 1-vio-
lation path inside a simple polygon: that is, a shortest path inside a simple n-gon 
where at most one edge of the path lies outside the polygon. Our paper deals with a 
different notion of path violation: we compute a k-violation path, for any value of k, 
in a polygonal domain with n vertices and h convex holes, where the violation count 
is the number of holes intersected by the path.

Our problem is also related to the minimum constraint removal problem [6, 11], 
where given a set of possibly overlapping obstacles in the plane, one would like to 
compute the minimum number of obstacles that can be removed to create a path in 
free space from s to t. This problem is known to be intractable even when obstacles 
are very simple shapes such as rectangles. Note that an important difference from 
our problem is that we assume the obstacles to be disjoint, so the existence of a free 
space s–t path is trivial.

The more general version of our problem, in which each obstacle can be removed 
by paying a fixed cost, was recently studied by Agarwal et  al. [2]. Given a cost 
budget C, the goal now is to remove a set of obstacles with total cost at most C such 
that the free space admits the shortest possible s–t path. Interestingly, the problem 
becomes NP-hard even when the obstacles are vertical line segments. The paper [2] 
also gives polynomial time approximation schemes for this problem.

2 � Properties of k‑paths

Given a point p in free space, a shortest k-path �k(p) connects s to p, crosses the 
interiors of at most k obstacles, and has minimum length among all such paths. On 
occasion, we also need to reason about paths crossing exactly k obstacles, and we 
refer to such a path as an (= k)-path. We begin with the easy observation that the 
problem can be solved in polynomial (quadratic) time, using a Dijkstra-like search 
on a “visibility graph.”

Theorem 1  Given a polygonal domain P with h convex obstacles and n vertices, a 
source point s and a destination t, we can compute a shortest k-path from s to t in 
worst-case time O((kn + h2) log n + kh2).

Proof  By the triangle inequality, each edge of the shortest path �k(t) is either an edge 
of an obstacle polygon or is a tangent between two obstacles, where we include tan-
gents from s and t. (Each pair of convex obstacles has four tangents.) Let V1 be the 



1816	 Algorithmica (2020) 82:1813–1832

1 3

set of obstacle vertices (including s and t) and E1 the set of all polygon edges and the 
tangents. Each edge of E1 is assigned a weight equal to its Euclidean length, and has 
a label equal to the number of obstacles it crosses. We can compute the set E1 , along 
with the labels, in time O(n + h2 log n) [30]. We now construct a graph G = (V ,E) , 
with O(kn) vertices and O(n + kh2) edges, as follows. For every v ∈ V1 , we create 
k + 1 copies v0, v1,… , vk , corresponding to the number of obstacles crossed on the 
path to v. For every edge (u, v) ∈ E1 that passes through j ≤ k obstacles, we add the 
edges (u0, vj), (u1, vj+1),… , (uk−j, vk) . We create two new vertices s and t and con-
nect them to their respective copies in G. That is, s connects to s0, s1,… , sk and t 
connects to t0, t1,… , tk with zero weight and zero crossing edges. The shortest path 
from s to t in this graph is the shortest k-path, and the claimed bound follows. 	�  ◻

The visibility graph-based approach is inherently quadratic in the worst case, 
because the number of obstacles can be h = �(n) . It also is limited to computing 
the shortest k-path to only one point (or a fixed set of points) at a time, although 
it can be extended to support queries in O(h(k + log n)) time apiece after quadratic 
preprocessing.

The main result of our paper is an algorithm to compute shortest k-paths from 
s to all points of free space in subquadratic time O(k2n log n) . We do this by 
computing a shortest k-path map of free space; we also prove a tight bound of 
�(kn) on the combinatorial complexity of SPMk . Note that the length of a short-
est k-path to a point is unique, although some points (along bisectors forming the 
boundaries of regions in the shortest path map) can be reached by multiple short-
est k-paths. For simplicity, however, we assume that the obstacles are in general 
position, so that the shortest k-path to each obstacle vertex is unique. (Otherwise, 
if a vertex is reached from s by multiple shortest k-paths, we pick one of them 
arbitrarily.)

We begin by highlighting a conceptual difficulty with shortest k-paths. The 
shortest paths to two different destinations can cross each other, which poses an 
inherent difficulty for the continuous Dijkstra framework of geometric shortest 
paths [19], since that method depends on the fact that two Euclidean shortest 
paths from a common source cannot intersect.

Lemma 1  There exist obstacle configurations such that for two destinations t1, t2 in 
free space, the shortest k-paths �k(t1) and �k(t2) cross each other, for k > 0.

