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Abstract
We continue the investigation of polynomial-time sparsification for NP-complete
Boolean Constraint Satisfaction Problems (CSPs). The goal in sparsification is to
reduce the number of constraints in a problem instance without changing the answer,
such that a bound on the number of resulting constraints can be given in terms of
the number of variables n. We investigate how the worst-case sparsification size
depends on the types of constraints allowed in the problem formulation—the con-
straint language—and identify constraint languages giving the best-possible and
worst-possible behavior for worst-case sparsifiability. Two algorithmic results are pre-
sented. The first result essentially shows that for any arity k, the only constraint type
for which no nontrivial sparsification is possible has exactly one falsifying assignment,
and corresponds to logical OR (up to negations). Our second result concerns linear
sparsification, that is, a reduction to an equivalent instance with O(n) constraints.
Using linear algebra over rings of integers modulo prime powers, we give an elegant
necessary and sufficient condition for a constraint type to be captured by a degree-
1 polynomial over such a ring, which yields linear sparsifications. The combination
of these algorithmic results allows us to prove two characterizations that capture the
optimal sparsification sizes for a range of Boolean CSPs. For NP-complete Boolean
CSPs whose constraints are symmetric (the satisfaction depends only on the number
of 1 values in the assignment, not on their positions), we give a complete character-
ization of which constraint languages allow for a linear sparsification. For Boolean
CSPs in which every constraint has arity at most three, we characterize the optimal
size of sparsifications in terms of the largest OR that can be expressed by the constraint
language.
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1 Introduction

1.1 Background

The framework of constraint satisfaction problems (CSPs) provides a unified way to
study the computational complexity of a wide variety of combinatorial problems such
asCNF-Satisfiability,Graph Coloring, andNot-All-Equal SAT. The frame-
work uncovers algorithmic approaches that simultaneously apply to several problems,
and also identifies common sources of intractability. For the purposes of this discus-
sion, a CSP is specified using a (finite) constraint language, which is a set of (finite)
relations; the problem is to decide the satisfiability of a set of constraints, where each
constraint has a relation coming from the constraint language. The fact that many
problems can be viewed as CSPs motivates the following investigation: how does the
complexity of a CSP depend its constraint language? A key result in this area is Schae-
fer’s dichotomy theorem [25], which classifies each CSP over the Boolean domain as
polynomial-time solvable or NP-complete.

Continuing a recent line of investigation [12,14,19], we aim to understand for which
NP-complete CSPs an instance can be sparsified in polynomial time, without changing
the answer. In particular, we investigate the following questions. Can the number of
constraints be reduced to a small function of the number of variables n? How does the
sparsifiability of a CSP depend on its constraint language? We utilize the framework
of kernelization [5,8,22], originating in parameterized complexity theory, to answer
such questions.

The first results concerning polynomial-time sparsification in terms of the num-
ber n of variables or vertices were mainly negative. Under the assumption that
NP � coNP/poly (which we tacitly assume throughout this introduction), Dell and
van Melkebeek [7] proved a strong lower bound: For any integer d ≥ 3 and positive
real ε, there cannot be a polynomial-time algorithm that compresses any instance ϕ of
d-CNF-SAT on n variables, into an equivalent SAT instance ϕ′ of bitsize O(nd−ε).
In fact, there cannot even be an algorithm that transforms such ϕ into small equiva-
lent instances ψ of an arbitrary decision problem. Since an instance of d-CNF-SAT
has at most 2dnd ∈ O(nd) distinct clauses, it can trivially be sparsified to O(nd)
clauses by removing duplicates, and can be compressed to size O(nd) by storing it as
a bitstring indicating for each possible clause whether or not it is present. The cited
lower bound therefore shows that the trivial sparsification for d-CNF-SAT cannot be
significantly improved;we say that the problem does not admit nontrivial (polynomial-
time) sparsification. Following these lower bounds for SAT, a number of other results
were published [6,11,17] proving other problems do not admit nontrivial sparsification
either.

This pessimistic state of affairs concerning nontrivial sparsification algorithms
changed several years ago, when a subset of the authors [14] showed that the d-Not-
All-Equal SAT problem does have a nontrivial sparsification. In this problem,
clauses have size at most d and are satisfied if the literals do not all evaluate to the
same value. While there can be Ω(nd) different clauses in an instance, there is an
efficient algorithm that finds a subset of O(nd−1) clauses that preserves the answer,
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resulting in a compression of bitsize O(nd−1 log n). The first proof of this result was
based on an ad-hoc application of a theorem of Lovász [23]. Later, the underlying
proof technique was extracted and applied to a wider range of problems [12]. This
led to the following understanding: if each relation in the constraint language can be
represented by a polynomial of degree at most d, in a certain technical sense, then this
allows the number of constraints in an n-variable instance of such a CSP to be reduced
to O(nd). The sparsification for d-Not-All-Equal SAT is then explained by noting
that such constraints can be captured by polynomials of degree d − 1. It is therefore
apparent that finding a low-degree polynomial to capture the constraints of a CSP is
a powerful tool to obtain sparsification algorithms for it. Finding such polynomials
of a certain degree d, or determining that they do not exist, proved a challenging and
time-intensive task (cf. [13]).

The polynomial-based framework [12] also resulted in some linear sparsifications.
Since “1-in-d” constraints (to satisfy a clause, exactly one out of its≤ d literals should
evaluate to true) can be captured by linear polynomials, the 1-in-d-SAT problem has
a sparsification with O(n) constraints for each constant d. This prompted a detailed
investigation into linear sparsifications for CSPs by Lagerkvist and Wahlström [19],
who used the toolkit of universal algebra in an attempt to obtain a characterization
of the Boolean CSPs with a linear sparsification. Their results give a necessary and
sufficient condition on the constraint language of a CSP for having a so-calledMaltsev
embedding over an infinite domain. They also show that when a CSP has a Maltsev
embedding over a finite domain, then this can be used to obtain a linear sparsification.
Alas, it remains unclear whether Maltsev embeddings over infinite domains can be
exploited algorithmically, and a characterization of the linearly-sparsifiable CSPs is
currently not known.

1.2 Our Contributions

We analyze and demonstrate the power of the polynomial-based framework for sparsi-
fying CSPs using universal algebra, linear algebra over rings, and relational analysis.
We present two new algorithmic results. These allow us to characterize the sparsifia-
bility of Boolean CSPs in two settings, wherein we show that the polynomial-based
framework yields optimal sparsifications. In comparison to previous work [12], our
results are muchmore fine-grained and based on a deeper understanding of the reasons
why a certain CSP cannot be captured by low-degree polynomials.

Algorithmic results Our first result (Sect. 3) shows that, contrary to the pessimistic
picture that arose during the initial investigation of sparsifiability, the phenomenon
of nontrivial sparsification is widespread and occurs for almost all Boolean CSPs!
We prove that if Γ is a constraint language whose largest constraint has arity k,
then the only reason that CSP(Γ ) does not have a nontrivial sparsification, is that it
contains an arity-k relation that is essentially the k-ary OR (up to negating variables).
When R ⊆ {0, 1}k is a relation with |{0, 1}k\R| �= 1 (the number of assignments that
fail to satisfy the constraint is not equal to 1), then it can be captured by a polynomial
of degree k − 1. This yields a nontrivial sparsification compared to the Ω(nk) distinct
applications of this constraint that can be in such an instance.
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Our second algorithmic result (Sect. 4) concerns the power of the polynomial-based
framework for obtaining linear sparsifications. We give a necessary and sufficient
condition for a relation to be captured by a degree-1 polynomial. Say that a Boolean
relation R ⊆ {0, 1}k is balanced if there is no sequence of vectors s1, . . . , s2n, s2n+1 ∈
R for n ≥ 1 such that s1 − s2 + s3 · · · − s2n + s2n+1 = u ∈ {0, 1}k\R. (The
same vector may appear multiple times in this sum.) In other words: R is balanced
if one cannot find an odd-length sequence of vectors in R for which alternating
between adding and subtracting these vectors component-wise results in a 0/1-vector u
that is outside R. For example, the binary OR relation 2-or = {0, 1}2\{(0, 0)} is
not balanced, since (0, 1) − (1, 1) + (1, 0) = (0, 0) /∈ 2-or, but the 1-in-3 rela-
tion R=1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is. We prove that if a Boolean relation R is
balanced, then it can efficiently be captured by a degree-1 polynomial and the number
of constraints that are applications of this relation can be reduced to O(n). Hence
when all relations in a constraint language Γ are balanced—we call such a con-
straint language balanced—then CSP(Γ ) has a sparsification with O(n) constraints.
We also show that, on the other hand, if a Boolean relation R is not balanced, then
there does not exist a degree-1 polynomial over any ring that captures R in the sense
required for application of the polynomial framework. The property of being balanced
is (as defined) a universal-algebraic property; these results thus tightly bridge universal
algebra and the polynomial framework. In Sect. 7 we compare our universal-algebraic
approach to the approach proposed by Lagerkvist and Wahlström [19].

Characterizations The property of being balanced gives an easy way to prove that
certain Boolean CSPs admit linear sparsifications. But perhaps more importantly, this
characterization constructively exhibits a certain witness when a relation can not be
captured by a degree-1 polynomial, in the form of the alternating sum of satisfying
assignments that yield an unsatisfying assignment. In several scenarios, we can turn
this witness structure against degree-1 polynomials into a lower bound proving that
the problem does not have a linear sparsification. As a consequence, we can prove two
fine-grained characterizations of sparsification complexity.

Characterization of symmetric CSPs with a linear sparsification (Sect. 5) We say
that a Boolean relation is symmetric if the satisfaction of a constraint only depends
on the number of 1-values taken by the variables (the weight of the assignment), but
does not depend on the positions where these values appear. For example, “1-in-k”-
constraints are symmetric, just as “not-all-equal”-constraints, but the relation Ra→b =
{(0, 0), (0, 1), (1, 1)} corresponding to the truth value of a → b is not.We prove that if
a symmetricBoolean relation R is not balanced, then it can implement (Definition 2.10)
a binary OR using constants and negations but without having to introduce fresh
variables. Building on this, we prove that if such an unbalanced symmetric relation R
occurs in a constraint languageΓ forwhich CSP(Γ ) isNP-complete, then CSP(Γ ) does
not admit a sparsification of size O(n2−ε) for any ε > 0. Consequently, we obtain a
characterization of the sparsification complexity ofNP-completeBooleanCSPswhose
constraint language consists of symmetric relations: there is a linear sparsification if
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and only if the constraint language is balanced. This yields linear sparsifications in
several new scenarios that were not known before.

Characterization of sparsification complexity for CSPs of low arity (Sect. 6) By
combining the linear sparsifications guaranteed by balanced constraint languages with
the nontrivial sparsification when the largest-arity relations do not have exactly one
falsifying assignment, we obtain an exact characterization of the optimal sparsification
size for all Boolean CSPs where each relation has arity at most three. For a Boolean
constraint languageΓ consisting of relations of arity at most three, we characterize the
sparsification complexity of Γ as an integer k ∈ {1, 2, 3} that represents the largest
OR that Γ can implement using constants and negations, but without introducing
fresh variables. Then we prove that CSP(Γ ) has a sparsification of size O(nk), but no
sparsification of size O(nk−ε) for any ε > 0, givingmatching upper and lower bounds.
Hence for all Boolean CSPs with constraints of arity at most three, the polynomial-
based framework gives provably optimal sparsifications.

2 Preliminaries

For a positive integer n, define [n] := {1, 2, . . . , n}. We use N (resp. N0) to denote
the positive (non-negative) integers. For an integer q, we let Z/qZ denote the integers
modulo q. These form a field if q is prime, and a ring otherwise. We will use x ≡q y
to denote that x and y are congruent modulo q, and x �≡q y to denote that they are
incongruent modulo q.

2.1 Parameterized Complexity

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet.

Definition 2.1 Let Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N → N
be a computable function. A generalized kernel for Q into Q′ of size h(k) is an
algorithm that, on input (x, k) ∈ Σ∗ ×N, takes time polynomial in |x |+k and outputs
an instance (x ′, k′) such that:

1. |x ′| and k′ are bounded by h(k), and
2. (x ′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q′ = Q. It is a polynomial (generalized) kernel
if h(k) is a polynomial.

Since a polynomial-time reduction to an equivalent sparse instance yields a gen-
eralized kernel, lower bounds against generalized kernels can be used to prove the
non-existence of such sparsification algorithms. To relate the sparsifiability of differ-
ent problems to each other, the following notion is useful.

Definition 2.2 Let P,Q ⊆ Σ∗ × N be two parameterized problems. A linear-
parameter transformation from P to Q is a polynomial-time algorithm that, given
an instance (x, k) ∈ Σ∗ × N ofP , outputs an instance (x ′, k′) ∈ Σ∗ × N ofQ such
that the following holds:
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1. (x, k) ∈ Q if and only if (x ′, k′) ∈ P , and
2. k′ ∈ O(k).

It is well-known [1,2] that the existence of a linear-parameter transformation from
problemP toQ implies that any generalized kernelization lower bound forP , also
holds for Q.

2.2 Polynomials

A multivariate polynomial (over a ring E) is a function p : Ek → E of the type

p(x1, . . . , xk) =
∑

(d1,...,dk )∈(N0)k

αd1,...,dk

∏

i∈[k]
(xi )

di

with coefficients αd1,...,dk ∈ E that are non-zero for a finite number of choices for
(d1, . . . , dk) ∈ (N0)

k . A term of the type
∏

i∈[k](xi )di is referred to as a monomial.
The degree of a monomial is simply

∑
i∈[k] di . The degree of a polynomial is the

maximum of the degrees of all monomials in this polynomial that have a non-zero
coefficient. A linear polynomial is a polynomial of degree one.

We utilize the following property of alternating sums of linear polynomials.

Proposition 2.3 Let E be a ring, let y1, . . . , ym ∈ Ek with yi = (yi,1, . . . , yi,k)
for all i ∈ [m], where m ≥ 3 is odd. Let x = (x1, . . . , xk) be such that x j =
y1, j − y2, j . . . + ym, j for all j ∈ [k]. Let p be a linear polynomial over E. Then
p(x1, . . . , xk) = p(y1,1, . . . , y1,k) − p(y2,1, . . . , y2,k) . . . + p(ym,1, . . . , ym,k).

Proof Let p(v1, . . . , vk) := α0 +∑
i∈[k] αivi . We start by proving the proposition for

m = 3. Then

p(x1, . . . , xk) = α0 +
∑

i∈[k]
αi (y1,i − y2,i + y3,i )

= α0 +
∑

i∈[k]
αi y1,i −

∑

i∈[k]
αi y2,i +

∑

i∈[k]
αi y3,i

= α0 +
∑

i∈[k]
αi y1,i − α0 −

∑

i∈[k]
αi y2,i + α0 +

∑

i∈[k]
αi y3,i

= p(y1,1, . . . , y1,k) − p(y2,1, . . . , y2,k) + p(y3,1, . . . , y3,k).

Using a simple induction, the result for m > 3 follows. ��

2.3 Operations, Relations, and Preservation

An operation on a domain D is a mapping f : Dk → D, where k, a natural number,
is said to be the arity of the operation. We assume throughout that operations have
positive arity. From here, we define a partial operation on D in the usual way, that
is, it is a mapping f ′ from a subset domain( f ′) ⊆ Dk to D. The partial operation
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is undefined outside its domain. When the domain is {0, 1}, we speak of a Boolean
(partial) operation.

