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Abstract
In this paper, we prove that, given a clique-width k-expression of an n-vertex graph,
Hamiltonian Cycle can be solved in time nO(k). This improves the naive algorithm
that runs in time nO(k2) by Espelage et al. (Graph-theoretic concepts in computer
science, vol 2204. Springer, Berlin, 2001), and it also matches with the lower bound
result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no
algorithm running in time no(k) (Fomin et al. in SIAM JComput 43:1541–1563, 2014).
We present a technique of representative sets using two-edge colored multigraphs on
k vertices. The essential idea is that, for a two-edge colored multigraph, the existence
of an Eulerian trail that uses edges with different colors alternately can be determined
by two information: the number of colored edges incident with each vertex, and the
connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive
algorithm, which stores all the possible multigraphs on k vertices with at most n edges.
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1 Introduction

Tree-width is one of the most well-studied graph parameters in the graph algorithm
community, due to its numerous structural and algorithmic properties (see the sur-
vey [4]). A celebrated algorithmic meta-theorem by Courcelle [8] states that every
graph problem expressible in monadic second-order logic (MSO2) can be decided
in linear time on graphs of bounded tree-width. Among the problems expressible in
MSO2, there are somewell-knownNP-hard problems such asMinimum Dominating
Set, Hamiltonian Cycle, and Graph Coloring.

Despite the broad interest on tree-width, only sparse graphs can have bounded tree-
width. But, on many dense graph classes, some NP-hard problems admit polynomial-
time algorithms, andmany of these algorithms can be explained by the boundedness of
their clique-width. Clique-width is a graph parameter that originally emerges from the
theory of graph grammars [10] and the terminology was first introduced by Courcelle
and Olariu [13] (see also the book [9]).

Clique-width is defined in terms of the following graph operations: (1) addition of
a single labeled vertex, (2) addition of all possible edges between vertices labeled i
and those labeled j , (3) renaming of labels, and (4) taking the disjoint union of two
labeled graphs. The clique-width of a graph is the minimum number of labels needed
to construct it. An expression constructing a graph with at most k labels is called a
(clique-width) k-expression. The modeling power of clique-width is strictly stronger
than the modeling power of tree-width. In other words, if a graph class has bounded
tree-width, then it has bounded clique-width, but the converse is not true.

Computing the clique-width of a graph is a problem which has received significant
attention over the last decade. Fellows et al. [17] showed that computing clique-width
is NP-hard. For a fixed k, the best known approximation algorithm is due to Hliněný
andOum [24]; it computes in time O( f (k)·n3) a (2k+1−1)-expression for an n-vertex
graph of clique-width at most k.

Courcelle et al. [11] extended the meta-theorem of Courcelle [8] to graphs of
bounded clique-width at a cost of a smaller set of problems. More precisely, they
showed that every problemexpressible inmonadic secondorder logicwith formula that
does not use edge set quantifications (calledMSO1) can be decided in time O( f (k)·n)

in any n-vertex graph of clique-width k, provided that a clique-width k-expression of
it is given.

For some MSO1 problems, clique-width and tree-width have sensibly the same
behavior. Indeed, many problems expressible in MSO1 that admit 2O(k) · nO(1)-time
algorithms parameterized by tree-width have been shown to admit 2O(k) · nO(1)-time
algorithms,when a clique-width k-expression is given. These include famous problems
likeMinimum Dominating Set andMinimum Vertex Cover [7,23,28], or even
their connected variants and Feedback Vertex Set [2,5,14].

On the other hand, several classical problems, such as Max- Cut, Edge Dom-
inating Set (EDS), Graph Coloring (GC), and Hamiltonian Cycle (HC),
are not expressible in MSO1. These problems are known to be FPT parameterized
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by tree-width thanks to Courcelle’s theorem or some variants of this latter theorem
[1,6,12]. They are also known to admit XP algorithms parameterized by clique-width
[16,20,25].

A natural question is whether these problems admit algorithms with running time
f (k)·nO(1) given a k-expression of the input graph. Fomin, Golovach et al. [19] proved
theW[1]-hardness of EDS,GC, andHCwith clique-width as parameter, which implies
that these problems do not admit algorithms with running time f (k) · nO(1), for any
function f , unlessW[1] = FPT. In 2014, the same authors [20] have proved thatMax-
Cut and EDS admit nO(k)-time algorithms, and that they do not admit f (k)·no(k)-time
algorithms unless ETH fails. In the conclusion of [20], the authors state that HC does
not admit f (k) · no(k)-time algorithm under ETH (they gave the proof in [21]) and
they left an open question of finding an algorithm with running time f (k) · nO(k). At
the time, the best known running time parameterized by clique-width for HC and GC
were respectively nO(k2) [16] and nO(2k ) [25]. Recently, Fomin et al. [21] provided a
lower bound of f (k) · n2o(k) for GC.

Our Contribution andApproach In this paper, we prove that there exists an algorithm
solving Hamiltonian Cycle in time nO(k), when a clique-width k-expression is
given. A Hamiltonian cycle of a graph G is a cycle containing all the vertices of G.
The problemHamiltonian Cycle asks, given a graphG, ifG contains aHamiltonian
cycle. Specifically, we prove the following.

Theorem 1 There exists an algorithm that, given an n-vertex graph G and a k-
expression of G, solves Hamiltonian Cycle in time O(n2k+5 · 22k(log2(k)+1) ·
k3 log2(nk)).

Our algorithm is a dynamicprogrammingonewhose steps are basedon the k-labeled
graphs H arising in the k-expression of G. Observe that the edges of a Hamiltonian
cycle of G which belong to E(H) induce either a Hamiltonian cycle or a collection of
vertex-disjoint paths in G covering H . Consequently, we define a partial solution as
a set of edges of H which induces a collection of paths (potentially empty) covering
H . As in [16], with each partial solution P , we associate an auxiliary multigraph such
that its vertices correspond to the labels of H and each edge {i, j} corresponds to a
maximal path induced by P with end-vertices labeled i and j .

Since H is a k-labeled graph arising in a k-expression of G, we have that two
vertices x and y with the same label in H have the same neighborhood in G − E(H)

(the graphG without the edges of H ). It follows that the endpoints of a path in a partial
solution are not important and what matters are the labels of these endpoints. As a
result, two partial solutions with the same auxiliary multigraph are equivalent, i.e., if
one is contained in a Hamiltonian cycle, then the other also. From these observations,
one easily deduces the nO(k2)-time algorithm, due to Espelage et al. [16], because
there are at most n possible paths between two label classes and thus there are at most
nO(k2) possible auxiliary graphs.

