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Abstract
The parameterised complexity of various consensus string problems (Closest
String, Closest Substring, Closest String with Outliers) is investigated in
a more general setting, i. e., with a bound on the maximum Hamming distance and a
bound on the sum of Hamming distances between solution and input strings. We com-
pletely settle the parameterised complexity of these generalised variants of Closest
String and Closest Substring, and partly for Closest String with Outliers;
in addition, we answer some open questions from the literature regarding the classical
problem variants with only one distance bound. Finally, we investigate the question
of polynomial kernels and respective lower bounds.

Keywords Consensus String Problems · Closest String · Closest Substring ·
Parameterised Complexity · Kernelisation

1 Introduction

Consensus string problems have the following general form: given input strings S =
{s1, . . . , sk} and a distance bound d, find a string s with distance at most d from the
input strings. With the Hamming distance as the central distance measure for strings,
there are two obvious types of distance between a single string and a set S of strings:
the maximum distance between s and any string from S (called radius) and the sum
of all distances between s and strings from S (called distance sum). The most basic
consensus string problem is Closest String, where we get a set S of k length-�
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strings and a bound d, and ask whether there exists a length-� solution string s with
radius at most d. This problem isNP-complete (see [19]), but fixed-parameter tractable
for many variants (see [20]), including the parameterisation by d, which in biological
applications can often be assumed to be small (see [14,21]). A classical extension
is Closest Substring, where the strings of S have length at most �, the solution
string must have a given length m and the radius bound d is with respect to some
length-m substrings of the input strings. A parameterised complexity analysis (see
[15,16,25]) has shown Closest Substring to be harder than Closest String. If
we bound the distance sum instead of the radius, then Closest String collapses
to a trivial problem, while Closest Substring, which is then called Consensus
Patterns, remains NP-complete (see [23]). Closest String with Outliers is a
recent extension, which is defined like Closest String, but with the possibility to
ignore a given number of t input strings (see [6]).

The main motivation for consensus string problems comes from the important
task of finding similar regions in DNA or other protein sequences, which arises
in many different contexts of computational biology, e. g., universal PCR primer
design [11,21,24,28], genetic probe design [21], antisense drug design [10,21], find-
ing transcription factor binding sites in genomic data [30], determining an unbiased
consensus of a protein family [3], and motif-recognition [21,26,27]. The consensus
string problems are a formalisation of these computational tasks and most variants
of them are NP-hard. However, due to their high practical relevance, it is neces-
sary to solve them despite their intractability, which has motivated the study of
their approximability, on the one hand, but also their fixed-parameter tractability,
on the other (see the survey [7] for an overview of the parameterised complexity
of consensus string problems). This work is a contribution to the latter branch of
research. In the following, we motivate in more detail the research carried out in this
paper.

From a theoretical point of view, these consensus string problems (as is usually the
case for string problems) have a large number of quite natural and obvious numerical
parameters, e. g., number of input strings, their lengths, alphabet size, the distance
bounds and so on. Therefore, from a parameterised complexity point of view, they
have a somewhat different nature than the typical graph problems, for which we have
the obvious standard parameterisations (usually some size bound that is part of the
input, e. g., the clique-size for Clique) or more complex structural parameters (like
width-parameters as treewidth and so on), while obvious numerical parameters, e. g.,
number of vertices or edges, are usually not interesting (with the degree of a graph
being an exception). Consequently, for string problems, the challenge is to discover
among the rather large number of different combinations of these obvious parameters
those that yield fixed-parameter tractability; thus, obtaining a complete “map of fixed-
parameter tractability” of the problem.

From a more practical point of view, we note that for string problems, which are
usually motivated by tasks from computational biology, it is often the case that it is
known which parameters can be considered to be small in practical scenarios and
which do not have this desirable property. This leads to parameters (or parameter
combinations) that are more important than others. Consequently, the most press-
ing question is whether we can achieve fixed-parameter tractability for these “small”
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parameters. Furthermore, the knowledge ofwhich parameters are importantmay guide
an algorithmic engineeringprocess, e. g., ifwehave achievedfixed-parameter tractabil-
ity with respect to an important parameter, but the problem formalisation does not
quite cover the practical scenario, we can search for modifications of the problem
that maintain the fixed-parameter tractability and are still suitable for practical sce-
narios with small parameter values. For example, as explained in [6], in practical
applications of consensus string problems it cannot always be avoided that the set
of input strings includes a small number of strings that are quite different from all
the others. In order to still get a solution, we would have to drastically increase the
radius bound, which also leads to a solution that is undesirable from a practical point
of view. Instead, it makes much more sense to directly cater for this presence of
“outliers” by modifying the problem formulation accordingly. This is the motivation
for the outlier-variant introduced in [6] (note that Closest String with Out-
liers parameterised by the radius bound and number of outliers is fixed-parameter
tractable [6]). In particular, if we find a suitable solution string when some outliers
are excluded, then it seems natural that the the initial decision of including these
strings needs to be revised (as pointed out in [6], this is another motivation for the
outlier-variant).

In this work, we propose a different modification, which leads to a generalisation
of all the consensus string problems mentioned above: we consider the case where we
have a radius bound and a distance sum bound at the same time. From a theoretical
point of view, this leads to the question which of the fixed-parameter tractable cases
of the variants with only one bound are still fixed-parameter tractable if we consider
both bounds. However, we believe this problem can also be relevant from a practical
point of view, since having both a radius bound and a distance sum bound allows for
a finer tuning of the solutions (similar as the addition of outliers). We shall motivate
this by an example.

Assume that by solving the outlier-variant for a set of strings, we have found out
that our desired radius bound can only be met by declaring strings as outliers that
should not be outliers (i. e., strings for which we know for certain that they should be
included in the input set), or that a solution string cannot be found for a number of
outliers that is small enough that the algorithm’s running time is still acceptable. In this
case, slightly increasing the radius bound seems inevitable, but it is still reasonable to
require that this larger distance to the solution string should be used to its full capacity
only by a small number of input strings. This requirement could be formulated by
adding a distance sum bound that is significantly smaller than the number of input
strings multiplied by the radius bound. It is also reasonable to think about allowing
both, a small number of outliers that handles strings that should not be in the input
set at all and a distance sum bound that takes care of bounding the number of “high
distance” input strings.

Next, we define more formally the consensus string problems considered in this
paper and then explain in full detail the respective known results in the literature and
our new contributions.
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1.1 Problem Definition

Let Σ be a finite alphabet, Σ∗ be the set of all strings over Σ , including the empty
string ε and Σ+ = Σ∗\{ε}. For w ∈ Σ∗, |w| is the length of w and, for every i ,
1 ≤ i ≤ |w|, by w[i], we refer to the symbol at position i of w. For every n ∈ N∪{0},
let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n = ⋃n

i=0 Σ i . By �, we denote the substring
relation over the set of strings, i. e., for u, v ∈ Σ∗, u � v if v = xuy, for some
x, y ∈ Σ∗. We use the concatenation of sets of strings as usually defined, i. e., for
A, B ⊆ Σ∗, A · B = {uv | u ∈ A, v ∈ B}.

For strings u, v ∈ Σ∗ with |u| = |v|, dH(u, v) is the Hamming distance between u
and v. For amulti-set S = {ui | 1 ≤ i ≤ n} ⊆ Σ� and a string v ∈ Σ�, for some � ∈ N,
the radius of S (with respect to v) is defined by rH(v, S) = max{dH(v, u) | u ∈ S} and
the distance sum of S (with respect to v) is defined by sH(v, S) = ∑

u∈S dH(v, u).1

Next, we state the consensus string problems to be investigated. The most basic one
is (r, s)-Closest String [denoted by (r, s)-CloseStr in the following]:

(r, s)-CloseStr

Instance: A multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ�, � ∈ N,
and integers dr , ds ∈ N.

Question: Is there an s ∈ Σ� with rH(s, S) ≤ dr and sH(s, S) ≤ ds?

If we allow a given number of the input strings to be excluded and require the bounds
dr and ds to be satisfied with respect to the remaining strings, we obtain the problem
(r, s)-Closest String with Outliers [this will also be called the outlier-variant
(of (r, s)-CloseStr) and will be denoted by (r, s)-CloseStr- wo]:

(r, s)-CloseStr- wo

Instance: A multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ�, � ∈ N,
and integers dr , ds, t ∈ N.

Question: Is there an s ∈ Σ� and S′ ⊆ S with |S′| = k − t
such that rH(s, S′) ≤ dr and sH(s, S′) ≤ ds?

For the problem (r, s)-Closest Substring [which will also be called the substring-
variant (of (r, s)-CloseStr] and is denoted by (r, s)-CloseSubstr), the input words
can have different lengths and we are asking for a string that satisfies the bounds dr
and ds with respect to some substrings of the input strings (that all have the same given
length):

(r, s)-CloseSubstr

Instance: A multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ≤�, � ∈ N,
and integers dr , ds,m ∈ N.

Question: Is there an s ∈ Σm and S′ = {s′
i | s′

i � si , 1 ≤ i ≤ k} ⊆ Σm

with rH(s, S′) ≤ dr and sH(s, S′) ≤ ds?

1 Note that we slightly abuse notation with respect to the subset relation: for a multi-set A and a set B,
A ⊆ B means that A′ ⊆ B, where A′ is the set obtained from A by deleting duplicates; for multi-sets A, B,
A ⊆ B is defined as usual. Moreover, whenever it is clear from the context that we talk about multi-sets,
we also simply use the term set.
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Fig. 1 Illustrations of instances and solution strings for different variants of consensus string problems
(mismatches are highlighted by gray circles): a shows aCloseStr instance and a solution string with radius
3 and distance sum 13, b shows the same instance, but with a solution string with radius 2 and distance sum
16, c shows a CloseSubstr instance (with m = 4) and a solution string with radius 1 and distance sum 7
(the corresponding substrings are highlighted by gray rectangles), and d shows a CloseStr- wo instance
(with t = 2) and a solution string with radius 2 and distance sum 7 (s3 and s7 are declared outliers)

See Fig. 1 for an illustration of these problems. We next introduce some convenient
terminology.

By the terms (r)-CloseStr and (s)-CloseStr, we denote the variants of
(r, s)-CloseStr, where the only distance bound is dr or ds , respectively; we shall
also call them the (r)- and (s)-variant of CloseStr, the radius and distance sum vari-
ant of CloseStr, or simply the single-bound variants if we refer to either of them;
the problem (r, s)-CloseStrwill sometimes be referred to as the general variant. We
also use the term CloseStr [i.e., without the prefixes (r, s)-, (r)- or (s)-] whenever
we generally refer to all (or any) of these different variants. Analogous terminology
applies to the outlier-variant and the substring-variant.
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1.2 Parameterised Complexity Theory

We assume the reader to be familiar with the basic concepts of (classical) complexity
theory. Next, we shall briefly summarise the fundamentals of parameterised complex-
ity (see also [9,13,17], and, especially for information on kernelisation, the recent
textbook [18]).