We say that a partial Boolean operation f of arity k is idempotent if f (0, . . . , 0) =
0 and f (1, . . . , 1) = 1; and, self-dual if for all (a1, . . . , ak) ∈ {0, 1}k , when
f (a1, . . . , ak) is defined, it holds that f (¬a1, . . . ,¬ak) is defined and f (a1, . . . , ak) =
¬ f (¬a1, . . . ,¬ak).

A relation over the set D is a subset of Dk ; here, k is a natural number called the
arity of the relation. A Boolean relation is a relation over {0, 1}.
Definition 2.4 For each k ≥ 1, we use k-or to denote the relation {0, 1}k\{(0, . . . , 0)}.

A constraint language over D is a set of relations over D; a Boolean constraint
language is a constraint language over {0, 1}. All our algorithmic results will deal with
finite constraint languages. For a finite constraint language Γ over a domain D, we
define CSP(Γ ) as follows.

CSP(Γ )

Input: A tuple (C , V ), where C is a finite set of constraints, V is a finite set
of variables, and each constraint is of the form R(x1, . . . , xk) for R ∈ Γ and
x1, . . . , xk ∈ V .

Question: Does there exist a satisfying assignment, that is, an assignment
f : V → D such that for each constraint R(x1, . . . , xk) ∈ C it holds that
( f (x1), . . . , f (xk)) ∈ R?

When using the framework of parameterized complexity to analyze sparsifiabil-
ity of CSP(Γ ), we will consistently consider its parameterization by the number of
variables n := |V |.

Let f be a partial operation of arity k on a domain D, and let T ⊆ Dn be a relation.
We say that T is preserved by f when for any tuples t1 = (t1,1, . . . , t1,n), . . . , tk =
(tk,1, . . . , tk,n) ∈ T , if all entries of the tuple ( f (t1,1, . . . , tk,1), . . . , f (t1,n, . . . , tk,n))
are defined, then this tuple is in T . We say that a constraint language Γ is preserved
by f if each relation in Γ is preserved by f . If T is preserved by a partial operation
f , we also say T has f as a partial polymorphism. Similarly, if Γ is preserved by f
then f is a partial polymorphism of Γ .

2.4 Balanced and Alternating Operations

The following definitions capture the key notions for the universal-algebraic approach
to sparsification via low-degree polynomials.

Definition 2.5 A partial Boolean operation f : {0, 1}k → {0, 1} is balanced if there
exist integer values α1, . . . , αk , called the coefficients of f , such that

–
∑

i∈[k] αi = 1,
– (x1, . . . , xk) is in the domain of f if and only if

∑
i∈[k] αi xi ∈ {0, 1}, and

– f (x1, . . . , xk) = ∑
i∈[k] αi xi for all tuples in its domain.
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Definition 2.6 We say that a Boolean relation is balanced if it is preserved by all
balancedoperations, and that aBoolean constraint language isbalanced if each relation
therein is balanced.

Definition 2.7 Define an alternating operation to be a balanced operation ak : {0, 1}k
→ {0, 1} such that k is odd and the coefficients alternate between +1 and −1, so that
α1 = +1, α2 = −1, α3 = +1, . . ., αk = +1.

While alternating operations form a restricted type of balanced operations, the fol-
lowing proposition shows that being preserved by all balanced operations is equivalent
to being preserved by all alternating operations.

Proposition 2.8 A Boolean relation R is balanced if and only if for all odd k ≥ 1, the
relation R is preserved by the alternating operation of arity k.

Proof It suffices to show that if a relation T is not balanced, then there exists an
alternating operation that does not preserve T . Let f be a k-ary balanced operation that
does not preserve T . Then there exist tuples t1, . . . , tk in T such that α1t1 +· · ·+αk tk
is not in T , where the sum of the αi is equal to 1 (and where we may assume that no αi

is equal to 0). For each positive αi , replace αi ti in the sum with ti +· · ·+ ti (αi times);
likewise, for each negative αi , replace αi ti in the sum with −ti − · · ·− ti (−αi times).
Each tuple then has coefficient +1 or −1 in the sum; since the sum of coefficients is
+1, by permuting the sum’s terms, the coefficients can be made to alternate between
+1 and −1. ��

We will use the following straightforwardly verified fact tacitly, throughout.

Observation 2.9 Each balanced operation is idempotent and self-dual.

For b ∈ {0, 1}, let ub : {0, 1} → {0, 1} be the unary operation defined by ub(0) =
ub(1) = b; letmajor : {0, 1}3 → {0, 1} to be the operationdefinedbymajor(x, y, z) =
(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z); and, let minor : {0, 1}3 → {0, 1} to be the operation
defined byminor(x, y, z) = x ⊕ y ⊕ z, where ⊕ denotes exclusive OR. We say that a
Boolean constraint languageΓ is tractable if it is preserved by one of the six following
operations: u0, u1, ∧, ∨, minor, major; we say that Γ is intractable otherwise. It is
known that, in terms of classical complexity, the problem CSP(Γ ) is polynomial-time
decidable when Γ is tractable, and that the problem CSP(Γ ) is NP-complete when Γ

is intractable (see [4] for a proof; in particular, refer there to the proof of Theorem
3.21).

2.5 Cone-Definability

To relate the sparsification complexity of different CSPs to each other, we introduce
a new kind of definability. The traditional notion of positive-primitive definability
(Definition 2.15) is not suitable for this purpose, since it allows an arbitrary num-
ber of existentially quantified new variables. This means that when reducing an
instance (V ,C ) of CSP(Γ ) to an equivalent instance (V ′,C ′) of CSP(Γ ′) knowing
only that each relation R ∈ Γ can be pp-defined from a relation R′ ∈ Γ ′, the number
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of variables in V ′ may be as large as Ω(|C | + |V |); the pp-definition may require
fresh variables to be introduced for each constraint. For that reason, such a transfor-
mation does not transfer lower bounds on sparsification complexity. The notion of
quantifier-free pp-expression (cf. [19, Section 2.2]) prevents such a blow-up in the
number of variables, and indeed if all relations in Γ can be qfpp-defined from rela-
tions in Γ ′, this leads to a transformation showing that CSP(Γ ′) is as least as hard
to sparsify as CSP(Γ ). We can work with a slightly more permissive notion of defin-
ability, though, since the number of variables is allowed to increase by a constant
factor. We can therefore permit to introduce variables for each of the two constants,
and to introduce a negated version of each variable, leading to the following notion
of cone-definition.

Definition 2.10 Let us say that a Boolean relation T of arity m is cone-definable from
a Boolean relation U of arity n if there exists a tuple (y1, . . . , yn) where:

– for each j ∈ [n], it holds that y j is an element of {0, 1} ∪ {x1, . . . , xm} ∪
{¬x1, . . . ,¬xm};

– for each i ∈ [m], there exists j ∈ [n] such that y j ∈ {xi ,¬xi }; and,
– for each f : {x1, . . . , xm} → {0, 1}, it holds that ( f (x1), . . . , f (xm)) ∈ T if and
only if ( f̂ (y1), . . . , f̂ (yn)) ∈ U . Here, f̂ denotes the natural extension of f where
f̂ (0) = 0, f̂ (1) = 1, and f̂ (¬xi ) = ¬ f (xi ).

Example 2.11 Let R = {(0, 0), (0, 1)} and let S = {(0, 1), (1, 1)}. We have that R is
cone-definable from S via the tuple (¬x2,¬x1); also, S is cone-definable from R via
the same tuple.

Lagerkvist and Wahlström introduced the notion of sign-symmetric constraint
languages [21], which are languages that are closed under variable negation.
When working with sign-symmetric intractable Boolean constraint languages, cone-
definitions give no additional expressive power over qfpp-definitions; the use of
cone-definitions will allow us to deal also with languages that are not sign-symmetric.
To give lower bounds on the sparsification complexity of CSP(Γ ), it turns out that we
are primarily interested in whether or notΓ can define k-or for some k ≥ 2. Since this
means that only one tuple has to be excluded from the relation, to cone-define k-or it
does not help to take a conjunction of cone-definitions. To keep the notation as light
as possible, the notion of cone-definition therefore does not allow a definition of T in
terms of a conjunction of terms over U , although one can naturally extend the given
notion of cone-definition to allow for conjunction in such a way that Proposition 2.17
below holds.

There is a close relation between cone-definability of the 2-or relation and having
the partial Boolean operation ϕ1 as a partial polymorphism, where ϕ1 is defined by
ϕ1(x, x, y) = y, ϕ1(x, y, y) = x , and domain(ϕ1) = {(0, 0, 0), (0, 0, 1), (0, 1, 1),
(1, 0, 0), (1, 1, 0), (1, 1, 1)}. The overall idea of the next proposition was first discov-
ered in [20, Section 5.2], we state it here in terms of cone-definitions as we will use
this result throughout the paper.

Proposition 2.12 Let Γ be a Boolean constraint language. Then Γ is not preserved
by ϕ1 if and only if there exists R ∈ Γ such that R cone-defines 2-or.
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Proof (⇒) Suppose R ∈ Γ is not preserved by ϕ1. We show that R cone-defines
2-or. Let m be the arity of R and let t1, t2, t3 ∈ R and u ∈ {0, 1}m\R such that
ϕ1(t1, t2, t3) = u.

We cone-define the 2-or relation on variables x1 and x2 via the tuple (y1, . . . , ym)

as follows. Consider i ∈ [m], if t1,i = t2,i = t3,i = ui let y1 have the constant value
ui ∈ {0, 1}. If (t1,i , t2,i , t3,i ) = (1, 1, 0) let yi := x1, if (t1,i , t2,i , t3,i ) = (0, 0, 1) let
yi := ¬x1. Similarly, if (t1,i , t2,i , t3,i ) = (0, 1, 1) let yi := x2, if (t1,i , t2,i , t3,i ) =
(1, 0, 0) let yi := ¬x2. Note that this covers all cases for the value of (t1,i , t2,i , t3,i ).

Let f : {x1, x2} → {0, 1}. We show that f (x1) ∨ f (x2) if and only if ( f̂ (y1), . . . ,
f̂ (ym)) ∈ R, with f̂ as in Definition 2.10. We do a case distinction. If f (x1) = 1
and f (x2) = 1, then one may verify that ( f̂ (y1), . . . , f̂ (ym)) = t2 ∈ R. If
f (x1) = 0 and f (x2) = 1, then ( f̂ (y1), . . . , f̂ (ym)) = t3. If f (x2) = 0 and
f (x1) = 1, then ( f̂ (y1), . . . , f̂ (ym)) = t1 ∈ R. Finally, if f (x1) = f (x2) = 0,
then ( f̂ (y1), . . . , f̂ (ym)) = u /∈ R, as desired.

To complete the cone-definition, it remains to show that there are i, j ∈ [m] such
that yi ∈ {x1,¬x1} and y j ∈ {x2,¬x2}. Now observe that t1 �= t2 �= t3: if t1 = t2
then by definition of ϕ1 we have ϕ1(t1, t2, t3) = t3 ∈ R, and similarly if t2 = t3
then ϕ1(t1, t2, t3) = t1 ∈ R. Since ϕ1(t1, t2, t3) /∈ R, this cannot be. If t1 = t3 �= t2,
then consider a coordinate k ∈ [m] for which t1,k = t3,k �= t2,k ; but then ϕ1 is not
defined on this coordinate. Consequently, all three tuples t1, t2, t3 are distinct. Now,
since the argumentation above shows that ( f̂ (y1), . . . , f̂ (ym)) can evaluate to each
of t1, t2, t3, depending on the values assigned to x1 and x2, it follows that f̂ depends
on both x1 and x2 which implies the existence of the desired positions i, j ∈ [m].

(⇐) Suppose there exists R ∈ Γ of some arity m that cone-defines 2-or. Let
(y1, . . . , ym) be the tuple witnessing this, with yi ∈ {0, 1}∪{x1,¬x1, x2,¬x2}. Define
f : {x1, x2} → {0, 1} as f (x1) = 0 and f (x2) = 1.Let t1 := ( f̂ (y1), . . . , f̂ (ym)) ∈ R
where f̂ is the natural extension of f . Similarly, for f ′(x1) = f ′(x2) = 1
let t2 := ( f̂ ′(y1), . . . , f̂ ′(ym)) and for f ′′(x1) = 1, f ′′(x2) = 0 let t3 :=
( f̂ ′′(y1), . . . , f̂ ′′(ym)). Finally, let u be the tuple witnessing that for f ′′′(x1) =
f ′′′(x2) = 0, ( ˆf ′′′(y1), . . . , ˆf ′′′(ym)) = u /∈ R. We will show that ϕ1(t1, t2, t3) = u,
thus showing that ϕ1 does not preserve R.

We show that ui = t1,i − t2,i + t3,i for each i ∈ [m]. Suppose yi = 0, then by the
definition above t1,i = t2,i = t3,i = ui = 0 as f̂ (yi ) = 0 for any f : {x1, x2} → {0, 1}.
Thus, ui = t1,i − t2,i + t3,i in this case. Similarly, if yi = 1 we obtain ui = 1 =
t1,i − t2,i + t3,i .

Suppose yi = x1. Then by the definition above, t1,i = 0 and t2,i = t3,i = 1.
Furthermore, ui = 0 = 1 − 1 + 0 as desired. For yi = ¬x1, we have t1,i = 1 and
t2,i = t3,i = 0 and ui = 1, as desired. It is straightforward to verify that also when
yi = x2 and yi = ¬x2 we obtain ui = t1,i − t2,i + t3,i , concluding the proof. ��

2.6 Unary Constraints and Reductions via Definability

We now give some results about the existence of linear parameter transformations.
These will be used to obtain kernelization lower bounds.
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Definition 2.13 When Γ is a constraint language over D, we use Γ ∗ to denote the
expansion of Γ where each element of D appears as a relation. That is, we define Γ ∗
as Γ ∪ {{(d)} | d ∈ D}.

Effectively, the added relations in Γ ∗ make it possible to enforce via a constraint
that a variable must be assigned a fixed value by any satisfying assignment.

Theorem 2.14 (Follows from [3]) Let Γ be a constraint language over a finite set D
such that each unary operation u : D → D that preserves Γ is a bijection. Then, there
exists a linear-parameter transformation from CSP(Γ ∗) to CSP(Γ ), parameterized by
the number of variables.

Note that in particular, an intractable Boolean constraint language can only be pre-
served by unary operations that are bijections. Hence for intractable Boolean Γ , there
is a linear-parameter transformation from CSP(Γ ∗) to CSP(Γ ).

Proof (Theorem 2.14) The desired transformation is the final polynomial-time reduc-
tion given in the proof of Theorem 4.7 of [3]. This reduction translates an instance of
CSP(Γ ∗)with n variables to an instance ofCSP(Γ ∪{=D})with n+|D| variables; here,
=D denotes the equality relation on domain D. Each constraint of the form=D (v, v′)
may be removed (while preserving satisfiability) by taking one of the variables v, v′,
and replacing each instance of that variable with the other. The resulting instance of
CSP(Γ ) has ≤ n + |D| variables. ��
Definition 2.15 A relation T ⊆ Dk is pp-definable (short for primitive positive defin-
able) from a constraint languageΓ over D if there exists an instance (C , V ) ofCSP(Γ )

and there exist pairwise distinct variables x1, . . . , xk ∈ V such that, for each map
f : {x1, . . . , xk} → {0, 1}, it holds that f can be extended to a satisfying assignment
of the instance if and only if ( f (x1), . . . , f (xk)) ∈ T .

The following is a known fact; for an exposition, we refer the reader to Theo-
rems 3.13 and 5.1 of [4].

Proposition 2.16 If Γ is an intractable Boolean constraint language, then every
Boolean relation is pp-definable from Γ ∗.