To obtain our nO(k)-time algorithm, we refine the above equivalence relation. We
define that two partial solutions are equivalent if their auxiliary graphs have the con-
nected components on same vertex sets, and the paths they induce have the same
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number of endpoints labeled i , for each label i . The motivation of this equivalence
relation can be described as follows. Suppose that we have a partial solution P and a
set of edgesQ ⊆ E(G)\E(H) so that P ∪Q forms a Hamiltonian cycle, and we con-
sider to make an auxiliary graph ofQ, and identify with the one for P . To distinguish
edges obtained from P or Q, we color edges by red if one came from P and by blue
otherwise. Then following the Hamiltonian cycle, we can find an Eulerian trail of this
merged auxiliary graph that uses edges of distinct colors alternately. But then if P ′ is
equivalent to P , then one can observe that if we replace the red part with the auxiliary
graph of P ′, then it also has such an Eulerian trail, and we can show that P ′ can also
be completed to a Hamiltonian cycle. So, in the algorithm, for each equivalence class,
we store one partial solution. We define this equivalence relation formally in Sect. 3.

Since, the number of partitions of a k-size set is at most kk and the number of paths
induced by a partial solution is always bounded by n, the number of non-equivalent
partial solutions is then bounded by (2n)k · kk (the maximum degree of an auxiliary
multigraph is at most 2n because a loop is counted as two edges). The running time of
our algorithm follows from the maximum number of non-equivalent partial solutions.
The main effort in the algorithm consists then in updating the equivalence classes of
this equivalence relation in terms of operations based on the clique-width operations.

Overview InSect. 2,wegivebasic definitions andnotations concerning (multi)graphs
and clique-width. Our notions of partial solutions and of auxiliary multigraphs are
given in Sect. 3. In Sect. 4, we prove the equivalence between the existence of Hamil-
tonian cycles in the input graph and the existence of red–blueEulerian trails in auxiliary
multigraphs, and deduce that it is enough to store (2n)k · kk partial solutions at each
step of our dynamic programming algorithm. In Sect. 5, we show how to obtain from
the results of Sect. 4 an nO(k)-time algorithm for Hamiltonian Cycle. In Sect. 6,
we give some intuitions for solving in time nO(k) the problems Directed Hamil-
tonian Cycle given a k-expression. We end up with some concluding remarks and
open questions in Sect. 7.

2 Preliminaries

The size of a set V is denoted by |V |, and we write [V ]2 to denote the set of all subsets
of V of size 2. We denote by N the set of non-negative integers. For two sets A and
B, we let

A ⊗ B :=
{

∅ if A = ∅ or B = ∅,

{X ∪ Y | X ∈ A ∧ Y ∈ B} otherwise.

For a positive integer n, let [n] := {1, 2, . . . , n}.

Graph We essentially follow Diestel’s book [15] for our graph terminology, but we
deal only with finite graphs. We distinguish graphs and multigraphs, and for graphs
we do not allow to have multiple edges or loops, while we allow them in multigraphs.
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The vertex set of a graph G is denoted by V (G) and its edge set is denoted by
E(G) ⊆ [V (G)]2. We write xy to denote an edge {x, y}.

Let G be a graph. For X ⊆ V (G), we denote by G[X ] the subgraph of G induced
by X . For F ⊆ E(G), we write G|F for the subgraph (V (G), F) and G − F for the
subgraph (V (G), E(G)\F). For an edge e of G, we simply write G − e for G − {e}.
The degree of a vertex x , denoted by degG(x), is the number of edges incident with
x . The set of vertices adjacent to a vertex v is denoted by NG(x).

Multigraph A multigraph is essentially a graph, but we allow multiple edges, i.e.,
edges incident with the same set of vertices. Formally, a multigraph G is a pair
(V (G), E(G)) of disjoint sets, also called sets of vertices and edges, respectively,
together with a map multG : E(G) → V (G) ∪ [V (G)]2, which maps every edge to
one or two vertices, still called its endpoints. The degree of a vertex x in a multigraph
G, is defined analogously as in graphs, except that each loop is counted twice, and
similarly for other notions. If there are exactly k edges e such thatmultG(e) = {x, y}
(or multG(e) = {x}), then we denote these distinct edges by {x, y}1, . . . , {x, y}k (or
{x}1, . . . , {x}k).

For two multigraphs G and H on the same vertex set {v1, . . . , vk} and with disjoint
edge sets, we denote by G 
 H the multigraph with vertex set {v1, . . . , vk}, edge set
E(G) ∪ E(H), and

multG
H (e) :=
{
multG(e) if e ∈ E(G),

multH (e) otherwise.

If the edges of G and H are colored, then this operation preserves the colors of the
edges.

Walk A walk of a graph is a sequence of vertices and edges, starting and ending
at some vertices, called end-vertices, where for every consecutive pair of a vertex
x and an edge e, x is incident with e. The vertices of a walk which are not end-
vertices are called internal vertices. A trail of a graph is a walk where each edge is
used at most once. A walk (or a trail) is closed if its two end-vertices are the same.
Moreover, when the edges of a graph are colored red or blue, we say that a walk
W = (v1, e1, . . . , vr−1, er−1, vr ) is a red–blue walk, if, for every i ∈ {1, . . . , r − 2},
the colors of ei and ei+1 are different and the colors of e1 and er−1 are different, when
the walk is closed. We adapt all the notations to multigraphs as well.

For two walks W1 = (v1, e1, . . . , e�−1, v�) and W2 = (v′
1, e

′
1, . . . , e

′
r−1, v

′
r ) such

that v� = v′
1, the concatenation of W1 and W2, denoted by W1 − W2, is the walk

(v1, e1, . . . , e�−1, v�, e′
1, . . . , e

′
r−1, v

′
r ).

A path of a graph is a walk where each vertex is used at most once. A cycle of a
graph is a closed walk where each vertex other than the end-vertices is used at most
once. An (closed) Eulerian trail in a graph G is a closed trail containing all the edges
of G. In particular, if the edges of a graph are colored red or blue, then a red–blue
Eulerian trail is an Eulerian trail that is a red–blue walk.
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Fig. 1 An irredundant
3-expression of C5

Clique-Width A k-labeled graph is a pair (G, labG) of a graph G and a function
labG from V (G) to [k], called the labeling function. We denote by lab−1

G (i) the set
of vertices in G with label i . The notion of clique-width is defined by Courcelle and
Olariu [13] and is based on the following operations:

– creating a graph, denoted by i(x), with a single vertex x labeled with i ∈ [k];
– for a labeled graph G and distinct labels i, j ∈ [k], relabeling the vertices of G
with label i to j , denoted by ρi→ j (G);

– for a labeled graph G and distinct labels i, j ∈ [k], adding all the non-existent
edges between vertices with label i and vertices with label j , denoted by ηi, j (G);

– taking the disjoint union of two labeled graphs G and H , denoted by G⊕ H , with

labG⊕H (v) :=
{
labG(v) if x ∈ V (G),

labH (v) otherwise.