A parameterised problem is a decision problem with instances (x, k), where x is
the actual input and k ∈ N is the parameter. By FPT, we denote the class of fixed-
parameter tractable problems, i. e., problems having an algorithm with running-time
O( f (k)·g(n)), for a computable function f and polynomial g, where n is the size of the
instance and k is the parameter. In order to argue about fixed-parameter intractability,
we need the following kind of reductions. A (classical) many-one reduction R from
a parameterised problem to another is an fpt-reduction, if the parameter of the target
problem is bounded in terms of the parameter of the source problem, i. e., there is
a computable function h : N → N such that R(x, k) = (x ′, k′) implies k′ ≤ h(k).
Parameterised problems that are hard (with respect to fpt-reductions) for the class
W[1] are not in FPT (under some complexity-theoretical assumptions, see [9,13,17]
for further details). If a parameterised problem is NP-hard when the parameter is fixed
to a constant, then it is not in FPT, unless NP = P (thus; providing even stronger
evidence for fixed-parameter intractability thanW[1]-hardness).

A kernelisation for a parameterised problem P is an algorithm that transforms an
instance (x, k) of P into a reduced instance (x ′, k′) of P in time polynomial in |x |+|k|
such that

– |x ′| + k ≤ g(k) for some computable function g,
– (x, k) is a positive instance if and only if (x ′, k′) is a positive instance.

For the sake of convenience, we also say that a parameterised problem has a kernel in
order to denote that there is a kernelisation as defined above. If the kernlisation is such
that the function g is a polynomial, then we say that the problem has a polynomial
kernel. It is awell-known fact that a parameterised problem is fixed-parameter tractable
if and only if it has a kernel. On the other hand, many fixed-parameter tractable
problems do not seem to have a polynomial kernel.

Note that all these concepts from parameterised complexity theory naturally extend
to problems that are parameterised by several parameters at the same time.

The natural parameters that arise in the context of the consensus string problems
defined above are the following (we shall consistently use these parameter names
throughout the remainder of the paper):

k Number of input strings
� Length of input strings
dr Radius bound
ds Distance sum bound
|Σ | Alphabet size
m Substring length (substring-variant)
t Number of outliers (outlier-variant)
k − t Number of inliers (outlier-variant)
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For some parameters p1, p2, . . . , pq , by (r, s)-CloseStr(p1, p2, . . . , pq) we
denote the problem (r, s)-CloseStr parameterised by the parameters p1, p2, . . . , pq ,
e. g., (r, s)-CloseStr(|Σ |, �) is the problem (r, s)-CloseStr parameterised by the
alphabet size and the length of the input strings. Note that this problem is trivially in
FPT, since enumerating all strings in Σ� and checking for each whether it is a solution
string is an fpt-algorithm. Moreover, this variant does not seem to have a polynomial
kernel (in fact, it can be shown that, under some complexity theoretical assumption, it
does not have a polynomial kernel; see Sect. 5), while (r, s)-CloseStr(k, �) trivially
has a polynomial kernel (the original input is of size �× k and therefore a polynomial
kernel).

We use analogous terminology for the substring and outlier-variants and also for the
single-bound variants, e. g., (r)-CloseStr- wo(dr , t). Note that we consider parame-
ters t and k−t only for the outlier-variants, parameterm only for the substring-variants,
and parameters dr and ds only if they exist for the problem, e. g., dr can only be a
parameter for the general variants or the (r)-variants, but not for (s)-variants.

1.3 Known Results

Some of the single-bound variants of the consensus string problems have already
been considered in the literature, but under different names. More precisely, the
names Closest String and Closest Substring are common in the literature
in order to denote the radius variants of CloseStr and CloseSubstr, while the
common term Consensus Patterns usually refers to what we have defined as
the distance sum variant of CloseSubstr (see, e. g., [15,16,19,20,25]); the term
Closest String with Outliers is used in [6] (where the outlier-variant is also
introduced for the first time) in order to denote the radius variant of CloseStr- wo.

All the consensus string problems are NP-hard, except the distance sum variant of
CloseStr,which is trivial problem (choosing for every columna symbolwithmajority
always yields an optimal solution string). The parameterised complexity (with respect
to the above-mentioned parameters) of the radius variants ofCloseStr are completely
settled (see [19,20]): parameterising by any of the single parameters k, dr and � yields
fixed-parameter tractability, while the problem remains NP-hard if |Σ | = 2. To the
knowledge of the authors, the complexity of the variant (r, s)-CloseStr with both
bounds has not yet been investigated in the literature (an exception is [1], where
optimising both the radius and the distance sum has been considered for the special
case k = 3). Another point of view consists in seeing (r)-CloseStr and (s)-CloseStr
as two special cases of a more general problem, which aims at minimizing the L p

norm of the vector of distances between the solution string and the input strings (with
respectively p = ∞ and p = 1). Thus these two extreme optimization goals may
be combined by taking intermediate values of p: for binary strings, the problem is
NP-hard for each 1 < p < ∞, and fixed-parameter tractable when parameterised by
k or by (d, p) [8].

With respect to the substring-variants, all parameterisations of the radius variant
have been settled, while for the distance sum variant all parameterisations but the
single parameter � [or (m, �), which, since we can assume m ≤ �, is the same] have
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been settled (see [15,16,25]). These results show that, at least for the single-bound
variants, CloseSubstr is a much harder problem than CloseStr. More precisely,
fixed-parameter tractability of (r)-CloseSubstr can only be achieved if parameterised
by � (see [15]) or (m, |Σ |) (which is trivial), while all other parameterisations areW[1]-
hard. With respect to (s)-CloseSubstr, the only known fixed-parameter tractable
cases are with respect to (ds, |Σ |) (see [25]) and (m, |Σ |) (which is again trivial), and
the case of parameter � is open. However, it has been shown in [29] that if we consider
the difference between the length of the input strings and the length of the solution
string, i. e., (�−m), as a parameter, then adding any of the additional parameters k, dr , �
[which also make (r)-CloseStr fixed-parameter tractable] yields fixed-parameter
tractability for (r)-CloseSubstr. For the distance sum variant, the special parameter
(�−m) only helps if additionally k or ds is also a parameter, while the case ((�−m) =
4, |Σ | = 4) is even NP-hard and the parameterisation ((� − m),m) is the same as
�, which again leads to the open case mentioned above (see [29] for details). As for
CloseStr, the complexity of (r, s)-CloseSubstr has not yet been investigated in the
literature.

A parameterised complexity analysis of the radius variant of CloseStr- wo has
been startedmore recently in [6], where it is shown that the problem is fixed-parameter
tractable with respect to single parameter dr and the parameters (|Σ |, k), while it is
W[1]-hard with respect to (�, dr , k − t). The (s)-variant or the general variant with
both bounds has not yet been considered in the literature.

Questions of kernelisations for consensus string problems have been recently inves-
tigated in [2].

1.4 Our Contribution

Themain contribution of this paper is to initiate the parameterised complexity analysis
of the general variants (i. e., with both the radius and the distance bound) of the
consensus string problems. In this regards, we are able to completely settle (i. e.,
proving either fixed-parameter tractability orW[1]-hardness for all parameterisations
with respect to the parameters defined in Sect. 1.2) the problems (r, s)-CloseStr and
(r, s)-CloseSubstr (and their single-bound variants). Obviously, as indicated by the
discussions of Sect. 1.3, a large part of this complete picture is already provided in the
existing literature, namely almost all the single-bound variants. Moreover, some of
the results for the general variants can be concluded with moderate effort from results
on the single-bound variants. What required more effort was to close the gap that was
left in the literature with respect to (s)-CloseSubstr (see Sect. 1.3) and to carry over
the fixed-parameter tractability from (r)-CloseStr(k) to (r, s)-CloseStr(k).

With respect to the outlier-variant, we are able to settle some more open problems
from the literature, but the fixed-parameter tractability of many parameterisations
remains unsettled. Our main positive algorithmic result is that (r, s)-CloseStr- wo
(dr , t) [and therefore (r, s)-CloseStr(dr )] is fixed-parameter tractable, which
is achieved by a non-trivial extension of a branching algorithm from [20] for
(r)-CloseStr(dr ). While the general branching strategy is analogous to the one of
[20], taking care of the distance sum bound and of the outliers requires some new ideas
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and leads to a more involved algorithm with a more complicated proof of correctness.
While this is interesting from a theoretical point of view, it is particularly interesting
in the light of the discussions at the beginning of Sect. 1 about the practical relevance
of parameters dr and t . In addition to several other simpler fixed-parameter tractability
results, we show, as the main negative result with respect to the outlier-variant, that
(s)-CloseStr- wo isW[1]-hard if parameterised by (ds, �, k− t); to the knowledge of
the authors, this constitutes also the first proof of NP-hardness of (s)-CloseStr- wo.
In particular, this shows that unlike CloseStr, for which the radius variant is hard
and the distance sum variant is trivial, the outlier-variant resembles the substring-
variant where both single-bound variants are hard (note that the general hardness of
the (s)-variant of CloseStr- wo was not known).

Finally,we investigate the questionwhether thefixed-parameter tractable variants of
the considered consensus string problems allow polynomial kernels; thus, continuing
a line of work initiated by Basavaraju et al. [2], in which kernelisation lower bounds
for (r)-CloseStr and (r)-CloseSubstr are proved. Some results from [2] about the
single-bound variants directly carry over to the general variants; our main contribution
is a cross-composition from (r)-CloseStr into (r)-CloseStr- wo, which rules out a
polynomial kernel for (r, s)-CloseStr- wo(dr , ds, �, (k − t), |Σ |).

1.5 Organisation of the Paper

In Sect. 2, we settle all parameterisations of the problem (r, s)-CloseStr. Then, in
Sect. 3, we consider the general as well as the single-bound variants of the outlier-
variant; this section also contains our main result, i. e., the branching algorithm for
(r, s)-CloseStr- wo(dr , t). The substring-variant will then be investigated in Sect. 4
and questions about kernelisations will be discussed in Sect. 5. Finally, in Sect. 6, we
summarise and discuss our results and mention the most interesting open problems.

2 CLOSEST STRING with Radius and Distance Sum Bound

We shall first give some useful definitions. It will be convenient to treat a set S = {si |
1 ≤ i ≤ k} ⊆ Σ� as a k × � matrix with entries from Σ . By the term column of S,
we refer to the transpose of a column of the matrix S, which is an element from Σk ;
thus, the introduced string notations apply, e. g., if c is the i th column of S, then c[ j]
corresponds to s j [i]. A string s ∈ Σ� is a majority string (for a set S ⊆ Σ�) if, for
every i , 1 ≤ i ≤ �, s[i] is a symbol with majority in the i th column of S. Obviously,
sH(s, S) = min{sH(s′, S) | s′ ∈ Σ�} if and only if s is a majority string for S. We call a
string s ∈ Σ� radius optimal or distance sum optimal (with respect to a set S ⊆ Σ�)
if rH(s, S) = min{rH(s′, S) | s′ ∈ Σ�} or sH(s, S) = min{sH(s′, S) | s′ ∈ Σ�},
respectively.

