
Algorithmica (2020) 82:808–852
https://doi.org/10.1007/s00453-019-00616-2

A Unified Framework for Clustering Constrained Data
Without Locality Property

Hu Ding1 · Jinhui Xu2

Received: 15 August 2017 / Accepted: 6 August 2019 / Published online: 20 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we consider a class of constrained clustering problems of points in
R
d , where d could be rather high. A common feature of these problems is that their

optimal clusterings no longer have the locality property (due to the additional con-
straints), which is a key property required by many algorithms for their unconstrained
counterparts. To overcome the difficulty caused by the loss of locality, we present
in this paper a unified framework, called Peeling-and-Enclosing, to iteratively solve
two variants of the constrained clustering problems, constrained k-means clustering
(k-CMeans) and constrained k-median clustering (k-CMedian). Our framework gen-
eralizes Kumar et al.’s (J ACM 57(2):5, 2010) elegant k-means clustering approach
from unconstrained data to constrained data, and is based on two standalone geomet-
ric techniques, called Simplex Lemma andWeaker Simplex Lemma, for k-CMeans and
k-CMedian, respectively. The simplex lemma (or weaker simplex lemma) enables us
to efficiently approximate the mean (or median) point of an unknown set of points
by searching a small-size grid, independent of the dimensionality of the space, in a
simplex (or the surrounding region of a simplex), and thus can be used to handle high
dimensional data. If k and 1

ε
are fixed numbers, our framework generates, in nearly

linear time (i.e., O(n(log n)k+1d)), O((log n)k) k-tuple candidates for the k mean or
median points, and one of them induces a (1 + ε)-approximation for k-CMeans or
k-CMedian, where n is the number of points. Combining this unified framework with
a problem-specific selection algorithm (which determines the best k-tuple candidate),
we obtain a (1 + ε)-approximation for each of the constrained clustering problems.
Our framework improves considerably the best known results for these problems. We
expect that our technique will be applicable to other variants of k-means and k-median
clustering problems without locality.

This work was supported in part by NSF through Grants IIS-1115220, IIS-1422591, CCF-1422324,
CNS-1547167, CCF-1656905, and CCF-1716400. The first author was also supported by a start-up fund
from Michigan State University. A preliminary version of this paper has appeared in Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2015) [25].

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00616-2&domain=pdf
http://orcid.org/0000-0002-1307-6077

Algorithmica (2020) 82:808–852 809

Keywords Constrained clustering · k-means/median · Approximation algorithms ·
High dimensions

1 Introduction

Clustering is one of the most fundamental problems in computer science, and finds
numerous applications in many different areas, such as data management, machine
learning, bioinformatics, networking, etc. [38]. The common goal of many clustering
problems is to partition a set of given data items into a number of clusters so as to
minimize the total cost measured by a certain objective function. For example, the
popular k-means (or k-median) clustering seeks k mean (or median) points to induce
a partition of the given data items so that the average squared distance (or the average
distance) from each data item to its closest mean (or median) point is minimized. Most
existing clustering techniques assume that the data items are independent from each
other and therefore can “freely” determine their memberships in the resulting clusters
(i.e., a data item does not need to pay attention to the clustering of others). However,
in many real-world applications, data items are often constrained or correlated, which
require a great deal of effort to handle such additional constraints. In recent years, con-
siderable attention has been paid to various types of constrained clustering problems,
such as l-diversity clustering [46], r -gather clustering [2,27,36], capacitated cluster-
ing [5,20,41], chromatic clustering [7,23], and probabilistic clustering [19,33,45]. In
this paper, we study a class of constrained clustering problems of points in Euclidean
space.

Givena set of points P inRd ,apositive integer k,andaconstraintC, the constrained
k-means (or k-median) clustering problem is to partition P into k clusters so as to
minimize the objective function of the ordinary k-means (or k-median) clustering
and satisfy the constraint C. In general, the problems are denoted by k-CMeans and
k-CMedian, respectively.

The detailed definition for each individual problem is given in Sect. 4. Roughly
speaking, data constraints can be imposed at either cluster or item level. Cluster level
constraints are restrictions on the resulting clusters, such as the size of the clusters [2]
or their mutual differences [59], while item level constraints are mainly on data items
inside each cluster, such as the coloring constraint which prohibits items of the same
color being clustered into one cluster [7,23,46].

The additional constraints could considerably change the nature of the clustering
problems. For instance, one key property exhibited in many unconstrained clustering
problems is the so called locality property, which indicates that each cluster is located
entirely inside the Voronoi cell of its center (e.g., the mean, median, or center point) in
the Voronoi diagram of all the centers [37] (see Fig. 1a). Existing algorithms for these
clustering problems often rely on such a property [8,10,17,31,37,43,48,50]. However,
due to the additional constraints, the locality propertymay no longer exist (see Fig. 1b).
Therefore, we need new techniques to overcome this challenge.

123

810 Algorithmica (2020) 82:808–852

(a) (b)

Fig. 1 a The Voronoi diagram induced by the mean points (i.e. the grey points) of k-means clustering for
k = 3; b the Voronoi diagram induced by the mean points of chromatic k-means clustering, where the
points sharing the same color should be in different clusters

1.1 Our Main Results

In this paper we present a unified framework called Peeling-and-Enclosing (PnE),
based on two standalone geometric techniques called Simplex Lemma and Weaker
Simplex Lemma, to solve a class of constrained clustering problems without the local-
ity property in Euclidean space, where the dimensionality of the space could be rather
high and the number k of clusters is assumed to be some fixed number. Particularly, we
investigate the constrained k-means (k-CMeans) and k-median (k-CMedian) versions
of these problems. For the k-CMeans problem, our unified framework generates in
O(n(log n)k+1d) time a set of k-tuple candidates of cardinality O((log n)k) for the to-
be-determined k mean points. We show that among the set of candidates, one of them
induces a (1 + ε)-approximation for k-CMeans. To find out the best k-tuple candi-
date, a problem-specific selection algorithm is needed for each individual constrained
clustering problem (note that due to the additional constraints, the selection problems
may not be trivial). Combining the unified framework with the selection algorithms,
we obtain a (1 + ε)-approximation for each constrained clustering problem in the
considered class. Our results considerably improve (in various ways) the best known
algorithms for all these problems (see the table in Sect. 1.2). Below is a list of the
constrained clustering problems considered in this paper. Our techniques can also be
extended to achieve (1 + ε)-approximations for the k-CMedian version of these con-
strained clustering problems. We expect that our technique will be applicable to other
variants of k-means and k-median clustering problems without locality property, as
long as the corresponding selection problems can be solved.

1. l-Diversity Clustering In this problem, each input point is associated with a color,
and each cluster has no more than a fraction 1

l (for some constant l > 1) of its
points sharing the same color. The problem is motivated by a widely-used privacy
preserving model called l-diversity [46,47] in data management, which requires
that each block contains no more than a fraction 1

l of items sharing the same
sensitive attribute.

2. Chromatic Clustering In [23], Ding and Xu introduced a new clustering problem
called chromatic clustering, which requires that the points with the same color
should be clustered in different clusters. It is motivated by a biological application

123

Algorithmica (2020) 82:808–852 811

for clustering chromosome homologs in a population of cells, where homologs
from the same cell should be clustered into different clusters. Similar problem
also appears in applications related to transportation system design [7].

3. Fault Tolerant Clustering The problem of fault tolerant clustering assigns each
point p to its l nearest cluster centers for some l ≥ 1, and counts all the l distances
as its cost. The problem has been extensively studied in various applications for
achieving better fault tolerance [16,35,40,44,54].

4. r -Gather Clustering This clustering problem requires each of the clusters to
contain at least r points for some r > 1. It is motivated by the k-anonymity model
for privacy preserving [2,55], where each block contains at least k items.1

5. CapacitatedClusteringThis clustering problemhas an upper bound on the size of
each cluster, and finds various applications in datamining and resource assignment
[20,41].

