
Vol.:(0123456789)

Algorithmica (2020) 82:1813–1832
https://doi.org/10.1007/s00453-020-00673-y

1 3

Shortest Paths in the Plane with Obstacle Violations

John Hershberger1 · Neeraj Kumar2  · Subhash Suri2

Received: 26 July 2018 / Accepted: 7 January 2020 / Published online: 20 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study the problem of finding shortest paths in the plane among h convex obsta-
cles, where the path is allowed to pass through (violate) up to k obstacles, for k ≤ h .
Equivalently, the problem is to find shortest paths that become obstacle-free if k
obstacles are removed from the input. Given a fixed source point s, we show how
to construct a map, called a shortest k-path map, so that all destinations in the same
region of the map have the same combinatorial shortest path passing through at
most k obstacles. We prove a tight bound of �(kn) on the size of this map, and show
that it can be computed in O(k2n log n) time, where n is the total number of obstacle
vertices.

Keywords  Shortest paths · Polygonal obstacles · Continuous Dijkstra · Obstacle
crossing · Visibility

1  Introduction

Given a set of polygonal obstacles in the plane and an integer parameter k, which k
obstacles should we remove to obtain the shortest obstacle-free path between two
points s and t? Equivalently, what is the shortest path that is allowed to violate (pass
through) up to k obstacles? We call a path violating at most k obstacles a k-path,
generalizing a traditional obstacle-free path, which is a 0-path. More precisely, we

A preliminary version of this paper [17] appeared in the Proceedings of the 25th European
Symposium of Algorithms (ESA), 2017.

 *	 Neeraj Kumar
	 neeraj@cs.ucsb.edu

	 John Hershberger
	 john_hershberger@mentor.com

	 Subhash Suri
	 suri@cs.ucsb.edu

1	 Mentor Graphics Corp., Wilsonville, OR, USA
2	 University of California, Santa Barbara, CA, USA

http://orcid.org/0000-0001-9356-526X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00673-y&domain=pdf

1814	 Algorithmica (2020) 82:1813–1832

1 3

assume a polygonal environment P containing h disjoint convex obstacles in the
plane, with a total of n vertices, all lying inside a rectangle R (the outer bound-
ary). The complement of the obstacles within R is called free space. Given a fixed
source point s in free space, we want to compute shortest k-paths, for k ≤ h , to all
other points of free space. The description of these shortest paths can be compactly
encoded as a finite partition of the plane, called the shortest k-path map. We use the
notation �k(t) to denote the shortest k-path from s to t, with the fixed source s being
implicit, and denote the length of this path by dk(t).

In this paper, we investigate structural and computational aspects of shortest
k-paths. The problem differs from the 0-path problem in nontrivial ways even in
the plane. In particular, two shortest 0-paths originating at a common source can-
not intersect, by the triangle inequality, and this non-crossing property of 0-paths
is an essential ingredient for computing them in optimal time [19]. In contrast, two
shortest k-paths can cross each other, for any k > 0 . The geometric k-path problem
is interesting both theoretically, as part of the broad category of optimization with
violations [8, 25] or network augmentation problems [3, 13], and practically, for
applications such as robot motion planning, where it may be beneficial to modify a
robot’s environment to shorten frequently used paths. (The geometric k-path prob-
lem can be seen as a more complex form of network augmentation, since removal
of a single obstacle can create many additional “edges” in the path space.) Besides
robot motion planning, the problem can also model situations in which the obstacles
are “avoidable” at additional cost, for instance by paying a bridge or tunnel toll in a
road network.

Our approach to solving the k-path problem is to compute a shortest k-path map
SPMk , which is a partition of the plane into equivalence classes of cells (regions),
where all destination points inside a cell have the same combinatorial structure of
shortest k-paths to s. Once the map is known, the shortest k-path to any destination
can be computed by performing a point location query on the map [10, 22].

1.1 � Our Results

We show that SPMk has O(kn) regions and O(kn) edges and that this bound is tight
(Sect. 3). We present an O(k2n log n) time and O(kn log n) space algorithm for com-
puting SPMk (Sect. 4) using the continuous Dijkstra framework, which constructs
each SPMj for 0 ≤ j ≤ k sequentially. The running time of the algorithm is optimal
for k = O(1).

1.2 � Related Work

The problem of computing shortest paths in the presence of obstacles has a long
history in computational geometry, dating back to the 1970s. The case of polygonal
obstacles in the plane, in particular, has been a subject of intense research [4, 5, 14,
21, 26, 27, 29, 30, 32], culminating in an optimal O(n log n) time algorithm using the
continuous Dijkstra framework [19]. Many other variations of the problem, includ-
ing shortest paths inside a simple polygon [15, 18, 23], among weighted regions

1815

1 3

Algorithmica (2020) 82:1813–1832	

[28], and among curved obstacles [9, 20], have also been studied. The general fla-
vor of our problem is related to geometric optimization where a small number of
constraints can be violated. This line of work has been pursued in [8, 16, 25, 31], in
the context of low-dimensional linear programming, separability with outliers, and
geometric optimization. Our problem can also be viewed as a form of network aug-
mentation, where the goal is to add edges to the network to improve connectivity,
diameter, or spanning ratio, etc. [1, 3, 7, 13].

The prior work most closely related to our problem is a recent result by Mahesh-
wari et al. [24], which presents an O(n3) time algorithm for computing the 1-vio-
lation path inside a simple polygon: that is, a shortest path inside a simple n-gon
where at most one edge of the path lies outside the polygon. Our paper deals with a
different notion of path violation: we compute a k-violation path, for any value of k,
in a polygonal domain with n vertices and h convex holes, where the violation count
is the number of holes intersected by the path.

Our problem is also related to the minimum constraint removal problem [6, 11],
where given a set of possibly overlapping obstacles in the plane, one would like to
compute the minimum number of obstacles that can be removed to create a path in
free space from s to t. This problem is known to be intractable even when obstacles
are very simple shapes such as rectangles. Note that an important difference from
our problem is that we assume the obstacles to be disjoint, so the existence of a free
space s–t path is trivial.

The more general version of our problem, in which each obstacle can be removed
by paying a fixed cost, was recently studied by Agarwal et al. [2]. Given a cost
budget C, the goal now is to remove a set of obstacles with total cost at most C such
that the free space admits the shortest possible s–t path. Interestingly, the problem
becomes NP-hard even when the obstacles are vertical line segments. The paper [2]
also gives polynomial time approximation schemes for this problem.