Proof  The construction, shown in Fig. 1, has two identical obstacle bundles A and B 
placed parallel to the y-axis. Each bundle contains four vertical strips with perfora-
tions (single-point openings that split the original strip into disjoint sub-strips). The 
horizontal spacing between the strips in a bundle is infinitesimal, but for clarity the 
strips are shown separated in the figure. The points s and t both lie on the x-axis at 
distance 1 to the left and right of bundles A and B, respectively. We show that there 
are two shortest 1-paths from s to t, which cross each other, as shown in the figure. 
We then conclude that by perturbing t up and down slightly we obtain two destina-
tion points t1 and t2 with their shortest 1-paths crossing, as claimed.
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Within each bundle, the openings form an upper and a lower group. In the upper 
group, strips 2 and 3 have an opening at y = (1 + �∕2) , and strips 1 and 4 have open-
ings at y = 1 . In the lower group, all except strip 3 have an opening at y = −1 . If the 
distance between the bundles is D, then a shortest 0-path has length 2

√
2 + D + 2� , 

and a shortest 2-path has length 2
√
2 + D . A path with exactly one crossing in an 

upper group has length at least 2
√
2 + D + 3�∕2 , and a shortest path with one cross-

ing in a lower group has length 2
√
2 +

√
D2 + 4 + 𝛿 < 2

√
2 + D + 2∕D + 𝛿 . By 

choosing D = 10 , say, and � = 4∕D , we can force a shortest 1-path to go through 
exactly one group of each type. This gives two intersecting shortest k-paths, �1(t) 
and ��

1
(t) . Now, let t1 (resp. t2 ) be a destination point obtained by shifting t verti-

cally up (resp. vertically down) infinitesimally. Then it is easy to see that the shortest 
1-paths �1(t1) and �1(t2) cross each other. 	�  ◻

Fortunately, as we show in this section, shortest k-paths can always be decom-
posed into appropriate non-crossing subpaths to which the continuous Dijkstra 
method can be applied, working on multiple copies of free space connected 
using the metaphor of a k-level garage. Toward that goal, we establish a series of 
lemmas.

Lemma 2  A shortest path with exactly k crossings can be decomposed into a short-
est path with exactly (k − 1) crossings, a straight line segment inside an obstacle, 
and a shortest path with zero crossings.

Proof  Let � = (v1, v2,… , vm) be an (= k)-path from v1 to vm . Going backward from 
vm along � , let vi be the first vertex such that the segment vi−1vi intersects one or 
more obstacles. Let H be the obstacle that is closest to vi along the segment vi−1vi . 
By the convexity of H, the segment vi−1vi intersects H at two points, which we call 
p and q, and the segment pq lies entirely within H. By subpath optimality, the path 
from v1 to p is a shortest path with exactly k − 1 crossings; by construction, the seg-
ment pq lies inside the obstacle; and the subpath from q to vm crosses no obstacles. 	
� ◻

Observe that for any shortest k-path � , the subpath between any two consecutive 
vertices vi−1 and vi of � is the straight line segment vi−1vi . Since the part of � that 

A

π1(t)

π′
1(t)

δ
2

s t

B

Fig. 1   Two intersecting 1-paths
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lies inside an obstacle H must be coincident with one such segment, we have the 
following.

Corollary 1  In a shortest k-path, the path segments preceding and following any 
obstacle crossing are collinear with the path segment inside the obstacle.

Lemma 2 allows us to break any �k(t) into a (k − 1)-path �k−1(p) , a subpath line 
segment pq , and an obstacle-free subpath between q and t. We label the last two 
subpaths with the number of obstacles crossed by the prefix of the path, and call 
these labels the prefix counts. In particular, the prefix count for the subpath pq is 
k − 1 , and the prefix count for the subpath from q to t is k. By a recursive application 
of Lemma 2, we can decompose �k(t) into 2k + 1 disjoint subpaths whose labels are 
in non-decreasing order.

The key consequence of this decomposition is the following lemma, which says 
that subpaths with the same prefix count cannot cross. The example in Fig. 1 is con-
sistent with the lemma, because the intersecting edges of the two crossing shortest 
k-paths have different prefix counts.

Lemma 3  Let �k(t) and ��
k
(t�) be two subpaths whose prefix counts are the same. 

Then �k(t) and ��
k
(t�) do not cross each other.

Proof  The proof follows from a simple application of the triangle inequality: if two 
subpaths with the same prefix count intersect, then we can reconnect the prefix of 
each path to the suffix of the other, and possibly perform a local shortcut, either 
shortening at least one path or leaving them the same length but without a cross-
ing. Since the intersecting subpaths are either both inside some obstacle or in free 
space, avoiding the intersection does not increase the number of obstacle crossings 
for either path. 	�  ◻

The next two lemmas establish properties of shortest k-paths that will be useful 
later.

Definition 1  A point p is k-visible from the source s if the segment sp passes through 
at most k obstacles. A k-visibility edge is a shortest k-path with exactly one edge.

Lemma 4  If p is not (k − 1)-visible from s, then the path �k(p) must be an (= k)-path.

Proof  By contradiction. Suppose �k(p) passes through fewer than k obstacles. Since 
p is not (k − 1)-visible from s, �k(p) must have at least one bend. The path can then 
be shortened by going through the obstacle causing this bend, thereby increasing the 
number of crossings by 1. The resulting path is shorter than �k(p) and has at most k 
crossings, contradicting the optimality of �k(p) . 	�  ◻

Let dk(p) be the length of a shortest k-path to a point p. Clearly, a path that 
crosses j obstacles and contains at least two segments can be made even shorter if it 
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is allowed to pass through more obstacles. Thus, it follows that for any point p that is 
not (k − 1)-visible from s, we must have dj(p) > dj+1(p) , for j < k.

Lemma 5  For any point p that is not (k − 1)-visible from s, the lengths of the short-
est j-paths form a decreasing sequence:

3 � Shortest Path Map SPMk : Properties and Bounds

Having established the basic properties of shortest k-paths, we now begin our dis-
cussion of the shortest k-path map SPMk.