6. Semi-SupervisedClusteringMany existing clustering techniques, such as ensem-
ble clustering [52,53] and consensus clustering [3,18], make use of a priori
knowledge. Since such clusterings are not always based on the geometric cost
(e.g., k-means cost) of the input, thus a more accurate way of clustering is to con-
sider both the priori knowledge and the geometric cost. We consider the following
semi-supervised clustering problem: given a set P of points and a clustering S of
P (based on the priori knowledge), partition P into k clusters so as to minimize
the sum (or some function) of the geometric cost and the difference with the given
clustering S . Another related problem is evolutionary clustering [15], where the
clustering in each time point needs to minimize not only the geometric cost, but
also the total shifting from the clustering in the previous time point (which can be
viewed as S).

7. Uncertain Data Clustering Due to the unavoidable error, data for clustering
are not always precise. This motivates us to consider the following probabilistic
clustering problem [19,33,45] : given a set of “nodes” with each represented as a
probabilistic distribution over a point set in Rd , group the nodes into k clusters so
as to minimize the expected cost with respect to the probabilistic distributions.

Note Following our work published in [25], Bhattacharya et al. [14] improved the
running time for finding the candidates of k-cluster centers from nearly linear to
linear based on the elegant D2-sampling. Their work also follows the framework of
clustering constrained data, i.e., generating the candidates and selecting the best one by
a problem-specific selection algorithm, presented in this paper. Our paper represents
the first systematically theoretical study of the constrained clustering problems. Some
of the underlying techniques, such as Simplex Lemma and Weaker Simplex Lemma,
are interesting in their rights, which have already been used to solve other problems
[26] (e.g., the popular “truth discovery” problem in data mining).

1.2 RelatedWorks

The above 7 constrained clustering problems have been extensively studied in the
past and a number of theoretical results have been obtained (in addition to many

1 We use r here, instead of k, since k often denotes the number of clusters in a clustering problem.

123

812 Algorithmica (2020) 82:808–852

Table 1 Existing and our new results for the class of constrained clustering problems

Problems Existing results

l-Diversity clustering 2-Approx. for metric k-centers [46] (only for a restricted
version of l-diversity clustering)

Chromatic clustering (1+ ε)-Approx. for chromatic k-ones clustering in Rd [23];
(1 + ε)-approx. for 2-center in R

2 [7]

Fault tolerant clustering 4 and 93-Approx. for uniform and non-uniform metric
k-median [35,54]; 2-approx. for metric k-centers [16,40];

r -Gather clustering 2-Approx. for metric k-centers and 4-approx. for metric
k-cellulars [2]; (4 + ε)-approx. for k-centers in constant
dimensional space [27,36]

Capacitated clustering 6 and 7-Approx. for metric k-centers with uniform and
non-uniform capacities [20,41]

Semi-supervised clustering Heuristic algorithms [13,32,56,57]

Uncertain data clustering (1 + ε)-Approx. for k-means and unassigned k-median
[19]; (3 + ε)-approx. for assigned k-median [19,58];
(1 + ε)-approx. for assigned k-median in constant
dimensional space [45]; O(1)-approx. for k-centers [33]

Our results: (1+ ε)-approx. of k-means and k-median for all the 7 problems in Rd where d could be rather
high

heuristic/practical solutions). Table 1 lists the best known theoretical results for each
of them. It is clear that most existing results are either constant approximations or only
for some restricted versions (e.g., constant dimensional space, etc.), and therefore can
be improved by our techniques.

For the related traditional Euclidean k-means and k-median clustering problems,
extensive research has been done in the past. Inaba et al. [37] showed that an exact
k-means clustering can be computed in O(nO(dk)) time for n points in R

d . Arthur
and Vassilvitskii [8] presented the k-means++ algorithm that achieves the expected
O(log k) approximation ratio. Ostrovsky et al. [50] provided a (1+ ε)-approximation
for well-separated points. Based on the concept of stability, Awasthi et al. [9] pre-
sented the PTAS for the problems of k-means and k-median clustering. Matousek
[48] obtained a nearly linear time (1 + ε)-approximation for any fixed d and k.
Similar result for k-median has also been achieved by Kolliopoulos and Rao [42].
Later, Fernandez de la Vega et al. [31] and Badŏiu et al. [10] achieved nearly linear
time (1 + ε)-approximations for high dimensional k-means and k-median cluster-
ing, respectively, for fixed k. Kumar et al. [43] showed that linear-time randomized
(1 + ε)-approximation algorithms can be obtained for several Euclidean clustering
problems (such as k-means and k-median) in any dimensional space. Recently, this
technique has been further extended to several clustering problems with non-metric
distance functions [1]. Later, Jaiswal et al. [39] applied a non-uniform sampling tech-
nique, which is called D2-sampling, to simplify and improve the result in [43]; their
algorithm can also handle the non-metric distance clustering problems studied in [1].
Using the core-set technique, a series of improvements have been achieved for high
dimensional clustering problems [30].

123

Algorithmica (2020) 82:808–852 813

As for the hardness of the problem, Dasgupta [21] showed that it is NP-hard for
k-means clustering in high dimensional space even if k = 2; Awasthi et al. [4] proved
that there is no PTAS for k-means clustering if both d and k are large, unless P = N P .
Guruswami and Indyk [34] showed that it is NP-hard to obtain any PTAS for k-median
clustering if k is not a constant and d is Ω(log n).

Besides the traditional clustering models, Balcan et al. considered the problem of
finding the clustering with small difference from the unknown ground truth [11,12].

1.3 Our Main Ideas

Most existing k-means or k-median clustering algorithms in Euclidean space consist
of two main steps: (1) identify the set of k mean or median points and (2) partition the
input points into k clusters based on these mean or median points (we call this step
Partition). Note that for unconstrained clustering problems, the Partition step can be
done by using the Voronoi diagram of the obtained mean or median points; however,
for some constrained clustering problems, the Partition step may not be trivial (see
Fig. 1a, b). More formally, we have the following definition.

Definition 1 (Partition Step) Given an instance P of k-CMeans (or k-CMedian) and k
cluster centers (i.e., the mean or median points), the Partition step is to form k clusters
of P , where the clusters should satisfy the constraint and each cluster is assigned to
an individual cluster center, such that the objective function of the ordinary k-means
(or k-median) clustering is minimized.

To determine the candidate set of the k mean or median points in step (1), most
existing algorithms (either explicitly or implicitly) rely on the locality property. To
shed some light on this, consider a representative and elegant approach by Kumar et
al. [43] for k-means clustering. Let {Opt1, . . . , Optk} be the set of k unknown optimal
clusters in non-increasing order of their sizes. Their approach uses random sampling
and sphere peeling to iteratively find k mean points. At the j th iterative step, it draws
j − 1 peeling spheres centered at the j − 1 already obtained mean points, and takes a
random sample from the points outside the peeling spheres to find the j th mean point.
Due to the locality property, the points belonging to the first j − 1 clusters lie inside
their corresponding j − 1 Voronoi cells; that is, for each peeling sphere, most of the
covered points belong to their corresponding cluster, and thus ensures the correctness
of the peeling step.

However, when the additional constraint (such as coloring or size) is imposed on the
points, the locality property may no longer exist (see Fig. 1b), and thus the correctness
of the peeling step cannot always be guaranteed. In this scenario, the core-set technique
[30] is also unlikely to be able to resolve the issue. The main reason is that although
the core-set can greatly reduce the size of the input points, it is quite challenging to
impose the constraint through the core-set.