The following is a key property of cone-definability; it states that relations that
are cone-definable from a constraint language Γ may be simulated by the constraint
language while blowing up the number of variables by only a constant factor, and may
thus be used to prove lower bounds on the sparsification complexity of CSP(Γ ).

Proposition 2.17 Suppose that Γ is an intractable finite Boolean constraint language,
and thatΔ is a finite Boolean constraint language such that each relation inΔ is cone-
definable from a relation in Γ . Then, there exists a linear-parameter transformation
from CSP(Γ ∗ ∪ Δ) to CSP(Γ ).

Proof It suffices to give a linear-parameter transformation from CSP(Γ ∗ ∪ Δ) to
CSP(Γ ∗), by Theorem 2.14. Let (C , V ) be an instance of CSP(Γ ∗ ∪ Δ), and let n
denote |V |. We generate an instance (C ′, V ′) of CSP(Γ ∗) as follows.
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– For each variable v ∈ V , introduce a primed variable v′. By Proposition 2.16,
the relation �= (that is, the relation {(0, 1), (1, 0)}) is pp-definable from Γ ∗. Fix
such a pp-definition, and let d be the number of variables in the definition.1 For
each v ∈ V , include in C ′ all constraints in the pp-definition of �=, but where the
variables are renamed so that v and v′ are the distinguished variables, and the other
variables are fresh.

The number of variables used so far in C ′ is nd.
– For each b ∈ {0, 1}, introduce a variable zb and add the constraint {(b)}(zb) to C ′.
– For each constraint T (v1, . . . , vk) in C such that T ∈ Γ ∗, add the constraint to
C ′.

– For each constraint T (v1, . . . , vk) in C such that T ∈ Δ\Γ ∗, we use the assump-
tion that T is cone-definable from a relation in Γ to add a constraint to C ′ that has
the same effect as T (v1, . . . , vk). In particular, assume that T is cone-definable
from U ∈ Γ via the tuple (y1, . . . , y
), and that U has arity 
. Add to C ′ the
constraint U (w1, . . . , w
), where, for each i ∈ [
], the entry wi is defined as
follows:

wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v j if yi = x j ,

v′
j if yi = ¬x j ,

z0 if yi = 0, and

z1 if yi = 1.

The set V ′ of variables used in C ′ is the union of V ∪ {v′ | v ∈ V } ∪ {z0, z1} with the
other variables used in the copies of the pp-definition of �=. We have |V ′| = nd + 2. It
is straightforward to verify that an assignment f : V → {0, 1} satisfies C if and only
if there exists an assignment f ′ : V ′ → {0, 1} of f that satisfies C ′. ��

3 Trivial Versus Non-trivial Sparsification

It is well known that k-CNF-SAT allows no non-trivial sparsification, for each k ≥ 3
[7]. This means that we cannot efficiently reduce the number of clauses in such a
formula toO(nk−ε). The k-or relation is special, in the sense that there is exactly one k-
tuple that is not contained in the relation.We show in this section that when considering
k-ary relations for which there is more than one k-tuple not contained in the relation,
a non-trivial sparsification is always possible. In particular, the number of constraints
of any input can efficiently be reduced to O(nk−1). Using Lemmas 3.9 and 3.11, the
next theorem will give a complete classification of the constraint languages that admit
a non-trivial sparsification. We defer its proof to the end of this section.

Theorem 3.1 Let Γ be an intractable finite Boolean constraint language. Let k be the
maximum arity of any relation R ∈ Γ . The following dichotomy holds.

1 It is possible [18,24] to achieve d = 2, although this will not be necessary for our purposes.
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– If for all R ∈ Γ it holds that |R| �= 2k −1, then CSP(Γ ) has a kernel with O(nk−1)

constraints that can be stored in O(nk−1 log n) bits.
– If there exists R ∈ Γ with |R| = 2k − 1, then CSP(Γ ) has no generalized kernel
of bitsize O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly.

To obtain the kernels given in this section, we will heavily rely on the following
notion for representing constraints by polynomials.

Definition 3.2 Let R be a k-ary Boolean relation. We say that a polynomial pu over a
ring Eu captures an unsatisfying assignment u ∈ {0, 1}k\R with respect to R, if the
following two conditions hold over Eu .

pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R, and (1)

pu(u1, . . . , uk) �= 0. (2)

In Theorem 3.5, we will generalize the following theorem which was proven by a
subset of the current authors. We recall the required terminology. Let E be a ring.
Define d-Polynomial root CSP over E as the problem whose input consists of
a set L of polynomial equalities over E of degree at most d, over a set of variables
V . Each equality is of the form p(x1, . . . , xk) = 0 (over E). The question is whether
there exists a Boolean assignment to the variables in V that satisfies all equalities in
L .

Theorem 3.3 ([15, Theorem 16]) There is a polynomial-time algorithm that, given
an instance (L, V ) of d-Polynomial root CSP over Z/mZ for some fixed integer
m ≥ 2 with r distinct prime divisors, outputs an equivalent instance (L ′, V ) of d-
Polynomial root CSP over Z/mZ with at most r · (nd + 1) constraints such
that L ′ ⊆ L.

Note that if m is a prime power, m has only one distinct prime divisor and thereby
r = 1 in the above theorem statement.

We say a field F is efficient if the field operations and Gaussian elimination can be
done in polynomial time in the size of a reasonable input encoding.

Theorem 3.4 ([15, Theorem 5]) There is a polynomial-time algorithm that, given an
instance (L, V ) of d-Polynomial root CSP over an efficient field F, outputs an
equivalent instance (L ′, V ) with at most nd + 1 constraints such that L ′ ⊆ L.

Observe that the above theorem statement in particular applies to instances of d-
Polynomial root CSP over Q, since Q is an efficient field.

We present a generalization of Theorem 3.3. The main improvement is that we
now allow the usage of different polynomials, over different rings, for each u /∈ R.
Previously, all polynomials had to be given over the same ring, and each constraint
was captured by a single polynomial.

Theorem 3.5 Let R ⊆ {0, 1}k be a fixed k-ary relation, such that for every u ∈
{0, 1}k\R there exists a ring Eu ∈ {Q} ∪ {Z/quZ | qu > 1 and qu ∈ N} and poly-
nomial pu over Eu of degree at most d that captures u with respect to R. Then there
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exists a polynomial-time algorithm that, given a set of constraints C over {R} over
n variables, outputs C ′ ⊆ C with |C ′| = O(nd), such that any Boolean assignment
satisfies all constraints in C if and only if it satisfies all constraints in C ′.

Proof Let C be a set of constraints over R and let V be the set of variables used. We
will create |{0, 1}k\R| instances of d-Polynomial root CSP with variable set V .
For each u ∈ R\{0, 1}k , we create an instance (Lu, V ) of d-Polynomial root CSP

over Eu , as follows. Choose a ring Eu ∈ {Q} ∪ {Z/quZ | qu > 1 and qu ∈ N} and
a polynomial pu over Eu such that (1) and (2) are satisfied for u. For each constraint
(x1, . . . , xk) ∈ C , add the equality pu(x1, . . . , xk) = 0 to the set Lu ; note that these
are equations over the ring Eu . Let L := ⋃

u /∈R Lu be the union of all created sets of
equalities. From this construction, we obtain the following property.

Claim 3.6 Any Boolean assignment f that satisfies all equalities in L, satisfies all
constraints in C .

Proof Let f be a Boolean assignment that satisfies all equalities in L . Suppose f
does not satisfy all equalities in C , thus there exists (x1, . . . , xk) ∈ C , such that
( f (x1), . . . , f (xk)) /∈ R. Let u := ( f (x1), . . . , f (xk)). Since u /∈ R, the equa-
tion pu(x1, . . . , xk) = 0 was added to Lu ⊆ L . However, it follows from (2) that
pu( f (x1), . . . , f (xk)) �= 0, which contradicts the assumption that f satisfies all
equalities in L . �

For each instance (Lu, V ) of d-Polynomial root CSP over Eu with Eu �= Q,
apply Theorem 3.3 to obtain an equivalent instance (L ′

u, V ) with L ′
u ⊆ Lu and

|L ′
u | = O(rund), where ru is the number of distinct prime divisors of qu . Simi-

larly, for each instance (Lu, V ) of d-Polynomial root CSP over Eu with Eu = Q,
apply Theorem 3.4 and obtain an equivalent instance (L ′

u, V ) with L ′
u ⊆ Lu and

|L ′
u | = O(nd). Let L ′ := ⋃

L ′
u . By this definition, any Boolean assignment satisfies

all equalities in L , if and only if it satisfies all equalities in L ′. ConstructC ′ as follows.
For any (x1, . . . , xk) ∈ C , add (x1, . . . , xk) to C ′ if there exists u ∈ {0, 1}k\R such
that pu(x1, . . . , xk) = 0 ∈ L ′. Hereby, C ′ ⊆ C . The following two claims show the
correctness of this sparsification procedure.

Claim 3.7 Any Boolean assignment f satisfies all constraints in C ′, if and only if it
satisfies all constraints in C .

Proof Since C ′ ⊆ C , it follows immediately that any Boolean assignment satisfying
the constraints in C also satisfies all constraints in C ′. It remains to prove the opposite
direction.

Let f be a Boolean assignment satisfying all constraints in C ′. We show that f
satisfies all equalities in L ′. Let pu(x1, . . . , xk) = 0 ∈ L ′. Thereby, (x1, . . . , xk) ∈ C ′
and since f is a satisfying assignment, ( f (x1), . . . , f (xk)) ∈ R. It follows from
property (1) that pu( f (x1), . . . , f (xk)) = 0 as desired.

Since f satisfies all equalities in L ′, it satisfies all equalities in L by the choice of
L ′. It follows from Claim 3.6 that thereby f satisfies all constraints in C . �

Claim 3.8 |C ′| = O(nd).
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Proof By the construction of C ′, it follows that |C ′| ≤ |L ′|. Let r be the maximum of
all ru foru ∈ {0, 1}k\R. Since R is fixed, r is a constant.Weknow |L ′| = ∑

u /∈R |L ′
u | ≤∑

u /∈R O(r · nd) ≤ 2k · O(r · nd) = O(nd), as |R| ≤ 2k and k is a constant. �

Claims 3.7 and 3.8 complete the proof of Theorem 3.5. ��
The next lemma states that any k-ary Boolean relation R with |R| < 2k − 1 admits

a non-trivial sparsification. To prove the lemma, we show that such relations can be
represented by polynomials of degree at most k−1, such that the sparsification can be
obtained using Theorem 3.5. Since relations with |R| = 2k have a sparsification of size
O(1), as constraints over such relations are satisfied by any assignment, it will follow
that k-ary relations with |{0, 1}k\R| �= 1 always allow a non-trivial sparsification.

Lemma 3.9 Let R be a k-ary Boolean relation with |R| < 2k − 1. Let C be a set of
constraints over {R}, using n variables. Then there exists a polynomial-time algorithm
that outputs C ′ ⊆ C with |C ′| = O(nk−1), such that a Boolean assignment satisfies
all constraints in C ′ if and only if it satisfies all constraints in C .

Proof We will prove this by showing that for every u ∈ {0, 1}k\R, there exists a k-ary
polynomial pu over Q of degree at most k − 1 satisfying (1) and (2), such that the
result follows from Theorem 3.5.

We will prove the existence of such a polynomial by induction on k. For k = 1,
the lemma statement implies that R = ∅. Thereby, for any u /∈ R, we simply choose
pu(x1) := 1. This polynomial satisfies the requirements, and has degree 0.

Let k > 1 and let u = (u1, . . . , uk) ∈ {0, 1}k\R. Since |R| < 2k−1, we can choose
w = (w1, . . . , wk) such that w ∈ {0, 1}k\R and w �= u. Choose such w arbitrarily,
we now do a case distinction.

(There exists no i ∈ [k] for which ui = wi ) This implies ui = ¬wi for all
i . One may note that for u = (0, . . . , 0) and w = (1, . . . , 1) this situation corre-
sponds to monotone k-nae-sat. We show that there exists a polynomial pu such
that pu(u1, . . . , uk) �= 0, and pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R. Hereby
pu satisfies conditions (1) and (2) for u. For i ∈ [k], define ri (x) := (1− x) if ui = 1
and ri (x) := x if ui = 0. It follows immediately from this definition that ri (ui ) = 0
and ri (wi ) = 1 for all i ∈ [k]. Define

pu(x1, . . . , xk) :=
k−1∏

i=1

⎛

⎝i −
k∑

j=1

r j (x j )

⎞

⎠ .

By this definition, pu has degree k − 1. It remains to verify that pu has the desired
properties. First of all, since

∑k
j=1 r j (u j ) = 0 by definition, it follows that

pu(u1, . . . , uk) =
k−1∏

i=1

i �= 0,

as desired. Since ri (wi ) = 1 for all i , we obtain pu(w1, . . . , wk) = ∏k−1
i=1 (i − k) �= 0,

which is allowed sincew /∈ R. It is easy to verify that in all other cases,
∑k

j=1 r j (x j ) ∈
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{1, 2, . . . , k − 1} and thereby one of the terms of the product is zero, implying that
pu(x1, . . . , xk) = 0.

(There exists i ∈ [k], such that ui = wi ) Let u′ and w′ be defined as the results
of removing coordinate i from u and w respectively. Note that u′ �= w′. Define

R′ := {(x1, . . . , xi−1, xi+1, . . . , xk) | (x1, . . . , xi−1, ui , xi+1, . . . , xk) ∈ R}.

By this definition, u′, w′ /∈ R′ and thereby R′ is a (k − 1)-ary relation with |R′| <

2k−1 − 1. By the induction hypothesis, there exists a polynomial pu′ of degree at
most k − 2, such that pu′(u′

1, . . . , u
′
k−1) �= 0 and pu′(x ′

1, . . . , x
′
k−1) = 0 for all

x ′ ∈ R′. Now define

pu(x1, . . . , xk) := (1 − xi − ui ) · pu′(x1, . . . , xi−1, xi+1, . . . , xk).

We show that pu has the desired properties. By definition, pu has the degree of pu′
plus one. Since pu′ has degree k − 2 by the induction hypothesis, it follows that pu
has degree k − 1. Let (x1, . . . , xk) ∈ R. We do a case distinction on the value taken
by xi .

– xi �= ui . In this case, (1 − xi − ui ) = 0, and thereby pu(x1, . . . , xk) = 0, thus
satisfying condition (1).

– xi = ui . Since x = (x1, . . . , xi−1, ui , xi+1, . . . , xk) ∈ R, it follows
that (x1, . . . , xi−1, xi+1, . . . , xk) ∈ R′. By definition of pu′ , it follows that
pu′(x1, . . . , xi−1, xi+1, . . . , xk) = 0 and thus pu(x1, . . . , xk) = 0, showing (1).

It remains to show that pu(u1, . . . , uk) �= 0. This follows from (1−ui −ui ) ∈ {−1, 1},
and pu′(u1, . . . , ui−1, ui+1, . . . , uk) �= 0, showing that (2) holds.

Since we have shown for all u ∈ {0, 1}k\R that there exists a polynomial pu overQ
satisfying (1) and (2), the proof of Lemma 3.9 now follows from Theorem 3.5. ��

The reader may find it interesting to compare the preceding proof to Section 3.1 in
recent work by Lagerkvist and Wahlström [21], which uncovers structural properties
of relations defined via roots of low-degree polynomials using similar techniques.

To show the other part of the nontrivial versus no nontrivial sparsification
dichotomy, we will need the following theorem. It combines existing ideas for
kernelization lower bounds due to several authors [7,9,19] with the formalism of
cone-definition.