Definition 2  Given a shortest k-path �k(p) , we define the k-predecessor of p to be 
the vertex of P (including s) that is adjacent to p in �k(p) . The partition of free 
space into connected regions with the same k-predecessor is called the shortest k-
path map, and denoted SPMk . The subset of SPMk for which the shortest path �k(p) 
to every point p has exactly k crossings is called the shortest (= k)-path map and 
denoted by SPM=k . See Fig. 2 for an example.

Unlike SPM0 , in which the predecessor of a region is always inside or on the 
boundary of the region, the predecessor of a region in SPMk may lie outside the 
region. Moreover, multiple regions in SPMk may have the same predecessor. (See 
Fig. 2.) Thus, we need to maintain additional information with polygon vertices to 
disambiguate the predecessor relation. In particular, let v be the k-predecessor of p, 
namely, the vertex adjacent to p in �k(p) . Suppose the line segment vp crosses (k − i) 
obstacles, for some 0 ≤ i ≤ k . Then the length dk(p) of �k(p) is the sum of the length 
of the i-path to v and the length of segment vp . We need to maintain the values di(v) 
for all obstacle vertices v and all integers i = 0, 1,… , k . In other words,

For a point p in SPM=k , we identify the k-predecessor of p by the pair (v, i), 
where v is a vertex of P and i ∈ {0, 1,… , k} , such that dk(p) = di(v) + |vp| and 
the segment vp crosses (k − i) obstacles.

d0(p) > d1(p) > … > di(p) > … > dk(p)

Fig. 2   The shaded region 
denotes the cells of SPM1 for 
which the 1-predecessor is 
(s, 0). Note that unlike SPM0 , 
there are multiple cells with the 
same predecessor s
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Thus, the total number of k-predecessors is O(kn). However, this alone does not 
bound the number of regions in SPM=k because multiple regions can have the same 
k-predecessor and the same crossing sequence. Toward our goal of bounding the 
combinatorial complexity of the map, let us begin with the notion of k-visibility.

We define Vk to be the region consisting of k-visible points, which is star-shaped 
and therefore simply connected (Fig. 3). Now if �k(p) crosses fewer than k obstacles, 
then by Lemma 4, p must lie in Vk−1 . The path �k(p) is a straight line segment and 
the k-predecessor of p is s. Therefore, we have the following.

Lemma 6  All points p such that �k(p) has fewer than k crossings lie in Vk−1 . Outside 
of Vk−1 , SPMk is the same as SPM=k , the shortest path map with exactly k crossings.

This simplifies our discussion and allows us to decompose SPMk into two distinct 
regions, Vk−1 and SPM=k . In the following, we study structural properties of these 
regions and use them to compute upper bounds on their respective sizes. Later, we 
combine them to compute an upper bound on the size of the map SPMk.

3.1 � k‑Visibility Region

We first bound the complexity of the boundary of Vk , the region visible from s by a 
segment crossing at most k obstacles.

Lemma 7  The number of edges on the boundary �Vk is O(n + h) = O(n).

Proof  Every vertex of �Vk is either a vertex of P or a projection of one of the 2h 
tangents from s to an obstacle of P. The edges on the boundary �Vk are therefore 
sub-segments of the tangents or parts of obstacle boundaries. Each projection vertex 
belongs to a segment of �Vk collinear with s, and the endpoint x farther from s is the 
end of a maximal segment sx that crosses exactly k obstacles. Therefore, each of the 
2h tangents gives rise to at most one segment of �Vk and at most two vertices. 	�  ◻

More interestingly, the bound on the total complexity of these regions is less than 
the sum of the individual bounds.

Fig. 3   The boundary �V1 of the region V1 is dash-dotted, and it encloses the boundary �V0 , which is 
shown with dotted segments. The region V0 is shown in white, V1 ⧵ V0 is shown shaded gray. The blue 
region denotes V2 ⧵ V1 (Color figure online)
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Lemma 8  The total number of edges on all �Vi , for 0 ≤ i ≤ k , is O(n + hk).

Proof  Any vertex v of P belongs to �Vi for at most one value of i, namely the i (if 
any) such that sv intersects exactly i obstacles. For j < i , v is outside �Vj , and for 
j > i , v is in the interior of �Vj . There are O(h) edges of �Vi (for any i) not incident 
to a vertex of P. Summing over all i ≤ k completes the proof. 	�  ◻

By connecting s to all vertices on boundary �Vk−1 , we can easily decompose Vk−1 
into constant complexity regions in SPMk.

3.2 � The k‑Level Garage and the Structure of SPM=k

We now introduce our main idea for computing the shortest k-path map. By 
Lemma 2, an (= k)-path from s to a point p is the concatenation of a (k − 1)-path 
to the boundary of some obstacle H, a shortest path inside H, and a shortest path in 
free space from the other side of H to p. This suggests an incremental construction 
of SPM=k from SPM=(k−1) . We describe this construction using the metaphor of a 
k-level parking garage with elevators.1 The idea is to create multiple copies of the 
input polygonal domain and stack them in levels such that the shortest paths at each 
level have the same prefix count and therefore do not intersect. The planar subdivi-
sion of free space at the top level is SPM=k.