It is a well-known fact that (r)-CloseStr allows fpt-algorithms for any of the single
parameters k, dr or �, and it is still NP-hard for |Σ | = 2 (see [20]). While the latter
hardness result trivially carries over to (r, s)-CloseStr (by setting ds = k · dr ), we
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have to modify the fpt-algorithms for extending the fixed-parameter tractability results
to (r, s)-CloseStr.

We start with parameter k, for which we can extend the ILP-approach that is used
in [20] to show (r)-CloseStr(k) ∈ FPT. Before we can formally do this, we need a
few more definitions.

We say that S ⊆ Σ� is normalised, if Σ = {a1, a2, . . . , ak}, every column of S
contains the symbols {a1, a2, . . . , ap}, for some p, 1 ≤ p ≤ k, and the first occurrence
of ai , 1 ≤ i ≤ p − 1, occurs before the first occurrence of ai+1. If S is normalised,
any two isomorphic columns are equal (i. e., if two columns are not identical, then it
is not possible to obtain one from the other by bijective renaming of the symbols).
It can be easily seen that any (r, s)-CloseStr instance can be transformed into an
equivalent one with normalised S (see [20]). For both normalised and non-normalised
S, we use the term column-types to denote the different forms of columns, rather
than the collection of all columns, i. e., the set of column types of S is {c ∈ Σk |
c occurs as a column in S}.
Theorem 1 (r, s)-CloseStr(k) ∈ FPT.

Proof We extend the ILP-approach that has been used in [20] to show that
(r)-CloseStr(k) ∈ FPT. Let S = {si | 1 ≤ i ≤ k} ⊆ Σ� with columns t j , 1 ≤ j ≤ �,
and dr , ds ∈ N be a (r, s)-CloseStr instance. Let S be normalised, let T be the set
of column types and, for every t ∈ T , let ψt = |{ j | 1 ≤ j ≤ �, t j has type t}|,
i. e., the number of columns of type t . Note that |T | ≤ B(k) ≤ k! (where B(k) is
the Bell number). We extend the ILP from [20] that has a solution if and only if the
(r, s)-CloseStr instance has a solution. For every column type t and every a ∈ Σ , the
variable xt,a stands for the number |{ j | 1 ≤ j ≤ �, t j has type t, s[ j] = a}|, where
s is the hypothetical solution string. Intuitively speaking, the number xt,a says how
often a column of type t is paired with an occurrence of the symbol a in the solution
string. The inequalities of the ILP are as follows:

xt,a ≥ 0, t ∈ T , a ∈ Σ (The number of pairings is non-negative)∑
a∈Σ xt,a = ψt , t ∈ T (Type t is paired as often as it occurs in S)∑
t∈T

∑
a∈Σ\{t[i]} xt,a ≤ dr , 1 ≤ i ≤ k (Mismatches caused by each string bounded by dr )

∑k
i=1

∑
t∈T

∑
a∈Σ\{t[i]} xt,a ≤ ds (Total number of mismatches bounded by ds )

Since we can assume |Σ | ≤ k, we have k · B(k) variables and the result follows from
the fact that ILP parameterised by the number of variables is in FPT (see [22]). �

Next, we consider the parameter dr . For the (r)-variant of CloseStr, the fixed-
parameter tractability with respect to dr is shown in [20] by a branching algorithm,
which proved itself as rather versatile: it has successfully been extended in [6] to
(r)-CloseStr- wo(dr , t) and in [29] to (r)-CloseSubstr(dr , (�−m)). We shall next
briefly sketch this algorithm from [20].

Let S = {s1, s2, . . . , sk} ⊆ Σ�, dr ∈ N be an (r)-CloseStr instance and assume
that there is a solution string s. If s′ = s1 is not a solution string, i. e., rH(s′, S) ≥ dr +1,
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then there is some input string si with dH(s′, si ) ≥ dr +1.Moreover, every set { j | 1 ≤
j ≤ �, si [ j] �= s′[ j]} of cardinality dr + 1 must contain at least one position j , such
that si [ j] = s[ j] (otherwise dH(s, si ) ≥ dr + 1, which is a contradiction). Obviously,
in order to transform s′ to the solution string, this position j of s′ must be changed to
the one of si . Consequently, arbitrarily choosing a set { j | 1 ≤ j ≤ �, si [ j] �= s′[ j]}
of cardinality dr + 1, branching over all these dr + 1 positions and changing them in
s′ to the corresponding positions in si yields a branching algorithm for (r)-CloseStr
(note that a branching depth of dr is sufficient, since it must be possible to reach the
solution string by changing at most dr positions of s1).

We propose an extension of the same branching algorithm, that allows for a
bound ds on the distance sum; thus, it works for (r, s)-CloseStr(dr ). In fact, we
prove in Theorem 5 an even stronger result, where we also extend the algorithm to
exclude up to t outlier strings from the input set S, i. e., we extend it to the problem
(r, s)-CloseStr- wo(dr , t). Since Theorem 2 can therefore be seen as a corollary of
this result by taking t = 0, we only give an informal description of a direct approach
that solves (r, s)-CloseStr(dr ) (and refer to Theorem 5 for a formal proof of correct-
ness).

The main problem in extending the algorithm to the case of an additional bound ds
on the distance sum can be described as follows. If we start with some input string as
the first candidate string and then carry out the branching as sketched above, then we
have no guarantee that the resulting solution satisfies the distance sum bound ds . On
the other hand, if we start with some other candidate string that is somehow tailored
to the distance sum bound, we lose the guarantee that a solution can be reached by a
number of changes that only depends on dr (which is trivially the case if we start with
an input strings).

An obvious choice for a first candidate string for a branching algorithm that also
takes the distance sum bound into consideration is a majority string (see Fig. 2), since
this is the “best” string with respect to the distance sum bound. Starting with this
string, we can apply the same branching strategy in order to change it step by step
into a string that satisfies the radius bound. However, this can only result in a valid
fpt-algorithm (with respect to parameter dr ), if the branching depth can be bounded
by a function in dr , which is done by the following lemma [that we also need later for
the proof of correctness of the algorithm for (r, s)-CloseStr- wo(dr , t)].

Lemma 1 Let S ⊆ Σ�, s ∈ Σ� such that rH(s, S) ≤ dr , and let sm be a majority string
for S. Then dH(sm, s) ≤ 2dr .

Proof Let d̂ = dH(sm, s) and k = |S|. Let i , 1 ≤ i ≤ �, with sm[i] �= s[i] and let p be
the number of occurrences of sm[i] in the i th column of S. Obviously, if p ≥ k

2 , then
s[i] matches at most k − p ≤ k

2 entries of the i th column of S, and if p < k
2 , then s[i]

matches at most p entries of the i th column of S. Consequently, for every i , 1 ≤ i ≤ �,
if sm[i] �= s[i], then |{ j | 1 ≤ j ≤ k, s[i] �= s j [i]}| ≥ k/2. Summing over all i ,
1 ≤ i ≤ �, this implies sH(s, S) ≥ d̂ k

2 . Since rH(s, S) ≤ dr , we have sH(s, S) ≤ kdr .
Hence, kdr ≥ d̂ k

2 , that is d̂ ≤ 2dr . �
A branching algorithm for (r, s)-CloseStr(dr ) can now be sketched as follows.

We start with a majority string sm and apply the branching as described above. The

123



Algorithmica (2020) 82:1378–1409 1389

s1 d b a b b b b

s2 d a a b c c d

s3 d a a b c c d

s4 a a c c c c d

s5 a a c b c c d

s6 a c a b d b d

sm d a a b c c d

s1 d b a b b b b

s2 d a a b c c d

s3 d a a b c c d

s4 a a c c c c d

s5 a a c b c c d

s6 a c a b d b d

sm a b c d

d

d

d

a

a

a

a

a

a

c

c

a

b

c

c

c

c

b

(b)(a)
Fig. 2 a Amatrix of strings and its majority string. b The same matrix of strings, its refined majority string
and the disputed columns highlighted in grey

branching depth is bounded by 2dr (due to Lemma 1) and we cut any branch where the
distance sum goes beyond the threshold ds . If there exists a solution that satisfies the
dr bound, then there must be a path in the branching tree in which all changes of single
positions are necessary, and, since we started with a majority string, all unchanged
positions have a symbol that causes the fewest additional mismatches (for a formal
proof of correctness, we refer to Theorem 5).

Theorem 2 (r, s)-CloseStr(dr ) ∈ FPT.

It only remains to take a look at the parameters � and ds , for which containment
in FPT follows easily from known results. More precisely, we can assume dr ≤ � and
we can further assume that every column of S contains at least two different symbols
(all columns without this property could be removed), which implies sH(si , S) ≥ �

for every s ∈ Σ�; thus, we can assume � ≤ ds . Consequently, we obtain the following
corollary:

Corollary 1

– (r, s)-CloseStr(�) ∈ FPT.
– (r, s)-CloseStr(ds) ∈ FPT.

This completely settles the parameterised complexity of (r, s)-CloseStr with
respect to parameters k, dr , ds , |Σ | and � (see Table 1 for an overview of the results).
Recall that the (r)-variant is already settled, while the (s)-variant is trivial.

3 The Outlier-Variant

In this section, we investigate (r, s)-CloseStr- wo and their (r)- and (s)-variants. We
first prove several fixed-parameter tractability results for the general variant and we
consider the (r)- and (s)-variants later on.
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Table 1 Results for
(r, s)-CloseStr

k dr ds |Σ | � Result Note/Ref.

p − − − − FPT Theorem 1

− p − − − FPT Theorem 2

− − p − − FPT Corollary 1

− − − 2 − NP-hard From (r)-variant [19]

− − − − p FPT Corollary 1

First, we note that solving an instance of (r, s)-CloseStr- wo(k) can be reduced
to solving

(k
t

) ≤ 2k many (r, s)-CloseStr(k) instances, which, due to the fixed-
parameter tractability of the latter problem, yields the fixed-parameter tractability of
the former.

Theorem 3 (r, s)-CloseStr- wo(k) ∈ FPT.

Proof Let S = {si | 1 ≤ i ≤ k} ⊆ Σ�, � ∈ N, and integers dr , ds, t ∈ N be an
(r, s)-CloseStr- wo instance. We note that s ∈ Σ� and S′ ⊆ S with |S′| = k − t is a
solution of this instance if and only if s is a solution for the (r, s)-CloseStr instance
S′, dr , ds . Consequently, we can solve the (r, s)-CloseStr- wo instance by solving all
the

( k
k−t

)
many (r, s)-CloseStr instances (S1, dr , ds), (S2, dr , ds), . . ., (Sm, dr , ds),

where m = ( k
k−t

)
and the Si , 1 ≤ i ≤ m, are all subsets of S with cardinality k − t .

Since (r, s)-CloseStr(k) ∈ FPT (see Theorem 1), this yields an fpt-algorithm for
(r, s)-CloseStr- wo(k). �

We next show that if the number k − t of inliers exceeds ds , then an
(r, s)-CloseStr- wo instance becomes easily solvable; thus, k− t can be bounded by
ds . If in addition t is also a parameter, this implies that k is bounded, so fixed-parameter
tractability follows from Theorem 3.