2 � Properties of k‑paths

Given a point p in free space, a shortest k-path �k(p) connects s to p, crosses the
interiors of at most k obstacles, and has minimum length among all such paths. On
occasion, we also need to reason about paths crossing exactly k obstacles, and we
refer to such a path as an (= k)-path. We begin with the easy observation that the
problem can be solved in polynomial (quadratic) time, using a Dijkstra-like search
on a “visibility graph.”

Theorem 1  Given a polygonal domain P with h convex obstacles and n vertices, a
source point s and a destination t, we can compute a shortest k-path from s to t in
worst-case time O((kn + h2) log n + kh2).

Proof  By the triangle inequality, each edge of the shortest path �k(t) is either an edge
of an obstacle polygon or is a tangent between two obstacles, where we include tan-
gents from s and t. (Each pair of convex obstacles has four tangents.) Let V1 be the

1816	 Algorithmica (2020) 82:1813–1832

1 3

set of obstacle vertices (including s and t) and E1 the set of all polygon edges and the
tangents. Each edge of E1 is assigned a weight equal to its Euclidean length, and has
a label equal to the number of obstacles it crosses. We can compute the set E1 , along
with the labels, in time O(n + h2 log n) [30]. We now construct a graph G = (V ,E) ,
with O(kn) vertices and O(n + kh2) edges, as follows. For every v ∈ V1 , we create
k + 1 copies v0, v1,… , vk , corresponding to the number of obstacles crossed on the
path to v. For every edge (u, v) ∈ E1 that passes through j ≤ k obstacles, we add the
edges (u0, vj), (u1, vj+1),… , (uk−j, vk) . We create two new vertices s and t and con-
nect them to their respective copies in G. That is, s connects to s0, s1,… , sk and t
connects to t0, t1,… , tk with zero weight and zero crossing edges. The shortest path
from s to t in this graph is the shortest k-path, and the claimed bound follows. 	� ◻

The visibility graph-based approach is inherently quadratic in the worst case,
because the number of obstacles can be h = �(n) . It also is limited to computing
the shortest k-path to only one point (or a fixed set of points) at a time, although
it can be extended to support queries in O(h(k + log n)) time apiece after quadratic
preprocessing.

The main result of our paper is an algorithm to compute shortest k-paths from
s to all points of free space in subquadratic time O(k2n log n) . We do this by
computing a shortest k-path map of free space; we also prove a tight bound of
�(kn) on the combinatorial complexity of SPMk . Note that the length of a short-
est k-path to a point is unique, although some points (along bisectors forming the
boundaries of regions in the shortest path map) can be reached by multiple short-
est k-paths. For simplicity, however, we assume that the obstacles are in general
position, so that the shortest k-path to each obstacle vertex is unique. (Otherwise,
if a vertex is reached from s by multiple shortest k-paths, we pick one of them
arbitrarily.)

We begin by highlighting a conceptual difficulty with shortest k-paths. The
shortest paths to two different destinations can cross each other, which poses an
inherent difficulty for the continuous Dijkstra framework of geometric shortest
paths [19], since that method depends on the fact that two Euclidean shortest
paths from a common source cannot intersect.

Lemma 1  There exist obstacle configurations such that for two destinations t1, t2 in
free space, the shortest k-paths �k(t1) and �k(t2) cross each other, for k > 0.

Proof  The construction, shown in Fig. 1, has two identical obstacle bundles A and B
placed parallel to the y-axis. Each bundle contains four vertical strips with perfora-
tions (single-point openings that split the original strip into disjoint sub-strips). The
horizontal spacing between the strips in a bundle is infinitesimal, but for clarity the
strips are shown separated in the figure. The points s and t both lie on the x-axis at
distance 1 to the left and right of bundles A and B, respectively. We show that there
are two shortest 1-paths from s to t, which cross each other, as shown in the figure.
We then conclude that by perturbing t up and down slightly we obtain two destina-
tion points t1 and t2 with their shortest 1-paths crossing, as claimed.

1817

1 3

Algorithmica (2020) 82:1813–1832	

Within each bundle, the openings form an upper and a lower group. In the upper
group, strips 2 and 3 have an opening at y = (1 + �∕2) , and strips 1 and 4 have open-
ings at y = 1 . In the lower group, all except strip 3 have an opening at y = −1 . If the
distance between the bundles is D, then a shortest 0-path has length 2

√
2 + D + 2� ,

and a shortest 2-path has length 2
√
2 + D . A path with exactly one crossing in an

upper group has length at least 2
√
2 + D + 3�∕2 , and a shortest path with one cross-

ing in a lower group has length 2
√
2 +

√
D2 + 4 + 𝛿 < 2

√
2 + D + 2∕D + 𝛿 . By

choosing D = 10 , say, and � = 4∕D , we can force a shortest 1-path to go through
exactly one group of each type. This gives two intersecting shortest k-paths, �1(t)
and ��

1
(t) . Now, let t1 (resp. t2 ) be a destination point obtained by shifting t verti-

cally up (resp. vertically down) infinitesimally. Then it is easy to see that the shortest
1-paths �1(t1) and �1(t2) cross each other. 	� ◻

Fortunately, as we show in this section, shortest k-paths can always be decom-
posed into appropriate non-crossing subpaths to which the continuous Dijkstra
method can be applied, working on multiple copies of free space connected
using the metaphor of a k-level garage. Toward that goal, we establish a series of
lemmas.

Lemma 2  A shortest path with exactly k crossings can be decomposed into a short-
est path with exactly (k − 1) crossings, a straight line segment inside an obstacle,
and a shortest path with zero crossings.

Proof  Let � = (v1, v2,… , vm) be an (= k)-path from v1 to vm . Going backward from
vm along � , let vi be the first vertex such that the segment vi−1vi intersects one or
more obstacles. Let H be the obstacle that is closest to vi along the segment vi−1vi .
By the convexity of H, the segment vi−1vi intersects H at two points, which we call
p and q, and the segment pq lies entirely within H. By subpath optimality, the path
from v1 to p is a shortest path with exactly k − 1 crossings; by construction, the seg-
ment pq lies inside the obstacle; and the subpath from q to vm crosses no obstacles. 	
� ◻

Observe that for any shortest k-path � , the subpath between any two consecutive
vertices vi−1 and vi of � is the straight line segment vi−1vi . Since the part of � that

A

π1(t)

π′
1(t)

δ
2

s t

B

Fig. 1   Two intersecting 1-paths

1818	 Algorithmica (2020) 82:1813–1832

1 3

lies inside an obstacle H must be coincident with one such segment, we have the
following.