Definition 3  (k-garage) We construct the k-garage structure by stacking k copies (or 
floors) of the input polygonal domain P on top of one another, with special connec-
tions at the obstacle boundaries. We connect the obstacle H on floor i to its counter-
part on floor i + 1 such that any path that enters H on floor i can exit only on the next 
higher floor—in a sense, obstacles act as elevators.

Our algorithm to construct SPM=k makes use of the continuous Dijkstra method, 
which simulates the expansion of a unit speed wavefront from the source s in free 
space. The wavefront at time T contains all points p whose shortest path distance 
from s is T. The boundary of the wavefront is a set of circular arcs called wavelets, 
each generated by an obstacle vertex (including s) already covered by the wavefront. 
The generating vertex v is called the generator of the wavelet and is identified by the 
pair (v, w), where w is the time at which v was reached by the wavefront. Since the 
wavefront moves at unit speed, w is precisely the length of the shortest path from s to 
v. The generators can be thought of as sources additively weighted with delays, since 
they start emitting wavelets at time w after the start of the simulation. The locus 
of the meeting points of two adjacent wavelets is a bisector curve. Taken together 
with the obstacle boundaries, bisector curves partition free space into regions of the 
shortest path map.

1  The garage metaphor is also used in the context of finding homotopically different paths in [12], but 
the properties and technical details of our k-garage are quite different.
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We extend the continuous Dijkstra method to our k-garage structure. Each level 
of the garage is a plane with polygonal obstacles on which wavefronts propagate as 
usual, but the wavelets can now move to higher floors by entering the obstacles (ele-
vators). More precisely, when the wavefront hits an obstacle H, it is absorbed by the 
outer boundary of H and is immediately re-emitted into the interior of H. When that 
wavefront reaches the inner boundary on the other (previously unreached) side of 
H, it is absorbed and immediately re-emitted on the next higher floor of the garage. 
This vertical movement therefore adds no delay. In this modified setting, the wave-
front at time T contains points on all floors that are at distance T from the source.

The region Vk−1 is removed from the polygonal domain on floor k of the 
k-garage because the shortest k-path is known for every point p in Vk−1—it is sim-
ply the line segment sp—and leaving these points in the polygonal domain on 
floor k would create redundant copies of this path. We defer the exact details of 
our algorithm to Sect. 4. In the following, we note some properties of the k-garage 
structure useful to our algorithm. 

1.	 If � is a shortest s–t path from s on floor 0 to t on floor k, then the downward 
projection �↓ of � , obtained by projecting � into the planar domain P, is a short-
est k-path to t. (To see this, suppose for contradiction we have another k-path �c 
from s to t that is shorter. Then by applying Lemma 2 recursively, we can break �c 
into 2k + 1 disjoint subpaths ordered by their prefix counts. We now lift the paths 
into the levels of the garage and concatenate them in order: if the prefix counts of 
the current and the next subpath are the same, join their common endpoint at the 
same level as the prefix count; otherwise join their common endpoint at the next 
level. This transforms the path �c into a shortest path �↑

c
 from s on floor 0 to t on 

floor k. Since the vertical movement between the garage floors incurs no delay, 
the lifted path �↑

c
 is shorter than � , which is a contradiction.)

2.	 Since wavefront propagation on floor i is affected only by wavelets coming from 
floors below it, we can think of wavefront propagation on floor i as occurring in 
a polygonal domain with multiple sources. On floor i > 0 , all sources correspond 
to generators of wavelets coming from lower floors.

3.	 To compute the sources at floor i > 0 , we need to consider only wavelets coming 
from floor i − 1 . This follows from Lemma 5, which implies that even if wavelets 
were allowed to ascend multiple floors in an elevator, a wavelet from floor i − 1 
would reach floor i no later than the wavelets from other lower floors.

4.	 The planar subdivision formed by bisectors of colliding wavelets on floor i is the 
shortest path map for (= i)-paths, SPM=i . Note that since the obstacles are convex, 
a shortest path to a point on floor i cannot cross the same obstacle (on any floor) 
more than once, or else it can be made even shorter.

This suggests a natural way of computing the shortest path map SPM=k . We con-
struct maps SPM=i for i = 0, 1,… , k iteratively. Each iteration i > 0 is defined by 
ordinary shortest path propagation with a set of sources that come from the pre-
vious iteration. In the following section we use these observations to compute a 
bound on the size of the shortest k-path map SPMk.
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3.3 � Complexity of SPM
k

The shortest k-path map SPMk on the top floor of the k-garage is precisely SPM=k in 
the portion of free space that is outside Vk−1 , as shown in Lemma 4. The boundary 
of Vk−1 has linear size, and so we only need to bound the complexity of SPM=k . To 
bound the complexity of SPM=k , we consider the embedded planar graph Gk formed 
by SPM=k , Vk−1 , and the obstacle polygons. We note the following property of planar 
graphs, which is a direct consequence of Euler’s formula.

Lemma 9  Let f be the number of faces in a planar graph G = (V ,E) . If all the verti-
ces of G have degree three or more, then the size of G is O(f).