To overcome this challenge, we present a unified framework, called Peeling-and-
Enclosing (PnE), in this paper, based on a standalone new geometric technique called
Simplex Lemma. The simplex lemma aims to address the major obstacle encountered
by the peeling strategy in [43] for constrained clustering problems. More specifically,

123

814 Algorithmica (2020) 82:808–852

due to the loss of locality, at the j th peeling step, the points of the j th cluster Opt j
could be scattered over all the Voronoi cells of the first j−1mean points, and therefore
their mean point can no longer be simply determined by the sample outside the j − 1
peeling spheres. To resolve this issue, our main idea is to view Opt j as the union
of j unknown subsets, Q1, . . . , Q j , with each Ql , 1 ≤ l ≤ j-1, being the set of
points inside the Voronoi cell (or peeling sphere) of the obtained lth mean point and
Q j being the set of remaining points of Opt j . After approximating the mean point
of each unknown subset by using random sampling, we build a simplex to enclose a
region which contains the mean point of Opt j , and then search the simplex region for
a good approximation of the j th mean point. To make this approach work, we need to
overcome two difficulties: (a) how to generate the desired simplex to contain the j th
mean point, and (b) how to efficiently search the (approximate) j th mean point inside
the simplex.

For difficulty (a), our idea is to use the already determined j − 1 mean points
(which can be shown that they are also the approximate mean points of Q1, . . . , Q j−1,
respectively) and another point, which is the mean of those points in Opt j outside the
peeling spheres (or Voronoi cells) of the first j − 1 mean points (i.e., Q j), to build
a (j − 1)-dimensional simplex to contain the j th mean point. Since we do not know
how Opt j is partitioned (i.e., how Opt j intersects the j −1 peeling spheres), we vary
the radii of the peeling spheres O(log n) times to guess the partition and generate a set
of simplexes, where the radius candidates are based on an upper bound of the optimal
value determined by a novel estimation algorithm (in Sect. 3.4). We show that among
the set of simplexes, one of them contains the j th (approximate) mean point.

For difficulty (b), our simplex lemma (in Sect. 2) shows that if each vertex vl of the
simplex V is the (approximate) mean point of Ql , then we can find a good approx-
imation of the mean point of Opt j by searching a small-size grid inside V . A nice
feature of the simplex lemma is that the grid size is independent of the dimensionality
of the space and thus can be used to handle high dimensional data. In some sense,
our simplex lemma can be viewed as a considerable generalization of the well-known
sampling lemma (i.e., Lemma 4 in this paper) in [37], which has been widely used
for estimating the mean of a point set through random sampling [29,37,43]. Different
from Lemma 4, which requires a global view of the point set (meaning that the sample
needs to be taken from the point set), our simplex lemma only requires some partial
views (e.g., sample sets are taken from those unknown subsets whose size might be
quite small). If Opt j is the point set, our simplex lemma enables us to bound the error
by the variance2 of Opt j (i.e., a local measure) and the optimal value of the clustering
problem on the whole instance P (i.e., a global measure), and thus helps us to ensure
the quality of our solution.

For the k-CMedian problem, we show that although the simplex lemma no longer
holds since themedian pointmay lie outside the simplex, aweaker version (in Sect. 5.1)
exists, which searches a surrounding region of the simplex. Thus our Peeling-and-
Enclosing framework works for both k-CMeans and k-CMedian. It generates in total
O((log n)k) k-tuple candidates for the constrained k mean or median points. To deter-

2 Given a point set in Euclidean space, its “variance” is the average of the squared distances from the points
to their mean point.

123

Algorithmica (2020) 82:808–852 815

(a) (b)

Fig. 2 Examples for Lemmas 1 and 3 with j = 4 respectively

mine the best k mean or median points, we need to use the property of each individual
problem to design a selection algorithm. The selection algorithm takes each k-tuple
candidate, computes a clustering (i.e., completing the Partition step) satisfying the
additional constraint, and outputs the k-tuple with the minimum cost. We present a
selection algorithm for each considered problem in Sects. 4 and 5.4.

2 Simplex Lemma

In this section, we present the Simplex Lemma for approximating the mean point
of an unknown point set Q, where the only known information is a set of j points
with each of them being an approximate mean point of an unknown subset of Q. In
Sect. 5.1, we show how to extend the idea to approximate median point by theWeaker
Simplex Lemma. These two lemmas are crucially used to solve the k-CMeans and
k-CMedian problems.

Lemma 1 (Simplex Lemma I) Let Q be a set of points in R
d with a partition of

Q = ∪ j
l=1Ql and Ql1∩Ql2 = ∅ for any l1 �= l2. Let o be themean point of Q, and ol be

themean point of Ql for 1 ≤ l ≤ j . Let the variance of Q be δ2 = 1
|Q|

∑
q∈Q ||q−o||2,

andV be the simplex determined by {o1, . . . , o j }. Then for any 0 < ε ≤ 1, it is possible
to construct a grid of size O((8 j/ε) j) inside V such that at least one grid point τ

satisfies the inequality ||τ − o|| ≤ √
εδ.

Figure2a gives an example for Lemma 1. To prove Lemma 1, we first introduce the
following lemma.

Lemma 2 Let Q be a set of points in R
d , and Q1 be a subset containing α|Q| points

for some 0 < α ≤ 1. Let o and o1 be the mean points of Q and Q1, respectively. Then

||o1 − o|| ≤
√

1−α
α

δ, where δ2 = 1
|Q|

∑
q∈Q ||q − o||2.

Proof of Lemma 2 The following claim has been proved in [43].

Claim 1 Let Q be a set of points in R
d space, and o be the mean point of Q. For any

point õ ∈ R
d ,

∑
q∈Q ||q − õ||2 = ∑

q∈Q ||q − o||2 + |Q| × ||o − õ||2.

123

816 Algorithmica (2020) 82:808–852

Let Q2 = Q\Q1, and o2 be its mean point. By Claim 1, we have the following two
equalities.

∑

q∈Q1

||q − o||2 =
∑

q∈Q1

||q − o1||2 + |Q1| × ||o1 − o||2, (1)

∑

q∈Q2

||q − o||2 =
∑

q∈Q2

||q − o2||2 + |Q2| × ||o2 − o||2. (2)

Let L = ||o1 − o2||. By the definition of mean point, we have

o = 1

|Q|
∑

q∈Q
q = 1

|Q|

⎛

⎝
∑

q∈Q1

q +
∑

q∈Q2

q

⎞

⎠ = 1

|Q| (|Q1|o1 + |Q2|o2). (3)

Thus the three points {o, o1, o2} are collinear, while ||o1 − o|| = (1 − α)L and
||o2 − o|| = αL . Meanwhile, by the definition of δ, we have

δ2 = 1

|Q|

⎛

⎝
∑

q∈Q1

||q − o||2 +
∑

q∈Q2

||q − o||2
⎞

⎠ . (4)

Combining (1) and (2), we have

δ2 = 1

|Q|

⎛

⎝
∑

q∈Q1

||q − o1||2 + |Q1| × ||o1 − o||2

+
∑

q∈Q2

||q − o2||2 + |Q2| × ||o2 − o||2
⎞

⎠

≥ 1

|Q|
(
|Q1| × ||o1 − o||2 + |Q2| × ||o2 − o||2

)

= α((1 − α)L)2 + (1 − α)(αL)2

= α(1 − α)L2. (5)

Thus, we have L ≤ δ√
α(1−α)

, which means that ||o1 − o|| = (1− α)L ≤
√

1−α
α

δ.
�

Proof of Lemma 1 We prove this lemma by induction on j .
Base case For j = 1, since Q1 = Q, o1 = o. Thus, the simplex V and the grid are all
simply the point o1. Clearly τ = o1 satisfies the inequality.
Induction step Assume that the lemma holds for any j ≤ j0 for some j0 ≥ 1 (i.e.,
the induction hypothesis). Now we consider the case of j = j0 + 1. First, we assume
that |Ql ||Q| ≥ ε