A clique-width k-expression, or shortly a k-expression, is a finite well-formed term
built with the four operations above and using at most k labels. Each k-expression φ

evaluates into a k-labeled graph (val(φ), labval(φ)). The clique-width of a graph G,
denoted by cw(G), is the minimum k such that G is isomorphic to val(φ) for some k-
expression φ. We can assume without loss of generality that any k-expression defining
a graph G uses O(n) disjoint union operations and O(nk2) unary operations [13].

It is worth noticing, from the recursive definition of k-expressions, that one can
compute in time linear in |φ| the labeling function labval(φ) of val(φ), and hence we
will always assume that it is given.

For example, the cycle abcdea of length 5 can be constructed using the 3-expression
represented as a tree-structure in Fig. 1.
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The set of subexpressions of a k-expression φ, denoted by Sub(φ), is defined by
the following induction:

Sub(φ) :=

⎧⎪⎨
⎪⎩

{φ} if φ := i(x) with i ∈ [k],
{φ} ∪ Sub(φ′) ∪ Sub(φ�) if φ = φ′ ⊕ φ�,

{φ} ∪ Sub(φ′) if φ = f (φ′) with f ∈ {ρi→ j , ηi, j | i, j ∈ [k]}.

We say that a k-labeled graph (H , labH ) arises in a k-expression φ if H = val(φ′)
and labH = labval(φ′), for some φ′ ∈ Sub(φ).

A k-expression φ is called irredundant if, for every subexpression ηi, j (φ
′) of φ,

there are no edges in val(φ′) between the vertices labeled i and the vertices labeled
j . Courcelle and Olariu [13] proved that given a clique-width k-expression, it can
be transformed into an irredundant k-expression in linear time. The following useful
properties of an irredundant k-expression will be used in Sect. 4.

Lemma 1 Let H be a k-labeled graph arising in an irredundant k-expression φ of
a graph G. For all u, v ∈ V (H) with labH (u) = i and labH (v) = j , we have the
following.

1. If i = j , then NG(u)\V (H) = NG(v)\V (H).
2. If uv ∈ E(G)\E(H), then i �= j and, for all x, y ∈ V (H) with labH (x) = i and

labH (y) = j , we have xy ∈ E(G)\E(H).

Proof (1) Assume that i = j . Let φ′ be the subexpression of φ such that H = val(φ′).
As u and v have the same label in H , in every subexpression of φ having φ′
as a subexpression, u and v have the same label. Since edges are added only
through the operation ηa,b, we conclude that NG(u)∩ (V (G)\V (H)) = NG(v)∩
(V (G)\V (H)).

(2) Assume that uv ∈ E(G)\E(H). Then, we have i �= j because the operation ηa,b

adds edges only between vertices with distinct labels. Let φ′ be the minimal (size
wise) subexpression of φ such that uv ∈ E(val(φ′)). It follows that φ′ = ηa,b(φ

�),
with φ� ∈ Sub(φ), labval(φ′)(u) = a and labval(φ′)(v) = b. Let D := val(φ�).
Observe that we have V (H) ⊆ V (D) and E(H) ⊆ E(D). Moreover, all vertices
labeled i in H are labeled a in D and those labeled j in H are labeled b in D.
Since φ is irredundant, there are no edges in D between a vertex labeled a and
one labeled b. Thus, for all vertices x ∈ lab−1

H (i) and y ∈ lab−1
H ( j), we have

xy /∈ E(H) and xy ∈ E(G).
��

3 Partial Solutions and Auxiliary Graphs

Let G be a graph and (H , labH ) be a k-labeled graph such that H is a subgraph of G.
A partial solution of H is a set of edges P ⊆ E(H) such that H|P is a union of

vertex-disjoint paths, i.e., H|P is acyclic and, for every vertex v ∈ V (H), the degree
of v in H|P is at most two. We denote by Π(H) the set of all partial solutions of H .
We say that a path P in H|P is maximal if the degree of its end-vertices in H|P is
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Fig. 2 Examples of a partial solution P (solid lines) and a complement solutionQ (dashed lines) forming
a Hamiltonian cycle. Observe that H|P contains 5 maximal paths and G|Q contains 5 H -paths (and only
4 maximal paths)

at most one; in other words, there is no path P ′ in H|P such that V (P) � V (P ′).
Observe that an isolated vertex in H|P is considered as a maximal path.

A complement solution of H is a subsetQ of E(G)\E(H) such that G|Q is a union
of vertex-disjoint paths with end-vertices in V (H); in particular, for every vertex v

in V (G)\V (H), the degree of v in G|Q is two. We denote by Π(H) the set of all
complement solutions of H . A path P in G with at least 2 vertices is an H-path if the
end-vertices of P are in V (H) and the internal vertices of P are in V (G)\V (H). By
definition, isolated vertices in V (H) are not H -paths. Observe that, for a complement
solution Q, we can decompose each maximal path Q of G|Q with at least 2 vertices
into H -paths (not necessarily one).

Examples of a partial solution and a complement solution are given in Fig. 2. Note
that ifG has a Hamiltonian cycleC and E(C) � E(H), then E(C)∩E(H) is a partial
solution and E(C) ∩ (E(G)\E(H)) is a complement solution. We say that a partial
solution P and a complement solutionQ form a Hamiltonian cycle if (V (G),P ∪Q)

is a cycle containing all the vertices of G.

Auxiliary Multigraph For P ∈ Π(H) ∪ Π(H) and i, j ∈ [k], we define �i j and �i
as follows.

– If P is a partial solution of H , then �i j is the number of maximal paths in H|P
with end-vertices labeled i and j , and �i is the number of maximal paths in H|P
with both end-vertices labeled i .

– If P is a complement solution of H , then �i j is the number of H -paths in G|P
with end-vertices labeled i and j , and �i is the number of H -paths in G|P with
both end-vertices labeled i .

Now, we define the auxiliary multigraph ofP , denoted by auxH (P), as the multigraph
with vertex set {v1, . . . , vk} and edge set

⋃
i, j∈[k]
i �= j

{{vi , v j }1, . . . , {vi , v j }�i j } ∪
⋃
i∈[k]

{{vi }1, . . . , {vi }�i }.
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Fig. 3 The union G1 
 G2 of auxiliary multigraphs G1 and G2 associated with the partial solution (solid
lines) and the complement solution (dashed lines) represented in Fig. 2

Moreover, if P is a partial solution of H , then we color all the edges of auxH (P) in
red, and if P is a complement solution, then we color the edges of auxH (P) in blue.
An example of an auxiliary multigraph is given in Fig. 3.

4 Relations between Hamiltonian Cycles and Eulerian Trails

Let G be an n-vertex graph and φ be an irredundant k-expression of G. Let H be
a k-labeled graph arising in the k-expression φ. Observe that H is a subgraph of
G (disregarding the labels). This section is dedicated to prove the properties of the
following relation between partial solutions of H based on the degree sequence and
the connected components of their auxiliary multigraphs.