Theorem 3.10 Let Γ be an intractable finite Boolean constraint language, and let
k ≥ 1. If there exists R ∈ Γ such that R cone-defines k-or, then CSP(Γ ) does not
have a generalized kernel of bitsize O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof We do a case distinction on k.
(k = 1) Suppose that there exists ε > 0 such that CSP(Γ ) has a (generalized)

kernel of size O(n1−ε) into a parameterized decision problem L . Let L̃ := {x#1k |
(x, k) ∈ L} denote the classical (non-parameterized) problem corresponding to L , in
which the parameter is written in unary and appended to the end of each input string.
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Here 1 is an arbitrary character in the encoding alphabet, and # is a separator character
that is freshly added to the alphabet.

Using this hypothetical generalized kernel, one could obtain a polynomial-time
algorithm that takes as input a series of instances (C1, V1), . . . , (Ct , Vt ) of CSP(Γ ),
and outputs in polynomial time an instance x̃ of L̃ such that:

– x̃ ∈ L̃ if and only if (Ci , Vi ) is a yes-instance of CSP(Γ ) for all i ∈ [t], and
– x̃ has bitsize O(N 1−ε), where N := ∑t

i=1 |Vi |.
To obtain such an and-compression algorithm from a hypothetical generalized kernel
of CSP(Γ ) into L , it suffices to do the following:

1. On input a series of instances (C1, V1), . . . , (Ct , Vt ) of CSP(Γ ), form a new
instance (C ∗ := ⋃t

i=1 Ci , V ∗ := ⋃t
i=1 Vi ) of CSP(Γ ). Hence we take the disjoint

union of the sets of variables and the sets of constraints, and it follows that the new
instance has answer yes if and only if all the inputs (Ci , Vi ) have answer yes.

2. Run the hypothetical generalized kernel on (C ∗, V ∗), which has |V ∗| = N vari-
ables and is therefore reduced to an equivalent instance (x∗, k∗) of L with size and
parameter bounded by O(N 1−ε). Let x̃ be the classical instance corresponding
to (x∗, k∗).

If we apply this and-compression scheme to a sequence of t1(m) := mα instances
of m bits each (which therefore have at most m variables each), the resulting output
has O(|V ∗|1−ε) = O((m ·mα)1−ε) = O(m(1+α)(1−ε)) bits. By pickingα large enough
that it satisfies (1+α)(1−ε) ≤ α, we therefore compress a sequence of t1(m) instances
of bitsize m into one instance expressing the logical AND, of size at most t2(m) ≤
O(m(1+α)(1−ε)) ≤ C · t1(m) for some suitable constant C . Drucker [9, Theorem
5.4] has shown that an error-free deterministic and-compression algorithm with these
parameters for an NP-complete problem into a fixed decision problem L , implies
NP ⊆ coNP/poly. Hence the lower bound for k = 1 follows since CSP(Γ ) is NP-
complete.

(k ≥ 2) For k ≥ 2, we prove the lower bound using a linear-parameter trans-
formation (recall Definition 2.2). Let Δ be the set of k-ary relations given by
Δ := {{0, 1}k\{u} | u ∈ {0, 1}k}. In particular, note that Δ contains the k-or relation.
Since R cone-defines k-or, it is easy to see that by variable negations, R cone-defines
all relations in Δ. Thereby, it follows from Proposition 2.17 that there is a linear-
parameter transformation from CSP(Γ ∗ ∪ Δ) to CSP(Γ ). Thus, to prove the lower
bound for CSP(Γ ), it suffices to prove the desired lower bound for CSP(Γ ∗ ∪ Δ).

(k = 2) If k = 2, we do a linear-parameter transformation from Vertex Cover

to CSP(Γ ∗ ∪Δ). Since it is known that Vertex Cover parameterized by the number
of vertices n has no generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆
coNP/poly[7], the result will follow.

Suppose we are given a graphG = (V , E) on n vertices and integer k ≤ n, forming
an instance of the Vertex Cover problem. The question is whether there is a set S
of k vertices, such that each edge has at least one endpoint in S.We create an equivalent
instance (C , V ′) of CSP(Γ ∗ ∪Δ) as follows. We introduce a new variable xv for each
v ∈ V . For each edge {u, v} ∈ E , we add the constraint 2-or(xu, xv) to C .

At this point, any vertex cover in G corresponds to a satisfying assignment, and
vice versa. It remains to ensure that the size of the vertex cover is bounded by k.
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Let Hn,k be the n-ary relation given by Hn,k = {(x1, . . . , xn) | xi ∈ {0, 1} for all i ∈
[n] and ∑

i∈[n] xi = k}. By Proposition 2.16,we obtain thatΓ ∗ pp-defines all Boolean
relations. It follows from [19, Lemma 17] that Γ ∗ pp-defines Hn,k using O(n + k)
constraints and O(n + k) existentially quantified variables. We add the constraints
from this pp-definition to C , and add the existentially quantified variables to V ′. This
concludes the construction of C . It is easy to see that C has a satisfying assignment
if and only if G has a vertex cover of size k. Furthermore, we used O(n + k) ∈ O(n)

variables and thereby this is a linear-parameter transformation from Vertex Cover

to CSP(Γ ∗ ∪ Δ).
(k ≥ 3) In this case there is a trivial linear-parameter transformation from CSP(Δ)

to CSP(Γ ∗ ∪ Δ). It is easy to verify that CSP(Δ) is equivalent to k-CNF-SAT. The
result now follows from the fact that for k ≥ 3, k-CNF-SAT has no kernel of size
O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly[7]. ��

The next lemma formalizes the idea that any k-ary relation with |{0, 1}k\R| =
1 is equivalent to k-or, up to negation of variables. The proof of the dichotomy
given in Theorem 3.1 will follow from Lemma 3.9, together with the next lemma and
Theorem 3.10.

Lemma 3.11 If R is a Boolean k-ary relation with |R| = 2k − 1, then R cone-defines
k-or.

Proof Let u = (u1, . . . , uk) be the unique k-tuple not contained in R. Define the
tuple (y1, . . . , yk) as follows. Let yi := xi if ui = 0, and let yi := ¬xi otherwise.
Clearly, this satisfies thefirst two conditions of cone-definability. It remains to prove the
last condition. Let f : {x1, . . . , xk} → {0, 1}. Suppose ( f (x1), . . . , f (xk)) ∈ k-or.
We show ( f̂ (y1), . . . , f̂ (yk)) ∈ R. It follows from ( f (x1), . . . , f (xk)) ∈ k-or, that
there exists at least one i ∈ [k] such that f (xi ) �= 0. Thereby, f̂ (yi ) �= ui and thus
( f̂ (y1), . . . , f̂ (yk)) �= u, implying ( f̂ (y1), . . . , f̂ (yk)) ∈ R.

Suppose ( f (x1), . . . , f (xk)) /∈ k−or, implying f (xi ) = 0 for all i ∈ [k]. But this
implies f̂ (yi ) = ui for all i ∈ [k] and thus ( f̂ (y1), . . . , f̂ (yk)) = u /∈ R. ��

Using the above results, we can now prove Theorem 3.1.

Proof (Theorem 3.1) Suppose that for all R ∈ Γ , it holds that |R| �= 2k − 1. We give
the following kernelization procedure. Suppose we are given an instance of CSP(Γ ),
with set of constraints C . We show how to define C ′ ⊆ C . For each constraint
R(x1, . . . , x
) ∈ C where R is a relation of arity 
 < k, add one such constraint to C ′
(thus removing duplicate constraints). Note that this adds at most O(n
) constraints
for each 
-ary relation R ∈ Γ .

For a k-ary relation R ∈ Γ , letCR contain all constraints of the form R(x1, . . . , xk).
For all k-ary relations R with |R| < 2k −1, apply Lemma 3.9 to obtainC ′

R ⊆ CR such
that |C ′

R | = O(nk−1) and any Boolean assignment satisfies all constraints inC ′
R if and

only if it satisfies the constraints in CR . Add C ′
R to C ′. This concludes the definition

of C ′. Note that the procedure removes constraints of the form R(x1, . . . , xk) with
|R| = 2k , as these are always satisfied. It is easy to verify that |C ′| ≤ |Γ | ·O(nk−1) =
O(nk−1). Since each constraint can be stored in O(log n) bits, this gives a kernel of
bitsize O(nk−1 log n).
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Suppose that there exists R ∈ Γ with |R| = 2k − 1. It follows from Lemma 3.11
that R cone-defines k-or. Since Γ is intractable, it now follows from Theorem 3.10
that CSP(Γ ) has no generalized kernel of size O(nk−ε), unless NP ⊆ coNP/poly. ��

4 From Balanced Operations to Linear Sparsification

The main result of this section is the following theorem, which we prove below.

Theorem 4.1 Let Γ be a finite balanced Boolean constraint language. Then CSP(Γ )

has a kernel with O(n) constraints, which are a subset of the original constraints. The
kernel can be stored using O(n log n) bits.

To prove the theorem, we will use two additional technical lemmas. To state them,
we introduce some notions from linear algebra. Given a set S = {s1, . . . , sn} of k-ary
vectors in Zk , we define spanZ(S) as the set of all vectors y in Zk for which there
exist α1, . . . , αn ∈ Z such that y = ∑

i∈[n] αi si . Similarly, we define spanq(S) as
the set of all k-ary vectors y over Z/qZ, such that there exist α1, . . . , αn such that
y ≡q

∑
i∈[n] αi si . For an m × n matrix S, we use si for i ∈ [m] to denote the i’th row

of S.

Definition 4.2 We say an m × n matrix A is a diagonal matrix if all entries ai, j with
i �= j are zero. Thus, all non-zero elements occur on the diagonal.

Note that a matrix can be diagonal even if it is not a square matrix.
We denote the greatest common divisor of two integers x and y as gcd(x, y) and

their least common multiple as lcm(x, y). The two concepts are closely related, since
lcm(x, y) = |x · y|/ gcd(x, y) for x or y non-zero. Recall that by Bézout’s lemma, if
gcd(x, y) = z then there exist integers a and b such that ax + by = z. We will use
x | y to indicate that x divides y (over the integers) and x � y to indicate that it does
not. The proof of the following lemma was contributed by Emil Jeřábek.

Lemma 4.3 Let S be an m × n integer matrix. Let u ∈ Zn be a row vector.
If u /∈ spanZ({s1, . . . , sm}), then there exists a prime power q such that u /∈
spanq({s1, . . . , sm}). Furthermore, there is a polynomial-time algorithm that com-
putes a (possibly composite) integer q ′ for which u /∈ spanq ′({s1, . . . , sm}).
Proof Suppose u /∈ spanZ({s1, . . . , sm}), thus u cannot be written as a linear combi-
nation of the rows of S over Z; equivalently, the system yS = u has no solutions for
y over Z. We will show that there exists a prime power q, such that yS ≡q u has no
solutions over Z/qZ and thus u /∈ spanq({s1, . . . , sm}).

There exist an m ×m matrix M and an n × n matrix N over Z, such that M and N
are invertible over Z and furthermore S′ := MSN is in Smith Normal Form (cf. [10,
Theorem 368]). In particular, this implies that S′ is a diagonal matrix. Furthermore,
M , S, and N can be computed in polynomial time [16, Theorem 4]. Define u′ := uN .

Claim 4.4 If y′S′ = u′ is solvable for y′ over Z, then yS = u is solvable for y over Z.
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Proof Consider y′ such that y′S′ = u′. One can verify that y := y′M solves yS = u,
as

yS = y′MS = y′MSNN−1 = y′S′N−1 = u′N−1 = uNN−1 = u. �

Claim 4.5 Let q ∈ N. If yS ≡q u is solvable for y, then y′S′ ≡q u′ is solvable for y′.

Proof Let y be such that yS ≡q u. Define y′ := yM−1. We verify that y′S′ ≡q u′ as
follows.

y′S′ = y′MSN = yM−1MSN = ySN ≡q uN = u′. �

Using these two claims, our proof proceeds as follows. From our starting assump-
tion u /∈ spanZ({s1, . . . , sm}), it follows by Claim 4.4 that y′S′ = u′ has no solution y′
over Z. Below, we prove that this implies there exists a prime power q such that
y′S′ ≡q u′ is unsolvable. Furthermore we show how to find a (possibly composite)
integer q in polynomial time such that y′S′ ≡q u′ is unsolvable. By Claim 4.5 this
will imply that yS ≡q u is unsolvable and complete the proof.

We inferred that y′S′ = u′ has no solutions over Z. Since all non-zero elements of
S′ are on the diagonal, this implies that either there exists i ∈ [n], such that u′

i is not
divisible by s′

i,i , or s
′
i,i is zero while u

′
i �= 0. We finish the proof by a case distinction.

– Suppose there exists i ∈ [n] such that s′
i,i = 0, while u′

i �= 0. Choose a prime
power q such that q � u′

i . Observe that such q can be obtained in polynomial-time,
for example by taking the smallest power of two that is larger than u′

i . It is easy to
see that thereby, u′

i �≡q 0. Since s′
i,i ≡q 0 holds trivially in this case, the system

y′S′ ≡q u′ has no solution.
– Otherwise, there exists i ∈ [n] such that s′

i,i � u′
i . Choose a prime power q such

that q � u′
i and q | s′

i,i . Such a prime power can be chosen by letting q := p
 for a
prime p that occurs 
 ≥ 1 times in the prime factorization of s′

i,i , but less often in
the prime factorization of u′

i . Thereby, u
′
i �≡q 0, while s′

i,i ≡q 0. It again follows
that the system y′S′ ≡q u′ has no solutions.

It is not clear how to obtain q as described above in polynomial time, as it requires
computing the prime decompositions of possibly large integers. However, observe
that letting q := s′

i,i means u′
i �≡q 0 while s′

i,i ≡q 0, implying that for this choice
of q the system y′S′ ≡q u′ again has no solutions. Since this q is trivial to obtain
in polynomial time, that concludes the proof. ��
Given that u /∈ spanZ({s1, . . . , sm}), we can thus use Lemma 4.3 to obtain an

integer q such that u /∈ spanq({s1, . . . , sm}). The next lemma shows that in this case
the system S′x ≡q b, where b = (0, . . . , 0, c) and S′ is the matrix consisting of rows
{s1, . . . , sm, u}, has a solution x for some c �≡q 0.
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Lemma 4.6 Let q > 1 be an integer. Let A be an m × n matrix over Z/qZ. Suppose
am /∈ spanq({a1, . . . , am−1}). Then there exists a constant c �≡q 0 for which the system
Ax ≡q b has a solution, where b := (0, . . . , 0, c)T is the vector with c on the last
position and zeros in all other positions. Furthermore, x and c can be computed in
polynomial time.

Proof Let A′ be the (m − 1) × n matrix consisting of the first m − 1 rows of A. Find
the Smith normal form [10] of A′ over Z, thus there exist an (m−1)× (m−1) matrix
M ′ and an n × n matrix N , such that S′ := M ′A′N is in Smith Normal Form and M ′
and N are invertible over Z. (The only property of Smith Normal Form we rely on is
that S′ is a diagonal matrix.)

We show that similar properties hold overZ/qZ. Let (M ′)−1, N−1 be the inverses of
M ′ and N over Z. It is easy to verify that NN−1 = I ≡q I and M ′(M ′)−1 = I ≡q I ,
such that M ′ and N are still invertible over Z/qZ. Furthermore, S′ (mod q) remains
a diagonal matrix.

Define M to be the following m × m matrix

M :=
(
M ′ 0
0 1

)
,

then M has an inverse over Z/qZ that is given by the following matrix

M−1 ≡q

(
(M ′)−1 0

0 1

)
.

Define S := MAN and verify that

S := MAN ≡q

(
S′

amN

)
, (3)

meaning that the first m − 1 rows of S are equal to the first m − 1 rows of S′, and the
last row of S is given by the row vector amN .