Theorem 4 (r, s)-CloseStr- wo(ds, t) ∈ FPT.

Proof Let S = {si | 1 ≤ i ≤ k} ⊆ Σ� and dr , ds, t ∈ N be an (r, s)-CloseStr- wo
instance. If ds < k − t , then every solution string s must satisfy s = si , for some i ,
1 ≤ i ≤ k. Moreover, if si is a solution string, then si is a solution string with respect
to the set S′ ⊆ S containing the k− t strings with the least Hamming-distance from si .
Consequently, we can compute a solution in polynomial time. If, on the other hand,
k − t ≤ ds , then k − t and t can be considered parameters; thus, k is a parameter and
the result follows from (r, s)-CloseStr- wo(k) ∈ FPT (see Theorem 3). �

We now turn to the parameter dr . As briefly mentioned in Sect. 2, the algorithm
introduced in [20] to prove (r)-CloseStr(dr ) ∈ FPT has been extended in [6] with
an additional branching that guesses whether a string s j should be considered an
outlier or not; thus, yielding fixed-parameter tractability of (r)-CloseStr- wo(dr , t).
Moreover, we already sketched how the algorithm from [20] could be extended to
(r, s)-CloseStr(dr ). Next, we combine these two approaches in a non-trivial way
in order to obtain an fpt-algorithm for (r, s)-CloseStr- wo(dr , t) (as explained in
Sect. 2, this also provides a formal proof of Theorem 2).
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Themain problem about the general approach sketched in Sect. 2, i. e., starting with
the majority string as a first candidate, is that whether a certain symbol is a majority
symbol in a column depends on the choice of outliers. For example, both a and d are
majority symbols of the first column of the matrix of Fig. 2a, but if t = 2 and s1 and
s2 are declared as outliers, then, in case that the first symbol is not changed by the
branching modifications, it is possible that d was a bad choice, since it causes more
mismatches compared to a (with respect to the matrix from which the outliers are
removed). In order to deal with this issue, we refine the concept of a majority string
and tailor it to the outlier-variant.

Let (S, ds, dr , t) be an instance of (r, s)-CloseStr- wo(dr , t) and let (S∗, s∗) be
a solution for this instance. We say that a character x is frequent in column i if it has
at least as many occurrences as a majority character minus t (thus, for any S′ ⊆ S,
|S′| ≥ |S| − t , all majority characters for S′ are frequent characters). A column i is
disputed if it contains at least two frequent characters. Let � /∈ Σ be a new symbol
and let sm be the majority string of S. The refined majority string s�

m ∈ (Σ ∪ {�})∗
(with respect to S and t) is defined by s�

m[i] = sm[i] if i is not a disputed column
and s�

m[i] = � if i is a disputed column, for every i , 1 ≤ i ≤ � (see Fig. 2b for an
example).

More generally, a string s′ ∈ (Σ ∪ {�})� is a lower bound for a solution s∗, if, for
every i such that s′[i] �= s∗[i], either i is a disputed column and s′[i] = �, or i is
not disputed and s′[i] is the majority character for column i of S∗ (which is equal to
the majority character for column i of S). Intuitively speaking, whenever a character
s′[i] differs from s∗[i], it is the majority character of its column (except for disputed
columns in which we use an “undecided” character �). In particular, note that the
refined majority string is by definition a lower bound. A completion for S′ ⊆ S of
a string s′ ∈ (Σ ∪ {�})∗ is the string obtained by replacing each occurrence of � by
a majority character of the corresponding column in S′ (for example, in Fig. 2(b),
a possible completion for {s3, s4, s5, s6} of the refined majority string s�

m would be
aacbccd).

The following lemma states that the number of disputed columns of S can be
bounded in terms of dr , which shall be a central building block of the following
branching algorithm.

Lemma 2 Let (S, ds, dr , t) be a positive instance of (r, s)-CloseStr- wo(dr , t) with
D disputed columns. If k ≥ 5t , then D ≤ 4dr .

Proof Let (S∗, s∗) be a solution for the instance (S, ds, dr , t). In a disputed column i ,
no character occurs more than k+t

2 times, hence, among the k − t strings of S∗, there
are at least (k − t) − k+t

2 = k−3t
2 mismatches at position i . The disputed columns

thus introduce at least D k−3t
2 mismatches. Since the overall number of mismatches

is upper-bounded by dr (k − t), we have D ≤ 2dr (k−t)
k−3t = 2dr

(
1 + 2t

k−3t

)
, and, with

k ≥ 5t , the upper-bound D ≤ 4dr follows. �
We are now ready to present the fpt-algorithm for (r, s)-CloseStr- wo(dr , t) and

prove its correctness (an illustration of the algorithm is provided by Fig. 3).

Theorem 5 (r, s)-CloseStr- wo(dr , t) ∈ FPT.
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Algorithm 1: Solve CSO

Input : S′ ⊆ S, t ′ ∈ N, s′ ∈ (Σ ∪ {�})�, d ′ ∈ N

Output: a pair (S∗, s∗) or the symbol �
1 if t ′ = 0 then
2 s′′ = completion of s′ in S′;
3 if sH(s′′, S′) ≤ ds , and rH(s′′, S′) ≤ dr then return (S′, s′′);
4 if d ′ = 0 then return �;
5 Let s j ∈ S′ be such that dH(s′, s j ) is maximal;
6 if t ′ > 0 then
7 sol = Solve CSO(S′\{s j }, t ′ − 1, s′, d ′);
8 if sol �= � then return sol;
9 if d ′ > 0 then

10 Let I ⊆ {1, . . . , �} contain dr + 1 indices i s. t. s′[i] �= s j [i] (or all indices if dH(s j , s
′) ≤ dr );

11 for i ∈ I do
12 s′′ = s′, s′′[i] = s j [i];
13 sol = Solve CSO(S′, t ′, s′′, d ′ − 1);
14 if sol �= � then return sol;
15 return �;

Input: s1 = d b a d d c b c d b b d b b
dr = 5 s2 = d a a a a c b c d c c d b d
ds = 14 s3 = d a a d d a b c a c c d b d
t = 2 s4 = a a c d a c c d c c c a b d

s5 = a a c d a a b d a c c a d d
D = 10 s6 = a c a a a a b c d d b a d d

Step S t s d rH(s , S ) action
1 {s1, s2, . . . , s6} 2 a b c d 20 13 s[3] ← s1[3]
2 {s1, s2, . . . , s6} 2 a a b c d 19 12 s[12] ← s1[12]
3 {s1, s2, . . . , s6} 2 a a b c d d 18 11 remove s6
4 {s1, s2, . . . , s5} 1 a a b c d d 18 11 s[6] ← s1[6]
5 {s1, s2, . . . , s5} 1 a a c b c d d 17 10 remove s5
6 {s1, . . . , s4} 0 a a c b c d d 17 10

s = d a a d a c b c d c c d b d s[7] ← s4[7]
7 {s1, . . . , s4} 0 a a c c c d d 16 10

s = d a a d a c c c d c c d b d return S , s

Fig. 3 Example for Algorithm 1 on an instance of (r, s)-CloseStr- wo. The shown steps correspond to
one branch that yields a correct solution. The algorithm starts with the refined majority string. At each
step, the algorithm either inserts a character from an input string at maximal distance from s′ (note that
even non-disputed characters may be replaced), or removes one such string. When t = 0, it is checked
whether the completion s′′ of s′ is a correct solution. At step 7, we return a solution with rH(s′′, S′) = 5
and sH(s′′, S′) = 14

Proof Let (S, ds, dr , t) be an instance of (r, s)-CloseStr- wo(dr , t). We assume that
k ≥ 5t , since for all other instances, k can be considered as a parameter and therefore
they can be solved in fpt-time according to Theorem 3.

The algorithm is presented as Algorithm 1 and in the following, we denote it by
Solve CSO. The algorithm is formulated in a recursive way and in any recursive call,
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it receives as input a set S′ of the remaining input strings (i. e., the initial input strings
with some outliers removed), a number t ′ that denotes how many outlier-choices are
left, a current candidate string s′ (over Σ ∪ {�}) and a number d ′ denoting how many
branching steps are left. Throughout this proof, we use S′, t ′, s′ and d ′ to denote the
current input of a recursive call of Solve CSO in order to avoid any confusion with
the components S, ds, dr and t of the (r, s)-CloseStr- wo-instance to be solved.

We first show that any recursive call to Solve CSO(S′, t ′, s′, d ′) returns after fpt-
time with respect to dr , d ′ and t ′.

Claim 1 Any call to the algorithm Solve CSO(S′, t ′, s′, d ′) always returns after time
O∗((dr + 1)d

′
2d

′+t ′).

Proof of Claim 1 We prove this running time by induction: if d ′ = t ′ = 0, then the
function returns in Line 3 or 4; thus, it returns after polynomial time. Otherwise, it
performs at most dr + 1 recursive calls with parameters (d ′ − 1, t ′), and one recursive
call with parameters (d ′, t ′ −1). By induction, the complexity of this step is O∗((dr +
1)(dr + 1)d

′−12d
′+t ′−1 + (dr + 1)d

′
2d

′+t ′−1) = O∗((dr + 1)d
′
2d

′+t ′). (Claim 1)�
In the following, we say that a tuple (S′, t ′, s′, d ′) is valid if |S′|− t ′ = |S|− t , there

exists an optimal solution (S∗, s∗) for which S∗ ⊆ S′, |S∗| = |S′|−t ′, dH(s′, s∗) ≤ d ′,
and s′ is a lower bound for s∗ (in the sense defined above). A call of the algorithm is
valid if its parameters form a valid tuple, its witness is the pair (S∗, s∗).

Claim 2 Any valid call to Solve CSO either directly returns a solution or performs
at least one recursive valid call.

Proof of Claim 2 Let S′ ⊆ Σ�, t ′ ≥ 0, s′ ∈ (Σ ∪ {�})�, and d ′ ≥ 0. Consider the call
to Solve CSO(S′, t ′, s′, d ′). Assume it is valid, with witness (S∗, s∗). We prove the
statement of the claim by considering several cases:

Case 1 If d ′ = t ′ = 0, then s∗ = s′ and S∗ = S′. The completion s′′ of s′ is
exactly s′, and since (S′, s′) is a solution, it satisfies the conditions of Line 3 and
is returned on Line 3.
Case 2 If t ′ = 0 and∀s ∈ S′ : dH(s, s′) ≤ dr . Then S∗ = S′ and s′ is a lower bound
for s∗. Let s′′ be the completion of s′. We show that sH(s′′, S′) ≤ sH(s∗, S′) ≤ ds .
Indeed, consider any column i with s′′[i] �= s∗[i]. Either s′[i] = �, in which case
s′′[i] is the majority character for column i of S′, or s′[i] �= �, in which case by the
definition of lower bound, i is not a disputed column and s′[i] = s′′[i] contains the
only frequent character of this column, which is the majority character for S′. In
both cases, s′′[i] is a majority character for S′ in any column where it differs from
s∗; thus, it satisfies the upper bound on the distance sum. Since it also satisfies the
distance radius (by the case hypothesis: dH(s, s′′) ≤ dH(s, s′) ≤ dr for all s ∈ S′),
it satisfies the conditions of Line 3; thus, solution (S′, s′′) is returned on Line 3.