Definition 1 Let P1,P2 ∈ Π(H). We write P1 � P2 if auxH (P1) and auxH (P2)

have the same set of connected components and for each vertex v in {v1, . . . , vk},
degauxH (P1)

(v) = degauxH (P2)
(v).

Observe that � is an equivalence relation. For a set A ⊆ Π(H), we define
reduceH (A) as the operation which returns a set containing one element of each
equivalence class of A/ �.

The main idea of our algorithm is to call reduceH at each step of our dynamic pro-
gramming algorithm in order to keep the size of a set of partial solutions manipulated
small, i.e., bounded by nO(k). The running time of our algorithm follows mostly from
the following lemma.

Lemma 2 For every A ⊆ Π(H), we have |reduceH (A)| ≤ nk · 2k(log2(k)+1) and we
can moreover compute reduceH (A) in time O(|A| · nk2 log2(nk)).
Proof To prove that reduceH (A) ≤ nk ·2k(log2(k)+1) , it is enough to bound the number
of equivalence classes of Π(H)/ �.

We claim that, for every P ∈ Π(H), we have
∑

i∈[k] degauxH (P)(vi ) ≤ 2|V (H)|.
First observe that

∑
i∈[k] degauxH (P)(vi ) = 2|V (H)|whenP = ∅, since each isolated

vertex in H|P gives a loop in auxH (P). Moreover, whenP contains an edge, removing
an edge fromapartial solutionP of H increases

∑
i∈[k] degauxH (P)(vi )by two; indeed,

this edge removal splits a maximal path of H|P into two maximal paths. Therefore,
any partial solution P satisfies that

∑
i∈[k] degauxH (P)(vi ) ≤ 2|V (H)|; in particular
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each vertex of auxH (P) has degree at most 2|V (H)|. As auxH (P) contains k vertices,
we deduce that there are at most (2|V (H)|)k ≤ (2n)k possible degree sequences for
auxH (P).

Since the number of partitions of {v1, . . . , vk} is bounded by 2k log2 k . We conclude
that � partitions Π(H) into at most nk · 2k(log2 k+1) equivalences classes.

It remains to prove that we can compute reduceH (A) in time O(|A| ·nk log2(nk)).
First observe that, for every P ∈ Π(H), we can compute auxH (P) in time O(nk).
Moreover, we can also compute the degree sequence of auxH (P) and the connected
components of auxH (P) in timeO(nk). Thus, by using the right data structures,we can
decidewhetherP1 � P2 in time O(nk). Furthermore, by using a self-balancing binary
search tree, we can compute reduceH (A) in time O(|A| · nk log2(|reduceH (A)|)).
Since log2(|reduceH (A)|) ≤ k log2(2nk), we conclude that reduceH (A) is com-
putable in time O(|A| · nk2 log2(nk)). ��

The rest of this section is dedicated to prove that, for a set of partial solutions A
of H , the set reduceH (A) is equivalent toA, i.e., ifA contains a partial solution that
forms a Hamiltonian cycle with a complement solution, then reduceH (A) also. Our
results are based on a kind of equivalence between Hamiltonian cycles and red–blue
Eulerian trails. The following observation is one direction of this equivalence.

Lemma 3 If P ∈ Π(H) and Q ∈ Π(H) form a Hamiltonian cycle, then the multi-
graph auxH (P) 
 auxH (Q) admits a red–blue Eulerian trail.

Proof Suppose thatP ∈ Π(H) andQ ∈ Π(H) formaHamiltonian cycleC . LetM :=
auxH (P) 
 auxH (Q). From the definitions of a partial solution and of a complement
solution, there is a sequence (P1, Q1, . . . , P�, Q�) of paths in P and Q such that

– P1, P2, . . . , P� are all the maximal paths in H|P ,
– Q1, Q2, . . . , Q� are all the H -paths in G|Q,
– P1, Q1, . . . , P�, Q� appear in C in this order,
– for each x ∈ [�], the first end-vertex of Px is the last end-vertex of Qx−1 and the
last end-vertex of Px is the first end-vertex of Qx (indices are considered modulo
�).

Observe that each maximal path Px in H|P with end-vertices labeled i and j is
associated with a red edge in M , say ex with multM (ex ) = {vi , v j } if i �= j or
multM (ex ) = {vi } if i = j such that the edges e1, . . . , e� are pairwise distinct and
E(auxH (P)) = {e1, . . . , e�}. Similarly, each H -path Qy of G|Q with end-vertices
labeled i and j is associated with a blue edge fy in M with multM ( fy) = {vi , v j } if
i �= j ormultM ( fy) = {vi } if i = j such that the edges f1, . . . , f� are pairwise distinct
and E(auxH (Q)) = { f1, . . . , f�}. It is not difficult to see that (e1, f1, . . . , e�, f�) is a
red–blue Eulerian trail of auxH (P) 
 auxH (Q). ��

Next, we prove the other direction. We use the properties of an irredundant k-
expression described in Lemma 1.

Lemma 4 Let P ∈ Π(H). If there exists a complement solution Q of H such that
auxH (P) 
 auxH (Q) admits a red–blue Eulerian trail, then there existsQ� ∈ Π(H)

such that P and Q� form a Hamiltonian cycle.
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Proof Let T = (va1, r1, vc1 , b1, va2 , r2, vc2 , . . . , va�
, r�, vc� , b�, va1) be a red–blue

Eulerian trail of auxH (P)
auxH (Q)with r1, . . . , r� ∈ E(auxH (P)) andb1, . . . , b� ∈
E(auxH (Q)). In the following, the indexes are modulo �.

For each i ∈ [�], we associate ri with a maximal path Pi of H|P with end-vertices
labeled ai and ci and we associate bi with an H -path Qi of G|Q with end-vertices
labeled ci and ai+1, such that P1, . . . , P�, Q1, . . . , Q� are all pairwise distinct.

For every i ∈ [�], we construct from Qi an H -path Q�
i ofG by doing the following.

Let u, v be respectively the last end-vertex of Pi and the first end-vertex of Pi+1.
Observe that u and the first vertex of Qi are labeled ci , and v and the last vertex of Qi

are labeled ai+1. We distinguish two cases:

– Suppose that Qi = (x, xy, y), i.e., Qi uses only one edge. Since Q is a com-
plement solution of H , we have xy ∈ E(G)\E(H). By Lemma 1, we have
uv ∈ E(G)\E(H). In this case, we define Q�

i = (u, uv, v).
– Assume now that Qi = (x, xy, y, . . . , w,wz, z) with w, y ∈ V (G)\V (H) (pos-
sibly, w = y). Since x and u have the same label in H , by Lemma 1, we have
NG(x)\V (H) = NG(u)\V (H). Hence, u is also adjacent to y. Symmetrically,
we have v is adjacent tow. In this case, we define Q�

i = (u, uy, y, . . . , w,wv, v),
i.e., the path with the same internal vertices as Qi and with end-vertices u and v.