The following two claims will be used to show that proving the lemma statement
for matrix S, will give the desired result for A.

Claim 4.7 Let b := (0, . . . , 0, c) for some constant c. The system Sx ′ ≡q b has a
solution, if and only if the system Ax ≡q b has a solution.

Proof Let x be such that Ax ≡q b. Define x ′ := N−1x . Then MANx ′ ≡q M Ax ≡q

Mb. Observe that by the definitions of M and b, Mb ≡q b, which concludes this
direction of the proof.

For the other direction, let x ′ be a solution for MANx ′ ≡q b. Define x := Nx ′.
Then M−1MANx ′ ≡q M−1b and thus ANx ′ ≡q M−1b and thereby Ax ≡q M−1b.
By the definition of M−1 and b, we again have M−1b ≡q b. �

Claim 4.8 sm ∈ spanq({s1, . . . , sm−1}) if and only if am ∈ spanq({a1, . . . , am−1}).
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Proof Suppose sm ∈ spanq({s1, . . . , sm−1}). This implies that there existα1, . . . , αm−1
such that

∑
i∈[m−1] αi si ≡q sm ≡q amN . Thus,

∑
i∈[m−1] αi s′

i ≡q amN , and for
α = (α1, . . . , αm−1) we therefore have αS′ ≡q amN , implying (αM ′)A′N ≡q amN .
Since N is invertible, it follows that

(αM ′)A′ ≡q am

and thus am ∈ spanq({a1, . . . , am−1}).
For the other direction, suppose am ∈ spanq({a1, . . . , am−1}). Thus, there exists

α ≡q (α1, . . . , αm−1) such that αA′ ≡q am . Let α′ := α(M ′)−1. Then

α′S′ ≡q α′M ′A′N ≡q αA′N ≡q amN ≡q sm,

and it follows from the definition of S in (3) that sm ∈ spanq({s1, . . . , sm−1}). �

It follows from Claims 4.7 and 4.8, that it suffices to show that Sx = (0, . . . , 0, c)T

has a solution for some c �≡q 0 if sm /∈ spanq({s1, . . . , sm−1}). Observe that since
S′ (the first m − 1 rows of S) is a diagonal matrix, there must exist i ∈ [m − 1]
for which there is no αi satisfying si,i · αi ≡q sm,i . Otherwise, it is easy to see that∑

i∈[m−1] αi si ≡q sm , contradicting that sm /∈ spanq({s1, . . . , sm−1}). We now do a
case distinction.

Suppose there exists i ∈ [m − 1] such that si,i ≡q 0, while sm,i �≡q 0. Let
x = (0, . . . , 0, 1, 0, . . . , 0) be the vector with 1 in the i’th position and zeros in all
other positions. It is easy to verify that Sx ≡q (0, . . . , 0, sm,i )

T and thereby the system
Sx ≡q b has a solution for c = sm,i .

Otherwise, choose i such that si,i �≡q 0 and there exists no integer αi satisfying
si,i · αi ≡q sm,i . We consider the following two cases.

– Suppose gcd(si,i , q) | sm,i over the integers. Let d ∈ Z such that sm,i = d ·
gcd(si,i , q) over the integers. It follows from Bézout’s lemma that there exist
integers a and b such that gcd(si,i , q) = a · si,i + b · q. Thereby,

sm,i ≡q d · (a · si,i + b · q) ≡q d · a · si,i
which is a contradiction with the assumption that no integer αi exists such that
si,i · αi ≡q sm,i .

– Suppose gcd(si,i , q) � sm,i over the integers, let y := q/ gcd(si,i , q). Define
x := (0, . . . , 0, y, 0, . . . , 0)T as the vector with y in position i . Then

Sx ≡q (0, . . . , 0, y · si,i , 0, . . . , 0, y · sm,i )
T.

Then y · si,i = si,i · q/ gcd(si,i , q) = ±lcm(q, si,i ) ≡q 0. It remains to show that
y·sm,i �≡q 0. Suppose for contradiction that y·sm,i ≡q 0, such that over the integers
q · sm,i/ gcd(si,i , q) = d · q for some d ∈ Z. But then sm,i/ gcd(si,i , q) = d ∈ Z
contradicting that gcd(si,i , q) � sm,i . It follows that y · sm,i �≡q 0. Thus, for x
defined as above and c := y · sm,i �≡q 0 we obtain that Sx = (0, . . . , 0, c)T,
concluding the proof.
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Computing the Smith Normal Form of a matrix can be done in polynomial time [16]
and computing the greatest common divisor of two integers can be done in time
polynomial in their binary encoding. Hereby, it is straightforward to turn the above
proof in a polynomial-time algorithm that computes both x and c. ��

In the context of capturing a Boolean relation R by degree-1 polynomials, the
constructive proof of Lemma 4.6 effectively shows the following: given a ring Z/qZ
over which a degree-1 polynomial exists that captures a certain tuple u /∈ R, one can
constructively find the coefficients x of a polynomial that captures u by following the
steps in the proof. We will formalize this idea in Theorem 4.10, but first we prove the
main sparsification result.

Proof (Theorem 4.1) We start by showing in the following claim that for all relations
R ∈ Γ we can find linear polynomials over an appropriate ring that capture the tuples
that are not in R. We will then use this representation to obtain our kernel.

Claim 4.9 For all relations R in a balanced Boolean constraint languageΓ , for all u /∈
R, there exists a linear polynomial pu over a ring Eu ∈ {Z/quZ | qu is a prime power}
that captures u with respect to R.

Proof Suppose for a contradiction that there exists R ∈ Γ and u /∈ R, such that no
prime power q and linear polynomial p over Z/qZ exist that capture u with respect
to R. Let R = {r1, . . . , r
}. By the non-existence of p and q, the system

⎛

⎜⎜⎜⎜⎜⎝

1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 r
,1 r
,2 . . . r
,k
1 u1 u2 . . . uk

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

α0
α1
α2
...

αk

⎞

⎟⎟⎟⎟⎟⎠
≡q

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

0
c

⎞

⎟⎟⎟⎟⎟⎠

has no solution for any prime power q and c �≡q 0. Otherwise, it is easy to verify
that q is the desired prime power and p(x1, . . . , xk) := α0 +∑k

i=1 αi xi is the desired
polynomial.

The fact that no solution exists, implies that (1, u1, . . . , uk) is in the span of the
remaining rows of the matrix, by Lemma 4.6. Thus, for any prime power q, we obtain
that (1, u1, . . . , uk) is in the span of the first 
 rows of this matrix, over the integers
modulo q. By the contrapositive of Lemma 4.3, it follows that the samemust hold over
Z. Therefore, there exist integer coefficients γ1, . . . , γ
 such that

∑
γi = 1 (since the

first column consists of ones) and furthermore u = ∑
γi ri . But it immediately follows

that R ∈ Γ is not preserved by the balanced operation given by f (x1, . . . , x
) :=∑
γi xi , which contradicts the assumption that Γ is balanced. �

By applying Theorem 3.5 once for each relation R ∈ Γ , to reduce the number of
constraints involving R to O(n), we then reduce any n-variable instance of CSP(Γ )
to an equivalent one on |Γ | · O(n) ∈ O(n) constraints. ��

The next theorem shows that given an arbitrary constraint language, it is possible to
decide in polynomial timewhether it is balanced. Furthermore, for balanced constraint
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languages there is a polynomial-time algorithm to obtain the capturing polynomials.
Here we assume that the relation R is encoded explicitly as a list of tuples contained
in the relation, together with a list of tuples not contained in the relation, making the
total encoding size of a Boolean k-ary relation at least 2k .

Theorem 4.10 There is a polynomial-time algorithm that, given a k-ary Boolean rela-
tion R encoded as a full table, decides whether R is balanced. For balanced R, the
algorithm outputs a linear polynomial pu and integer qu for all u ∈ {0, 1}k\R such
that pu captures u over Z/quZ.

Proof Let R = {r1, . . . , rm}. Define si as (1, ri,1, . . . , ri,k) for i ∈ [m]. Rela-
tion R is balanced if and only if there exists no u ∈ {0, 1}k\R such that ext(u) ∈
spanZ({s1, . . . , sm}), where ext(u) = (1, u1, . . . , uk). Thereby, R is balanced if and
only if for all u ∈ {0, 1}k\R, the following system has no solutions over Z.

(
α1, . . . , αm

)

⎛

⎜⎜⎜⎝

1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 rm,1 rm,2 . . . rm,k

⎞

⎟⎟⎟⎠ = (
1, u1, . . . , uk

)

The solvability of these systems over the integers can be tested in time that is polyno-
mial in the size of an explicit encoding of R that indicates for each tuple whether or
not it is contained in R. This computation can be done, for example, by first computing
the Smith Normal Form of the matrix.

Suppose R is balanced. Let u ∈ {0, 1}k\R, we show how to find pu and qu .
Let si be defined as above. Then ext(u) /∈ spanZ({s1, . . . , sm}) since R is bal-
anced. Apply Lemma 4.3 to obtain qu ∈ N in polynomial time such that ext(u) /∈
spanqu ({s1, . . . , sm}). It follows from Lemma 4.6 that the following system has a
solution

⎛

⎜⎜⎜⎜⎜⎝

1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 rm,1 rm,2 . . . rm,k

1 u1 u2 . . . uk

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

α0
α1
α2
...

αk

⎞

⎟⎟⎟⎟⎟⎠
≡qu

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

0
c

⎞

⎟⎟⎟⎟⎟⎠

for (α0, α1, . . . , αk)
T and some c �≡qu 0 and that we can find it in polynomial time.

Let pu(x1, . . . , xk) := α0 +∑k
i=1 αi xi . It is straightforward to verify that pu captures

u with respect to R over Z/quZ. ��
The kernelization result of Theorem 4.1 above is obtained by using the fact that

when Γ is balanced, the constraints in CSP(Γ ) can be replaced by linear polynomials.
We show in the next theorem that this approach fails when Γ is not balanced.

Theorem 4.11 Let R be a k-ary Boolean relation that is not balanced. Then there
exists u ∈ {0, 1}k\R for which there exists no linear polynomial pu over any ring E
that captures u with respect to R.
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Proof Suppose R is not balanced. By Proposition 2.8, this implies R is violated by an
alternating operation. Let f be an alternating operation that does not preserve R, such
that f (y1, . . . , ym) := ∑m

i=1(−1)i+1yi for some oddm, and for some (not necessarily
distinct) r1, . . . , rm ∈ R we have f (r1, . . . , rm) = u with u /∈ R.

Suppose for a contradiction that there exists a linear polynomial pu that captures
u over a ring Eu . Let ri := (ri,1, . . . , ri,k) for i ∈ [m]. Since f (r1, . . . , rm) = u, we
have that ui equals the following alternating sum over Z:

ui = r1,i − r2,i · · · + rm,i . (4)

Since r j,i ∈ {0, 1} for all i ∈ [k] and j ∈ [m], Eq. (4) holds over any ring, so in
particular over Eu . By Definition 3.2, pu(ri,1, . . . , ri,k) = 0 for all i ∈ [m]. It thus
follows from Eq. (4) and Proposition 2.3 that pu(u1, . . . , uk) = 0. This contradicts
the fact that pu captures u with respect to R. Thus, there exists no linear polynomial
that captures u with respect to R. ��

It is immediate fromClaim 4.9 and Theorem 4.11 that a relation R is balanced if and
only if every u /∈ R can be captured by a linear polynomial over Z/quZ for some qu .
While this allows for using a different modulus for every unsatisfying assignment, it
turns out that this is unnecessary and a singlemodulus always suffices, by the following
observation.

Let p be a linear polynomial overZ/quZ capturing u with respect to R. If q = c ·qu
for some c ∈ N, there exists a polynomial p′ over Z/qZ capturing u with respect to
R. It is easy to obtain p′ by multiplying all coefficients of p by c. If Γ is a finite
balanced constraint language whose relations are captured using polynomials with
moduli q1, . . . , qm , we may alternatively use capturing polynomials over the single
modulus lcm(q1, . . . , qm). This leads to the following corollary.

Corollary 4.12 A finite Boolean constraint language Γ is balanced if and only if there
exists a single integer q ∈ N such that for each relation R ∈ Γ , for each u ∈ {0, 1}k\R,
there exist a linear polynomial over Z/qZ that captures u with respect to R.

5 Characterization of Symmetric CSPs with Linear Sparsification

In this section, we characterize the symmetric Boolean constraint languages Γ for
which CSP(Γ ) has a linear sparsification.

Definition 5.1 We say a k-ary Boolean relation R is symmetric, if there exists S ⊆
{0, 1, . . . , k} such that a tuple x = (x1, . . . , xk) is in R if and only if weight(x) ∈ S.
We call S the set of satisfying weights for R.

We will say that a Boolean constraint language Γ is symmetric, if it only contains
symmetric relations. We will prove the following theorem at the end of this section.

Theorem 5.2 Let Γ be an intractable finite symmetric Boolean constraint language.

– If Γ is balanced, then CSP(Γ ) has a kernel with O(n) constraints that can be
stored in O(n log n) bits.
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– If Γ is not balanced, then CSP(Γ ) does not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

To show this, we use the following lemma. The lemma can be seen as a special
case of Lemma 32 in [21], which uses a slightly different setting. We prove it here for
consistency.

Lemma 5.3 Let R be a k-ary symmetric Boolean relation with satisfying weights S ⊆
{0, 1, . . . , k}. Let U := {0, 1, . . . , k}\S. If there exist a, b, c ∈ S and d ∈ U such that
a − b + c = d, then R cone-defines 2-or.

Proof We first show the result when b ≤ a, b ≤ c, and b ≤ d. In this case, we use the
following tuple to express x1 ∨ x2.

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(a−b) copies

,¬x2, . . . ,¬x2︸ ︷︷ ︸
(c−b) copies

, 1, . . . , 1︸ ︷︷ ︸
b copies

, 0, . . . , 0︸ ︷︷ ︸
(k−d) copies

).

Let f : {x1, x2} → {0, 1}, then (¬ f (x1), . . . ,¬ f (x1),¬ f (x2), . . . ,¬ f (x2), 1, . . . ,
1, 0, . . . , 0) has weight (a−b)(1− f (x1))+(c−b)(1− f (x2))+b. It is easy to verify
that for f (x1) = f (x2) = 0, this implies the tuple has weight a + c − b = d /∈ S and
thus the tuple is not in R. Otherwise, the weight is either a, b, or c. In these cases the
tuple is contained in R, as the weight is contained in S.

Note that the above case applies when b is the smallest of all four integers. We now
consider the remaining cases. Suppose a ≤ b, a ≤ c, and a ≤ d (the case where c is
smallest is symmetric by swapping a and c). In this case, use the tuple

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(d−a) copies

, x2, . . . , x2︸ ︷︷ ︸
(b−a) copies

, 1, . . . , 1︸ ︷︷ ︸
a copies

, 0, . . . , 0︸ ︷︷ ︸
(k−c) copies

).

Consider an assignment f satisfying x1 ∨ x2, verify that the weight of the above tuple
under this assignment lies in {a, b, c}, and thus the tuple is contained in R. Assigning
0 to both x1 and x2 gives weight d, such that the tuple is not in R.

Otherwise, we have d ≤ a, d ≤ b, and d ≤ c and use the tuple

(x1, . . . , x1︸ ︷︷ ︸
(a−d) copies

, x2, . . . , x2︸ ︷︷ ︸
(c−d) copies

, 1, . . . , 1︸ ︷︷ ︸
d copies

, 0, . . . , 0︸ ︷︷ ︸
(k−b) copies

).