4 j for each 1 ≤ l ≤ j . Otherwise, we can reduce the problem to the

case of a smaller j in the following way. Let I = {l|1 ≤ l ≤ j, |Ql ||Q| < ε
4 j } be the

123

Algorithmica (2020) 82:808–852 817

index set of small subsets. Then,
∑

l∈I |Ql |
|Q| < ε

4 , and
∑

l /∈I |Ql |
|Q| ≥ 1 − ε

4 . By Lemma 2,

we know that ||o′ − o|| ≤
√

ε/4
1−ε/4δ, where o

′ is the mean point of ∪l /∈I Ql . Let (δ′)2

be the variance of ∪l /∈I Ql . Then, we have (δ′)2 ≤ |Q|
|∪l /∈I Ql |δ

2 ≤ 1
1−ε/4δ

2. Thus, if
we replace Q and ε by ∪l /∈I Ql and ε

16 , respectively, and find a point τ such that

||τ − o′||2 ≤ ε
16 (δ

′)2 ≤ ε/16
1−ε/4δ

2, then we have

||τ − o||2 ≤ (||τ − o′|| + ||o′ − o||)2 ≤
9
16ε

1 − ε/4
δ2 ≤ εδ2, (6)

where the last inequality is due to the fact ε < 1. This means that we can reduce the
problem to a problem with the point set ∪l /∈I Ql and a smaller j (i.e., j − |I |). By the
induction hypothesis, we know that the reduced problem can be solved, where the new
simplex would be a subset of V determined by {ol | 1 ≤ l ≤ j, l /∈ I }, and therefore
the induction step holds for this case. Note that in general, we do not know I , but
we can enumerate all the 2 j possible combinations to guess I if j is a fixed number
as is the case in the algorithm in Sect. 3.2. Thus, in the following discussion, we can
assume that |Ql ||Q| ≥ ε

4 j for each 1 ≤ l ≤ j .

For each 1 ≤ l ≤ j , since |Ql ||Q| ≥ ε
4 j , by Lemma 2, we know that ||ol − o|| ≤

√
1− ε

4 j
ε
4 j

δ ≤ 2
√

j
ε
δ. This, together with triangle inequality, implies that for any 1 ≤

l, l ′ ≤ j ,

||ol − ol ′ || ≤ ||ol − o|| + ||ol ′ − o|| ≤ 4
√
j/εδ. (7)

Thus, if we pick any index l0, and draw a ball B centered at ol0 and with radius
r = max1≤l≤ j {||ol − ol0 ||} ≤ 4

√
j/εδ [by (7)], the whole simplex V will be inside

B. Note that o = ∑ j
l=1

|Ql ||Q| ol , so o lies inside the simplex V . To guarantee that o is
contained by the ball B, we can construct B only in the (j − 1)-dimensional space
spanned by {o1, . . . , o j }, rather than the whole R

d space. Also, if we build a grid
inside B with grid length εr

4 j , i.e., generating a uniform mesh with each cell being a
(j − 1)-dimensional hypercube of edge length εr

4 j , the total number of grid points is

no more than O((
8 j
ε

) j). With this grid, we know that for any point p inside V , there
exists a grid point g such that ||g − p|| ≤

√
j(εr

4 j)
2 = ε

4
√

j
r ≤ √

εδ. This means that

we can find a grid point τ inside V , such that ||τ − o|| ≤ √
εδ. Thus, the induction

step holds, and the lemma is true for any j ≥ 1.
�
In the above lemma, we assume that the exact positions of {o1, . . . , o j } are known

(see Fig. 2a). However, in some scenarios (e.g., in the Algorithm in Sect. 3.2), we
only know an approximate position of each mean point oi (see Fig. 2b). The following
lemma shows that an approximate position of o can still be similarly determined (see
Sect. 7.1 for the proof).

123

818 Algorithmica (2020) 82:808–852

(a) (b)

(c) (d)

Fig. 3 Illustration for one iteration of Peeling-and-Enclosing. a Beginning of iteration 4; b generate 3
spheres (in white) to peel the optimal cluster Opt4 (in green); c build a simplex (in red) to contain m4; d
find an approximate mean point pv4 for m4 (Color figure online)

Lemma 3 (Simplex Lemma II) Let Q, o, Ql , ol , 1 ≤ l ≤ j , and δ be defined as in
Lemma 1. Let {o′

1, . . . , o
′
j } be j points in R

d such that ||o′
l − ol || ≤ L for 1 ≤ l ≤ j

and L > 0, andV ′ be the simplex determined by {o′
1, . . . , o

′
j }. Then for any 0 < ε ≤ 1,

it is possible to construct a grid of size O((8 j/ε) j) inside V ′ such that at least one
grid point τ satisfies the inequality ||τ − o|| ≤ √

εδ + (1 + ε)L.

3 Peeling-and-Enclosing Algorithm for k-CMeans

In this section,we present a newPeeling-and-Enclosing (PnE) algorithm for generating
a set of candidates for the mean points of k-CMeans. Our algorithm uses peeling
spheres and the simplex lemma to iteratively find a good candidate center for each
unknown cluster. An overview of the algorithm is given in Sect. 3.1.

Some notations Let P = {p1, . . . , pn} be the set of Rd points in k-CMeans, and
OPT = {Opt1, . . . , Optk} be the k unknown optimal constrained clusters with m j

being the mean point of Opt j for 1 ≤ j ≤ k. Without loss of generality, we assume
that |Opt1| ≥ |Opt2| ≥ · · · ≥ |Optk |. Denote by δ2opt the optimal objective value,

i.e., δ2opt = 1
n

∑k
j=1

∑
p∈Opt j ||p −m j ||2. We also set ε > 0 as the parameter related

to the quality of the approximate clustering result.

123

Algorithmica (2020) 82:808–852 819

3.1 Overview of the Peeling-and-Enclosing Algorithm

Our Peeling-and-Enclosing algorithm needs an upper bound Δ on the optimal value
δ2opt . Specifically, δ2opt satisfies the condition Δ/c ≤ δ2opt ≤ Δ for some constant
c ≥ 1. In Sect. 3.4, we will present a novel algorithm to determine such an upper
bound for general constrained k-means clustering problems. Then, it searches for a
(1 + ε)-approximation δ2 of δ2opt in the set

H = {Δ/c, (1 + ε)Δ/c, (1 + ε)2Δ/c, . . . , (1 + ε)
log1+ε c�Δ/c ≥ Δ}. (8)

Obviously, there exists one element of H lying inside the interval [δ2opt , (1 + ε)δ2opt],
and the size of H is O(1

ε
log c).

At each searching step, our algorithm performs a sphere-peeling and simplex-
enclosing procedure to iteratively generate k approximate mean points for the
constrained clusters. Initially, our algorithm uses Lemmas 4 and 5 to find an approxi-
mate mean point pv1 for Opt1 (note that since Opt1 is the largest cluster, |Opt1|/n ≥
1/k and the sampling lemma applies). At the (j + 1)th iteration, it already has the
approximate mean points pv1 , . . . , pv j for Opt1, . . . , Opt j , respectively (see Fig. 3a).
Due to the lack of locality, some points of Opt j+1 could be scattered over the regions
(e.g., Voronoi cells or peeling spheres) of Opt1, . . . , Opt j and are difficult to be dis-
tinguished from the points in these clusters. Since the number of such points could
be small (comparing to that of the first j clusters), they need to be handled differ-
ently from the remaining points. Our idea is to separate them using j peeling spheres,
Bj+1,1, . . . , Bj+1, j , centered at the j approximate mean points respectively and with
some properly guessed radius (see Fig. 3b). Let A be the set of unknown points in
Opt j+1\(∪ j

l=1Bj+1,l). Our algorithm considers two cases, (a) |A| is large enough
and (b) |A| is small. For case (a), since |A| is large enough, we can use Lemma 4 and
Lemma 5 to find an approximate mean point π of A, and then construct a simplex
determined by π and pv1 , . . . , pv j to contain the j + 1th mean point (see Fig. 3c).
Note thatA and Opt j+1 ∩ Bj+1,l , 1 ≤ l ≤ j, can be viewed as a partition of Opt j+1
where the points covered by multiple peeling spheres can be assigned to anyone of
them, and pvl can be shown as an approximate mean point of Opt j+1 ∩ Bj+1,l ; thus
the simplex lemma applies. For case (b), it directly constructs a simplex determined
just by pv1 , . . . , pv j . For either case, our algorithm builds a grid inside the simplex and
uses Lemma 3 to find an approximate mean point for Opt j+1 (i.e., pv j+1 , see Fig. 3d).
The algorithm repeats the Peeling-and-Enclosing procedure k times to generate the k
approximate mean points.