In both cases, we end up with a path Q�
i that uses the same internal vertices as

Qi and whose end-vertices are the last vertex of Pi and the first vertex of Pi+1. We
conclude that

P1 − Q�
1 − · · · − P� − Q�

�

is a Hamiltonian cycle.
Let Q� be the set of edges used by the paths Q�

1, . . . , Q
�
�. By construction, we

have Q� ⊆ E(G)\E(H), and thus Q� ∈ Π(H). Observe that, for every i ∈ [�], the
labels of the end-vertices of Q�

i are the same as those of Qi . Consequently, we have
auxH (Q�) = auxH (Q). ��

It is well known that a connected multigraph contains an Eulerian trail if and only if
every vertex has even degree.As an extension,Kotzig [26] proved that a connected two-
edge colored graph (without loops and multiple edges) contains a red–blue Eulerian
trail if and only if each vertex is incident with the same number of edges for both
colors. This result can be easily generalized to multigraphs by replacing red edge with
a path of length 3 whose colors are red, blue, red in the order, and replacing blue
edge with a path of length 3 whose colors are blue, red, blue in the order. For the
completeness of our paper, we add its proof.

Let G be a multigraph whose edges are colored red or blue, and let R and B be
respectively the set of red and blue edges. For a vertex v ∈ V (G), we let rdegG(v)

and bdegG(v) be respectively the degree of v in G|R and G|B . Recall that a loop is
counted twice in the degree of a vertex.

Lemma 5 (Kotzig [26]) Let G be a connected multigraph whose edges are colored
red or blue. Then G has a red–blue Eulerian trail if and only if, for every vertex v,
bdegG(v) = rdegG(v).
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Proof One can easily check that ifG has a red–blue Eulerian trail, then for every vertex
v, bdegG(v) = rdegG(v). Indeed, if T = (v1, e1, v2, . . . , v�, e�, v1) is a red–blue
Eulerian trail, then, for 2 ≤ i ≤ �, ei−1 and ei have different colors, and e1 and e�

have different colors, we can conclude that the blue edges incident with a vertex v are
in 1-to-1 correspondence with the red edges incident with v (by counting twice the
loops).

Let us now prove the other direction. Let T := (v1, e1, v2, e2, . . . , vi , ei , vi+1)

be a longest red–blue trail. We may assume that e1 is colored red. First observe that
v1 = vi+1. Otherwise, bdegT (v1) + 1 = rdegT (v1) and thus, there is a blue edge in
E(G)\E(T ) incidentwith v1. So,we can extend T by adding this edge, a contradiction.
Thus, v1 = vi+1.

Next we show that ei is colored blue. Suppose ei is colored red. Then bdegT (v1)+
2 = rdegT (v1) and thus, there is a blue edge in E(G)\E(T ) incident with v1. So,
we can extend T by adding this edge, a contradiction. Thus, ei is colored red, and it
implies that T is a closed red–blue trail. It means that T can be considered as a closed
red–blue trail starting from any vertex of T and following the same order or the reverse
order of T .

Now, we show that V (G) = V (T ). Suppose V (G)\V (T ) is non-empty. Since G
is connected, there is an edge vw with v ∈ V (T ) and w ∈ V (G)\V (T ). If vw is a
red edge, then starting from this edge and following T from a blue edge incident with
v, we can find a red–blue trail longer than T , a contradiction. The same argument
holds when vw is a blue edge. Therefore, we have that V (G) = V (T ). By a similar
argument, one can show that E(G) = E(T ); if there is an edge vw in E(G)\E(T ),
we can extend T by putting vw at the beginning. So, E(G) = E(T ).

We conclude that T is a red–blue Eulerian trail, as required. ��
In order to prove the correctness of our algorithm, we need the following relation

between subsets of partial solutions.

Definition 2 Let A and B be two subsets of Π(H). We write A �H B if, for every
multigraph M whose edges are colored blue, whenever there exists P1 ∈ B such
that auxH (P1) 
 M admits a red–blue Eulerian trail, there exists P2 ∈ A such that
auxH (P2) 
 M admits a red–blue Eulerian trail.

The main idea of our algorithm for Hamiltonian Cycle, is to compute, for every
k-labeled graph H arising in φ, a setA ⊆ Π(H) of small size such thatA �H Π(H).
Indeed, by Lemmas 3 and 4, A �H Π(H) implies that if there exist P ∈ Π(H) and
Q ∈ Π(H) such that P andQ form a Hamiltonian cycle, then there exist P� ∈ A and
Q� ∈ Π(H) such that P� andQ� form a Hamiltonian cycle. The following lemma is
the key of our algorithm.

Lemma 6 Let A ⊆ Π(H). Then reduceH (A) �H A.

Proof Let P ∈ A and M be a multigraph whose edges are colored blue such that
auxH (P) 
M admits a red–blue Eulerian trail. By definition, reduceH (A) contains
a partial solutionP� such thatP � P�. As auxH (P)
M contains a red–blue Eulerian
trail, by Lemma 5, we have that
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– auxH (P) 
 M is connected and
– for every i ∈ [k], degauxH (P)(vi ) = degM(vi ).

Since auxH (P) has the same set of connected components as auxH (P�), the multi-
graph auxH (P�) 
 M is also connected. Moreover, for every i ∈ [k], we have

degauxH (P)(vi ) = degauxH (P�)(vi ) = degM(vi ).

By Lemma 5, we conclude that auxH (P�) 
 M admits a red–blue Eulerian trail.
Thus, for everyP ∈ A and multigraphMwith blue edges such that auxH (P)
M

admits a red–blue Eulerian trail, there existsP� ∈ reduceH (A) such that auxH (P�)

M admits a red–blue Eulerian trail. Hence, we have reduceH (A) �H A. ��
Lemma 7 Let A,B ⊆ Π(H). If A �H B, then reduceH (A) �H B.

Proof One easily checks that�H is a transitive relation. Now, assuming thatA �H B,
we have reduceH (A) � B because reduceH (A) �H A by Lemma 6. ��

5 Hamiltonian Cycle Problem

In this section,we present our algorithm solvingHamiltonian Cycle. Our algorithm
computes recursively, for every k-labeled graph H arising in the k-expression of G,
a set AH such that AH �H Π(H) and |AH | ≤ nk · 2k(log2(k)+1). In order to prove
the correctness of our algorithm, we need the following lemmas which prove that the
operations we use to compute sets of partial solutions preserve the relation �H .

Lemma 8 Let H = ρi→ j (D). If AD �D Π(D), then AD �H Π(H).

Proof First, observe that H has the same set of vertices and edges as D. Thus, we have
Π(H) = Π(D) and Π(H) = Π(D). Suppose that AD �D Π(D).