It is again easy to verify that any assignment to x1 and x2 satisfies this tuple if and
only if it satisfies (x1 ∨ x2), using the fact that a − d + c = b ∈ S. ��

We now give the main lemma that is needed to prove Theorem 5.2. It shows that if
a relation is symmetric and not balanced, it must cone-define 2-or.

Lemma 5.4 Let R be a k-ary symmetric Boolean relation. If R is not balanced, then
R cone-defines 2-or.
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Proof Let f be a balanced operation that does not preserve R. Since f has integer
coefficients, it follows that there exist (not necessarily distinct) r1, . . . , rm ∈ R, such
that r1 − r2 + r3 − r4 · · · + rm = u for some u ∈ {0, 1}k\R and odd m ≥ 3. Thereby,
weight(r1) − weight(r2) + weight(r3) − weight(r4) · · · + weight(rm) = weight(u).
Let S be the set of satisfying weights for R and let U := {0, . . . , k}\S. Define si :=
weight(ri ) for i ∈ [m], and t = weight(u), such that s1 − s2 + s3 − s4 . . . + sm = t ,
and furthermore si ∈ S for all i , and t ∈ U . We show that there exist a, b, c ∈ S and
d ∈ U such that a − b + c = d, such that the result follows from Lemma 5.3. We do
this by induction on the length of the alternating sum.

If m = 3, we have that s1 − s2 + s3 = t and define a := s1, b := s2, c := s3, and
d := t .

If m > 3, we will use the following claim.

Claim 5.5 Let s1, . . . , sm ∈ S and t ∈ U such that s1−s2+s3−s4 · · ·+sm = t . There
exist distinct i, j, 
 ∈ [m]with i, j odd and 
 even, such that si −s
 +s j ∈ {0, . . . , k}.
Proof If there exist distinct i, j, 
 ∈ [m] with i, j odd and 
 even, such that si ≥
s
 ≥ s j , then these i, j, 
 satisfy the claim statement. Suppose these do not exist, we
consider two options.

– Suppose si ≥ s
 for all i, 
 ∈ [m] with i odd and 
 even. It is easy to see that
thereby, for any i, j, 
 with i, j odd and 
 even it holds that si − s
 + s j ≥ 0.
Furthermore, si − s
 + s j ≤ s1 − s2 + s3 − s4 · · · + sm = t and t ≤ k since t ∈ U .
Thus, any distinct i, j, 
 ∈ [m] with i, j odd and 
 even satisfy the statement.

– Otherwise, si ≤ s
 for all i, 
 ∈ [m] with i odd and 
 even. It follows that for
any i, j, 
 with i, j odd and 
 even si − s
 + s j ≤ k, as si − s
 ≤ 0 and s j ≤ k.
Furthermore, si − s
 + s j ≥ s1 − s2 + s3 − s4 · · ·+ sm = t and t ≥ 0 by definition.
Thus, any distinct i, j, 
 ∈ [m] with i, j odd and 
 even satisfy the statement. �

Use Claim 5.5 to find i, j, 
 such that si − s
 + s j ∈ {0, . . . , k}. We consider two
options. If si − s
 + s j ∈ U , then define d := si − s
 + s j , a := si , b := s
, and
c := s j and we are done. The other option is that si − s
 + s j = s ∈ S. Replacing
si − s
 + s j by s in s1 − s2 + s3 − s4 · · · + sm gives a shorter alternating sum with
result t . We obtain a, b, c, and d by the induction hypothesis.

Thereby, we have obtained a, b, c ∈ S, d ∈ U such that a − b + c = d. It now
follows from Lemma 5.3 that R cone-defines 2-or. ��

Using the lemma above, we can now prove Theorem 5.2.

Proof (Theorem 5.2) If Γ is balanced, it follows from Theorem 4.1 that CSP(Γ ) has
a kernel with O(n) constraints that can be stored in O(n log n) bits. Note that the
assumption that Γ is symmetric is not needed in this case.

If the symmetric constraint languageΓ is not balanced, thenΓ contains a symmetric
relation R that is not balanced. It follows from Lemma 5.4 that R cone-defines the
2-or relation. Thereby, we obtain from Theorem 3.10 that CSP(Γ ) has no generalized
kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. ��

The authors remark that an alternative proof of Theorem 5.2 can be obtained using
a result by Lagerkvist and Wahlström [21, Lemma 47] (also refer to the discussion
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after the proof of Lemma 47). It is shown that a k-ary symmetric relation is preserved
by ϕ1 if and only if the satisfying weights form a complete arithmetic progression,
that is, there exist a, b ∈ N0 such that S = {a+ c ·b | c ∈ N0, a+ c ·b ≤ k}. It is easy
to see that if S is a complete arithmetic progression, then the relation can be captured
by the polynomial p(x) := −a + ∑

i∈[k] xi over Z/bZ.
This leads to the same dichotomy as in Theorem 5.2. If Γ preserves ϕ1, then it

follows from the above that then every R ∈ Γ is captured by a linear polynomial,
implying that CSP(Γ ) has a kernel with linearly many constraints by Theorem 3.5. On
the other hand, if a relation does not preserve ϕ1, then it cone-defines 2-or (Proposi-
tion 2.12) leading to a lower bound using Theorem 3.10.

6 Low-Arity Classification

In this section, we will give a full classification of the sparsifiability for Boolean
constraint languages that consist only of low-arity relations. We start by providing
some additional properties of cone-definability.

Observation 6.1 If a Boolean relation T of arity m is cone-definable from a Boolean
relation U of arity n, then m ≤ n.

Observation 6.2 Suppose a Boolean relation T is cone-definable from a Boolean rela-
tionU, and that g is a partial operation that is idempotent and self-dual. If g preserves
U, then g preserves T .

Observation 6.3 (transitivity of cone-definability) Suppose that T1, T2, T3 are Boolean
relations such that T2 is cone-definable from T1, and T3 is cone-definable from T2.
Then T3 is cone-definable from T1.

Definition 6.4 Let us say that two Boolean relations T , U are cone-interdefinable if
each is cone-definable from the other.

The following two propositions are consequences of Observations 6.1 and 6.2. We
will tacitly use them in the sequel. Morally, they show that the properties of relations
that we are interested in are invariant under cone-interdefinability.

Proposition 6.5 If Boolean relations T , U are cone-interdefinable, then they have the
same arity.

Proposition 6.6 Suppose that T and U are Boolean relations that are cone-
interdefinable, and that g is a partial operation that is idempotent and self-dual.
Then, g preserves T if and only if g preserves U.

The next results will show that when the constraint language consists of only low-
arity relations, if the constraint language is not balanced, it can cone-define the 2-or
relation.

Observation 6.7 Each Boolean relation of arity 1 is balanced.
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Theorem 6.8 A Boolean relation of arity 2 is balanced if and only if it is not cone-
interdefinable with the 2-or relation.

Proof Let R ⊆ {0, 1}2 be a relation. We prove the two directions separately.
(⇒) Proof by contraposition. Suppose that R is cone-interdefinable with 2-or.

Then in particular, R cone-defines the 2-or relation. Let (y1, y2) be a tuple wit-
nessing cone-definability as in Definition 2.10. Since 2-or is symmetric in its two
arguments, we may assume without loss of generality that yi is either xi or ¬xi
for i ∈ [2]. Define g : {0, 1}2 → {0, 1}2 by letting g(i1, i2) := (î1, î2) where î
 = i

if yi = xi and î
 = 1 − i
 if yi = ¬xi . By definition of cone-definability we then
have g(1, 0), g(0, 1), g(1, 1) ∈ Rwhile g(0, 0) /∈ R. But g(1, 0)−g(1, 1)+g(0, 1) =
g(0, 0), showing that R is not preserved by all alternating operations and therefore is
not balanced.

(⇐) We again use contraposition. Suppose R is not balanced; we will prove R is
cone-interdefinable with 2-or. Let f : {0, 1}k → {0, 1} be a balanced partial Boolean
operation of minimum arity that does not preserve R. Let α1, . . . , αk ∈ Z be the
coefficients of f , as in Definition 2.5. Minimality of f implies that αi �= 0 for all i ∈
[k]. Let s1, . . . , sk ∈ R such that f (s1, . . . , sk) = u ∈ {0, 1}2\R witnesses that f
does not preserve R. By Definition 2.5 we have u = ∑k

i=1 αi si and
∑k

i=1 αi = 1. By
minimality of f , all tuples s1, . . . , sk are distinct.

Claim 6.9 The arity k of operation f is 3.

Proof Since s1, . . . , sk ∈ R ⊆ {0, 1}2 are all distinct, while u ∈ {0, 1}2\R, we
have k ≤ 3. We cannot have k = 1 since that would imply f (s1) = s1 ∈ R,
contradicting that f (s1, . . . , sk) = f (s1) = u /∈ R. Assume for a contradiction
that k = 2. Since s1 and s2 are distinct, there is a position 
 ∈ [2] such that s1,
 �= s2,
.
Assume without loss of generality that s1,
 = 1 while s2,
 = 0. Since f (s1, . . . , sk) =
f (s1, s2) = α1s1+α2s2 = u ∈ {0, 1}2\R, we find u
 = α1s1,
 +α2s2,
 = α1 ·1+α2 ·
0 ∈ {0, 1}. Since α1 is a non-zero integer, wemust have α1 = 1. But since α1+α2 = 1
by definition of a balanced operation, this implies α2 = 0, contradicting minimality.

�
The previous two claims show that there are at least three distinct tuples in R ⊆

{0, 1}2. Since u ∈ {0, 1}2\R it follows that |R| = 3. Hence R and 2-or are both
Boolean relations of arity two that each have three tuples. To cone-define one from
the other, one may easily verify that it suffices to use the tuple (y1, y2), where yi = xi
if ui = 0 and yi = ¬xi otherwise. ��

In order to show the classification of the arity-3 relations with a linear sparsification
in Theorem 6.12, we first present some additional lemmas and definitions. Let U ⊆
{0, 1}n be a relation. We say that w ∈ {0, 1}n is a witness for U if w /∈ U , and there
exists a balanced operation f : {0, 1}k → {0, 1} and tuples t1, . . . , tk ∈ U such that
w = f (t1, . . . , tk). Observe thatU is not balanced if and only if there exists a witness
for U .

Lemma 6.10 Suppose that U ⊆ {0, 1}n is a Boolean relation, and that there exist an
integer c and a natural number m > 1 such that, for each u ∈ U, it holds that

weight(u) ≡m c.
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Then, if w is a witness for U, it holds that weight(w) ≡m c.

Proof Since w is a witness for U , there exist tuples t1 = (t1,1, . . . , t1,n), . . . , tk =
(tk,1, . . . , tk,n) and a balanced operation f : {0, 1}k → {0, 1} such that f (t1, . . . , tk) =
w. Let α1, . . . , αk be the coefficients of f . From f (t1, . . . , tk) = w, we obtain that
α1weight(t1) + · · · + αkweight(tk) = weight(w). Since

∑
i∈[k] αi = 1 by definition

of a balanced operation, we have

α1weight(t1) + · · · + αkweight(tk) ≡m α1c + · · · + αkc =
⎛

⎝
∑

i∈[k]
αi

⎞

⎠ c = c

and the result follows. ��
We will view Boolean tuples of arity n as maps f : [n] → {0, 1}, via the natural

correspondence where such a map f represents the tuple ( f (1), . . . , f (n)). We freely
interchange between these two representations of tuples.

For S ⊆ N, we say that f : S → {0, 1} is a no-good of U ⊆ {0, 1}n when:
– S ⊆ [n];
– each extension g : [n] → {0, 1} of f is not an element of U ; and
– there exists an extension h : [n] → {0, 1} of f that is a witness for U .

We say that f : S → {0, 1} is amin-no-good if f is a no-good, but no proper restriction
of f is a no-good. Observe that the following are equivalent, for a relation: the relation
is not balanced; it has a witness; it has a no-good; it has a min-no-good.

WhenU ⊆ {0, 1}n is a relation and S ⊆ [n], let s1 < · · · < sm denote the elements
of S; then, we use U � S to denote the relation {(h(s1), . . . , h(sm)) | h ∈ U }.
Proposition 6.11 LetU ⊆ {0, 1}n be a relation, let S ⊆ [n], and suppose that f : S →
{0, 1} is a min-no-good of U. Then f is a min-no-good of U � S.

Proof Observe that f is not in U � S; since f has an extension that is a witness for
U , it follows that f is a witness for U � S. Thus, f is a no-good of U � S. In order to
obtain that f is a min-no-good ofU � S, it suffices to establish that, for any restriction
f − : S− → {0, 1} of f , it holds that f − is a no-good of U if and only if f − is a
no-good of U � S. This follows from what we have established concerning f and the
following fact: all extensions h : S → {0, 1} of f − are not in U � S if and only if all
extensions h′ : [n] → {0, 1} of f − are not in U . ��

Using these tools we are finally in position to prove Theorem 6.12.

Theorem 6.12 Suppose that U ⊆ {0, 1}3 is an arity-3 Boolean relation that is not
balanced. Then, the 2-or relation is cone-definable from U.

Proof Let f : S → {0, 1} be a min-no-good of U .
It cannot hold that |S| = 0, since then U would be empty and hence preserved by

all balanced operations. It also cannot hold that |S| = 1, since then f would be a min-
no-good ofU � S (by Proposition 6.11), which is not possible sinceU � S would have
arity 1 and hence would be preserved by all balanced operations (by Observation 6.7).
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For the remaining cases, by replacing U with a relation that is interdefinable with
it, we may assume that f : S → {0, 1} maps each s ∈ S to 0.

Suppose that |S| = 2, and assume for the sake of notation that S = {1, 2} (this
can be obtained by replacing U with a relation that is interdefinable with it). By
Proposition 6.11, f is a min-no-good ofU � S. By Theorem 6.8, we obtain thatU � S
contains all tuples other than f , that is, we have {(0, 1), (1, 0), (1, 1)} = U � S.
It follows that there exists a realization, where we define a realization to be a tuple
(a1, a2, a3) ∈ {0, 1}3 such that (0, 1, a1), (1, 0, a2), (1, 1, a3) ∈ U . Let us refer to
(0, 0, 1) and (1, 1, 0) as bad tuples, and to all other arity 3 tuples as good tuples.

Claim 6.13 If there is a realization that is a good tuple, then the 2-or relation is
cone-definable from U.

Proof We show cone-definability via a tuple of the form (x1, x2, y) where y ∈
{0, 1, x1, x2,¬x1,¬x2}. The right setting for y can be derived from the realization
that forms a good tuple.

– choose y = 0 for (0, 0, 0);
– y = 1 for (1, 1, 1);
– y = x1 for (0, 1, 1);
– y = x2 for (1, 0, 1);
– y = ¬x1 for (1, 0, 0); and,
– y = ¬x2 for (0, 1, 0).

It is easy to verify that this choice of y gives the desired cone-definition. �

Claim 6.14 There is a realization that is a good tuple.