In the following cases, we can thus assume that the algorithm reaches Line 5. Indeed,
if it returns on Line 3 then it returns a solution, and if it returns on Line 4 then we have
d ′ = t ′ = 0, which is dealt in Case 1 above (the algorithm may not return on this line
when it has a valid input). We can thus define s j to be the string selected in Line 5.
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Case 3 s j ∈ S′\S∗. Then in particular t ′ > 0; and since S∗ ⊆ S′\{s j }, the recursive
call in Line 7 is valid, with the same witness (S∗, s∗).
Case 4 s j ∈ S∗, d ′ = 0 and t ′ > 0. Then s′ = s∗, let s′

j be any string of
S′\S∗, and S+ = S∗\{s′

j } ∪ {s j }. Then the pair (S+, s∗) is a solution, since
dH(s∗, s′

j ) ≤ dH(s∗, s j ) by definition of s j . Thus the recursive call on Line 7 is
valid, with witness (S+, s∗).
Case 5 s j ∈ S∗, d ′ > 0 and dH(s j , s′) > dr . Consider the set I defined in
Line 10. Since I has size dr + 1, there exists i0 ∈ I such that s j [i0] = s∗[i0].
Then the recursive call with parameters (S′, t, s′′, d ′ − 1) in Line 13 with i = i0
is valid with the same witness (S∗, s∗). Indeed, s′′ is obtained from s′ by setting
s′′[i0] = s∗[i0] �= s′[i0], hence, all mismatches between s′′ and s∗ already exist
between s′ and s∗, which implies that s′′ is still a lower bound for s∗. Moreover,
dH(s′′, s∗) = dH(s′, s∗) − 1 ≤ d ′ − 1.

Next, we observe that from now on, we can assume that d ′ > 0 and t ′ > 0. Indeed,
if d ′ = 0, t ′ = 0, then we have already dealt with this situation in case 1. If d ′ = 0,
t ′ > 0 then either case 3 applies (i. e., if s j ∈ S′\S∗) or case 4 applies (i. e., if s j ∈ S∗).
Finally, if d ′ > 0, t ′ = 0, then either case 2 applies (i. e., if ∀s ∈ S′ : dH(s, s′) ≤ dr )
or, depending on whether or not s j ∈ S∗, either case 3 applies or case 5 applies.
Moreover, with cases 3 and 5, we can assume that s j ∈ S∗ and dH(s j , s′) ≤ dr (i.e.
dH(s, s′) ≤ dr for all s ∈ S∗).

Case 6 There exists i0 such that s j [i0] = s∗[i0] �= s′[i0]. Then again consider the
set I defined in Line 10. Since dH(s j , s′) ≤ dr , we have i0 ∈ I , and, with the same
argument as in Case 5, there is a valid recursive call in Line 13 when i = i0.
Case 7 For all i , s j [i] �= s′[i] ⇒ s j [i] �= s∗[i]. In this case no character from s j
can be used to improve our current solution, so the character switching procedure
Line 13 will not improve the solution, but still s j is part of our witness set S∗, so
it is not clear a priori that we can remove s j from our current solution, i.e. that the
recursive call on Line 7 is valid.
We will now show that also in this case the recursive call on Line 7 is valid. Let
s+ be obtained from s′ by filling the �-positions of s′ with the corresponding
symbols of s∗. We now show that (S∗, s+) is a solution and we start with showing
that s+ satisfies the radius bound. To this end, let s ∈ S∗ be chosen arbitrarily.
If, for some i with 1 ≤ i ≤ �, s[i] �= s+[i] then either the symbol s+[i] has
been created by replacing symbol � on position i in s′ by s∗[i], which means that
s[i] �= s′[i], or s+[i] = s′[i], which also means that s[i] �= s′[i]. Consequently,
dH(s, s+) ≤ dH(s, s′) ≤ dr , i. e., the radius is satisfied. Regarding the distance
sum, we note that if s+[i] �= s∗[i], then, since occurrences of � of s′ have been
replaced by the corresponding symbol from s∗, s′[i] �= �, which, by the definition
of lower bound, implies that s+[i] = s′[i] is the majority character for column i of
S∗. Consequently,

∑
s∈S∗ dH(s+[i], s[i]) ≤ ∑

s∈S∗ dH(s∗[i], s[i]), which implies
sH(s+, S∗) ≤ sH(s∗, S∗) ≤ ds .
Having defined a new solution string s+ (with respect to S∗), we now prove that
s+ is also a solution string with respect to S+ = (S∗\{s j }) ∪ {s′

j }, where s′
j is any

string of S′\S∗. To this end, we prove that dH(s′
j , s

+) ≤ dH(s j , s+); together with
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the fact that dH(s′
j , s

′) ≤ dr , this implies that (S+, s+) is a solution. For two strings

s1, s2 ∈ (Σ∪{�})�, let d�(s1, s2) be the number ofmismatches between s1 and s2 at
positions i such that s′[i] = �, and dΣ(s1, s2) be the number ofmismatches at other
positions. Clearly dH(s1, s2) = d�(s1, s2) + dΣ(s1, s2). Comparing strings s j and
s′
j to s′, we have d�(s j , s′) = d�(s′

j , s
′) (both distances are equal to the number

of occurrences of � in s′). Since dH(s j , s′) is maximal, we have dΣ(s′
j , s

′) ≤
dΣ(s j , s′). Consider now s+. Since s+ is equal to s′ in every non-� characters,
we have dΣ(s′

j , s
+) ≤ dΣ(s j , s+). Finally, for any i such that s′[i] = �, by

hypothesis of this case we have s j [i] �= s∗[i] = s+[i], hence d�(s j , s+) is equal
to the number of occurrences of � in s′, which is an upper bound for d�(s′

j , s
+).

Overall, d(s′
j , s

+) ≤ d(s j , s+), and (S+, s+) is a solution.
Thus, (S+, s+) is a solution such that S+ ⊆ S′\{s j }, s′ is a lower bound for s+,
and dH(s′, s+) ≤ d ′, hence the recursive call in Line 7 is valid.

This concludes the proof of the claim. (Claim 2)�
In Particular, Claim 2 implies that any valid call to Solve CSO returns a solution.

Indeed, if it does not directly return a solution, then it receives a solution of a more
constrained instance from a valid recursive call, which is returned on Line 8 or 14.

Next, we show that starting the algorithm with parameters S′ = S, t ′ = t , s′ = s�
m

and d ′ = 2dr + D (where D is the number of disputed columns) is a valid call.

Claim 3 Solve CSO(S, t, s�
m, 2dr + D) is a valid call.

Proof of Claim 3 Consider a solution (S∗, s∗). We need to check whether dH(s∗, s�
m) ≤

2dr +D, andwhether s�
m is a lower bound of s∗. The latter follows by definition and has

already been observed above. String s∗ can be seen as a solution of (r, s)-CloseStr
over S∗, dr , ds , thus, Lemma 1 implies that the distance between s∗ and the majority
string of S∗ is at most 2dr . Hence there are at most 2dr mismatches between s�

m and s∗
in non-disputed columns (since in those columns, the majority characters are identical
in S and S∗). Adding the D mismatches from disputed columns, we get the 2dr + D
upper bound. (Claim 3)�

Finally, we note that, according to Lemma 2 (recall that we initially made the
assumption k ≥ 5t), D ≤ 4dr . Consequently, the above claims imply that calling
Solve CSO with parameters S, t, s�

m, 6dr solves the (r, s)-CloseStr- wo instance
in time O∗((dr + 1)6dr 26dr+t ). �

Next, we consider the (r)- and (s)-variants of CloseStr- wo. With respect to
(r)-CloseStr- wo, the fixed-parameter tractability with respect to k and (|Σ |, dr , k−
t) are reported as open problems in [6]. Since Theorem 3 also applies to
(r)-CloseStr- wo (by setting ds = kdr ), the only open cases left for the (r)-variant
are the following.

Question 1 What is the fixed-parameter tractability of (r)-CloseStr- wowith respect
to (|Σ |, k − t), (|Σ |, dr ) and (|Σ |, dr , k − t)?

We now turn to the (s)-variant of CloseStr- wo (which, to the knowledge of the
authors, has not yet been considered in the literature). We recall that the (r)-variant of
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Fig. 4 Illustration of the reductions of Theorems 6 and 7: a is an example instance of
Multi- Coloured Clique (with kc = 3, q = 2 and colour classes {a,b}, {c,d} and {e,f}), b
is the (s)-CloseStr- wo instance obtained from the graph by the reduction of Theorem 6 (where
Γ = {�i | 1 ≤ i ≤ 7}, t = |E | − (kc

2
) = 7 − 3 = 4, ds = (kc

2
)
(kc − 2) = 3), c is the same

instance, but with the appropriate outliers crossed out and a solution string representing a kc-clique, and
d shows the (s)-CloseSubstr instance obtained from the graph by the reduction of Theorem 7 [where
m = kc + 1 = 4, ds = (|E |(kc + 2) + 1)qkc + |E |kc − kc(kc−1)

2 = 234; note that by definition, each of
the the first q = 2 strings, i. e., the strings V j , is repeated |E |(kc + 2) + 1 = 36 times], the appropriate
substrings of length kc + 1 highlighted in grey and a solution string representing a kc-clique

CloseStr is hard, while its (s)-variant is trivial. For the substring-variant we have a
quite different situation, since both single-bound variants of CloseSubstr are hard.
We shall see next that the outlier-variant resembles the substring-variant in this regard,
i. e., both single-bound variants are hard [for the (r)-variant this is known [6], while
for the (s)-variant this is established by the following theorem].

We use a reduction from the problemMulti- Coloured Clique (which isW[1]-
hard, see [12]). The problem Multi- Coloured Clique is identical to the standard
parameterisation of Clique (i. e., we want to find a clique of a given size kc, and kc is
also the parameter), but the input graphG = (V , E) has a partition V = V1∪· · ·∪Vkc ,
such that every Vi , 1 ≤ i ≤ kc, is an independent set (we denote the parameter by kc
to avoid confusion with the number of input strings k).

LetG = (V1∪· · ·∪Vkc , E) be aMulti- Coloured Clique instance.Without loss
of generality, we assume that, for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc,
i. e., each vertex has an index depending on its colour-class and its rank within its
colour-class. Let Σ = V ∪ Γ , where Γ is some alphabet with |Γ | = |E |(kc − 2). For
every e = (vi, j , vi ′, j ′) ∈ E , let se ∈ Σkc with se[i] = vi, j , se[i ′] = vi ′, j ′ and all other
non-defined positions are filled with symbols fromΓ such that each x ∈ Γ has exactly
one occurrence in the strings se, e ∈ E . We set S = {se | e ∈ E}, t = |E | − (kc

2

)
and

ds = (kc
2

)
(kc − 2). See Fig. 4(a), (b) and (c) for an illustration of the reduction and the

following proof.