Let P ∈ Π(H) and M be a multigraph whose edges are colored blue such that
auxH (P)
M contains a red–blue Eulerian trail T . To prove the lemma, it is sufficient
to prove that there exists P� ∈ AD such that auxH (P�) 
 M contains a red–blue
Eulerian trail.

Let f be a bijective function such that

– for every edge e of auxD(P) with endpoints v� and vi , for some �, f (e) is an edge
of auxH (P) with endpoints v� and v j , and

– for every loop e with endpoint vi , f (e) is a loop of auxH (P) with endpoint v j .

By construction of auxD(P) and auxH (P), such a function exists.
We construct the multigraphM′ fromM and T by successively doing the follow-

ing:

– For every edge e of auxD(P) with endpoints v� and vi , take the subwalk W =
(v�, f (e), v j , ea, va) of T . Replace ea inM by an edge e′

a with endpoints vi and
va .
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– For every loop e with endpoint vi in auxD(P), take the subwalk W =
(va, ea, v j , f (e), v j , eb, vb) of T . Replace ea (respectively eb) in M by an edge
e′
a (resp. e

′
b) with endpoints va and vi (resp. vi and vb).

By construction, one can construct from T a red–blue Eulerian trail of auxD(P) 

M′. Since AD �D Π(D), there exists P� ∈ AD such that auxD(P�) 
 M′ con-
tains a red–blue Eulerian trail. Observe that auxH (P) (respectively M) is obtained
from auxD(P�) (resp. M′) by replacing each edge associated with {vi , vk} or {vi } in
auxD(P�) (resp. M′) with an edge associated with {v j , vk} or {v j } respectively. We
conclude that auxH (P�) 
 M admits a red–blue Eulerian trail. ��
Lemma 9 Let H = D⊕F. IfAD �D Π(D) andAF �F Π(F), then (AD⊗AF ) �H

Π(H).

Proof Observe that V (D) and V (F) are disjoint. Consequently, we have Π(H) =
Π(D)⊗Π(F), and, for allPD ∈ Π(D) andPF ∈ Π(F), we have auxH (PD∪PF ) =
auxH (PD) 
 auxH (PF ). Suppose that AD �D Π(D) and AF �F Π(F).

Let PD ∈ Π(D) and PF ∈ Π(F), and let M be a multigraph whose edges are
colored blue such that there exists a red–blue Eulerian trail T in auxH (PD∪PF )
M.
It is sufficient to prove that there exist P�

D ∈ AD and P�
F ∈ AF such that auxH (P�

D ∪
P�
F ) 
 M admits a red–blue Eulerian trail.
We begin by proving that there exists P�

D ∈ AD such that auxH (P�
D ∪ PF ) 
 M

contains a red–blue Eulerian trail. In order to do so, we construct from auxH (PD ∪
PF ) 
 M a multigraph M′ by successively repeating the following: take a maximal
sub-walkW ofT whichuses alternately blue edges and red edges fromauxH (PF )
M,
remove these edges and add a blue edge between the two end-vertices of W .

By construction of M′, for every P ′
D ∈ Π(D), if auxD(P ′

D) 
 M′ admits a red–
blue Eulerian trail, then auxH (P ′

D ∪PF )
M contains a red–blue Eulerian trail also.
We also deduce from this construction that the multigraph auxD(PD)
M′ contains a
red–blue Eulerian trail. AsAD �D Π(D), there existsP�

D such that auxD(P�
D)
M′

contains a red–blue Eulerian trail. We conclude that auxH (P�
D ∪ PF ) 
 M contains

also a red–blue Eulerian trail.
Symmetrically, we can prove that there exists P�

F ∈ AF such that auxH (P�
D ∪

P�
F ) 
 M contains a red–blue Eulerian trail. This proves the lemma. ��
For two k-labeled subgraphs H and D arising in the k-expression of G such that

H = ηi, j (D), we denote by EH
i, j the set of edges whose endpoints are labeled i and

j , i.e., {uv ∈ E(H) | labH (v) = i ∧ labH (v) = j}. For P ∈ Π(H), we denote
by P + (i, j) the set of all partial solutions P ′ of Π(H) obtained by the union of P
and an edge uv in EH

i, j . Observe that u and v must be the endpoints of two distinct
maximal paths of H|P . We extend this notation to sets of partial solutions; for every
A ⊆ Π(H), we denote by A + (i, j), the set

⋃
P∈A(P + (i, j)). It is worth noting

thatΠ(D) ⊆ Π(H) and thus the operator+(i, j) is well defined for a partial solution
in Π(D).

Moreover, for everyA ⊆ Π(D) and integer t ≥ 0, we define the setAt as follows

At :=
{
A if t = 0,

reduceH (At−1 + (i, j)) otherwise.
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Observe that each set P in At is a partial solution of H and |P ∩ EH
i, j | = t .

Lemma 10 Let H = ηi, j (D) such that E(D) ∩ EH
i, j = ∅. If AD �D Π(D), then we

have A0
D ∪ · · · ∪ An

D �H Π(H).

Proof Suppose that AD �D Π(D). We begin by proving the following claim.

Claim Let A,B ⊆ Π(H). If A �H B, then A + (i, j) �H B + (i, j).

Proof Suppose that A �H B. Let P ∈ B + (i, j) and M be a multigraph with blue
edges such that auxH (P) 
 M admits a red–blue Eulerian trail. Take xy ∈ EH

i, j such

that P ′ := P − xy belongs to B and x ∈ lab−1
H (i) and y ∈ lab−1

H ( j). Let M′ be the
multigraph obtained by adding a blue edge f with endpoints vi and v j toM.

We claim that the multigraph auxH (P ′) 
 M′ admits a red–blue Eulerian trail.
Note that there is a path P ∈ P containing the edge xy, and when we remove xy from
P , we divide P into two maximal subpaths, say P1 and P2. Without loss of generality,
we may assume that P1 contains x and P2 contains y. Let x ′ and y′ be the other
end-vertices of P1 and P2, respectively, and let i ′ := labH (x ′) and j ′ := labH (y′).
Note that auxH (P ′) can be obtained from auxH (P) by removing an edge e associated
with {vi ′ , v j ′ } and adding two edges e1 and e2 associated with {vi ′ , vi } and {v j , v j ′ }
respectively. So, we can obtain a red–blue Eulerian trail of auxH (P ′) 
 M′ from a
red–blue Eulerian trail of auxH (P) 
 M by replacing (vi ′ , e, v j ′) with the sequence
(vi ′ , e1, vi , f , v j , e2, v j ′) where f is the blue edge we add to M to obtain M′. It
implies the claim.