Corollary 1  In a shortest k-path, the path segments preceding and following any
obstacle crossing are collinear with the path segment inside the obstacle.

Lemma 2 allows us to break any �k(t) into a (k − 1)-path �k−1(p) , a subpath line
segment pq , and an obstacle-free subpath between q and t. We label the last two
subpaths with the number of obstacles crossed by the prefix of the path, and call
these labels the prefix counts. In particular, the prefix count for the subpath pq is
k − 1 , and the prefix count for the subpath from q to t is k. By a recursive application
of Lemma 2, we can decompose �k(t) into 2k + 1 disjoint subpaths whose labels are
in non-decreasing order.

The key consequence of this decomposition is the following lemma, which says
that subpaths with the same prefix count cannot cross. The example in Fig. 1 is con-
sistent with the lemma, because the intersecting edges of the two crossing shortest
k-paths have different prefix counts.

Lemma 3  Let �k(t) and ��
k
(t�) be two subpaths whose prefix counts are the same.

Then �k(t) and ��
k
(t�) do not cross each other.

Proof  The proof follows from a simple application of the triangle inequality: if two
subpaths with the same prefix count intersect, then we can reconnect the prefix of
each path to the suffix of the other, and possibly perform a local shortcut, either
shortening at least one path or leaving them the same length but without a cross-
ing. Since the intersecting subpaths are either both inside some obstacle or in free
space, avoiding the intersection does not increase the number of obstacle crossings
for either path. 	� ◻

The next two lemmas establish properties of shortest k-paths that will be useful
later.

Definition 1  A point p is k-visible from the source s if the segment sp passes through
at most k obstacles. A k-visibility edge is a shortest k-path with exactly one edge.

Lemma 4  If p is not (k − 1)-visible from s, then the path �k(p) must be an (= k)-path.

Proof  By contradiction. Suppose �k(p) passes through fewer than k obstacles. Since
p is not (k − 1)-visible from s, �k(p) must have at least one bend. The path can then
be shortened by going through the obstacle causing this bend, thereby increasing the
number of crossings by 1. The resulting path is shorter than �k(p) and has at most k
crossings, contradicting the optimality of �k(p) . 	� ◻

Let dk(p) be the length of a shortest k-path to a point p. Clearly, a path that
crosses j obstacles and contains at least two segments can be made even shorter if it

1819

1 3

Algorithmica (2020) 82:1813–1832	

is allowed to pass through more obstacles. Thus, it follows that for any point p that is
not (k − 1)-visible from s, we must have dj(p) > dj+1(p) , for j < k.

Lemma 5  For any point p that is not (k − 1)-visible from s, the lengths of the short-
est j-paths form a decreasing sequence:

3 � Shortest Path Map SPMk : Properties and Bounds

Having established the basic properties of shortest k-paths, we now begin our dis-
cussion of the shortest k-path map SPMk.

Definition 2  Given a shortest k-path �k(p) , we define the k-predecessor of p to be
the vertex of P (including s) that is adjacent to p in �k(p) . The partition of free
space into connected regions with the same k-predecessor is called the shortest k-
path map, and denoted SPMk . The subset of SPMk for which the shortest path �k(p)
to every point p has exactly k crossings is called the shortest (= k)-path map and
denoted by SPM=k . See Fig. 2 for an example.

Unlike SPM0 , in which the predecessor of a region is always inside or on the
boundary of the region, the predecessor of a region in SPMk may lie outside the
region. Moreover, multiple regions in SPMk may have the same predecessor. (See
Fig. 2.) Thus, we need to maintain additional information with polygon vertices to
disambiguate the predecessor relation. In particular, let v be the k-predecessor of p,
namely, the vertex adjacent to p in �k(p) . Suppose the line segment vp crosses (k − i)
obstacles, for some 0 ≤ i ≤ k . Then the length dk(p) of �k(p) is the sum of the length
of the i-path to v and the length of segment vp . We need to maintain the values di(v)
for all obstacle vertices v and all integers i = 0, 1,… , k . In other words,

For a point p in SPM=k , we identify the k-predecessor of p by the pair (v, i),
where v is a vertex of P and i ∈ {0, 1,… , k} , such that dk(p) = di(v) + |vp| and
the segment vp crosses (k − i) obstacles.

d0(p) > d1(p) > … > di(p) > … > dk(p)

Fig. 2   The shaded region
denotes the cells of SPM1 for
which the 1-predecessor is
(s, 0). Note that unlike SPM0 ,
there are multiple cells with the
same predecessor s

1820	 Algorithmica (2020) 82:1813–1832

1 3

Thus, the total number of k-predecessors is O(kn). However, this alone does not
bound the number of regions in SPM=k because multiple regions can have the same
k-predecessor and the same crossing sequence. Toward our goal of bounding the
combinatorial complexity of the map, let us begin with the notion of k-visibility.

We define Vk to be the region consisting of k-visible points, which is star-shaped
and therefore simply connected (Fig. 3). Now if �k(p) crosses fewer than k obstacles,
then by Lemma 4, p must lie in Vk−1 . The path �k(p) is a straight line segment and
the k-predecessor of p is s. Therefore, we have the following.

Lemma 6  All points p such that �k(p) has fewer than k crossings lie in Vk−1 . Outside
of Vk−1 , SPMk is the same as SPM=k , the shortest path map with exactly k crossings.

This simplifies our discussion and allows us to decompose SPMk into two distinct
regions, Vk−1 and SPM=k . In the following, we study structural properties of these
regions and use them to compute upper bounds on their respective sizes. Later, we
combine them to compute an upper bound on the size of the map SPMk.

3.1 � k‑Visibility Region

We first bound the complexity of the boundary of Vk , the region visible from s by a
segment crossing at most k obstacles.

Lemma 7  The number of edges on the boundary �Vk is O(n + h) = O(n).

Proof  Every vertex of �Vk is either a vertex of P or a projection of one of the 2h
tangents from s to an obstacle of P. The edges on the boundary �Vk are therefore
sub-segments of the tangents or parts of obstacle boundaries. Each projection vertex
belongs to a segment of �Vk collinear with s, and the endpoint x farther from s is the
end of a maximal segment sx that crosses exactly k obstacles. Therefore, each of the
2h tangents gives rise to at most one segment of �Vk and at most two vertices. 	� ◻

More interestingly, the bound on the total complexity of these regions is less than
the sum of the individual bounds.