Theorem 6 (s)-CloseStr- wo(ds, �, k − t) is W[1]-hard.
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Proof We prove that the reduction defined above is a parameterised reduction from
Multi- Coloured Clique to (s)-CloseStr- wo(ds, �, k − t). To this end, let G =
(V1 ∪ · · · ∪ Vkc , E) be a Multi- Coloured Clique instance and let S, t and ds be
obtained from G by the reduction. We first note that � = kc, ds = (kc

2

)
(kc − 2) and

k − t = (kc
2

)
, which shows that the parameters of the (s)-CloseStr- wo instance are

all bounded by a function in kc. It remains to prove that G has a clique of size kc if
and only if the (s)-CloseStr- wo instance has a solution.

Let K be a clique of G of size kc, let s ∈ Σkc be defined by {s[i]} = K ∩ Vi ,
1 ≤ i ≤ kc, and let S′ = {se | e ⊆ K }. Since dH(s, s′) = kc − 2, for every s′ ∈ S′,
sH(s, S′) = ds . Consequently, S′ and s is a solution for the (s)-CloseStr- wo instance
S, t , ds .

Now let s ∈ Σkc and S′ ⊆ Swith |S′| = (kc
2

)
be a solution for the (s)-CloseStr- wo

instance S, t , ds . If, for some s′
1 ∈ S′, dH(s′

1, s) ≥ kc − 1, then there is an s′
2 ∈ S′ with

dH(s′
2, s) ≤ kc − 3. Thus, for some i , 1 ≤ i ≤ kc, s[i] = s′

2[i] and s′
2[i] ∈ Γ , which

implies that replacing s[i] by s′
1[i] does not increase sH(s, S′). Moreover, after this

modification, dH(s′
1, s) has decreased by 1, while dH(s′

2, s) ≤ kc − 2. By repeating
such operations, we can transform s such that dH(s′, s) ≤ kc − 2, s′ ∈ S′. Next,
assume that, for some i , 1 ≤ i ≤ kc, there is an S′′ ⊆ S′ with |S′′| = kc and, for
every s′ ∈ S′′, s[i] = s′[i]. Since dH(s′, s) ≤ kc − 2 for every s′ ∈ S′′, pigeon-hole
principle implies that there are s′

1, s
′
2 ∈ S′′ with s′

1[i ′] = s′
2[i ′] = s[i ′], for some i ′,

1 ≤ i ′ ≤ kc, and i ′ �= i , which, by the structure of the strings of S, is a contradiction.
Consequently, for every i , 1 ≤ i ≤ kc, s matches with at most kc − 1 strings from S′
at position i . Since there are at least 2

(kc
2

) = kc(kc − 1) matches, we conclude that,
for every i , 1 ≤ i ≤ kc, s[i] matches exactly kc − 1 times with the i th position of a
string from S′. Hence, s[i] ∈ Vi , 1 ≤ i ≤ kc, i. e., s = v1,r1v2,r2 . . . vkc,rkc , for some
r j ∈ {1, 2, . . . , q}, 1 ≤ j ≤ kc. Let K = {v1,r1 , v2,r2 , . . . , vkc,rkc }. For every s′ ∈ S′,
by definition of the strings se, we have dH(s, s′) ≥ kc − 2, combining with the upper
bound proved earlier, we conclude dH(s, s′) = kc − 2, for every s′ ∈ S. Now let
e = (vi, j , vi ′, j ′) ∈ E be such that se ∈ S′. From dH(s, se) = kc − 2 its follows that
s[i] = vi, j and s[i ′] = vi ′, j ′ , which implies e ⊆ K . Since |S| = (kc

2

)
, there are

(kc
2

)

edges connecting vertices from K ; thus, K is a clique. �
We note that the reduction used in the proof of Theorem 6 can also be

used in order to obtain a simpler proof for the W[1]-hardness of the problem
(r)-CloseStr- wo(dr , �, k − t) shown in [6]. More precisely, this is achieved by
simply setting dr = kc − 2 instead of ds = (kc

2

)
(kc − 2). In contrast, the reduction

used in [6] to show the W[1]-hardness of (r)-CloseStr- wo(dr , �, k − t) (which is
from the Clique problem instead of Multi- Coloured Clique) does not work for
the (s)-variant (more precisely, the reduction produces an instance the distance sum
of which is not bounded in terms of the clique size).

These results, together with the known results from [6], settle a large number of
parameterisations of the different outlier-variants of CloseStr. However, many cases
are still open; see Table 2 for a summary. This is due to the fact that, unlike for
CloseStr, not even the single-bound variants are completely settled, and there are
more parameters to be considered. We shall discuss the most interesting respective
open cases in Sect. 6.
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4 The Substring-Variant

In this section, we consider the substring-variants of CloseStr, i. e., the different
variants of the problem CloseSubstr. Similar to CloseStr, all parameterisations of
the (r)-variant, and almost all parameterisations of the (s)-variant are already settled
in the literature (while the variant with both bounds has not yet been considered
in the literature). As has been done in Sect. 2 for (r, s)-CloseStr, we are able to
classify all parameterisations of (r, s)-CloseSubstr (and its single-bound variants)
with respect to the parameters �, k, m, dr , ds and |Σ | into either fixed-parameter
tractable or W[1]-hard (thus, also solving the case left open in the literature with
respect to (s)-CloseSubstr).

With respect to the (s)-variant, the status of (s)-CloseSubstr(�) is unknown,
which is mentioned as open problem in [29]. We shall first close this gap by proving
this parameterisation to be W[1]-hard.

We devise a reduction from Multi- Coloured Clique. Let G = (V1 ∪ . . . ∪
Vkc , E) be a Multi- Coloured Clique instance. We again assume that, for some
q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index depending
on its colour-class and its rank within its colour-class. Let Σ = V ∪ {$,�}. For
every j , 1 ≤ j ≤ q, we list all j th elements of the colour-classes as a string V j =
$v1, jv2, j . . . vkc, j . For every edge e = (vi, j , vi ′, j ′) with i < i ′, we define a string
Ee = $�ivi, j�i ′−i−1vi ′, j ′�kc−i ′−1. Note that Ee = $�E ′

e, where |E ′
e| = kc, the positions

i and i ′ of E ′
e are vi, j and vi ′, j ′ , respectively, and all remaining positions are �. The

(s)-CloseSubstr instance is now defined as follows. Let S contain N = |E |(kc +
2)+ 1 occurrences of each V j , 1 ≤ j ≤ q, and one occurrence of each Ee, e ∈ E , and
let m = kc + 1. See Fig. 4a, d for an illustration of the reduction.

For proving the correctness of the reduction, we first extend the notation of radius
optimal and distance sum optimal to sets S ⊆ Σ≤� and strings s ∈ Σm in the natural
way by taking all sets S′ of length-m substrings of the string in S into account. The
next lemma shows that distance sum optimal strings (with respect to S and m) are
basically lists of vertices from each colour-class.

Lemma 3 If s ∈ Σkc+1 is distance sum optimal with respect to S, then s ∈ {$} · V1 ·
V2 · . . . · Vkc .
Proof We first note that a string s ∈ Σkc+1 is a majority string of {V j | 1 ≤ j ≤ q} if
and only if s ∈ {$}·V1·V2·. . .·Vkc .More precisely, the first columnof {V j | 1 ≤ j ≤ q}
is $q and, for every i , 2 ≤ i ≤ kc + 1, the i th column of {V j | 1 ≤ j ≤ q} contains
every vertex from Vi exactly once, so every v ∈ Vi has majority in column i .

Now let s ∈ Σkc+1 be such that s is not a majority string for {V j | 1 ≤ j ≤ q},
which implies that s is not distance sum optimal with respect to {V j | 1 ≤ j ≤ q}.
Since every V j , 1 ≤ j ≤ q, has N = |E |(kc + 2) + 1 occurrences in S, any majority
string for {V j | 1 ≤ j ≤ q}, in comparison with s, causes at least |E |(kc+2)+1 fewer
mismatches with respect to all occurrences of the strings {V j | 1 ≤ j ≤ q}. Since the
total number of symbols of the remaining strings in {Ee | e ∈ E} is |E |(kc + 2), this
cannot be compensated, which means that a majority string for {V j | 1 ≤ j ≤ q} has
lower distance sum than s and therefore s is not distance sum optimal with respect to
S and m. �
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Now let s be distance sum optimal with respect to S and m. From Lemma 3,
we can conclude that s = $v1,r1v2,r2 . . . vkc,rkc , for some r j ∈ {1, 2, . . . , q},
1 ≤ j ≤ kc. Let K be the corresponding set of vertices induced by s, i. e.,
K = {v1,r1 , v2,r2 , . . . , vkc,rkc }.
Lemma 4 Let e ∈ E. The optimal distance between s and a length-(kc + 1) substring
of Ee is kc − 1 if e ⊆ K, and kc otherwise.

Proof Wefirst recall that s[1] = $, s[i+1] ∈ Vi , 1 ≤ i ≤ kc, and s has no occurrences
of �. Now let e = (vi, j , vi ′, j ′). The string Ee has two length-m substrings: Ee[1..kc+1]
and Ee[2..kc + 2]. The string Ee[1..kc + 1] starts with $, has vi, j and vi ′, j ′ at positions
i + 2 and i ′ + 2 (if i ′ + 2 ≤ kc + 1), respectively, and � at every other position.
Consequently, due to the structure of s, the strings s and Ee[1..kc + 1] only match at
position 1, which implies dH(s, Ee[1..kc + 1]) = kc.

On the other hand, the string Ee[2..kc+2] starts with�, has vi, j and vi ′, j ′ at positions
i + 1 and i ′ + 1, respectively, and � at every other position. Consequently, the only
possible matching positions between s and Ee[2..kc + 2] are i + 1 and i ′ + 1. We note
that both of these positions match if and only if s[i + 1] = vi, j and s[i ′ + 1] = vi ′, j ′ ,
which means that dH(s, Ee[2..kc + 2]) = kc − 1 if and only if e ⊆ K . If only one or
none of these positions match, then dH(s, Ee[2..kc + 2]) ≥ kc. �

Using the lemmas from above, we can now show the correctness of the reduction.

Theorem 7 (s)-CloseSubstr(�,m) is W[1]-hard.
Proof We first note that � = kc + 2 and m = kc + 1; thus, the parameters are bounded
by a function in kc.

Let s ∈ Σkc+1 be distance sum optimal with respect to S and m, and let K be
the corresponding set of vertices. We first note that the total distance from s to the
N copies of the strings V j , 1 ≤ j ≤ q, is exactly Nqkc. According to Lemma 4,
for every e ∈ E , the optimal distance sum between s and the respective substring
of Ee is kc − 1 if e ⊆ K , and kc otherwise. Hence, the total distance sum from s to
the respective substrings of Ee, e ∈ E , is |E |kc − r , where r = {e ∈ E | e ⊆ K },
and the total distance sum between s and S is therefore Nqkc + |E |kc − r . This
implies that the distance sum between s and S is Nqkc + |E |kc − (kc

2

)
if and only if

r = (kc
2

)
if and only if K is a clique of size kc. Consequently, the above reduction,

with the addition of ds = Nqkc + |E |kc − (kc
2

)
, is a parameterised reduction from

Multi- Coloured Clique to (s)-CloseSubstr(�,m). �
Theorem 7 together with known results from the literature completely settle the

parameterised complexity of (s)-CloseSubstr. See Table 3 for an illustration.2

Moving on to the problem (r, s)-CloseSubstr, we first observe that reducing
(s)-CloseSubstr to (r, s)-CloseSubstr by setting dr = m is a parameterised reduc-
tion from (s)-CloseSubstr(�,m) to (r, s)-CloseSubstr(�,m, dr ), which implies
the following corollary.