Proof  Let d(v) be the degree of a vertex v. Since 
∑

v∈V d(v) = 2�E� , and d(v) ≥ 3 , 
we have 2|E| ≥ 3|V| . Substituting this in Euler’s formula |V| − |E| + f = 2 
gives us |V| ≤ 2f − 4 = O(f ) . Since |E| = |V| + f − 2 , we conclude that 
|V| + |E| = O(f ) . 	�  ◻

Observe that the “interesting” vertices in Gk are the points where bisectors meet 
obstacle boundaries or meet each other, and therefore have degree at least three. If 
f is the number of faces, then by Lemma 9 the complexity of the map due to these 
vertices is O(f). In addition to this, Gk can also have O(n) vertices of degree two cor-
responding to the vertices of obstacle polygons, giving a total complexity bound of 
O(f + n).

Therefore, in order to compute a bound on the complexity of SPM=k , it suffices 
to bound the number of faces f in the graph Gk . We begin with the following well-
known result [19].

Lemma 10  The shortest path map of m sources weighted by their delays in a polygo-
nal domain with n vertices and h holes has f ≤ m + n + h ≤ m + 2n faces. By 
planarity, the total complexity of the map is O(f + n).

The key to the proof of the preceding lemma is that each shortest path map region 
is star-shaped and connected to the predecessor of all points in the region. Since the 
total number of predecessors is at most (m + n) , the number of faces due to these 
regions is also at most (m + n) . Crucially, this lemma does not immediately apply 
to SPM=k , because some predecessors of regions on the kth floor belong to regions 
below the kth floor. That is, some of the m sources are not in the polygonal domain, 
so the argument that each region is connected to its predecessor does not hold. For-
tunately, the argument of Lemma 10 is a topological one, and we can create a topo-
logical domain in which the argument applies (Fig. 4). 

Every point p ∈ �P outside of Vk−1 is labeled by a (k − 1)-crossing distance 
dk−1(p) . If p belongs to an obstacle H, and there exists some q ∈ �H such that 
dk−1(q) + |qp| < dk−1(p) , then �k(p) may reach p by passing through H. The 
wavefront that determines SPM=k will be initialized with a weighted source that 
reaches p by “elevator” passing through H. If q ∈ �H minimizes dk−1(q) + |qp| , 
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then the predecessor of q on �k−1(q) is the generator of the wavelet that first 
reaches p in the wavefront. We partition each edge of �H into maximal sub-edges 
with the same predecessor. For each sub-edge with predecessor v, we construct 
a triangular “flap” by drawing the segments from the sub-edge endpoints to v. 
Shortest paths propagate from v toward the kth garage floor inside the flap, and in 
the pseudo-polygonal domain obtained by gluing all the flaps onto the boundary 
of free space, each shortest path map region is connected to its predecessor. If 
these flaps were projected into the plane, they would likely overlap, but topologi-
cally they do not alter the structure of the domain, and they add only two edges 
per flap.

Lemma 11  Let P be a polygonal domain with n vertices and h holes. If P is extended 
by gluing at most m triangular flaps to its boundary, then the shortest path map 
of m sources weighted by their delays in this extended polygonal domain has 
f ≤ m + n + h ≤ m + 2n faces and total complexity O(m + n).

The preceding lemma applies to the propagation of shortest paths on each floor 
of the k-garage and also to propagation inside the obstacles (elevators). In both 
cases the key to bounding the complexity of an iterated construction is bound-
ing the number of sources that propagate into the next level, whether elevator 
or garage floor. In each elevator and on each garage level i > 0 , the sources are 
located on the domain boundary. For simplicity we partition the sources at obsta-
cle vertices, so each source is a maximal (sub-)edge � on some obstacle boundary 
�H , with an associated generator (v, w). We refer to such a source as a boundary 
source and represent it by the triple (v,w,�) . Shortest paths from a source (v,w,�) 
enter the domain through edge � , and their predecessor is vertex v with weight 

(a) (b)

(c) (d)

Fig. 4   a–c An example illustration of wavefront propagation across garage floors. The wavefront ascends 
between floors by entering into obstacles (elevators) and creates boundary sources at the next level. We 
continue wavefront propagation at the next level using these boundary sources. d Creating a pseudo-
polygonal domain by connecting a source on a higher level to its predecessor on an earlier level by a 
triangular “flap”
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(delay) w. As noted above, each boundary source defines a triangular flap glued 
onto the boundary of the propagation domain; the flap is the convex hull of � and 
v.

When boundary sources propagate into some domain (either P or the interior of 
an obstacle), they define a shortest path map S in the domain. We say that if the 
region of S corresponding to a source s = (v,w,�) intersects a domain edge, then s 
claims the intersection interval on that edge. An entry claim of a source (v,w,�) is 
a claim on edge � itself; entry claims can be ignored for further propagation, since a 
path that enters the domain through � and exits through the same edge can be short-
ened. Exit claims (ones on edges other than � ) define the sources for the next level 
of shortest path propagation. (See Fig. 5.) Within any edge, a maximal sequence of 
exit claims with the same source is called an exit claim cluster. In other words, exit 
claims of a source (v,w,�) on an edge e may be disconnected and each connected 
sequence is precisely an exit claim cluster. Note that these exit claim clusters give 
rise to the boundary sources for subsequent wavefront propagation. That is, for an 
exit claim cluster on edge e with source (v,w,�) , the corresponding boundary source 
at the next level is (v,w,��) , where �′ is the minimal subsegment of e containing the 
cluster. As noted, entry claims inside �′ do not affect shortest path propagation at the 
next level.