Fig. 3   The boundary �V1 of the region V1 is dash-dotted, and it encloses the boundary �V0 , which is
shown with dotted segments. The region V0 is shown in white, V1 ⧵ V0 is shown shaded gray. The blue
region denotes V2 ⧵ V1 (Color figure online)

1821

1 3

Algorithmica (2020) 82:1813–1832	

Lemma 8  The total number of edges on all �Vi , for 0 ≤ i ≤ k , is O(n + hk).

Proof  Any vertex v of P belongs to �Vi for at most one value of i, namely the i (if
any) such that sv intersects exactly i obstacles. For j < i , v is outside �Vj , and for
j > i , v is in the interior of �Vj . There are O(h) edges of �Vi (for any i) not incident
to a vertex of P. Summing over all i ≤ k completes the proof. 	� ◻

By connecting s to all vertices on boundary �Vk−1 , we can easily decompose Vk−1
into constant complexity regions in SPMk.

3.2 � The k‑Level Garage and the Structure of SPM=k

We now introduce our main idea for computing the shortest k-path map. By
Lemma 2, an (= k)-path from s to a point p is the concatenation of a (k − 1)-path
to the boundary of some obstacle H, a shortest path inside H, and a shortest path in
free space from the other side of H to p. This suggests an incremental construction
of SPM=k from SPM=(k−1) . We describe this construction using the metaphor of a
k-level parking garage with elevators.1 The idea is to create multiple copies of the
input polygonal domain and stack them in levels such that the shortest paths at each
level have the same prefix count and therefore do not intersect. The planar subdivi-
sion of free space at the top level is SPM=k.

Definition 3  (k-garage) We construct the k-garage structure by stacking k copies (or
floors) of the input polygonal domain P on top of one another, with special connec-
tions at the obstacle boundaries. We connect the obstacle H on floor i to its counter-
part on floor i + 1 such that any path that enters H on floor i can exit only on the next
higher floor—in a sense, obstacles act as elevators.

Our algorithm to construct SPM=k makes use of the continuous Dijkstra method,
which simulates the expansion of a unit speed wavefront from the source s in free
space. The wavefront at time T contains all points p whose shortest path distance
from s is T. The boundary of the wavefront is a set of circular arcs called wavelets,
each generated by an obstacle vertex (including s) already covered by the wavefront.
The generating vertex v is called the generator of the wavelet and is identified by the
pair (v, w), where w is the time at which v was reached by the wavefront. Since the
wavefront moves at unit speed, w is precisely the length of the shortest path from s to
v. The generators can be thought of as sources additively weighted with delays, since
they start emitting wavelets at time w after the start of the simulation. The locus
of the meeting points of two adjacent wavelets is a bisector curve. Taken together
with the obstacle boundaries, bisector curves partition free space into regions of the
shortest path map.

1  The garage metaphor is also used in the context of finding homotopically different paths in [12], but
the properties and technical details of our k-garage are quite different.

1822	 Algorithmica (2020) 82:1813–1832

1 3

We extend the continuous Dijkstra method to our k-garage structure. Each level
of the garage is a plane with polygonal obstacles on which wavefronts propagate as
usual, but the wavelets can now move to higher floors by entering the obstacles (ele-
vators). More precisely, when the wavefront hits an obstacle H, it is absorbed by the
outer boundary of H and is immediately re-emitted into the interior of H. When that
wavefront reaches the inner boundary on the other (previously unreached) side of
H, it is absorbed and immediately re-emitted on the next higher floor of the garage.
This vertical movement therefore adds no delay. In this modified setting, the wave-
front at time T contains points on all floors that are at distance T from the source.

The region Vk−1 is removed from the polygonal domain on floor k of the
k-garage because the shortest k-path is known for every point p in Vk−1—it is sim-
ply the line segment sp—and leaving these points in the polygonal domain on
floor k would create redundant copies of this path. We defer the exact details of
our algorithm to Sect. 4. In the following, we note some properties of the k-garage
structure useful to our algorithm.

1.	 If � is a shortest s–t path from s on floor 0 to t on floor k, then the downward
projection �↓ of � , obtained by projecting � into the planar domain P, is a short-
est k-path to t. (To see this, suppose for contradiction we have another k-path �c
from s to t that is shorter. Then by applying Lemma 2 recursively, we can break �c
into 2k + 1 disjoint subpaths ordered by their prefix counts. We now lift the paths
into the levels of the garage and concatenate them in order: if the prefix counts of
the current and the next subpath are the same, join their common endpoint at the
same level as the prefix count; otherwise join their common endpoint at the next
level. This transforms the path �c into a shortest path �↑

c
 from s on floor 0 to t on

floor k. Since the vertical movement between the garage floors incurs no delay,
the lifted path �↑

c
 is shorter than � , which is a contradiction.)

2.	 Since wavefront propagation on floor i is affected only by wavelets coming from
floors below it, we can think of wavefront propagation on floor i as occurring in
a polygonal domain with multiple sources. On floor i > 0 , all sources correspond
to generators of wavelets coming from lower floors.

3.	 To compute the sources at floor i > 0 , we need to consider only wavelets coming
from floor i − 1 . This follows from Lemma 5, which implies that even if wavelets
were allowed to ascend multiple floors in an elevator, a wavelet from floor i − 1
would reach floor i no later than the wavelets from other lower floors.

4.	 The planar subdivision formed by bisectors of colliding wavelets on floor i is the
shortest path map for (= i)-paths, SPM=i . Note that since the obstacles are convex,
a shortest path to a point on floor i cannot cross the same obstacle (on any floor)
more than once, or else it can be made even shorter.

This suggests a natural way of computing the shortest path map SPM=k . We con-
struct maps SPM=i for i = 0, 1,… , k iteratively. Each iteration i > 0 is defined by
ordinary shortest path propagation with a set of sources that come from the pre-
vious iteration. In the following section we use these observations to compute a
bound on the size of the shortest k-path map SPMk.

1823

1 3

Algorithmica (2020) 82:1813–1832	

3.3 � Complexity of SPM
k

The shortest k-path map SPMk on the top floor of the k-garage is precisely SPM=k in
the portion of free space that is outside Vk−1 , as shown in Lemma 4. The boundary
of Vk−1 has linear size, and so we only need to bound the complexity of SPM=k . To
bound the complexity of SPM=k , we consider the embedded planar graph Gk formed
by SPM=k , Vk−1 , and the obstacle polygons. We note the following property of planar
graphs, which is a direct consequence of Euler’s formula.