2 For a corresponding table of the already known results for (r)-CloseSubstr, see, e. g., [29, Table 1].
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Table 3 Results for
(s)-CloseSubstr

� k m ds |Σ | Result Reference

p p − − − FPT [29]

p − p − − W[1]-hard Theorem 7

p − − p − FPT [29]

p − − − p FPT [29]

− p − − 2 W[1]-hard [16]

− p p p − W[1]-hard [16]

− − p − p FPT Trivial

− − − p p FPT [25]

Corollary 2 (r, s)-CloseSubstr(�,m, dr ) is W[1]-hard.
Next, we consider several fixed-parameter tractable variants of the problem

(r, s)-CloseSubstr. To this end, we first observe the following obvious parameter
dependencies:

Remark 1 For (r, s)-CloseSubstr, without loss of generality, we can assume the
following dependencies between the parameters:

1. m ≤ �,
2. |Σ | ≤ � k,
3. k ≤ ds .

Points 1 and 2 of Remark 1 are straightforward. With respect to Point 3, we note
that if ds < k, then every solution string is identical to some length-m substring of
some input string and therefore the (r, s)-CloseSubstr-instance can be solved in
polynomial time (i. e., by checking all length-m substrings of the input strings si ,
1 ≤ i ≤ k).

Theorem 8 All of the following problems are in FPT:

– (r, s)-CloseSubstr(m, |Σ |),
– (r, s)-CloseSubstr(�, k),
– (r, s)-CloseSubstr(�, |Σ |),
– (r, s)-CloseSubstr(�, ds).

Proof The problem (r, s)-CloseSubstr(m, |Σ |) is obviously in FPT, since there are
only |Σ |m possible candidates for solution strings. With Points 1 and 2 of Remark 1,
this directly implies (r, s)-CloseSubstr(�, |Σ |) ∈ FPT and (r, s)-CloseSubstr(�, k)
∈ FPT. With Point 3 of Remark 1, we can assume that k ≤ ds , which implies that for
(r, s)-CloseSubstr(�, ds) also � and k are parameters, a variant for which contain-
ment in FPT is already shown. �

From the new results presented in this section and the existing results for the single-
bound variants, it follows that all remaining parameterisations of (r, s)-CloseSubstr
areW[1]-hard.More precisely, it is known that the problem (r)-CloseSubstr isW[1]-
hard for parameterisations (k, dr , |Σ |) (see [25]) and (k,m, dr ) (see [16]). Hence, the
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Table 4 Results for (r, s)-CloseSubstr

� k m dr ds |Σ | Result Reference

− − p − − p FPT Theorem 8

p p − − − − FPT Theorem 8

p − − −− p − FPT Theorem 8

p − − − − p FPT Theorem 8

p − p p − − W[1]-hard Corollary 2, Open Prob. in [29]

− p − p p p W[1]-hard [25]

− p p p p − W[1]-hard [16]

obvious reduction, i. e., setting ds = k dr , shows that (r, s)-CloseSubstr isW[1]-hard
for the parameterisations (k, dr , ds, |Σ |) and (k,m, dr , ds). As can be checkedwith the
help of Table 4, this now classifies all parameterised variants of (r, s)-CloseSubstr.

5 Kernelisation

Before we can discuss kernelisation results for the consensus string problems, we
need a few more preliminary concepts and results (see [18] for a recent textbook on
kernelisation). First, we recall the concept of a polynomial parameter transformation
from [4]. A polynomial parameter transformation from a parameterised problem P1
to a parameterised problem P2 is a polynomial time computable function f that maps
P1 instances to P2 instances and a polynomial p, such that, for every P1 instance (x, k)
with f (x, k) = (x ′, k′), we have

– (x, k) is a positive instance if and only if (x ′, k′) is a positive instance,
– k′ ≤ p(k).

Theorem 9 ([4]) Let P1 and P2 be parameterised problems, and let P̂1 and P̂2 be the
corresponding classical problems derived from P1 and P2. Moreover, assume that P̂1
is NP-complete, P̂2 ∈ NP and there is a polynomial parameter transformation from
P1 to P2. If P2 has a polynomial kernel, then P1 has a polynomial kernel.

While Theorem 9 allows to carry over the existence of a polynomial kernel from
one problem to another, it also allows to show that a problem most likely does not
have a polynomial kernel. More precisely, if a parameterised problem P has no poly-
nomial kernel (with respect to some complexity theoretical assumption) and there is
a polynomial parameter transformation from P to some parameterised problem P ′,
then also P ′ has no polynomial kernel (with respect to the same assumption).

Next, we recall the concept of a polynomial equivalence relation from [5]. Let R be
an equivalence relation over Δ∗. The relation R is a polynomial equivalence relation
if the following conditions are satisfied:

– For given x, y ∈ Δ∗, we can decide whether x and y are R-equivalent in polyno-
mial time.
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– For every finite X ⊆ Δ∗ the relation R partitions X into a number of classes that
is polynomially bounded in max{|x | | x ∈ X}.

Finally, we recall the concept of a cross composition from [5]. Let K ⊆ Δ∗ be a
problem (interpreted as a language), let R be a polynomial equivalence relation onΔ∗
and let P ⊆ (Δ∗ ×N) be a parameterised problem. A cross-composition from K into
P (with respect to R) is an algorithm that, given instances x1, x2, . . . , xq ∈ Δ∗ of K
that belong to the same R-equivalence class, takes time polynomial in

∑q
i=1 |xi | and

produces an instance (y, k) ∈ Δ∗ × N such that the following holds:

– k is polynomial bounded in max{|xi | + log q | 1 ≤ i ≤ q}.
– (y, k) is a positive P instance if and only if at least one xi , 1 ≤ i ≤ q, is a positive

K instance.

The purpose of cross-decompositions is demonstrated by the following theorem:

Theorem 10 ([5]) If there is a cross-composition of anNP-hard problem into a parame-
terised problem P, then P does not have a polynomial kernel, unless coNP ⊆ NP/poly.

Note that coNP ⊆ NP/poly implies a collapse of the polynomial hierarchy and is
considered unlikely. We are now ready to present the kernelisation results, which shall
be proved by applying the framework provided above.

For the (dr )-variants of CloseStr and CloseSubstr, the question whether the
fixed-parameter tractable variants have a polynomial kernel has already been investi-
gated in [2]. We restate the results relevant for us:

Theorem 11 ([2]) The parameterised problems (r)-CloseStr(dr , �, |Σ |) and
(r)-CloseSubstr(k,m, dr , |Σ |) do not admit a polynomial kernel unless coNP ⊆
NP/poly.

From these results (in addition to some simple observations and other known
results), we can directly conclude some results about polynomial kernels with respect
to (r, s)-CloseStr and (r, s)-CloseSubstr.

Proposition 1

– (r, s)-CloseStr(dr , �, |Σ |) has no polynomial kernel unless coNP ⊆ NP/poly.
– (r, s)-CloseStr(k, dr ) has a kernel of size O(k2dr log k).
– (r, s)-CloseStr(ds) has a kernel of size O((ds)3 log ds).

Proof Transforming an (r)-CloseStr instance into an (r, s)-CloseStr instance by
setting ds = kdr is a polynomial parameter transformation from the problem
(r)-CloseStr(dr , �, |Σ |) to (r, s)-CloseStr(dr , �, |Σ |); thus, Theorem 11 implies
the first statement of the proposition.

Next, we briefly recall the O(k2dr log k) kernel for (r)-CloseStr(k, dr ) (see [2,
20]). For an (r)-CloseStr(k, dr )-instance, we call a column dirty if it contains at least
two different symbols. By the pigeon-hole principle, a positive (r)-CloseStr(k, dr )-
instance can have at most k · dr dirty columns; thus, deleting all columns that are not
dirty yields a kernel of size O(k2dr log k) and it is obvious that this is also a kernel for
(r, s)-CloseStr(k, dr ). This proves the second statement.
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If k > ds , then the only possible solution strings are the input strings, which can
be checked in polynomial time (and the instance can accordingly be reduced to a
trivial positive or negative kernel of constant size). Thus, we can assume that k ≤ ds .
Moreover, if dr > ds , then we can set dr = ds , which results in an equivalent instance,
since sH(S, s) ≥ rH(S, s) for any set of strings S. Thus, we can assume that dr ≤ ds .
Consequently, it follows from the second statement that we can construct a kernel of
size O(k2dr log k) = O(d3s log ds). This proves the third statement. �

With respect to (r, s)-CloseStr, this leaves the case open where only k (or k and
|Σ |, which, due to the dependency |Σ | ≤ k (see [20]), is the same question) is a
parameter (regarding this case, note that for (r)-CloseStr(k) no combinatorial kernel
or combinatorial fpt-algorithm is known).

Question 2 Does (r, s)-CloseStr(k) allow a polynomial kernel?

Next, we take a look at kernelisation questions for (r, s)-CloseSubstr.

Proposition 2

– (r, s)-CloseSubstr(k,m, dr , ds, |Σ |) has no polynomial kernel unless coNP ⊆
NP/poly.

– (r, s)-CloseSubstr(�, k) has a kernel of size O(�k).
– (r, s)-CloseSubstr(�, ds) has a kernel of size O(�ds).

Proof Transforming an (r)-CloseSubstr instance into an (r, s)-CloseSubstr
instance by setting ds = kdr is a polynomial parameter transformation from
(r)-CloseSubstr(k,m, dr , |Σ |) to (r, s)-CloseSubstr(k,m, dr , ds,Σ); thus, The-
orem 11 implies the first statement of the proposition.

Since we can assume that dr , ds ≤ �k, any (r, s)-CloseSubstr(�, k) instance has
size O(�k), which proves the second point.

If ds < k, then the solution string must be a substring of an input string (see
Remark 1), which can be checked in polynomial time (and the instance can accordingly
be reduced to a trivial positive or negative kernel of constant size). If, on the other
hand, k ≤ ds , then the instance has size O(�ds). �

With respect to the different variants of CloseSubstr, the following cases are left
open.

Question 3 Which of the following problems allow a polynomial kernel?

– (r, s)-CloseSubstr(�, |Σ |),
– (r)-CloseSubstr(�),
– (r)-CloseSubstr(�, dr ),
– (r)-CloseSubstr(�, |Σ |),
– (s)-CloseSubstr(m, |Σ |),
– (r)-CloseSubstr(ds, |Σ |).
For the outlier-variant, no kernelisation lower bounds are known so far. However,

the following can be concluded from [2].
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Proposition 3 The following problems have no polynomial kernel unless coNP ⊆
NP/poly.