Lemma 12  Let S be the shortest path map obtained by propagating m boundary 
sources into a polygonal domain with n vertices. Then the number of exit claim clus-
ters of S is at most m + O(n).

Proof  Since S is a partition of the domain, the domain boundary is completely cov-
ered by claims, which may be either entry claims or exit claims.

We construct an embedded bipartite planar graph whose nodes are claims on the 
domain boundary. Every source (v,w,�) that claims some portion of the domain 
boundary must have an entry claim on � ; otherwise the shortest path propagation 
from (v,w,�) would not enter the domain. For every exit claim � claimed by source 
(v,w,�) , we draw an arc from segment � to � , following a shortest path segment 
across the domain interior. We want to bound the total number of these arcs. Since 

(a) (b)

Fig. 5   a Exit claims for the boundary source (v,w,�) need to be propagated to next level. b Connecting 
the sources with their exit claims gives a bipartite planar graph
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the shortest paths that define S do not cross, these arcs are non-crossing. (See also 
Fig. 5.)

We group arcs into bundles whose sources and targets lie on the same pair of 
domain edges. If we pick one arc from each bundle and regard each domain edge 
as a node in a planar graph, planarity gives a bound of O(n) on the total number of 
bundles. This bound on the number of bundles is the first step in bounding the num-
ber of arcs.

If a bundle joining edges e and e′ has j > 1 arcs, we draw j − 1 cycles, each one 
defined by two adjacent arcs and the subsegments of e and e′ between their end-
points. The cycles for a single bundle are interior-disjoint, but cycles from different 
bundles may be nested, one containing the other. Note that cycle boundaries cannot 
cross—they are composed of obstacle boundaries and noncrossing arcs—so nesting 
is the only possible relation between cycles that are not interior-disjoint.

If a cycle C contains any obstacle, we split the bundle B containing C between the 
arcs of C, so neither of the resulting two bundles contains C. We charge the splitting 
of B to one of the obstacles inside C. We choose which obstacle to charge so as to 
guarantee that each obstacle is charged at most once. If C contains no cycle nested 
inside it, we charge an arbitrary obstacle inside C. If C contains other cycles, let C′ 
be one at the outermost level of nesting within C. Cycle C′ must have at least one of 
its bounding edges on an obstacle H contained in the interior of C, because other-
wise C′ would share both obstacle edges with C, which is impossible by construc-
tion. Obstacle H is not contained in any cycle C′′ nested inside C, because C′′ would 
necessarily contain C′ , but C′ was chosen outermost. We charge the splitting of B at 
C to H. Note that H cannot be charged by any cycle inside C (because it is outside 
all such cycles) or containing C (because it is inside C and hence shielded from such 
cycles).

Because there are at most O(n) obstacles, each charged for at most one split, the 
number of bundles after splitting is still O(n). None of the bundles that remain after 
splitting contains any obstacle inside the quadrilateral it bounds.

Given a bundle incident to edges e and e′ , we divide it into two sub-bundles, one 
consisting of arcs directed from e to e′ and one consisting of the oppositely directed 
arcs. Within each sub-bundle, we identify contiguous runs of arcs with the same 
source. Each maximal run corresponds to an exit claim cluster, so we will call these 
runs arc clusters. We charge the first and last arc cluster in each sub-bundle to the 
bundle itself. (There are O(n) such charges.) Crucially, every other arc cluster corre-
sponds to a source that appears only in this bundle, because the arcs before and after 
it in the sub-bundle confine it and prevent it from claiming edges anywhere else. 
Hence we can charge each such cluster to the source itself; the source is charged 
only once.

To recap, we bound the number of exit claim clusters by the number of arc clus-
ters. Arcs belong to bundles, and there are O(n) bundles by planarity. To remove 
obstacles inside bundles, we split bundles at most O(n) times. We break each bundle 
into two sub-bundles, and pay explicitly for the first and last arc cluster in each, for 
a total of O(n). We charge each remaining arc cluster to one of the m sources, charg-
ing each source at most once, giving a total bound on the number of arc clusters of 
m + O(n) . 	�  ◻
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We are now ready to bound the complexity of SPM=k.

Lemma 13  The number of faces fk in SPM=k is O(n(k + 1)) . The complexity of 
SPM=k has the same asymptotic bound.

Proof  The proof is by induction. Our goal is to show that there exists a constant C 
such that the number of faces fk in SPM=k is at most Cn(k + 1) for all k ≥ 0.

We begin with the inductive step. Let m be the number of exit claim clusters in 
SPM=(k−1) . This is the number of boundary sources in “elevator” propagation across 
the obstacle interiors, going from level k − 1 to level k. By Lemma 12, the resulting 
number of exit claim clusters is m� = m + O(n) . But m′ is the number of boundary 
sources in the construction of SPM=k , and once again by Lemma 12, the resulting 
number of exit claim clusters is m�� = m� + O(n) = m + O(n) , that is, m�� ≤ m + c1n 
for some constant c1.