Lemma 9  Let f be the number of faces in a planar graph G = (V ,E) . If all the verti-
ces of G have degree three or more, then the size of G is O(f).

Proof  Let d(v) be the degree of a vertex v. Since
∑

v∈V d(v) = 2�E� , and d(v) ≥ 3 ,
we have 2|E| ≥ 3|V| . Substituting this in Euler’s formula |V| − |E| + f = 2
gives us |V| ≤ 2f − 4 = O(f) . Since |E| = |V| + f − 2 , we conclude that
|V| + |E| = O(f) . 	� ◻

Observe that the “interesting” vertices in Gk are the points where bisectors meet
obstacle boundaries or meet each other, and therefore have degree at least three. If
f is the number of faces, then by Lemma 9 the complexity of the map due to these
vertices is O(f). In addition to this, Gk can also have O(n) vertices of degree two cor-
responding to the vertices of obstacle polygons, giving a total complexity bound of
O(f + n).

Therefore, in order to compute a bound on the complexity of SPM=k , it suffices
to bound the number of faces f in the graph Gk . We begin with the following well-
known result [19].

Lemma 10  The shortest path map of m sources weighted by their delays in a polygo-
nal domain with n vertices and h holes has f ≤ m + n + h ≤ m + 2n faces. By
planarity, the total complexity of the map is O(f + n).

The key to the proof of the preceding lemma is that each shortest path map region
is star-shaped and connected to the predecessor of all points in the region. Since the
total number of predecessors is at most (m + n) , the number of faces due to these
regions is also at most (m + n) . Crucially, this lemma does not immediately apply
to SPM=k , because some predecessors of regions on the kth floor belong to regions
below the kth floor. That is, some of the m sources are not in the polygonal domain,
so the argument that each region is connected to its predecessor does not hold. For-
tunately, the argument of Lemma 10 is a topological one, and we can create a topo-
logical domain in which the argument applies (Fig. 4).

Every point p ∈ �P outside of Vk−1 is labeled by a (k − 1)-crossing distance
dk−1(p) . If p belongs to an obstacle H, and there exists some q ∈ �H such that
dk−1(q) + |qp| < dk−1(p) , then �k(p) may reach p by passing through H. The
wavefront that determines SPM=k will be initialized with a weighted source that
reaches p by “elevator” passing through H. If q ∈ �H minimizes dk−1(q) + |qp| ,

1824	 Algorithmica (2020) 82:1813–1832

1 3

then the predecessor of q on �k−1(q) is the generator of the wavelet that first
reaches p in the wavefront. We partition each edge of �H into maximal sub-edges
with the same predecessor. For each sub-edge with predecessor v, we construct
a triangular “flap” by drawing the segments from the sub-edge endpoints to v.
Shortest paths propagate from v toward the kth garage floor inside the flap, and in
the pseudo-polygonal domain obtained by gluing all the flaps onto the boundary
of free space, each shortest path map region is connected to its predecessor. If
these flaps were projected into the plane, they would likely overlap, but topologi-
cally they do not alter the structure of the domain, and they add only two edges
per flap.

Lemma 11  Let P be a polygonal domain with n vertices and h holes. If P is extended
by gluing at most m triangular flaps to its boundary, then the shortest path map
of m sources weighted by their delays in this extended polygonal domain has
f ≤ m + n + h ≤ m + 2n faces and total complexity O(m + n).

The preceding lemma applies to the propagation of shortest paths on each floor
of the k-garage and also to propagation inside the obstacles (elevators). In both
cases the key to bounding the complexity of an iterated construction is bound-
ing the number of sources that propagate into the next level, whether elevator
or garage floor. In each elevator and on each garage level i > 0 , the sources are
located on the domain boundary. For simplicity we partition the sources at obsta-
cle vertices, so each source is a maximal (sub-)edge � on some obstacle boundary
�H , with an associated generator (v, w). We refer to such a source as a boundary
source and represent it by the triple (v,w,�) . Shortest paths from a source (v,w,�)
enter the domain through edge � , and their predecessor is vertex v with weight

(a) (b)

(c) (d)

Fig. 4   a–c An example illustration of wavefront propagation across garage floors. The wavefront ascends
between floors by entering into obstacles (elevators) and creates boundary sources at the next level. We
continue wavefront propagation at the next level using these boundary sources. d Creating a pseudo-
polygonal domain by connecting a source on a higher level to its predecessor on an earlier level by a
triangular “flap”

1825

1 3

Algorithmica (2020) 82:1813–1832	

(delay) w. As noted above, each boundary source defines a triangular flap glued
onto the boundary of the propagation domain; the flap is the convex hull of � and
v.

When boundary sources propagate into some domain (either P or the interior of
an obstacle), they define a shortest path map S in the domain. We say that if the
region of S corresponding to a source s = (v,w,�) intersects a domain edge, then s
claims the intersection interval on that edge. An entry claim of a source (v,w,�) is
a claim on edge � itself; entry claims can be ignored for further propagation, since a
path that enters the domain through � and exits through the same edge can be short-
ened. Exit claims (ones on edges other than � ) define the sources for the next level
of shortest path propagation. (See Fig. 5.) Within any edge, a maximal sequence of
exit claims with the same source is called an exit claim cluster. In other words, exit
claims of a source (v,w,�) on an edge e may be disconnected and each connected
sequence is precisely an exit claim cluster. Note that these exit claim clusters give
rise to the boundary sources for subsequent wavefront propagation. That is, for an
exit claim cluster on edge e with source (v,w,�) , the corresponding boundary source
at the next level is (v,w,��) , where �′ is the minimal subsegment of e containing the
cluster. As noted, entry claims inside �′ do not affect shortest path propagation at the
next level.

Lemma 12  Let S be the shortest path map obtained by propagating m boundary
sources into a polygonal domain with n vertices. Then the number of exit claim clus-
ters of S is at most m + O(n).

Proof  Since S is a partition of the domain, the domain boundary is completely cov-
ered by claims, which may be either entry claims or exit claims.

We construct an embedded bipartite planar graph whose nodes are claims on the
domain boundary. Every source (v,w,�) that claims some portion of the domain
boundary must have an entry claim on � ; otherwise the shortest path propagation
from (v,w,�) would not enter the domain. For every exit claim � claimed by source
(v,w,�) , we draw an arc from segment � to � , following a shortest path segment
across the domain interior. We want to bound the total number of these arcs. Since

(a) (b)

Fig. 5   a Exit claims for the boundary source (v,w,�) need to be propagated to next level. b Connecting
the sources with their exit claims gives a bipartite planar graph

1826	 Algorithmica (2020) 82:1813–1832

1 3

the shortest paths that define S do not cross, these arcs are non-crossing. (See also
Fig. 5.)