Now, since A �H B, there exists P� ∈ A such that auxH (P�) 
 M′
admits a red–blue Eulerian trail T . Let W be the subwalk of T such that W =
(va, ea, vi , f , v j , eb, vb). Take two maximal paths P1 and P2 in H|P� such that the
end-vertices of P1 (respectively P2) are labeled a and i (resp. b and j). Let P̂ be
the partial solution of H obtained from P� by adding the edge in EH

i, j between the
end-vertex of P1 labeled i and the end-vertex of P2 labeled j . By construction, we
have P̂ ∈ A+ (i, j) and auxH (P̂)
M admits a red–blue Eulerian trail. We conclude
that A + (i, j) �H B + (i, j). ��

LetΠ(D)+ t(i, j) be the set of partial solutions of H obtained by applying t times
the operation +(i, j) on Π(D). Since every partial solution of H is obtained from
the union of a partial solution of D and a subset of EH

i, j of size at most n, we have
Π(H) = ⋃

0≤t≤n(Π(D) + t(i, j)).
SinceV (D) = V (H) and E(D) ⊆ E(H), we haveA0

D = AD �H Π(D)+0(i, j).
Let � ∈ {1, . . . , n} and suppose that A�−1

D �H Π(D) + (� − 1)(i, j). From Claim 5,
we have A�−1

D + (i, j) �H Π(D) + �(i, j). By Lemma 7, we deduce that A�
D =

reduce(A�−1
D + (i, j)) �H Π(D) + �(i, j).

Thus, by recurrence, for every 0 ≤ � ≤ n, we have A�
D �H Π(D) + �(i, j). We

conclude that A0
D ∪ · · · ∪ An

D �H Π(H). ��
We are now ready to prove the main theorem of this paper.

Theorem 2 There exists an algorithm that, given an n-vertex graph G and a k-
expression φ of G, solves Hamiltonian Cycle in time O(n2k+5 · 22k(log2(k)+1) ·
k3 · log2(nk)).
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Proof Since every k-expression can be transformed into an irredundant k-expression
in linear time, we may assume that φ is an irredundant k-expression.

We do a bottom-up traversal of the k-expression and at each k-labeled graph H
arising in φ, we compute a set AH ⊆ Π(H) such that |AH | ≤ nk2k(log(k)+1) and
AH �H Π(H), by doing the following:

– If H = i(v), then we have Π(H) = {∅} because E(H) = ∅. In this case, we set
AH := {∅}. Obviously, we have AH �H Π(H).

– If H = ρi, j (D), then we set AH := AD .
– If H = D ⊕ F , then we set AH := reduceH (AD ⊗ AF ).
– If H = ηi, j (D), then we set AH := reduceH (A0

D ∪ · · · ∪ An
D).

For the last three cases, we deduce, by induction, from Lemmas 7–10 that AH �H

Π(H). Moreover by the use of the function reduceH , by Lemma 2, we have |AH | ≤
nk · 2k(log(k)+1).

We now explain how our algorithm decides whether G admits a Hamiltonian cycle.
We claim that G has a Hamiltonian cycle if and only if there exist two k-labeled
graphs H and D arising in φ with V (H) = V (G) and H = ηi, j (D), and there
exists P ∈ AD such that, for every � ∈ [k]\{i, j}, we have degauxD(P)(v�) = 0 and
degauxH (P)(vi ) = degauxH (P)(v j ) > 0.

First suppose thatG contains a Hamiltonian cycleC and take the k-labeled graph H
arising in φ such that E(C) ⊆ E(H) and |E(H)| is minimal. Note that the operations
of taking the disjoint union of two graphs or relabeling cannot create a Hamiltonian
cycle. Thus, by minimality, we have H = ηi, j (D) such that

– D is a k-labeled graph arising in φ and i, j ∈ [k],
– E(C) � E(D).

It follows that E(C)\E(D) ⊆ EH
i, j . Let P := E(C) ∩ E(D) and Q := E(C) ∩ EH

i, j .

Observe that P ∈ Π(D) and Q ∈ Π(D). By Lemma 3, the multigraph auxD(P) 

auxD(Q) contains a red–blue Eulerian trail. Since AD �D Π(D), there exists P� ∈
AD such that auxD(P�) 
 auxD(Q) contains a red–blue Eulerian trail. As Q ⊆
EH
i, j , we deduce that, for every � ∈ [k]\{i, j}, we have degauxD(P�)(v�) = 0 and

degauxH (P�)(vi ) = degauxH (P�)(v j ).
For the other direction, suppose that the latter condition holds. LetQ be the graph on

the vertex set V (G) such that it contains exactly degauxH (P)(vi ) many edges between
the set of vertices labeled i and the set of vertices labeled j . Observe that auxH (Q)

consists of degauxH (P)(vi ) many edges between vi and v j . Therefore, by Lemma 5,
auxH (P)
auxH (Q) admits a red–blue Eulerian trail. Then, by Lemma 4, there exists
Q� ∈ Π(H) such that P and Q� form a Hamiltonian cycle, as required.

Running Time Let H be a k-labeled graph arising in φ. Observe that if H = i(v) or
H = ρi→ j (D), then we compute AH in time O(1).

By Lemma 2, for everyA ⊆ Π(H), we can compute reduceH (A) in time O(|A| ·
nk2 log2(nk)). Observe that, for every k-labeled graph D arising in φ and such that
AD is computed before AH , we have |AD| ≤ nk · 2k(log2(k)+1). It follows that:
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– If H = D ⊕ F , then we have |AD ⊗ AF | ≤ n2k · 22k(log2(k)+1). Thus, we can
compute AH := reduceH (AD ⊗ AF ) in time

O(n2k+1 · 22k(log2(k)+1) · k2 log2(nk)).

– If H = ηi, j (D), then we can compute AH in time

O(nk+4 · 2k(log2(k)+1) · k2 log2(nk)).

First observe that, for every partial solution P of H , we have |P + (i, j)| ≤ n2

and we can compute the set P + (i, j) in time O(n2). Moreover, by Lemma 2, for
every � ∈ {0, . . . , n − 1}, we have |A�

D| ≤ nk · 2k(log2(k)+1) and thus, we deduce
that |A�

D + (i, j)| ≤ nk+2 · 2k(log2(k)+1) and that A�+1
D can be computed in time

O(nk+3 · 2k(log2(k)+1) · k2 log2(nk)). Thus, we can compute the setsA1
D, . . . ,An

D
in time O(nk+4 ·2k(log(k)+1) ·k2 log2(nk)). The running time to computeAH from
AD follows from |A0

D ∪ · · · ∪ An
D| ≤ nk+1 · 22k(log2(k)+1).

Since φ uses at most O(n) disjoint union operations and O(nk2) unary operations,
we deduce that the total running time of our algorithm is

O(n2k+5 · 22k(log2(k)+1) · k4 log2(nk)).

��

6 Directed Hamiltonian Cycle

In this section, we explain how to adapt our approach for directed graphs. A k-labeled
digraph is a pair (G, labG) of a digraph G and a function labG from V (G) to [k].
Directed clique-width is also defined in [10], and it is based on the four operations,
where the three operations of creating a digraph, taking the disjoint union of two
labeled digraphs, and relabeling a digraph are the same, and the operation of adding
edges is replaced with the following:

– For a labeled digraph G and distinct labels i, j ∈ [k], add all the non-existent arcs
from vertices with label i to vertices with label j (so we do not add arcs of both
directions altogether).