3.2 Peeling-and-Enclosing Algorithm

Before presenting our algorithm, we first introduce two basic lemmas from [24,37]
for random sampling. Let S be a set of n points in R

d space, and T be a randomly
selected subset of size t from S. Denote by m(S) and m(T) the mean points of S and
T respectively.

123

820 Algorithmica (2020) 82:808–852

Lemma 4 [37] With probability 1 − η, ||m(S) − m(T)||2 < 1
ηt δ

2, where δ2 =
1
n

∑
s∈S ||s − m(S)||2 and 0 < η < 1.

Lemma 5 [24] Let Ω be a set of elements, and S be a subset of Ω with |S|
|Ω| = α for

some α ∈ (0, 1). If we randomly select
t ln t

η

ln(1+α)
= O(t

α
ln t

η
) elements from Ω , then

with probability at least 1 − η, the sample contains at least t elements from S for
0 < η < 1 and t ∈ Z

+.

Our Peeling-and-Enclosing algorithm is shown in Algorithm 1.

Algorithm 1 Peeling-and-Enclosing for k-CMeans

Input: P = {p1, . . . , pn} in R
d , k ≥ 2, a constant ε ∈ (0, 1

4k2
), and an upper bound Δ ∈ [δ2opt , cδ2opt]

with c ≥ 1.
Output: A set of k-tuple candidates for the k constrained mean points.

1. For i = 0 to
log1+ε c� do
(a) Set δ =

√
(1 + ε)iΔ/c, and run Algorithm 2.

(b) Let Ti be the output tree.
2. For each root-to-leaf path of every Ti , build a k-tuple candidate using the k points associated with

the path.

Algorithm 2 Peeling-and-Enclosing-Tree
Input: P = {p1, . . . , pn} in R

d , k ≥ 2, a constant ε ∈ (0, 1
4k2

), and δ > 0.

1. Initialize T as a single root node v associated with no point.
2. Recursively grow each node v in the following way

(a) If the height of v is already k, then it is a leaf.
(b) Otherwise, let j be the height of v. Build the radius candidate set R =

∪log n
t=0 { 1+l ε

2
2(1+ε)

j2t/2
√

εδ | 0 ≤ l ≤ 4 + 2
ε }. For each r ∈ R, do

i. Let {pv1 , . . . , pv j } be the j points associated with the nodes on the root-to-v path.
ii. For each pvl , 1 ≤ l ≤ j , construct a ball B j+1,l centered at pvl and with radius r .

iii. Take a random sample from P\ ∪ j
l=1 B j+1,l of size s = 8k3

ε9
ln k2

ε6
. Compute the mean

points of all the subsets of the sample, and denote them by Π = {π1, . . . , π2s−1}.
iv. For eachπi ∈ Π , construct a simplexusing {pv1 , . . . , pv j , πi } as its vertices.Also construct

another simplex using {pv1 , . . . , pv j } as its vertices. For each simplex, build a grid with

size O((32 j/ε2) j) inside itself and each of its 2 j possible degenerated sub-simplices.
v. In total, there are 2s+ j (32 j/ε2) j grid points inside the 2s simplices. For each grid point,

add one child to v, and associate it with the grid point.

3. Output T .

Theorem 1 Let P be the set of n R
d points and k ∈ Z

+ be a fixed constant.

Given a constant ε ∈ (0, 1
4k2

), in O(2poly(
k
ε
)n(log n)k+1d) time, Algorithm 1 out-

puts O(2poly(
k
ε
)(log n)k) k-tuple candidate mean points. With constant probability,

123

Algorithmica (2020) 82:808–852 821

there exists one k-tuple candidate in the output which is able to induce a
(
1+ O(ε)

)
-

approximation of k-CMeans.

Remark 1 To increase the success probability to be close to 1, e.g., 1 − 1
n , one only

needs to repeatedly run the algorithm O(log n) times; both the time complexity and
the number of k-tuple candidates increase by a factor of O(log n).

3.3 Proof of Theorem 1

Let β j = |Opt j |/n, and δ2j = 1
|Opt j |

∑
p∈Opt j ||p−m j ||2, wherem j is the mean point

of Opt j . By our assumption in the beginning of Sect. 3, we know that β1 ≥ · · · ≥ βk .
Clearly,

∑k
j=1 β j = 1 and the optimal objective value δ2opt = ∑k

j=1 β jδ
2
j .

Proof Synopsis Instead of directly proving Theorem 1, we consider the following
Lemma 6 and Lemma 7 which jointly ensure the correctness of Theorem 1. In Lemma
6, we show that there exists such a root-to-leaf path in one of the returned trees that
its associated k points along the path, denoted by {pv1, . . . , pvk }, are close enough
to the mean points mi , . . . ,mk of the k optimal clusters, respectively. The proof is
based on mathematical induction; each step needs to build a simplex, and applies
Simplex Lemma II to bound the error, i.e., ||pv j − m j || in (9). The error is estimated
by considering both the local (i.e., the variance of cluster Opt j) and global (i.e., the
optimal value δopt) measurements. This is a more accurate estimation, comparing
to the widely used Lemma 4 which considers only the local measurement. Such an
improvement is due to the increased flexibility in the Simplex Lemma II, and is a
key to our proof. In Lemma 7, we further show that the k points, {pv1, . . . , pvk }, in
Lemma 6 induce a (1 + O(ε))-approximation of k-CMeans.

Lemma 6 Among all the trees generated by Algorithm 1, with constant probability,
there exists at least one tree, Ti , which has a root-to-leaf path with each of its nodes
v j at level j (1 ≤ j ≤ k) associating with a point pv j and satisfying the inequality

||pv j − m j || ≤ εδ j + (1 + ε) j
√

ε

β j
δopt . (9)

Before proving this lemma, we first show its implication.

Lemma 7 If Lemma 6 is true, then {pv1, . . . , pvk } is able to induce a (1 + O(ε))-
approximation of k-CMeans.