We group arcs into bundles whose sources and targets lie on the same pair of
domain edges. If we pick one arc from each bundle and regard each domain edge
as a node in a planar graph, planarity gives a bound of O(n) on the total number of
bundles. This bound on the number of bundles is the first step in bounding the num-
ber of arcs.

If a bundle joining edges e and e′ has j > 1 arcs, we draw j − 1 cycles, each one
defined by two adjacent arcs and the subsegments of e and e′ between their end-
points. The cycles for a single bundle are interior-disjoint, but cycles from different
bundles may be nested, one containing the other. Note that cycle boundaries cannot
cross—they are composed of obstacle boundaries and noncrossing arcs—so nesting
is the only possible relation between cycles that are not interior-disjoint.

If a cycle C contains any obstacle, we split the bundle B containing C between the
arcs of C, so neither of the resulting two bundles contains C. We charge the splitting
of B to one of the obstacles inside C. We choose which obstacle to charge so as to
guarantee that each obstacle is charged at most once. If C contains no cycle nested
inside it, we charge an arbitrary obstacle inside C. If C contains other cycles, let C′
be one at the outermost level of nesting within C. Cycle C′ must have at least one of
its bounding edges on an obstacle H contained in the interior of C, because other-
wise C′ would share both obstacle edges with C, which is impossible by construc-
tion. Obstacle H is not contained in any cycle C′′ nested inside C, because C′′ would
necessarily contain C′ , but C′ was chosen outermost. We charge the splitting of B at
C to H. Note that H cannot be charged by any cycle inside C (because it is outside
all such cycles) or containing C (because it is inside C and hence shielded from such
cycles).

Because there are at most O(n) obstacles, each charged for at most one split, the
number of bundles after splitting is still O(n). None of the bundles that remain after
splitting contains any obstacle inside the quadrilateral it bounds.

Given a bundle incident to edges e and e′ , we divide it into two sub-bundles, one
consisting of arcs directed from e to e′ and one consisting of the oppositely directed
arcs. Within each sub-bundle, we identify contiguous runs of arcs with the same
source. Each maximal run corresponds to an exit claim cluster, so we will call these
runs arc clusters. We charge the first and last arc cluster in each sub-bundle to the
bundle itself. (There are O(n) such charges.) Crucially, every other arc cluster corre-
sponds to a source that appears only in this bundle, because the arcs before and after
it in the sub-bundle confine it and prevent it from claiming edges anywhere else.
Hence we can charge each such cluster to the source itself; the source is charged
only once.

To recap, we bound the number of exit claim clusters by the number of arc clus-
ters. Arcs belong to bundles, and there are O(n) bundles by planarity. To remove
obstacles inside bundles, we split bundles at most O(n) times. We break each bundle
into two sub-bundles, and pay explicitly for the first and last arc cluster in each, for
a total of O(n). We charge each remaining arc cluster to one of the m sources, charg-
ing each source at most once, giving a total bound on the number of arc clusters of
m + O(n) . 	� ◻

1827

1 3

Algorithmica (2020) 82:1813–1832	

We are now ready to bound the complexity of SPM=k.

Lemma 13  The number of faces fk in SPM=k is O(n(k + 1)) . The complexity of
SPM=k has the same asymptotic bound.

Proof  The proof is by induction. Our goal is to show that there exists a constant C
such that the number of faces fk in SPM=k is at most Cn(k + 1) for all k ≥ 0.

We begin with the inductive step. Let m be the number of exit claim clusters in
SPM=(k−1) . This is the number of boundary sources in “elevator” propagation across
the obstacle interiors, going from level k − 1 to level k. By Lemma 12, the resulting
number of exit claim clusters is m� = m + O(n) . But m′ is the number of boundary
sources in the construction of SPM=k , and once again by Lemma 12, the resulting
number of exit claim clusters is m�� = m� + O(n) = m + O(n) , that is, m�� ≤ m + c1n
for some constant c1.

To establish the base case, recall that a shortest path map with no crossings
( SPM0 ) has complexity O(n), which implies that the number of exit claims on its
boundary is O(n), i.e., at most c2n for some constant c2 . Combining the base case
and inductive step, we have shown that the number of exit claim clusters on the
boundary of SPM=k is at most c2n + k ⋅ c1n . The number of faces of SPM=k is at
most equal to the number of boundary sources, which is at most Cn(k + 1) , for
C = max(c1, c2) . Lemma 9 establishes the total complexity bound. 	� ◻

3.4 � A Matching Lower Bound

We will now bound the size of SPMk from below by constructing a map with �(nk)
regions. We construct an arrangement of obstacles as shown in Fig. 6. We start with
two obstacle bundles A and B placed parallel to the y-axis. Within each bundle, the
horizontal spaces between strips are infinitesimal, but they are shown enlarged for
clarity. The source s lies on the x-axis with bundle A placed right next to it. Bundle
A consists of 3k perforated strips. In the first 2k strips, the odd numbered ones have
openings at y = 0 and the even numbered ones have openings at y = −0.5 . The next

A BS

.

p
s y∗

. . .

Fig. 6   A shortest k-path map with complexity �(nk) . Bundle A has 2k black strips and k gray strips; bun-
dle B has k strips. The thick strip S has �(n) openings. Each opening of S defines k cells in SPMk , shown
shaded (one to the right of each of the k strips in bundle B). A shortest k-path �(p) from s is also shown.
Observe that since �(p) crosses (k − 1) strips in bundle A, it can only cross the first strip in bundle B 

1828	 Algorithmica (2020) 82:1813–1832

1 3

k strips have an opening at y = 0 . Bundle B is placed at a distance D to the right of A
and consists of k strips with no openings.

The last k strips in bundle A ensure that shortest k-paths starting at s must exit
from the opening of the last strip in A (denoted by y∗ ); a path that crosses the last
strip in A at some point other than y∗ can be shortened while preserving the same
number of crossings. Observe that a shortest path starting at s can reach y∗ with i
crossings, where 0 ≤ i ≤ k . However, each crossing avoided results in an additional
length of 1 unit. Therefore a shortest path with i crossings at y∗ has an additional
length of (k − i) units. Also note that a shortest path with i crossings prior to y∗ can
cross the first (k − i) of the k strips in bundle B, but cannot cross any farther. There-
fore, to the right of strip j in bundle B, we get a region with k-predecessor (y∗, k − j)
and a total path length (to a point on the x-axis) of D + j . This gives us a total of k
regions.