A directed clique-width k-expression and directed clique-width are defined in the same
way. A directed Hamiltonian cycle of a digraph G is a directed cycle containing all
the vertices of G. The Directed Hamiltonian Cycle problem asks, for a given
digraph G, whether G contains a directed Hamiltonian cycle or not.

With a similar approach, we can show the following.

Theorem 3 There exists an algorithm that, given an n-vertex digraph G and a directed
clique-width k-expression of G, solves Directed Hamiltonian Cycle in time
nO(k).
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For Directed Hamiltonian Cycle, auxiliary graphs should be directed graphs.
We define partial solutions and auxiliary multigraphs similarly, at the exception that
a directed maximal path (resp. H -path) from a vertex labeled i to a vertex labeled j
in a partial solution (resp. complement solution) corresponds to an arc (vi , v j ) in its
auxiliary multigraph.

Let G be an n-vertex directed graph and φ be a directed irredundant k-expression
of G. Similar to the Proof of Theorem 2, for every k-labeled graph H arising in φ, we
recursively compute a set AH of small size such that AH represents Π(H) which is
the set of all partial solutions of H .

It is not hard to see that Lemmas 3 and 4 hold also in the directed case. That is,
we have an equivalence between directed Hamiltonian cycle in graphs and directed
red–blue Eulerian trail in multigraphs. Thus, to adapt our ideas for undirected graphs,
we only need to characterize the directedmultigraphs which admit a red–blue Eulerian
trail. Fleischner [18, Theorem VI.17] gave such a characterization for directed graphs
without loops and multiple arcs, but the proof can easily be adapted for directed
multigraphs.

Let M be a directed multigraph whose arcs are colored red or blue, and let R and
B be respectively its set of red and blue arcs. We denote by M∗ the digraph derived
from M with V (M∗) := {v1, v2 | v ∈ V (M)} and E(M∗) := {(v1, w2) | (v,w) ∈
B} ∪ {(v2, w1) | (v,w) ∈ R}. For a digraph G and a vertex v of G, we denote by
deg+

G(v) and deg−
G(v), respectively, the outdegree and indegree of v in G.

Lemma 11 (Fleischner [18]) Let M be a directed multigraph whose arcs are colored
red or blue. The following are equivalent.

1. M has a red–blue Eulerian trail.
2. M∗ has an Eulerian trail.
3. The underlying undirected graph of M∗ has at most one connected component

containing an edge, and, for each vertex v of M∗, deg+
M∗(v) = deg−

M∗(v).

In (3), the condition that “for each vertex v of M∗, deg+
M∗(v) = deg−

M∗(v)” can be
translated to that, for each vertex v of M , the number of blue incoming arcs is the same
as the number of red outgoing arcs, and the number of red incoming arcs is the same as
the number of blue outgoing arcs. However, an important point is that instead of having
that the underlying undirected graph of M∗ has at most one connected component
containing an edge, the condition that “the underlying graph of M is connected” or
“M is strongly connected” is not sufficient, because the connectedness of M∗ depends
on the colors of arcs. We give an example. Let G be a graph on {x, y, z} with red
arcs (x, y), (y, z) and blue arcs (z, y), (y, x). Even though G is strongly connected, it
does not have a red–blue Eulerian trail, and one can check that M∗ has two connected
components containing an edge.

To decide whether the underlying undirected graph of M∗ has at most one con-
nected component containing an edge, multiple arcs are useless. So, it is enough to
keep one partial solution P for each degree sequence in auxH (P) and for each set
{multauxH (P)(e) | e ∈ E(auxH (P))}.

Let � be the equivalence relation on Π(H) such that P1 � P2 if the following are
satisfied:
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– for every pair (v,w) of vertices in {v1, . . . , vk}, there exists an arc from v to w in
auxH (P1) if and only if there exists one in auxH (P2),

– for every vertex v in {v1, . . . , vk}, deg+
auxH (P1)

(v) = deg+
auxH (P2)

(v) and

deg−
auxH (P1)

(v) = deg−
auxH (P2)

(v).

From Lemma 11 and the definition of M∗, we deduce the following fact.

Fact 1 Let P1,P2 ∈ Π(H). If P1 � P2, then P1 is part of a directed Hamiltonian
cycle in G if and only if P2 is part of a directed Hamiltonian cycle in G.

From the definition of �, one can show that |Π(H)/ � | ≤ n2k · 2k2 . Thus we
can follow the lines of the proof for undirected graphs, and easily deduce that one
can solve Directed Hamiltonian Cycle in time nO(k), where k is the directed
clique-width of the given digraph.

7 Conclusion

We have proved that, given a k-expression, one can solve Hamiltonian Cycle in
time nO(k), and also prove a similar variant for directed graphs.

One major open question related to clique-width is to determine whether it can
be approximated within a constant factor. One can bypass this long-standing open
problembyusing a related parameter called rank-width. This parameterwas introduced
by Oum and Seymour [27] and admits an efficient algorithm to approximate it within
a constant factor. Moreover, the clique-width of a graph is always bigger than its rank-
width. On the other hand, rank-width is harder to manipulate than clique-width. To
the best of our knowledge, there is no optimal algorithm known for basic problems
such as Vertex Cover and Dominating Set, where the best algorithms run in
time 2O(k2) · nO(1) [7] and the best lower bounds state that we can not solve these
problems in time 2o(k) · nO(1) unless ETH fails. Improving these algorithms or these
lower bounds would be the natural way of continuing the works done on clique-width.

Recently,Bergougnoux andKanté [2] proved that theMax Cutproblem is solvable
in time nO(k) where k is the clique-width of the input graph without assuming that the
graph is given with a k-expression. For doing so, they used a related parameter called
Q-rank-width and the notion of d-neighbor equivalence. It would be interesting to
know whether the same approach can be used for the Hamiltonian Cycle problem.

We conclude with one explicit question. A digraph D is an out-tree if D is an
oriented tree (an undirected tree with orientations on edges) with only one vertex of
indegree zero (called the root). The vertices of out-degree zero are called leaves of
D. The Min Leaf Out-Branching problem asks for a given digraph D and an integer
�, whether there is a spanning out-tree of D with at most � leaves. This problem
generalizes Hamiltonian Path (and also Hamiltonian Cycle) by taking � = 1.
Ganian, Hliněný, and Obdržálek [22] showed that there is an n2

O(k)
-time algorithm

for solvingMin Leaf Out- Branching problem, when a clique-width k-expression
of a digraph D is given. We ask whether it is possible to drop down the exponential
blow-up from 2O(k) to O(k).
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