Proof We assume that Lemma 6 is true. Then for each 1 ≤ j ≤ k, we have

∑

p∈Opt j

||p − pv j ||2 =
∑

p∈Opt j

||p − m j ||2 + |Opt j | × ||m j − pv j ||2

≤
∑

p∈Opt j

||p − m j ||2 + |Opt j | × 2

(

ε2δ2j + (1 + ε)2 j2
ε

β j
δ2opt

)

= (1 + 2ε2)|Opt j |δ2j + 2(1 + ε)2 j2εnδ2opt , (10)

123

822 Algorithmica (2020) 82:808–852

where the first equation follows from Claim 1 in the proof of Lemma 2 (note that m j

is the mean point of Opt j), the inequality follows from Lemma 6 and the fact that
(a + b)2 ≤ 2(a2 + b2) for any two real numbers a and b, and the last equality follows
from the fact that

|Opt j |
β j

= n. Summing both sides of (10) over j , we have

k∑

j=1

∑

p∈Opt j

||p − pv j ||2 ≤
k∑

j=1

((1 + 2ε2)|Opt j |δ2j + 2(1 + ε)2 j2εnδ2opt)

≤ (1 + 2ε2)
k∑

j=1

|Opt j |δ2j + 2(1 + ε)2k3εnδ2opt

= (1 + O(k3)ε)nδ2opt , (11)

where the last equation follows from the fact that
∑k

j=1 |Opt j |δ2j = nδ2opt . By (11),

we know that {pv1, . . . , pvk }will induce a (1+O(k3)ε)-approximation for k-CMeans.
Note that k is assumed to be a fixed number. Thus the lemma is true.
�

Lemma 7 implies that Lemma 6 is indeed sufficient to ensure the correctness of
Theorem 1 (except for the number of candidates and the time complexity). Now we
prove Lemma 6.

Proof of Lemma 6 Let Ti be the tree generated by Algorithm 2 when δ falls in the
interval of [δopt , (1 + ε)δopt]. We will focus our discussion on Ti , and prove the
lemma by mathematical induction on j .
Base case For j = 1, since β1 = max{β j |1 ≤ j ≤ k}, we have β1 ≥ 1

k . By
Lemma 4 and Lemma 5, we can find the approximate mean point through random
sampling. Let Ω and S (in Lemma 5) be P and Opt1, respectively. Also, pv1 is the
mean point of the random sample from P . Lemma 5 ensures that the sample contains
enough number of points from Opt1, and Lemma 4 implies that ||pv1 −m1|| ≤ εδ1 ≤
εδ1 + (1 + ε)

√
ε
β1

δopt .

Induction step Suppose j > 1. We assume that there is a path in Ti from the root to
the (j − 1)th level, such that for each 1 ≤ l ≤ j − 1, the level-l node vl on the path is

associatedwith a point pvl satisfying the inequality ||pvl −ml || ≤ εδl+(1+ε)l
√

ε
βl

δopt

(i.e., the induction hypothesis). Now we consider the case of j . Below we will show
that there is one child of v j−1, i.e., v j , such that its associated point pv j satisfies the

inequality ||pv j −m j || ≤ εδ j + (1+ ε) j
√

ε
β j

δopt . First, we have the following claim

(see Sect. 7.2 for the proof).

Claim 2 In the set of radius candidates in Algorithm 2, there exists one value r j ∈ R
such that

r j ∈
[
j
√

ε/β jδopt ,
(
1 + ε

2

)
j
√

ε/β jδopt

]
. (12)

123

Algorithmica (2020) 82:808–852 823

Now, we construct the j − 1 peeling spheres, {Bj,1, . . . , Bj, j−1} as in Algorithm 2.
For each 1 ≤ l ≤ j − 1, Bj,l is centered at pvl and with radius r j . By Markov’s
inequality and the induction hypothesis, we have the following claim (see Sect. 7.3 for
the proof).

Claim 3 For each 1 ≤ l ≤ j − 1, |Optl\(⋃ j−1
w=1 Bj,w)| ≤ 4β j n

ε
.

Claim 3 shows that |Optl\(⋃ j−1
w=1 Bj,w)| is bounded for 1 ≤ l ≤ j−1, which helps

us to find the approximate mean point of Opt j . Induced by the j − 1 peeling spheres
{Bj,1, . . . , Bj, j−1}, Opt j is divided into j subsets,Opt j∩Bj,1, . . ., Opt j∩Bj, j−1 and

Opt j\(⋃ j−1
w=1 Bj,w). For ease of discussion, let Pl denoteOpt j∩Bj,l for 1 ≤ l ≤ j−1,

Pj denote Opt j\(⋃ j−1
w=1 Bj,w), and τl denote the mean point of Pl for 1 ≤ l ≤ j .

Note that the peeling spheres may intersect with each other. For any two intersecting
spheres Bj,l1 and Bj,l2 , we arbitrarily assign the points in Opt j ∩ (Bj,l1 ∩ Bj,l2) to
either Pl1 or Pl2 . Thus, we can assume that {Pl | 1 ≤ l ≤ j} are pairwise disjoint.

Now consider the size of Pj .We have the following two cases: (a) |Pj | ≥ ε3
β j
j n and

(b) |Pj | < ε3
β j
j n. We show how, in each case, Algorithm 2 can obtain an approximate

mean point for Opt j by using the simplex lemma (i.e., Lemma 3).
For case (a), by Claim 3, together with the fact that βl ≤ β j for l > j , we know

that

k∑

l=1

|Optl\
⎛

⎝
j−1⋃

w=1

Bj,w

⎞

⎠ | ≤
j−1∑

l=1

|Optl\
⎛

⎝
j−1⋃

w=1

Bj,w

⎞

⎠ | + |Pj | +
k∑

l= j+1

|Optl |

≤ 4(j − 1)β j

ε
n + |Pj | + (k − j)β j n, (13)

where the second inequality follows from Claim 3. So we have

|Pj |
∑k

l=1 |Optl\
(⋃ j−1

w=1 Bj,w

)
|

≥ |Pj |
4(j−1)β j

ε
n + |Pj | + (k − j)β j n

. (14)

We view the right-hand side as a function of |Pj |. Given any h > 0, the function
f (x) = x

x+h is an increasing function on the variable x ∈ [0,+∞). Note that we

assume |Pj | ≥ ε3
β j
j n. Thus

|Pj |
∑k

l=1 |Optl\
(⋃ j−1

w=1 Bj,w

)
|

≥
ε3

j β j n
4(j−1)β j

ε
n + ε3

j β j n + (k − j)β j n

>
ε4

8k j
≥ ε4

8k2
, (15)

(15) implies that Pj is large enough, comparing to the set of points outside the peeling
spheres. Hence, we can obtain an approximate mean point π for Pj in the following

123

824 Algorithmica (2020) 82:808–852

(a) (b)

Fig. 4 a, b The Simplexes of case (a) and case (b) with j = 4 respectively

way. First, we set t = k
ε5
, η = ε

k , and take a sample of size t ln(t/η)

ε4/8k2
= 8k3

ε9
ln k2

ε6
. By

Lemma 5, we know that with probability 1− ε
k , the sample contains at least k

ε5
points

from Pj . Then we let π be the mean point of the k
ε5

points from Pj , and a2 be the

variance of Pj . By Lemma 4, we know that with probability 1 − ε
k , ||π − τ j ||2 ≤

ε4a2. Also, since
|Pj |

|Opt j | = |Pj |
β j n

≥ ε3

j (because |Pj | ≥ ε3
β j
j n for case (a)), we have

a2 ≤ |Opt j |
|Pj | δ2j ≤ j

ε3
δ2j . Thus,

||π − τ j ||2 ≤ ε jδ2j . (16)

Once obtainingπ , we can apply Lemma3 to find a point pv j satisfying the condition

of ||pv j −m j || ≤ εδ j + (1+ ε) j
√

ε
β j

δopt . We construct a simplex V ′
(a) with vertices

{pv1, . . . , pv j−1} and π (see Fig. 4b). Note that Opt j is partitioned by the peeling
spheres into j disjoint subsets, P1, . . . , Pj . Each Pl (1 ≤ l ≤ j − 1) lies inside Bj,l ,
which implies that τl , i.e., the mean point of Pl , is also inside Bj,l . Further, by Claim 2,
for 1 ≤ l ≤ j − 1, we have

||pvl − τl || ≤ r j ≤
(
1 + ε

2

)
j
√

ε/β jδopt . (17)

Recall that β jδ
2
j ≤ δ2opt . Thus, together with (16), we have

||π − τ j || ≤ √
ε jδ j ≤ √

ε j/β jδopt . (18)