We extend this construction to �(nk) regions by adding a vertical strip S, which
acts as a path splitter. This special strip has a total of m single-point openings at
y = 0, 1,… ,m , denoted by yi . We place S at an infinitesimal distance to the left
of bundle B, creating k new regions for each opening of S. Note that in the range
0 ≤ y ≤ m , a path that crosses S other than at one of the perforations yi can be short-
ened by detouring through the nearest yi and inserting one more crossing before y∗ .
Hence a shortest k-path always passes through one of the yi . This gives a total of
O(mk) regions: the k-predecessor of the region at y = i and to the right of strip j of
bundle B will be (yi, k − j) , with a total path length of

√
D2 + i2 + j.

The total number of vertices in our construction is
3k × 4 + k × 2 + (m + 1) × 2 = 14k + 2m + 2 . By choosing m = (n − 14k − 2)∕2
and assuming k < n∕28 , we have m = �(n) and the total number of regions in SPMk
is �(nk) . This gives us the following lemma.

Lemma 14  The worst-case complexity of SPMk is �(nk).

Combining Lemmas 7, 13, and 14, we get the main result of this section.

Theorem 2  The shortest k-path map SPMk has size �(kn).

4 � Computing SPMk

In this section we describe an O(k2n log n) algorithm to construct SPMk . Recall from
our discussion about the k-garage (Definition 3), we can construct SPM=k iteratively,
one level at a time. To compute the map at each level, we propagate the sources
from the previous level and then perform wavefront propagation at the current level.
For this, we use the algorithm for shortest paths in the presence of polygonal obsta-
cles by Hershberger and Suri [19] as a subroutine. Except for a few small modifica-
tions required for our setting, most of the algorithm carries over unchanged. In the
following, we briefly review the key ideas and discuss the necessary modifications.

1829

1 3

Algorithmica (2020) 82:1813–1832	

The Hershberger–Suri algorithm uses the continuous Dijkstra method, which
simulates the propagation of a unit speed wavefront in free space. The wavefront
is a collection of circular wavelets. It changes its shape as it propagates and hits
obstacles. Each wavelet originates at a generator, which may be a point source or
an obstacle vertex (an intermediate source). A generator for a wavelet � is identi-
fied by the pair (v, w), where v is an input vertex and w is the time at which v starts
emitting � . The Hershberger–Suri algorithm simulates wavefront propagation over
a planar subdivision called the conforming subdivision of free space. For each sub-
division edge e, and every point p ∈ e , the algorithm identifies the generator whose
wavelet first reaches p. Combining these results for all p ∈ e gives the wavefront for
e. The key idea of the algorithm is to localize interesting events (such as wavelet col-
lisions) within a constant number of cells in the subdivision. Each free-space edge e
of this subdivision is contained in the union of a constant number of cells, called its
well-covering region U(e) . The wavefront for edge e is computed by combining and
propagating the wavefront inside of U(e) . The computed wavefronts are then merged
to compute the shortest path map. This is the main result relevant to our algorithm:

Lemma 15  ([19]) Given a set of polygonal obstacles with n vertices and a set of
O(n) sources with delays, one can compute the shortest path map in O(n log n) time
and O(n log n) space.

From the discussion preceding Lemma 12, recall that the sources on floor i are
identified by triples (v,w,�) , where � is a (sub-)edge of some obstacle H, (v, w) is
a weighted point source on some floor j < i , and the wavelet � generated by (v, w)
enters floor i from the interior of H (an elevator) passing through edge � . Each
source (v,w,�) defines a triangular flap glued onto the boundary of free space at
� . Conceptually, we think of the wavelet � from (v,w,�) as propagating in the flap
before it enters floor i. Algorithmically, we can ignore the flap and start the propaga-
tion in free space at edge � . This calls for a slight modification in the initialization
step of the Hershberger–Suri algorithm. In particular, we do the following for each
edge e of the conforming subdivision:

1.	 Find all boundary sources (v,w,�) such that the well-covering region U(e) con-
tains �.

2.	 Initialize covertime(e), which is the time at which e would be engulfed by the
wavefront, minimizing over all boundary sources (v,w,�) with � ∈ U(e) , and
for each such source considering paths from v with delay w, constrained to pass
through �.

3.	 For each source (v,w,�) with � ∈ U(e) , propagate its wavelet � to e inside U(e).

In the following lemma we show how to compute the boundary sources for each step
of wavefront propagation.

Lemma 16  Given m boundary sources in a polygonal domain with n vertices, we
can compute the exit claims of the sources in O((m + n) log(m + n)) time and space.

1830	 Algorithmica (2020) 82:1813–1832

1 3

Proof  We apply the Hershberger–Suri algorithm, modified for boundary sources
as described above. The algorithm computes the shortest path map for the sources
inside the polygonal domain in total time and space O((m + n) log(m + n)) . The
shortest path map partitions the boundary into O(m + n) intervals (claims), each
claimed by its own source.

However, some of these intervals may be entry claims, that is, they are claimed
by a source that lies on the same segment. Observe that an entry claim interval must
have a non-empty intersection with the interval corresponding to its source. We
can therefore identify entry claims by overlaying the set of claim intervals with the
boundary sources that form another set of m intervals. Overlaying these two sets of
intervals takes additional linear time and space. The remainder is the set of all exit
claims, that is, those with a claiming source from a different segment. 	� ◻

With these primitives in place, we are ready to describe our algorithm. The input
is a polygonal domain P with convex obstacles. We will use M to denote the set of
boundary sources passed as input to the Hershberger–Suri algorithm. The algorithm
computes two things: the (k − 1)-visibility region V and the (= k)-path map SPM=k ,
which combined together form SPMk . The length of the shortest path to any point
p can then be easily computed by first locating the region containing p in the map
SPMk and then connecting p to the k-predecessor of this region as described in the
beginning of Sect. 3.

Algorithm to construct SPMk

1.	 Set M = {s} and call the Hershberger–Suri algorithm to compute SPM0 for the
polygonal domain P. Initialize V to be the empty region ∅.

2.	 Repeat for each i ∈ 1, 2,… , k :

(a)	 Using Lemma 16, propagate the sources in SPMi−1 through the obstacles
in P to compute the set of boundary sources Mnew for SPM=i.