To establish the base case, recall that a shortest path map with no crossings 
( SPM0 ) has complexity O(n), which implies that the number of exit claims on its 
boundary is O(n), i.e., at most c2n for some constant c2 . Combining the base case 
and inductive step, we have shown that the number of exit claim clusters on the 
boundary of SPM=k is at most c2n + k ⋅ c1n . The number of faces of SPM=k is at 
most equal to the number of boundary sources, which is at most Cn(k + 1) , for 
C = max(c1, c2) . Lemma 9 establishes the total complexity bound. 	�  ◻

3.4 � A Matching Lower Bound

We will now bound the size of SPMk from below by constructing a map with �(nk) 
regions. We construct an arrangement of obstacles as shown in Fig. 6. We start with 
two obstacle bundles A and B placed parallel to the y-axis. Within each bundle, the 
horizontal spaces between strips are infinitesimal, but they are shown enlarged for 
clarity. The source s lies on the x-axis with bundle A placed right next to it. Bundle 
A consists of 3k perforated strips. In the first 2k strips, the odd numbered ones have 
openings at y = 0 and the even numbered ones have openings at y = −0.5 . The next 

A BS

. . . . . .

p
s y∗

. . .

Fig. 6   A shortest k-path map with complexity �(nk) . Bundle A has 2k black strips and k gray strips; bun-
dle B has k strips. The thick strip S has �(n) openings. Each opening of S defines k cells in SPMk , shown 
shaded (one to the right of each of the k strips in bundle B). A shortest k-path �(p) from s is also shown. 
Observe that since �(p) crosses (k − 1) strips in bundle A, it can only cross the first strip in bundle B 
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k strips have an opening at y = 0 . Bundle B is placed at a distance D to the right of A 
and consists of k strips with no openings.

The last k strips in bundle A ensure that shortest k-paths starting at s must exit 
from the opening of the last strip in A (denoted by y∗ ); a path that crosses the last 
strip in A at some point other than y∗ can be shortened while preserving the same 
number of crossings. Observe that a shortest path starting at s can reach y∗ with i 
crossings, where 0 ≤ i ≤ k . However, each crossing avoided results in an additional 
length of 1 unit. Therefore a shortest path with i crossings at y∗ has an additional 
length of (k − i) units. Also note that a shortest path with i crossings prior to y∗ can 
cross the first (k − i) of the k strips in bundle B, but cannot cross any farther. There-
fore, to the right of strip j in bundle B, we get a region with k-predecessor (y∗, k − j) 
and a total path length (to a point on the x-axis) of D + j . This gives us a total of k 
regions.

We extend this construction to �(nk) regions by adding a vertical strip S, which 
acts as a path splitter. This special strip has a total of m single-point openings at 
y = 0, 1,… ,m , denoted by yi . We place S at an infinitesimal distance to the left 
of bundle B, creating k new regions for each opening of S. Note that in the range 
0 ≤ y ≤ m , a path that crosses S other than at one of the perforations yi can be short-
ened by detouring through the nearest yi and inserting one more crossing before y∗ . 
Hence a shortest k-path always passes through one of the yi . This gives a total of 
O(mk) regions: the k-predecessor of the region at y = i and to the right of strip j of 
bundle B will be (yi, k − j) , with a total path length of 

√
D2 + i2 + j.

The total number of vertices in our construction is 
3k × 4 + k × 2 + (m + 1) × 2 = 14k + 2m + 2 . By choosing m = (n − 14k − 2)∕2 
and assuming k < n∕28 , we have m = �(n) and the total number of regions in SPMk 
is �(nk) . This gives us the following lemma.

Lemma 14  The worst-case complexity of SPMk is �(nk).

Combining Lemmas 7, 13, and 14, we get the main result of this section.

Theorem 2  The shortest k-path map SPMk has size �(kn).

4 � Computing SPMk

In this section we describe an O(k2n log n) algorithm to construct SPMk . Recall from 
our discussion about the k-garage (Definition 3), we can construct SPM=k iteratively, 
one level at a time. To compute the map at each level, we propagate the sources 
from the previous level and then perform wavefront propagation at the current level. 
For this, we use the algorithm for shortest paths in the presence of polygonal obsta-
cles by Hershberger and Suri [19] as a subroutine. Except for a few small modifica-
tions required for our setting, most of the algorithm carries over unchanged. In the 
following, we briefly review the key ideas and discuss the necessary modifications.
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The Hershberger–Suri algorithm uses the continuous Dijkstra method, which 
simulates the propagation of a unit speed wavefront in free space. The wavefront 
is a collection of circular wavelets. It changes its shape as it propagates and hits 
obstacles. Each wavelet originates at a generator, which may be a point source or 
an obstacle vertex (an intermediate source). A generator for a wavelet � is identi-
fied by the pair (v, w), where v is an input vertex and w is the time at which v starts 
emitting � . The Hershberger–Suri algorithm simulates wavefront propagation over 
a planar subdivision called the conforming subdivision of free space. For each sub-
division edge e, and every point p ∈ e , the algorithm identifies the generator whose 
wavelet first reaches p. Combining these results for all p ∈ e gives the wavefront for 
e. The key idea of the algorithm is to localize interesting events (such as wavelet col-
lisions) within a constant number of cells in the subdivision. Each free-space edge e 
of this subdivision is contained in the union of a constant number of cells, called its 
well-covering region U(e) . The wavefront for edge e is computed by combining and 
propagating the wavefront inside of U(e) . The computed wavefronts are then merged 
to compute the shortest path map. This is the main result relevant to our algorithm:

Lemma 15  ([19]) Given a set of polygonal obstacles with n vertices and a set of 
O(n) sources with delays, one can compute the shortest path map in O(n log n) time 
and O(n log n) space.