By (17) and (18), if setting the value of L (in Lemma 3) to be

max{r j , ||π − τ j ||} ≤ max
{(

1 + ε

2

)
j
√

ε/β jδopt ,
√

ε j/β jδopt

}

=
(
1 + ε

2

)
j
√

ε/β jδopt , (19)

123

Algorithmica (2020) 82:808–852 825

and the value of ε (in Lemma 3) to be ε0 = ε2/4, by Lemma 3 we can construct a
grid inside the simplex V ′

(a) with size O((8 j/ε0) j) to ensure the existence of the grid
point τ satisfying the inequality of

||τ − m j || ≤ √
ε0δ j + (1 + ε0)L ≤ εδ j + (1 + ε) j

√
ε

β j
δopt . (20)

Hence, let pv j be the grid point τ , and the induction step holds for this case.
For case (b), we can also apply Lemma 3 to find an approximate mean point in a

way similar to case (a); the difference is that we construct a simplex V ′
(b) with vertices{pv1, . . . , pv j−1} (see Fig. 4b). Roughly speaking, since |Pj | is small, the mean points

of Opt j\Pj and Opt j are very close to each other (by Lemma 2). Thus, we can ignore
Pj and just consider Opt j\Pj .

Let a2 and m′
j denote the variance and mean point of Opt j\Pj respectively. We

know that {P1, P2, . . . , Pj−1} is a partition on Opt j\Pj . Thus, similar with case (a),
we construct a simplex V ′

(b) determined by {pv1, . . . , pv j−1} (see Fig. 4b), set the value
of L to be r j ≤ (1+ ε

2) j
√

ε
β j

δopt , and then build a grid inside V ′
(b) with size O((

8 j
ε0

) j),

where ε0 = ε2/4. By Lemma 3, we know that there exists one grid point τ satisfying
the condition of

||τ − m′
j || ≤ √

ε0a + (1 + ε0)L ≤ ε

2
a + (1 + ε) j

√
ε

β j
δopt . (21)

Meanwhile, we know that |Opt j\Pj | ≥ (1 − ε3/ j)|Opt j |, since |Pj | ≤ ε3

j |Opt j |.
Thus, we have a2 ≤ |Opt j |

|Opt j\Pj |δ
2
j ≤ 1

1−ε3/ j
δ2j , and ||m′

j − m j || ≤
√

ε3/ j
1−ε3/ j

δ j (by
Lemma 2). Together with (21), we have

||τ − m j || ≤ ||τ − m′
j || + ||m′

j − m j ||

≤ ε

2
a + (1 + ε) j

√
ε

β j
δopt +

√
ε3/ j

1 − ε3/ j
δ j

≤ ε

2

√
1

1 − ε3/ j
δ j + (1 + ε) j

√
ε

β j
δopt +

√
ε3/ j

1 − ε3/ j
δ j

≤
⎛

⎝ε

2

√
1

1 − ε3/ j
+

√
ε3/ j

1 − ε3/ j

⎞

⎠ δ j + (1 + ε) j
√

ε

β j
δopt

≤ εδ j + (1 + ε) j
√

ε

β j
δopt . (22)

Hence, let pv j be the grid point τ , and the induction step holds for this case.
Since Algorithm 2 executes every step in our above discussion, the induction step,

as well as the lemma, is true.
�

123

826 Algorithmica (2020) 82:808–852

Success Probability From the above analysis, we know that in the j th iteration, only
case (a) (i.e., |Pj | ≥ ε3

β j
j n) needs to consider the success probability of random sam-

pling. Recall that in case (a), we take a sample of size 8k3

ε9
ln k2

ε6
. Thus with probability

1 − ε
k , it contains at least

k
ε5

points from Pj . Meanwhile, with probability 1 − ε
k ,

||π − τ j ||2 ≤ ε4a2. Hence, the success probability in the j th iteration is (1− ε
k)

2. By
taking the union bound, the success probability in all k iterations is (1− ε

k)
2k ≥ 1−2ε.

NumberofCandidatesandRunningTimeAlgorithm1callsAlgorithm2O(1
ε
log c)

times (in Sect. 3.4, we will show that c can be a constant number). It is easy to see
that each node in the returned tree has |R|2s+ j (

32 j
ε2

) j children, where |R| = O(
log n

ε
),

and s = 8k3

ε9
ln k2

ε6
. Since the tree has the height of k, the complexity of the tree is

O(2poly(
k
ε
)(log n)k). Consequently, the number of candidates is O(2poly(

k
ε
)(log n)k).

Further, since each node takes O(|R|2s+ j (
32 j
ε2

) j nd) time, the total time complexity

of the algorithm is O(2poly(
k
ε
) n(log n)k+1d).

3.4 Upper Bound Estimation

Asmentioned in Sect. 3.1, our Peeling-and-Enclosing algorithm needs an upper bound
Δ on the optimal value δ2opt . To compute this, our main idea is to use some uncon-
strained k-means clustering algorithmA∗ (e.g., the linear time (1+ ε)-approximation
algorithm in [43]) on the input points P without considering the constraint, to
obtain a λ-approximation to the k-means clustering for some constant λ > 1. Let
C = {c1, . . . , ck} be the set of mean points returned by algorithm A∗.3 Below, we
show that the Cartesian product [C]k = C × · · · × C︸ ︷︷ ︸

k

contains one k-tuple, which is an

(18λ + 16)-approximation of k-CMeans on the same input P . Clearly, to select the
k-tuple from [C]k with the smallest objective value, we still need to solve the Partition
step on each k-tuple to form the desired clusters. Similar to Remark 1, we refer the
reader to Sect. 4 for the selection algorithms for the considered constrained clustering
problems.

Theorem 2 Let P = {p1, . . . , pn} be the input points of k-CMeans, and C =
{c1, . . . , ck} be the mean points of a λ-approximation of the k-means clustering on P
(without considering the constraint) for some constant λ ≥ 1. Then [C]k contains at
least one k-tuple which is able to induce an (18λ + 16)-approximation of k-CMeans.

Proof Synopsis Let ω be the objective value of the k-means clustering on P corre-
sponding to the k mean points in C. To prove Theorem 2, we create a new instance of
k-CMeans: for each point pi ∈ P , move it to its nearest point, say ct , in {c1, . . . , ck};
let p̃i denote the new pi (note that ct and p̃i coincide with each other; see Fig. 5a).
The set P̃ = { p̃1, . . . , p̃n} forms a new instance of k-CMeans. Let δ̃2opt be the optimal

value of k-CMeans on P̃ , and δ2opt ([C]k) be the minimum cost of k-CMeans on P by

3 Note that they are different from {m1, . . . ,mk }, which are the mean points of the k optimal constrained
clusters {Opt1, . . . , Optk } of P defined in the beginning of Sect. 3.

123

Algorithmica (2020) 82:808–852 827

(a) (b)

Fig. 5 a pi is moved to ct and becomes p̃i ; b ||m̃l − c̃l || ≤ ||m̃l − p̃i ||

restricting its mean points to be one k-tuple in [C]k . We show that δ̃2opt is bounded by a

combination of ω and δ2opt , and δ2opt ([C]k) is bounded by a combination of ω and δ̃2opt

(see Lemma 8). Together with the fact that ω is no more than λδ2opt , we consequently
obtain that δ2opt ([C]k) ≤ (18λ + 16)δ2opt , which implies Theorem 2.

Lemma 8 δ̃2opt ≤ 2ω + 2δ2opt , and δ2opt ([C]k) ≤ 2ω + 8δ̃2opt .