Proof Proof by contradiction. If there exists no realization that is a good tuple, every
realization is a bad tuple; moreover, there is a unique realization, for if there were
more than one, there would exist a realization that was a good tuple. We may assume
(up to interdefinability of U ) that the unique realization is (1, 1, 0). Then, U is the
relation {(0, 1, 1), (1, 0, 1), (1, 1, 0)} containing exactly the weight 2 tuples; applying
Lemma 6.10 to U with a = 2 and m = 3, we obtain that for any witness w for U , it
holds that weight(w) ≡3 2. This implies that f has no extension w′ that is a witness,
since any such extension must have weight(w′) equal to 0 or 1 as f maps both s ∈ S
to 0; we have thus contradicted that f is a no-good of U . �

Together, the two claims complete the case that |S| = 2.
Suppose that |S| = 3. Since f is both a min-no-good and a witness, mapping

all s ∈ S to 0, it follows that each of the weight 1 tuples (1, 0, 0), (0, 1, 0), (0, 0, 1) is
contained inU .We claim thatU contains aweight 2 tuple; if not, thenU would contain
onlyweight 1 andweight 3 tuples, and by invokingLemma6.10with a = 1 andm = 2,
wewould obtain that weight( f ) ≡2 1, a contradiction. Assume for the sake of notation
that U contains the weight 2 tuple (0, 1, 1). Then U cone-defines the 2-or relation
via the tuple (0, x1, x2), since (0, 0, 0) /∈ R and (0, 1, 0), (0, 0, 1), (0, 1, 1) ∈ R. ��

Combining the results in this section with the results in previous sections, allows
us to give a full classification of the sparsifiability of constraint languages that only
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contain relations of arity at most three. Observe that any k-ary relation R such that
R �= ∅ and {0, 1}k\R �= ∅ cone-defines the 1-or relation. Since we assume that Γ is
intractable in the next theorem, it follows that k is always defined and k ∈ {1, 2, 3}.
Theorem 6.15 Let Γ be an intractable Boolean constraint language such that each
relation therein has arity ≤ 3. Let k ∈ N be the largest value for which k-or can be
cone-defined from a relation in Γ . Then CSP(Γ ) has a kernel with O(nk) constraints
that can be encoded in O(nk log k) bits, but for any ε > 0 there is no kernel of size
O(nk−ε), unless NP ⊆ coNP/poly.

Proof To show that there is a kernel with O(nk) constraints, we do a case distinction
on k.

– (k = 1) If k = 1, there is no relation in Γ that cone-defines the 2-or relation.
It follows from Observation 6.7 and Theorems 6.8 and 6.12 that thereby, Γ is
balanced. It now follows from Theorem 4.1 that CSP(Γ ) has a kernel with O(n)

constraints that can be stored in O(n log n) bits.
– (k = 2) If k = 2, there is no relation R ∈ Γ with |R| = 23 − 1 = 7, as otherwise
by Lemma 3.11 such a relation R would cone-define 3-or which is a contradic-
tion. Thereby, it follows from Theorem 3.1 that CSP(Γ ) has a sparsification with
O(n3−1) = O(n2) constraints that can be encoded in O(n2 log n) bits.

– (k = 3) Given an instance (C , V ), it is easy to obtain a kernel of with O(n3)
constraints by simply removing duplicate constraints. This kernel can be stored in
O(n3) bits, by storing for each relation R ∈ Γ and for each tuple (x1, x2, x3) ∈ V 3

whether R(x1, x2, x3) ∈ C . Since |Γ | is constant and there are O(n3) such tuples,
this results in using O(n3) bits.

It remains to prove the lower bound. By definition, there exists R ∈ Γ such that R
cone-defines the k-or relation. Thereby, the result follows immediately from Theorem
3.10. Thus, CSP(Γ ) has no kernel of size O(nk−ε) for any ε > 0, unless NP ⊆
coNP/poly. ��

7 Capturing Polynomials Versus Compression via Maltsev
Embeddings

In this section we compare our polynomial-based framework for linear sparsification
to the framework of Lagerkvist and Wahlström [19] based on Maltsev embeddings.

7.1 Maltsev Embeddings and Definitions

To facilitate the discussion, we introduce some additional concepts. A ternary oper-
ation f : D3 → D over a domain D is a Maltsev operation if it satisfies the
identities f (x, x, y) = y and f (x, y, y) = x for all x, y ∈ D.

Definition 7.1 ([19, Definition 7]) A constraint language Γ over a domain D admits
an embedding over the constraint language Γ ′ over D′ ⊇ D if there exists a bijec-
tion h : Γ → Γ ′ such that for every R ∈ Γ , if the arity of R is k then the arity of h(R)

is k and h(R) ∩ Dk = R.
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If Γ ′ is preserved by a Maltsev operation, then Γ is said to admit a Maltsev embed-
ding. Lagerkvist andWahlström proved [19, Theorems 10–11] that if Γ is a constraint
language (over a possibly non-Boolean domain) that admits a Maltsev embedding
over Γ ′ with a finite domain, then CSP(Γ ) has a kernel with O(n) constraints. Hence
constraint languages admitting Maltsev embeddings over finite domains admit linear
sparsifications, just as balanced constraint languages.

In a quest to understand which CSPs can be sparsified through this route, they
investigated which constraint languages admit Maltsev embeddings using universal
algebra. For this purpose, they defined a universal partial Maltsev operation as a
partial Boolean operation f such that each Boolean constraint language Γ that admits
a Maltsev embedding is preserved by f .

Definition 7.2 For a k-ary operation f : Dk → D on a domain D ⊇ {0, 1}, the partial
Boolean operation f|B is the restriction of f to Boolean arguments that result in a
Boolean value. Hence domain( f|B) = {x ∈ {0, 1}k | f (x) ∈ {0, 1}}, and for each
k-tuple x in the domain of f|B we have f|B(x) = f (x).

Definition 7.3 ([19, Definition 14]) The infinite domain D∞ is recursively defined as
follows. It contains the elements 0 and 1 alongwith each triple (x, y, z)where x, y, z ∈
D∞ with x �= y and y �= z. The Maltsev operation u : D3∞ → D∞ is defined by
setting u(x, x, y) = y, setting u(x, y, y) = x , and setting u(x, y, z) = (x, y, z)
otherwise.

We define [{u}] as the set of all operations that can be defined as a term over
the algebra (D∞, {u}). Hence an arity-k operation f ∈ [{u}] can be defined
either as a projection, so that f (x1, . . . , xk) = xi for some i ∈ [k], or can
be recursively defined from operations f1, f2, f3 ∈ [{u}] via f (x1, . . . , xk) =
u( f1(x1, . . . , xk), f2(x1, . . . , xk), f3(x1, . . . , xk)). We will use this recursive decom-
position of operations in [{u}] later in our proofs. The universal partial Maltsev
operations can be characterized precisely [19, Theorems 13–15, p.165] as the opera-
tions f|B for f ∈ [{u}].

Any Boolean constraint language that is preserved by all universal partial Maltsev
operations, has [20, Theorem 28] aMaltsev embedding over D∞. However, since only
finite-domain Maltsev embeddings lead to linear sparsifications, this infinite-domain
embedding does not directly have algorithmic applications.

In the remainder of this section, we explore relations between balanced Boolean
constraint languages (which can be sparsified using capturing polynomials) and
Boolean constraint languages admitting a Maltsev embedding.

7.2 Balanced Constraint Languages Versus Maltsev Embeddings

The next theorem shows that being balanced is at least as strong of a requirement as
being preserved by all universal partial Maltsev operations. In particular, any balanced
relation is preserved by all universal partial Maltsev operations. This implies that if
the Maltsev approach does not apply to obtain a linear sparsification for a Boolean
CSP, then the polynomial-based framework does not apply either.
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Via [20, Theorem 28], this theorem yields that any balanced constraint language has
a Maltsev embedding, over the infinite domain D∞. We will strengthen this result in
Theorem 7.6 by showing that any balanced constraint language has a Maltsev embed-
ding over a finite domain. Since the proof of Theorem 7.6 does not use Theorem 7.4,
this theorem follows directly from Theorem 7.6. However, we include the present the-
orem and the proof as we believe that the proof technique is of independent interest; in
contrast to the proof of Theorem 7.6, it does not use any of the machinery established
in Sect. 4 and instead provides insight into the similarities between universal Maltsev
operations and balanced operations.

Theorem 7.4 Let Γ be a finite Boolean constraint language. If there exists a universal
partial Maltsev operation f such that Γ is not preserved by f , then Γ is not balanced.

Proof We introduce a function to associate an integer value to every element of
D∞, as follows. Let val : D∞ → N be given by val(0) := 0, val(1) := 1 and
val((d1, d2, d3)) := val(d1) − val(d2) + val(d3) for d1, d2, d3 ∈ D∞. We start by
proving the following claim.

Claim 7.5 Let f ∈ [{u}] have arity m. There is a sequence α1, . . . , αm ∈ Z with∑
i∈[m] αi = 1, such that for each Boolean vector x1, . . . , xm ∈ {0, 1}:

∑

i∈[m]
αi xi = val( f (x1, . . . , xm)).

Proof We prove this by induction on the structure of f as given by a term over u.
(Base case) If f (x1, . . . , xm) := x j for j ∈ [m], we define α j := 1 and αi := 0

for all i �= j . By this definition,
∑

i∈[m] αi = 1 and val( f (x1, . . . , xm)) = x j =∑
i∈[m] αi xi .
(Step) Let f (x1, . . . , xm) = u( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm)).

For b ∈ [3], choose coefficients αb,1, . . . , αb,m ∈ Z with
∑

i∈[m] αb,i = 1 such that

∑

i∈[m]
αb,i xi = val( fb(x1, . . . , xm))

for all x1, . . . , xm ∈ {0, 1}m . These coefficients exist by the induction hypothesis.
For i ∈ [m], define αi := α1,i − α2,i + α3,i . By this definition,

∑

i∈[m]
αi =

∑

i∈[m]
α1,i −

∑

i∈[m]
α2,i +

∑

i∈[m]
α3,i = 1 − 1 + 1 = 1,

as desired. Let x1, . . . , xm ∈ {0, 1} be given. To show that
∑

i∈[m] αi xi =
f (x1, . . . , xm) we distinguish three cases.
Suppose f1(x1, . . . , xm) = f2(x1, . . . , xm). Then f (x1, . . . , xm) = f3(x1, . . . , xm)

by the definition of u, and thus
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∑

i∈[m]
αi xi =

∑

i∈[m]
α1,i xi −

∑

i∈[m]
α2,i xi +

∑

i∈[m]
α3,i xi

= val( f1(x1, . . . , xm)) − val( f2(x1, . . . , xm)) + val( f3(x1, . . . , xm))

= val( f3(x1, . . . , xm)) = val( f (x1, . . . , xm)).

If f3(x1, . . . , xm) = f2(x1, . . . , xm), then a symmetric argument to the case above
shows that indeed

∑
i∈[m] αi xi = f (x1, . . . , xm).

Otherwise, f3(x1, . . . , xm) �= f2(x1, . . . , xm) and f1(x1, . . . , xm) �= f2(x1, . . . ,
xm). It follows that f (x1, . . . , xm) = ( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm))

and we obtain

∑

i∈[m]
αi xi =

∑

i∈[m]
α1,i xi −

∑

i∈[m]
α2,i xi +

∑

i∈[m]
α3,i xi

= val( f1(x1, . . . , xm)) − val( f2(x1, . . . , xm)) + val( f3(x1, . . . , xm))

= val( ( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm)) )

= val( f (x1, . . . , xm)),

concluding the proof of this claim. �

Using the claim we prove Theorem 7.4. Let h : {0, 1}m → {0, 1} be an m-ary
universal partial Maltsev operation that does not preserve Γ . As described in Sect. 7.1,
there exists f ∈ [{u}] such that h = f|B. Let R ∈ Γ be a k-ary relation such that R is
not preserved by h. We show that there exists a balanced operation g f that does not
preserve R. By Claim 7.5 there exist coefficients α1, . . . , αm ∈ Z such that

∑

i∈[m]
αi xi = val( f (x1, . . . , xm))

for all x1, . . . , xm ∈ {0, 1}. Let g f be the balanced operation with coefficients αi .
Since f|B does not preserve R, there are s1, . . . , sm ∈ R such that f|B(s1, . . . , sm)

is well-defined and f|B(s1, . . . , sm) /∈ R. Let si = (si,1, . . . , si,k). Then since
f|B(s1, . . . , sm) is well-defined, it evaluates to a 0/1-tuple and

val( f (s1, j , . . . , sm, j )) = f (s1, j , . . . , sm, j ),

for all j ∈ [k]. Since ∑
i∈[m] αi xi = val( f (x1, . . . , xm)) for all x1, . . . , xm ∈

{0, 1}, it follows that g f violates R. So g f is a balanced operation that does not
preserve Γ . ��

7.3 Balanced Constraint Languages Versus Finite-DomainMaltsev Embeddings

Theorem 7.4 implies [20, Theorem 28] that any balanced constraint language has a
Maltsev embedding over the infinite domain D∞. We show in the next theorem that
in fact, every balanced constraint language allows a Maltsev embedding over a finite
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domain. Thus, there are in fact two ways to obtain a kernel with O(n) constraints
for balanced constraint languages, one given by Theorem 4.1 and one via Maltsev
embeddings [19, Theorems 10–11].

Theorem 7.6 If Γ is a finite balanced Boolean constraint language, then Γ admits a
Maltsev embedding over Z/qZ for some q ∈ N.

Proof Since Γ is balanced, it follows from Corollary 4.12 that there exists q ∈ N such
that for every R ∈ Γ , u /∈ R there exists a linear polynomial pu,R such that pu,R

captures u with respect to R over Z/qZ. Define D := Z/qZ. Let ϕ : D3 → D be the
Maltsev operation given by ϕ(x, y, z) = x − y + z (mod q).

We now show how to define a constraint language Γ ′ that is theMaltsev embedding
of Γ . For any k-ary relation R ∈ Γ , we show how to define R′ such that R′ ∩{0, 1}k =
R. Define

R′ := {(x1, . . . , xk) ∈ Dk | pu,R(x1, . . . , xk) ≡q 0 for all u ∈ {0, 1}k\R},

and let Γ ′ := {R′ | R ∈ Γ }. We now show that R′ ∩ {0, 1}k = R. Clearly, for all
(x1, . . . , xk) ∈ R and u /∈ R it holds that pu,R(x1, . . . , xk) ≡q 0 as pu,R captures u
with respect to R, and thereby (x1, . . . , xk) ∈ R′. For the other direction, consider x =
(x1, . . . , xk) ∈ {0, 1}k ∩ R′. Suppose towards a contradiction that (x1, . . . , xk) /∈ R,
then px,R(x1, . . . , xk) �≡q 0 since px,R captures x with respect to R. This contradicts
that x ∈ R′.

It remains to prove that every R′ ∈ Γ ′ is preserved by ϕ. Towards a contradiction,
suppose there are x = (x1, . . . , xk), y = (y1, . . . , yk), and z = (z1, . . . , zk) in R′
such that the tuple w obtained by applying ϕ to x , y, and z coordinate-wise is not
contained in R′. Since w /∈ R′ there exists u /∈ R such that pu,R(w1, . . . , wk) �≡q 0.
However, since x, y, z ∈ R′ it follows that

pu,R(x1, . . . , xk) ≡q pu,R(y1, . . . , yk) ≡q pu,R(z1, . . . , zk) ≡q 0.

It then follows from Proposition 2.3 that pu,R(w1, . . . , wk) ≡q p(x1 − y1 +
z1, . . . , xk − yk + zk) ≡q 0, which is a contradiction. Thereby, Γ ′ is preserved by ϕ,
as desired. ��

Theorem7.6 shows that balanced constraint languages have (finite-domain)Maltsev
embeddings. In the next theorem, we prove a partial converse: constraint languages
that are not balanced, do not admit Maltsev embeddings of a particular type over a
(possibly infinite) domain. The particular type we consider consists of embeddings for
which the constraint language Γ ′ into which we embed has a group structure on its
domain, and the Maltsev operation that preserves Γ ′ is the coset generating operation
of the group. Let us give the relevant definitions.