From the discussion preceding Lemma 12, recall that the sources on floor i are 
identified by triples (v,w,�) , where � is a (sub-)edge of some obstacle H, (v, w) is 
a weighted point source on some floor j < i , and the wavelet � generated by (v, w) 
enters floor i from the interior of H (an elevator) passing through edge � . Each 
source (v,w,�) defines a triangular flap glued onto the boundary of free space at 
� . Conceptually, we think of the wavelet � from (v,w,�) as propagating in the flap 
before it enters floor i. Algorithmically, we can ignore the flap and start the propaga-
tion in free space at edge � . This calls for a slight modification in the initialization 
step of the Hershberger–Suri algorithm. In particular, we do the following for each 
edge e of the conforming subdivision: 

1.	 Find all boundary sources (v,w,�) such that the well-covering region U(e) con-
tains �.

2.	 Initialize covertime(e), which is the time at which e would be engulfed by the 
wavefront, minimizing over all boundary sources (v,w,�) with � ∈ U(e) , and 
for each such source considering paths from v with delay w, constrained to pass 
through �.

3.	 For each source (v,w,�) with � ∈ U(e) , propagate its wavelet � to e inside U(e).

In the following lemma we show how to compute the boundary sources for each step 
of wavefront propagation.

Lemma 16  Given m boundary sources in a polygonal domain with n vertices, we 
can compute the exit claims of the sources in O((m + n) log(m + n)) time and space.
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Proof  We apply the Hershberger–Suri algorithm, modified for boundary sources 
as described above. The algorithm computes the shortest path map for the sources 
inside the polygonal domain in total time and space O((m + n) log(m + n)) . The 
shortest path map partitions the boundary into O(m + n) intervals (claims), each 
claimed by its own source.

However, some of these intervals may be entry claims, that is, they are claimed 
by a source that lies on the same segment. Observe that an entry claim interval must 
have a non-empty intersection with the interval corresponding to its source. We 
can therefore identify entry claims by overlaying the set of claim intervals with the 
boundary sources that form another set of m intervals. Overlaying these two sets of 
intervals takes additional linear time and space. The remainder is the set of all exit 
claims, that is, those with a claiming source from a different segment. 	�  ◻

With these primitives in place, we are ready to describe our algorithm. The input 
is a polygonal domain P with convex obstacles. We will use M to denote the set of 
boundary sources passed as input to the Hershberger–Suri algorithm. The algorithm 
computes two things: the (k − 1)-visibility region V and the (= k)-path map SPM=k , 
which combined together form SPMk . The length of the shortest path to any point 
p can then be easily computed by first locating the region containing p in the map 
SPMk and then connecting p to the k-predecessor of this region as described in the 
beginning of Sect. 3.

Algorithm to construct SPMk

1.	 Set M = {s} and call the Hershberger–Suri algorithm to compute SPM0 for the 
polygonal domain P. Initialize V to be the empty region ∅.

2.	 Repeat for each i ∈ 1, 2,… , k : 

(a)	 Using Lemma 16, propagate the sources in SPMi−1 through the obstacles 
in P to compute the set of boundary sources Mnew for SPM=i.

(b)	 Identify all the regions in SPM=(i−1) for which the predecessor is s. Observe 
that this is precisely the region V � = Vi−1 ⧵ Vi−2 . Set P to be the new polygo-
nal domain with this region removed.

(c)	 If V = � , then set V = V � . Otherwise merge V with V ′ at the common ver-
tices.

(d)	 Set M = Mnew and call the Hershberger–Suri algorithm to compute SPM=i 
for the polygonal domain P.

3.	 Merge SPM=k with V at the boundary of regions of SPM=k that have s as predeces-
sor (i.e. V � = Vk ⧵ Vk−1 ), to obtain SPMk.

Observe that after Step 2c of iteration i, the region V is equal to Vi−1 . Because Vi−1 
contains Vi−2 and because both regions have linear size (by Lemma 7), Step 2c takes 
linear time. Therefore, the total running time is dominated by k calls to the Her-
shberger–Suri algorithm with O(nk) sources (Theorem  2). We have the following 
result.
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Theorem 3  If P is a polygonal domain bounded by convex obstacles with a total of n 
vertices, the shortest k-path map for P with respect to a source point s can be com-
puted in O(k2n log n) time and (kn log n) space.

5 � Conclusion

In this paper, we studied the problem of finding shortest paths that are allowed to 
pass through a bounded number of convex obstacles. We showed that although 
two such k-paths may cross each other, they can be decomposed into non-crossing 
subpaths based on prefix-counts. This decomposition allows us to compute short-
est k-paths efficiently, using the continuous Dijkstra framework. We showed that the 
size of the shortest k-path map is �(kn) and that it can be computed in worst-case 
time O(k2n log n) using (kn log n) space. Our algorithm’s time complexity is optimal 
when k = O(1).
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