(b)	 Identify all the regions in SPM=(i−1) for which the predecessor is s. Observe
that this is precisely the region V � = Vi−1 ⧵ Vi−2 . Set P to be the new polygo-
nal domain with this region removed.

(c)	 If V = � , then set V = V � . Otherwise merge V with V ′ at the common ver-
tices.

(d)	 Set M = Mnew and call the Hershberger–Suri algorithm to compute SPM=i
for the polygonal domain P.

3.	 Merge SPM=k with V at the boundary of regions of SPM=k that have s as predeces-
sor (i.e. V � = Vk ⧵ Vk−1 ), to obtain SPMk.

Observe that after Step 2c of iteration i, the region V is equal to Vi−1 . Because Vi−1
contains Vi−2 and because both regions have linear size (by Lemma 7), Step 2c takes
linear time. Therefore, the total running time is dominated by k calls to the Her-
shberger–Suri algorithm with O(nk) sources (Theorem 2). We have the following
result.

1831

1 3

Algorithmica (2020) 82:1813–1832	

Theorem 3  If P is a polygonal domain bounded by convex obstacles with a total of n
vertices, the shortest k-path map for P with respect to a source point s can be com-
puted in O(k2n log n) time and (kn log n) space.

5 � Conclusion

In this paper, we studied the problem of finding shortest paths that are allowed to
pass through a bounded number of convex obstacles. We showed that although
two such k-paths may cross each other, they can be decomposed into non-crossing
subpaths based on prefix-counts. This decomposition allows us to compute short-
est k-paths efficiently, using the continuous Dijkstra framework. We showed that the
size of the shortest k-path map is �(kn) and that it can be computed in worst-case
time O(k2n log n) using (kn log n) space. Our algorithm’s time complexity is optimal
when k = O(1).

Acknowledgements  Funding was provided by National Science Foundation (Grant No. CCF-1525817).

References

	 1.	 Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geo-
metric graphs. Comput. Geom. 40(3), 220–230 (2008)

	 2.	 Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Computing shortest paths in the plane with remov-
able obstacles. In: 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2018), vol. 101, pp. 5:1–5:15 (2018)

	 3.	 Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, Upper Saddle River (1993)

	 4.	 Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal region with holes.
IEICE Trans. (1976–1990) 68(9), 557–559 (1985)

	 5.	 Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorith-
mica 1(1–4), 49–63 (1986)

	 6.	 Bandyapadhyaya, S., Kumar, N., Suri, S., Varadrajan, K.: Improved approximation bounds for the
minimum constraint removal problem. In: 21st International Conference on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX) (2018)

	 7.	 Carufel, J.L.D., Grimm, C., Maheshwari, A., Smid, M.: Minimizing the continuous diameter when
augmenting paths and cycles with shortcuts. In: 15th Scandinavian Symposium and Workshops on
Algorithm Theory, pp. 27:1–27:14 (2016)

	 8.	 Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Comput. 34(4), 879–
893 (2005)

	 9.	 Chen, D.Z., Wang, H.: Computing shortest paths among curved obstacles in the plane. ACM Trans.
Algorithms 11(4), 26:1–26:46 (2015)

	10.	 Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J.
Comput. 15(2), 317–340 (1986)

	11.	 Eiben, E., Gemmell, J., Kanj, I., Youngdahl, A.: Improved results for minimum constraint removal.
In: Proceedings of AAAI, AAAI press (2018)

	12.	 Eriksson-Bique, S., Hershberger, J., Polishchuk, V., Speckmann, B., Suri, S., Talvitie, T., Verbeek,
K., Yıldız, H.: Geometric k shortest paths. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1616–1625 (2015)

	13.	 Farshi, M., Giannopoulos, P., Gudmundsson, J.: Improving the stretch factor of a geometric network
by edge augmentation. SIAM J. Comput. 38(1), 226–240 (2008)

1832	 Algorithmica (2020) 82:1813–1832

1 3

	14.	 Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J.
Comput. 20(5), 888–910 (1991)

	15.	 Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibil-
ity and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233
(1987)

	16.	 Har-Peled, S., Koltun, V.: Separability with outliers. 16th International Symposium on Algorithms
and Computation, pp. 28–39 (2005)

	17.	 Hershberger, J., Kumar, N., Suri, S.: Shortest paths in the plane with obstacle violations. In: 25th
Annual European Symposium on Algorithms (ESA 2017), vol. 87, pp. 49:1–49:14 (2017)

	18.	 Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Com-
put. Geom. 4(2), 63–97 (1994)

	19.	 Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J.
Comput. 28(6), 2215–2256 (1999)

	20.	 Hershberger, J., Suri, S., Yıldız, H.: A near-optimal algorithm for shortest paths among curved
obstacles in the plane. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational
Geometry, pp. 359–368 (2013)

	21.	 Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility prob-
lems with polygonal obstacles. In: Proceedings of the Fourth Annual Symposium on Computational
Geometry, pp. 172–182 (1988)

	22.	 Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)
	23.	 Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks

14(3), 393–410 (1984)
	24.	 Maheshwari, A., Nandy, S.C., Pattanayak, D., Roy, S., Smid, M.: Geometric path problems with

violations. Algorithmica 80, 1–24 (2016)
	25.	 Matoušek, J.: On geometric optimization with few violated constraints. Discret. Comput. Geom.

14(4), 365–384 (1995)
	26.	 Mitchell, J.S.B.: A new algorithm for shortest paths among obstacles in the plane. Ann. Math. Artif.

Intell. 3(1), 83–105 (1991)
	27.	 Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6(3),

309–332 (1996)
	28.	 Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding shortest paths through

a weighted planar subdivision. J. ACM (JACM) 38(1), 18–73 (1991)
	29.	 Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the

Fourth Annual Symposium on Computational Geometry, pp. 164–171 (1988)
	30.	 Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Inf. Process. Lett. 23(2),

71–76 (1986)
	31.	 Roos, T., Widmayer, P.: k-violation linear programming. Inf. Process. Lett. 52(2), 109–114 (1994)
	32.	 Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM (JACM) 41(5),

982–1012 (1994)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Shortest Paths in the Plane with Obstacle Violations
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Properties of k-paths
	3 Shortest Path Map  : Properties and Bounds
	3.1 k-Visibility Region
	3.2 The k-Level Garage and the Structure of
	3.3 Complexity of
	3.4 A Matching Lower Bound

	4 Computing SPMk
	5 Conclusion
	Acknowledgements
	References