Definition 7.7 Let (D, ·) be a group. The coset generating operation of the group is
the Maltsev operation c : D3 → D defined by c(x, y, z) = x · y−1 · z.
Theorem 7.8 Let Γ be a Boolean constraint language that is not balanced, and
let (D, ·) be a group with coset generating operation c. Then there is no constraint
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language Γ ′ over domain D ⊇ {0, 1} that is preserved by c and for which Γ admits
an embedding over Γ ′, not even if the identity element of (D, ·) is allowed to differ
from {0, 1}.
Proof Suppose for contradiction that there exists a group (D, ·) with coset generating
operation c and a constraint language Γ ′ such that Γ ′ is preserved by c and Γ admits
an embedding over Γ ′. Let R ∈ Γ be a relation that is not balanced, suppose R has
arity k. Since R is not balanced, take r1, . . . , rm ∈ R with r1 − r2 . . . + rm = u /∈ R.
Let R̂ ∈ Γ ′ be the image of R under the considered Maltsev embedding. We start by
proving the following claim.

Claim 7.9 For all i ∈ [k], the following equation holds over the group (D, ·):

r1,i · r−1
2,i · · · · · rm,i = ui .

Proof We show by induction that for all x1, . . . , xm ∈ {0, 1}with x1−x2 · · ·+xm = y
for y ∈ {0, 1}, it holds that x1 · x−1

2 · · · · · xm = y over D.
(Base case) If m = 1, we trivially obtain that x1 = y.
(Step) Suppose m > 1. We start by showing that there exists j ∈ [m − 1] such that

x j = x j+1. Suppose not, then we are in one of the two cases below.

– x1 = x3 = · · · = xm = 0 and x2 = x4 = · · · = xm−1 = 1, or
– x1 = x3 = · · · = xm = 1 and x2 = x4 = · · · = xm−1 = 0.

In both cases it is easily verified that for this choice of variables, x1 − x2 · · · + xm /∈
{0, 1}, which is a contradiction. Therefore, there exists j ∈ [m − 1] such that x j =
x j+1. Suppose for ease of notation that j is even, the case when j is odd follows
symmetrically. It is easy to verify that y = x1 − x2 · · · + x j−1 − x j + x j+1 −
x j+2 · · · + xm = x1 − x2 · · · + x j−1 − x j+2 · · · + xm , and thus it follows from
the induction hypothesis that x1 · x−1

2 · · · · · x j−1 · x−1
j+2 · · · · · xm = y. Thereby

x1 · x−1
2 · · · · · x j−1 · x−1

j · x j+1 · x−1
j+2 · · · · · xm =

x1 · x−1
2 · · · · · x j−1 · (x−1

j · x j ) · x−1
j+2 · · · · · xm =

x1 · x−1
2 · · · · · x j−1 · x−1

j+2 · · · · · xm−2 = y.

Since r1, . . . , rm were chosen such that r1 − r2 . . . + rm = u ∈ {0, 1}k\R, the
statement of the claim follows. �

Recall that R̂ is preserved by c. We have the following claim.

Claim 7.10 Let R̂ be a k-ary relation and m ≥ 3 be odd. If R̂ is preserved by c, then
it is preserved by the m-ary operation fm : Dm → D given by fm(x1, . . . , xm) :=
x1 · x−1

2 · · · · · xm.
Proof We show this by a simple induction. If m = 3, the statement is true since in
this case f and c are equivalent. Let m > 3 and let t1, . . . , tm ∈ R̂ be given, we show
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f (t1, . . . , tm) ∈ R̂. Let t ′ := c(t1, t2, t3), observe that t ′ ∈ R̂ since R̂ is preserved by
c. Choose i ∈ [k] and observe that

fm(t1,i , . . . , tm,i ) = t1,i · t−1
2,i · t3,i · t−1

4,i · · · · · tm,i

= c(t1,i , t2,i , t3,i ) · t−1
4,i · · · · · tm,i

= t ′ · t−1
4,i · · · · · tm,i .

Thereby, fm(t1, . . . , tm) = fm−2(t ′, t4, . . . , tm). It follows from the induction hypoth-
esis that fm−2 is preserved by R̂ and thus fm−2(t ′, t4, . . . , tm) ∈ R̂. �

It follows from the fact that c preserves R̂ and Claim 7.10, that fm preserves
R̂. However, by Claim 7.9, it follows that fm(r1, . . . , rm) = u and thus u ∈ R̂,
contradicting that we have given a valid Maltsev embedding of Γ , since u ∈ {0, 1}k ,
but u /∈ R. ��

We conclude the subsection with a discussion of the implications of Theorems 7.6
and 7.8. On the one hand, Theorem 7.6 shows that balanced constraint languages admit
Maltsev embeddings over finite domains. On the other hand, Theorem 7.8 shows that
unbalanced constraint languages do not allow Maltsev embeddings over the coset
generating operation of a group, not even an infinite group. As a corollary to these
results, we therefore obtain an infinite-domain to finite-domain transformation, for
embeddings via coset generating operations.

Corollary 7.11 If Γ is a finite Boolean constraint language that has a Maltsev embed-
ding over Γ ′, where the domain D of Γ ′ is a (possibly infinite) group and Γ ′ is
preserved by the coset generating operation of the group, thenΓ has aMaltsev embed-
ding over Z/qZ for some q ∈ N.

7.4 Preservation by Balanced or Universal Partial Maltsev Operations

In this section we compare preservation by balanced operations to preservation by
universal partial Maltsev operations. Theorem 7.4 implies that every balanced con-
straint language is preserved by all universal partial Maltsev operations. At this point,
it is unknown whether the converse also holds. If the Boolean constraint language Γ

is preserved by all universal partial Maltsev operations, then is it also balanced?
We have not managed to resolve this question, but we present some insights in this

direction. Recall that ai is the alternating (partial) operation of arity i , for odd i ≥ 1.
It is easy to verify that a3 is equivalent to u|B. We show the following result about a5.

Theorem 7.12 Let Γ be a Boolean constraint language. If Γ is not preserved by a5,
then there is a universal partial Maltsev operation that does not preserve Γ .

Proof We start by considering the term f ∈ [{u}] defined as follows:

f (x1, . . . , x5) := u(x1, u(x2, x3, u(x1, x2, x3)), u(x5, x4, u(x3, x2, x1))).
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The key of the proof is that the Boolean restriction f|B of f does not preserve Γ . We
start by showing how f relates to the alternating operation of arity 5.

Claim For all x1, . . . , x5 ∈ {0, 1} such that a5(x1, . . . , x5) ∈ {0, 1}, it holds that

f (x1, . . . , x5) = a5(x1, . . . , x5).

Proof Suppose a5(x1, . . . , x5) ∈ {0, 1}, we do a case distinction.

• (u(x5, x4, u(x3, x2, x1)) ∈ {0, 1}) Observe that in particular, this implies that
u(x3, x2, x1) ∈ {0, 1}, implying that x3 = x2 or x1 = x2. If x3 = x2, we obtain
that u(x2, x3, u(x1, x2, x3)) = u(x3, x3, u(x1, x3, x3)) = x1 and u(x3, x2, x1) =
x1, implying that f (x1, . . . , x5) = u(x5, x4, u(x3, x2, x1)) = u(x5, x4, x1)
and since u(a, b, c) = a − b + c if u(a, b, c) ∈ {0, 1}, the result follows
since a5(x1, x2, x3, x4, x5) = x5 − x4 + x1 ∈ {0, 1} for x2 = x3. Similarly, if
x1 = x2, then u(x2, x3, u(x1, x2, x3)) = u(x1, x3, u(x1, x1, x3)) = x1. Just like
in the previous case, this implies f (x1, . . . , x5) = u(x5, x4, u(x3, x2, x1)) and the
result follows.

• (u(x5, x4, u(x3, x2, x1)) /∈ {0, 1}) We again consider two options, based on
whether u(x3, x2, x1) is in {0, 1} or not. Observe that if u(x3, x2, x1) ∈ {0, 1},
the reason that u(x5, x4, u(x3, x2, x1)) /∈ {0, 1} is that x5 = u(x3, x2, x1) and
x5 �= x4. But then by definition, x5 = x3 − x2 + x1 and thus if x5 = 1, then x4 = 0
and we obtain x5 − x4 + x3 − x2 + x1 = 2 /∈ {0, 1}, which is a contradiction.
Similarly, if x5 = 0 we obtain that x5 − x4 + x3 − x2 + x1 = −1 /∈ {0, 1}, which
is again a contradiction. We thereby conclude that u(x3, x2, x1) /∈ {0, 1}.

By definition, this implies x3 = x1 �= x2. It follows that x4 �= x5 to ensure
that a5(x1, . . . , x5) = x5 − x4 + x3 − x2 + x1 ∈ {0, 1}. Furthermore, observe
that x4 = x3 for this same reason. Thus, x1 = x3 = x4 �= x2 = x5. If follows
that a5(x1, . . . , x5) = x1. Furthermore, substituting this into the formula shows
that u(x5, x4, u(x3, x2, x1)) = u(x2, x1, u(x1, x2, x1)) = (x2, x1, (x1, x2, x1)) =
u(x2, x3, u(x1, x2, x3)), implying that f (x1, . . . , x5) = x1, as desired. �

Now let Γ be a constraint language that is not preserved by a5. It follows from
Claim 7.4 that for any (x1, . . . , x5) ∈ domain(a5), it holds that a5(x1, . . . , x5) =
f (x1, . . . , x5) and (x1, . . . , x5) ∈ domain( f|B). It follows that Γ is not preserved by
f|B, which is a universal partial Maltsev operation [19, Theorem 15]. ��
Theorem 7.12, together with the observation that a3 is equivalent to u|B, have

the following consequence. If a constraint language Γ is unbalanced because some
alternating operation of arity at most five does not preserve it, then Γ does not admit
a Maltsev embedding, not even over an infinite domain. We leave it for future work to
determine whether there exist Boolean constraint languages that admit finite-domain
Maltsev embeddings, but are not balanced.Are there constraint languages forwhich the
Maltsev framework yields linear kernelizations, but the polynomial-based framework
does not?
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8 Conclusion

In this paper we analyzed the best-case and worst-case sparsifiability of CSP(Γ ) for
intractable finite Boolean constraint languages Γ . First of all, we characterized those
Boolean CSPs for which a nontrivial sparsification is possible, based on the number
of non-satisfying assignments. Then we presented our key structural contribution: the
notion of balanced constraint languages. We have shown that CSP(Γ ) allows a spar-
sification with O(n) constraints whenever Γ is balanced. The constructive proof of
this statement yields a polynomial-time algorithm to find a series of degree-1 polyno-
mials to capture the constraints, which earlier had to be done by hand. By combining
the resulting upper and lower bound framework, we fully classified the symmetric
constraint languages for which CSP(Γ ) allows a linear sparsification. Furthermore,
we fully classified the sparsifiability of CSP(Γ ) when Γ contains relations of arity at
most three, based on the arity of the largest or that can be cone-defined from Γ . As
we explain in the next paragraph, it follows from results of Lagerkvist and Wahlström
[19,20] that for constraint languages of arbitrary arity, the exponent of the best sparsi-
fication size does not always match the arity of the largest or cone-definable from Γ .
Hence the type of characterization we presented is inherently limited to low-arity con-
straint languages. It may be possible to extend our characterization to languages of
arity at most four, however.

In their work, [20, Theorem 32] Lagerkvist and Wahlström show the following.
For every integer d ≥ 3 and for every finite set P of partial polymorphisms for which
the set of Boolean relations preserved by P can pp-define all Boolean relations, there
is a polynomial-parameter transformation [1,2] from d-CNF-SAT instances with n
variables, to equivalent instances of CSP(Γ ) on O(nc) variables. Here c ∈ N depends
only on P and Γ is a finite Boolean constraint language whose relations are preserved
by all operations in P . Assuming NP � coNP/poly, the problem d-CNF-SAT has
no kernel [7] of bitsize O(nd−ε) for any ε > 0. Via the cited transformation, this
implies CSP(Γ ) has no sparsification of bitsize O(nd/c−ε). Hence knowing that the
constraint language is preserved by any finite set of partial polymorphisms does not
guarantee any polynomial compressibility. Note that any constraint language that can
cone-define k-or for some k ≥ 2 can also cone-define 2-or, while Proposition 2.12
shows that being able to cone-define 2-or is equivalent to being violated by the partial
operation ϕ1. A constraint language preserved by the single partial polymorphism ϕ1
therefore does not cone-define k-or for any k ≥ 2. Using the transformation and
incompressibility results mentioned above, we find (assuming NP � coNP/poly)
that for any d ′ ∈ R there is a finite Boolean constraint language Γd ′ that does not
cone-define 2-or or larger, but for which CSP(Γd ′ ) does not have a sparsification of
bitsize O(nd

′
). A general characterization of optimal sparsification size by the arity

of the largest cone-definable OR is therefore impossible.
Wemove to a discussion of future work. The ultimate goal of this line of research is

to fully classify the sparsifiability of CSP(Γ ), depending on Γ . In particular, we would
like to classify thoseΓ for which O(n) sparsifiability is possible. In this paper, we have
shown that Γ being balanced is a sufficient condition to obtain a linear sparsification;
it is tempting to conjecture that this condition is also necessary. The simplest example
of a Boolean constraint language for which we currently do not understand whether
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or not it has a linear sparsification, consists of a single Boolean relation R∗ of arity
nine. Relation R∗ has five satisfying assignments s1, . . . , s5 ∈ {0, 1}9:

R∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s1 = (1, 0, 0, 1, 1, 1, 0, 0, 1),
s2 = (0, 0, 0, 0, 1, 0, 0, 1, 1),
s3 = (0, 1, 0, 1, 1, 0, 1, 1, 0),
s4 = (0, 0, 0, 1, 0, 1, 1, 0, 0),
s5 = (0, 0, 1, 0, 0, 1, 1, 1, 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Relation R∗ is not balanced, since s1−s2+s3−s4+s5 = (1, 1, 1, 1, 1, 1, 1, 1, 1) /∈ R∗.
By Theorem 7.12, it follows that R∗ is violated by some universal partial Maltsev
operation. Hence neither our polynomial framework for compression, nor theMaltsev-
based approach yields a linear sparsification for CSP({R∗}). On the other hand, no
superlinear lower bound is currently known. Resolving the sparsification complexity
of CSP({R∗}) is the first obstacle in a general classification of linearly-compressible
Boolean CSPs.

Note that the matrix consisting of the five satisfying assignments of R∗ has a very
succinct description: there is one column for each vector x ∈ {0, 1}5 for which x[1]−
x[2] + x[3] − x[4] + x[5] = 1, except for the all-ones column. The presence of
these columns ensures that ϕ1 preserves R∗, for the simple reason that ϕ1(si , s j , sk)
for i, j, k ∈ [5] is only defined when i = j or j = k, in which case the output tuple
equals one of the input tuples. In other cases, there is an index 
 for which si [
] −
s j [
] + sk[
] ∈ {−1, 2}, making the output undefined. Hence, using Proposition 2.12,
relation R∗ does not cone-define 2-or.

Observe that CSP({R∗}) is NP-complete [25] by Schaefer’s dichotomy theorem: R∗
does not have the constantly-1 operation as a polymorphism, nor the constantly-0
operation; the tuples s1, s2 show that R∗ is not preserved by the binary ANDoperation,
nor by the binary OR operation; and the tuples s1, s2, s3 show that R∗ is not preserved
by the ternary majority or minority operations.

Resolving the sparsification complexity of CSP({R∗}), and subsequently obtaining
a complete characterization of the Boolean CSPs that admit a linear compression,
form the main open problems of this work. Other directions include the investigation
of constraint languages of larger arity and the characterization of the CSPs that admit
sparsifications with a quadratic, or even larger polynomial number, of constraints.
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