– (r)-CloseStr- wo(dr , �, t, |Σ |).
– (r, s)-CloseStr- wo(dr , �, t, |Σ |).

Proof Reducing (r)-CloseStr to (r)-CloseStr- wo by setting t = 0 is a poly-
nomial parameter transformation from the problem (r)-CloseStr(dr , �, |Σ |) to
(r)-CloseStr- wo(dr , �, t, |Σ |); thus, Theorem 11 implies the first statement of the
proposition.

Transforming an (r)-CloseStr instance into an (r, s)-CloseStr instance by
setting ds = kdr is a polynomial parameter transformation from the problem
(r)-CloseStr- wo(dr , �, t, |Σ |) to (r, s)-CloseStr- wo(dr , �, t, |Σ |); thus, the sec-
ond statement of the proposition follows. �

As our main contribution to the question of kernelisation hardness of con-
sensus string problems, we present a cross-composition from (r)-CloseStr into
(r)-CloseStr- wo, which allows us to rule out a polynomial kernel for the parame-
terisation (dr , ds, �, (k − t), |Σ |) of (r)-CloseStr- wo.

Theorem 12 (r, s)-CloseStr- wo(dr , ds, �, (k−t), |Σ |) does not admit a polynomial
kernel unless coNP ⊆ NP/poly.

Proof We prove the result by a cross-composition of (r)-CloseStr (over the alphabet
Σ = {0, 1}) into (r)-CloseStr- wo(dr , ds, �, (k−t), |Σ |) (note that (r)-CloseStr is
NP-complete for binary alphabets [19]). We first recall that an (r)-CloseStr instance
is a tuple (S, dr ) with S = {si | 1 ≤ i ≤ k} ⊆ Σ� for some � ∈ N, and dr ∈
N; in the following, we denote its total size by |(S, dr )|. We note that |(S, dr )| =
O(k� log(|Σ |) + log(dr )) = O(k�) (since we assume |Σ | = 2 and dr ≤ �).

We define an equivalence relation ∼ over the set of (r)-CloseStr instances as
follows. For j ∈ {1, 2}, let S j = {s j,i | 1 ≤ i ≤ k j } ⊆ Σ� j and dr , j ∈ N be
two (r)-CloseStr instances. Then (S1, dr ,1) ∼ (S2, dr ,2) if k1 = k2, �1 = �2 and
dr ,1 = dr ,2. For any two instances (S1, dr ,1) and (S2, dr ,2), it can be checked in
time polynomial in |(S1, dr ,1)| + |(S2, dr ,2)| whether or not (S1, dr ,1) ∼ (S2, dr ,2).
Let X be a finite set of (r)-CloseStr instances with k̂, �̂ and d̂r being the largest
number of strings, lengths of strings and radius bound that occur in any instances of X
(note that these parameters can occur in different instances). Obviously, the number of
equivalence classes of X (with respect to relation∼) is bounded by (̂k �̂ d̂r ). Moreover,
each of k̂, �̂ and d̂r is bounded by max{|x | | x ∈ X} (note that d̂r is bounded by
max{|x | | x ∈ X} since we can assume dr ≤ � for all instances). This implies that
∼ partitions X into at most (max{|(S, dr )| | (S, dr ) ∈ X})O(1) equivalence classes.
Consequently, ∼ is a polynomial equivalence relation.

Now let (S1, dr ), (S2, dr ), . . . , (Sq , dr ) be ∼-equivalent (r)-CloseStr instances,
where, for the sake of convenience, Si = {si,1, si,2, . . . , si,k} ⊆ Σ�, 1 ≤ i ≤ q. For
every i , 1 ≤ i ≤ q, let Bi denote the binary representation of i with exactly �log(q)�
bits, and let Ci = (Bi )2dr+1 (i. e., Ci is the (2dr + 1)-fold repetition of the binary
string Bi ). Moreover, for every i , 1 ≤ i ≤ q, let S′

i = {s′
i,1, s

′
i,2, . . . , s

′
i,k}, where,

for every j , 1 ≤ j ≤ k, s′
i, j = si, jCi . Finally, let the (r, s)-CloseStr- wo instance
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be (S′, d ′
r , d

′
s, t) with S′ = ⋃q

i=1 S
′
i , d

′
r = dr , d ′

s = kdr and t = (q − 1)k. Note
that (S′, d ′

r , d
′
s, t) is a valid (r, s)-CloseStr- wo instance with k′ = qk input strings

that are all of the same length �′ = � + (2dr + 1)�log(q)�. This construction can
clearly be computed in polynomial time and, in order to show that it is a correct cross-
composition of (r)-CloseStr into (r, s)-CloseStr- wo(d ′

r , d
′
s, �

′, (k′ − t), |Σ |), we
have to prove the following claims.

Claim 1 Each of the parameters d ′
r , d

′
s , �

′, (k′−t) and |Σ | are bounded by a polynomial
in max{|(Si , dr )| | 1 ≤ i ≤ q} + log(q).

Proof of Claim 1 We first note that max{|(Si , dr )| | 1 ≤ i ≤ q} + log(q) = k� + log q
and recall that |Σ | = 2, d ′

r = dr ≤ � and d ′
s = kdr ≤ k�. Moreover, (k′ − t) =

qk − (q − 1)k = k and �′ = � + (2dr + 1)�log(q)� = O(� log(q)). (Claim 1)�
Claim 2 (S′, d ′

r , d
′
s, t) is a positive (r, s)-CloseStr- wo(d ′

r , d
′
s, �

′, (k′ − t), |Σ |)
instance if and only if there is an i , 1 ≤ i ≤ q, such that (Si , dr ) is a positive
(r)-CloseStr instance.

Proof of Claim 2 We first prove the only if direction and let (S′, d ′
r , d

′
s, t) be a positive

(r, s)-CloseStr- wo(d ′
r , d

′
s, �

′, (k′ − t), |Σ |) instance. This means that there is a set
A ⊆ S′ with |A| = (k′ − t) = k and a string s such that rH(s, A) ≤ d ′

r = dr .
For the sake of concreteness, let A = {s′

i1, j1
, s′

i2, j2
, . . . , s′

ik , jk
}. If, for some p, p′,

1 ≤ p < p′ ≤ q, i p �= i p′ , then dH(si p, jp , si p′ , jp′ ) ≥ 2d ′
r +1, since dH(Bip , Bip′ ) ≥ 1

and si p, jp , si p′ , jp′ have suffixes Cip , Cip′ , respectively. Consequently, rH(s′, A) > d ′
r ,

for every s′ ∈ Σ�′
, which is a contradiction. Hence, i1 = i2 = . . . = ik , which

implies that A = S′
i , for some i , 1 ≤ i ≤ q. Since all strings in S′

i have the same
length-((2dr +1)�log(q)�) suffixCi and since we obtain the strings of Si if we remove
this common suffix, we conclude that rH(s[1..�], Si ) ≤ rH(s, S′

i ) ≤ d ′
r = dr , which

implies that (Si , dr ) is a positive (r)-CloseStr instance.
In order to prove the if direction, let, for some i , 1 ≤ i ≤ q, (Si , dr ) be a pos-

itive (r)-CloseStr instance, i. e., there is an s ∈ Σ� with rH(s, Si ) ≤ dr . Hence,
rH(sCi , S′

i ) ≤ dr , which, in particular, implies that sH(sCi , S′
i ) ≤ kdr = d ′

s . Con-
sequently, (S′, d ′

r , d
′
s, t) is a positive (r, s)-CloseStr- wo(d ′

r , d
′
s, �

′, (k′ − t), |Σ |)
instance as witnessed by the inlier-set S′

i ⊆ S′ and solution string sCi . (Claim 2)�
This concludes the proof. �

6 Conclusions

In this section, we discuss our results and state the most interesting open problems
that are left for further research.

Our main positive algorithmic result is the branching algorithm from Theorem 5.
It demonstrates that the fixed-parameter tractability of CloseStr with respect to the
practically most relevant parameter dr is robust in the sense that we can afford to
also exclude outliers (as long as their number is also treated as a parameter) and add a
distance sumbound (see also themotivation for such a problemvariant at the beginning
of Sect. 1).
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Moreover, we provide a complete “fixed-parameter tractability map” for the prob-
lems CloseStr and CloseSubstr, i. e., their general variants and their single-bound
variants, for all possible combinations of the parameters k, �, dr , ds , |Σ | and m. This
is done by complementing the existing work with respect to the single-bound variants
and by adapting these results to the general variant.

In this regard, (r, s)-CloseStr shows the same positive tractability results as the
(r)-variant, i. e., it is fixed-parameter tractable for all single parameters except |Σ |.
With respect to the substring-variant, our results demonstrate that adding a distance
sum bound may increase the complexity. For example, while parameter � is sufficient
for fixed-parameter tractability with respect to the radius variant, we get a W[1]-hard
problem if we add a distance sum bound, even if we additionally take m and dr as
parameters. In order to maintain fixed-parameter tractability, we would have to also
treat the distance sum bound as a parameter, or to take k as a parameter. In general, for
the general or single-bound variants of the substring-variant, things do not look good
fpt-wise.

The only questions left openwith respect toCloseStr andCloseSubstr are about
whether the fixed-parameter tractable variants allow polynomial kernels. More pre-
cisely, it is unknown whether the general or the radius variant of CloseStr(k) allows
a polynomial kernel and for the substring-variant several cases are open, which are
summarised in Question 3.With respect to (r)-CloseStr(k), there is amore important
question still open: the only fixed-parameter tractability results rely on integer linear
programming and a combinatorial fpt-algorithm is still unknown. This has already
been reported in [20] and is explicitly stated as an open problem in the survey [7].
In particular, we stress the fact that several of our fixed-parameter tractability results
extend or directly use the ILP approach from [20] and therefore have the same issue;
namely, this is the case for (r, s)-CloseStr(k) and (r, s)-CloseStr- wo(k) and their
single-bound variants.

With respect to the outlier-variant, our “fixed-parameter tractability map” is still
rather incomplete (see also Table 2), both in the sense that for several parameterisations
fixed-parameter tractability is unknown and for some fixed-parameter tractability vari-
ants it is unknown whether they allow polynomial kernels. The existing results show
that, for fixed-parameter tractability, the single parameter k is sufficient (although
based on ILP) and parameterising by the number of outliers t is also enough if at least
one of the parameter �, dr , ds or k−t is taken into consideration as well. Unfortunately,
t and |Σ | is not enough and, surprisingly, for any other combination containing |Σ |
(except the trivial one (|Σ |, �)), we were not able to prove fixed-parameter tractability
or W[1]-hardness. This is wort pointing out, since the parameter |Σ | is rather impor-
tant due to the fact that in practical scenarios it can often be assumed to be of rather
small constant size. Consequently, the most important open question with respect to
the outlier-variant is whether fixed-parameter tractability can be achieved by coupling
|Σ | with any of the parameters dr , ds or k − t (see Question 1).
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