Proof We first prove the inequality of δ̃2opt ≤ 2ω + 2δ2opt . Consider any point pi ∈ P .
Let Optl be the optimal cluster containing pi . Then, we have

|| p̃i − ml ||2 ≤ (|| p̃i − pi || + ||pi − ml ||)2
≤ 2|| p̃i − pi ||2 + 2||pi − ml ||2, (23)

where the first inequality follows from triangle inequality, and the second inequality
follows from the fact that (a + b)2 ≤ 2a2 + 2b2 for any two real numbers a and b.
For both sides of (23), we take the averages over all the points in P , and obtain

1

n

k∑

l=1

∑

pi∈Optl

|| p̃i − ml ||2 ≤ 2

n

n∑

i=1

|| p̃i − pi ||2 + 2

n

k∑

l=1

∑

pi∈Optl

||pi − ml ||2. (24)

Note that the left-hand side of (24) is not smaller than δ̃2opt , since δ̃2opt is the opti-

mal objective value of k-CMeans on P̃ . For the right-hand side of (24), the first
term 2 1

n

∑n
i=1 || p̃i − pi ||2 = 2ω (by the construction of P̃), and the second term

2 1
n

∑k
l=1

∑
pi∈Optl ||pi − ml ||2 = 2δ2opt . Thus, we have δ̃2opt ≤ 2ω + 2δ2opt .

Next, we show the inequality δ2opt ([C]k) ≤ 2ω + 8δ̃2opt . Consider k-CMeans clus-

tering on P̃ . Let {m̃1, . . . , m̃k} be the optimal constrained mean points of P̃ , and
{Õ1, . . . , Õk} be the corresponding optimal clusters. Let {c̃1, . . . , c̃k} be the k-tuple
in [C]k with c̃l being the nearest point in C to m̃l . Thus, by an argument similar to the
one for (23), we have

|| p̃i − c̃l ||2 ≤ 2|| p̃i − m̃l ||2 + 2||m̃l − c̃l ||2 ≤ 4|| p̃i − m̃l ||2. (25)

for each p̃i ∈ Õl . In (25), the last one follows from the facts that c̃l is the nearest
point in C to m̃l and p̃i ∈ C, which implies that ||m̃l − c̃l || ≤ ||m̃l − p̃i || (see Fig. 5b).

123

828 Algorithmica (2020) 82:808–852

Summing both sides of (25) over all the points in P̃ , we have

k∑

l=1

∑

p̃i∈Õl

|| p̃i − c̃l ||2 ≤ 4
k∑

l=1

∑

p̃i∈Õl

|| p̃i − m̃l ||2. (26)

Now, consider the following clustering on P . For each pi , if p̃i ∈ Õl , we cluster it
to the corresponding c̃l .
Then the objective value of the clustering is

1

n

k∑

l=1

∑

p̃i∈Õl

||pi − c̃l ||2 ≤ 1

n

k∑

l=1

∑

p̃i∈Õl

(2||pi − p̃i ||2 + 2|| p̃i − c̃l ||2)

≤ 2
1

n

n∑

i=1

||pi − p̃i ||2 + 8
1

n

k∑

l=1

∑

p̃i∈Õl

|| p̃i − m̃l ||2. (27)

The left-hand side of (27), 1
n

∑k
l=1

∑
p̃i∈Õl

||pi − c̃l ||2, is no smaller than δ2opt ([C]k)
(by the definition), and the right-hand side of (27) is equal to 2ω + 8δ̃2opt . Thus, we

have δ2opt ([C]k) ≤ 2ω + 8δ̃2opt .
�

Proof of Theorem 2 By the two inequalities in Lemma 8, we know that δ2opt ([C]k) ≤
18ω + 16δ2opt . It is obvious that the optimal objective value of the k-means clustering
is no larger than that of k-CMeans on the same set of input points P . This implies that
ω ≤ λδ2opt . Thus, we have

δ2opt ([C]k) ≤ (18λ + 16)δ2opt . (28)

So there exists one k-tuple in [C]k , which is able to induce an (18λ + 16)-
approximation.
�

4 Selection Algorithms for k-CMeans

As shown in Sect. 3, a set of k-tuple candidates for the mean points of k-CMeans can
be obtained by our Peeling-and-Enclosing algorithm. To determine the best candidate,
we need a selection algorithm to compute the clustering for each k-tuple candidate,
and select the one with the smallest objective value. Clearly, the key to designing a
selection algorithm is to solve the Partition step (i.e., generating the clustering) for each
k-tuple candidate. We need to design a problem-specific algorithm for the Partition
step, to satisfy the constraint of each individual problem.

We consider all the constrained k-means clustering problems which are mentioned
in Sect. 1.1, except for the uncertain data clustering, since Cormode and McGregor
[19] have showed that it can be reduced to an ordinary k-means clustering problem.

123

Algorithmica (2020) 82:808–852 829

(a) (b)

Fig. 6 Minimum cost circulations for r -gather clustering (a) and l-diversity clustering (b)

However, the k-median version of the uncertain data clustering does not have such
a property. In Sect. 5.4, we will discuss how to obtain the (1 + ε)-approximation by
applying our Peeling-and-Enclosing framework.

4.1 r-Gather k-Means Clustering

Let P be a set of n points in R
d . r -Gather k-means clustering (denoted by (r , k)-

GMeans) on P is the problem of clustering P into k clusters with size at least r , such
that the average squared Euclidean distance from each point in P to the mean point
of its cluster is minimized [2].

To solve the Partition problem of (r , k)-GMeans, we adopt the following strategy.
For each k-tuple candidate Pv = {pv1, . . . pvk } returned by Algorithm 1, build a
complete bipartite graph G (see Fig. 6a): each vertex in the left column corresponds to
a point in P , and each vertex in the right column represents a candidate mean point in
Pv; for each pair of vertices in different partite sets, connect them by an edge with the
weight equal to their squared Euclidean distance. We can solve the Partition problem
byfinding theminimumcostmatching inG: each vertex in the left has the supply 1, and
each vertex in the right has the demand r and capacity n. After adding a source node s
connecting to all the verities in the left and a sink node t connecting to all the vertices in
the right, we can reduce the Partition problem to aminimum cost circulation problem,
and solve it by using the algorithm in [28]. Denote by V and E the sets of vertices
and edges of G. The running time for solving the minimum cost circulation problem
is O(|E |2 log |V | + |E | · |V | log2 |V |) [49]. In our case, |E | = O(n) and |V | = O(n)

if k is a fixed constant. Also, the time complexity for building G is O(nd). Thus, the

total time for solving the Partition problem is O
(
n
(
n(log n)2 + d

))
.4 Together with

the time complexity in Theorem 1, we have the following theorem.

4 In our problem, an integral solution is necessary for generating the clusters on P . Actually, since the
demands and capacities are all integers, any optimal solution of the minimum cost circulation problem can
be transformed to an integral solution without loss of the quality in O(|Pv | · |E |) = O(n) time [22].

123

830 Algorithmica (2020) 82:808–852

Theorem 3 There exists an algorithm yielding a (1 + ε)-approximation for (r , k)-

GMeans with constant probability, in O
(
2poly(

k
ε
)(log n)k+1n

(
n log n + d

))
time.

4.2 r-Capacity k-Means Clustering

r -Capacity k-means clustering (denoted by (r , k)-CaMeans) [41] on a set P of n
points in R

d is the problem of clustering P into k clusters with size at most r , such
that the average squared Euclidean distance from each point in P to the mean point
of its cluster is minimized.

We can solve the Partition problem of (r , k)-CaMeans in a way similar to that of
(r , k)-GMeans; the only difference is that the demand r is replaced by the capacity r .

Theorem 4 There exists an algorithm yielding a (1 + ε)-approximation for (r , k)-

CaMeans with constant probability, in O
(
2poly(

k
ε
)(log n)k+1n

(
n log n + d

))
time.

4.3 l-Diversity k-Means Clustering

Let P = ⋃ñ
i=1 Pi be a set of colored points in R

d and
∑ñ

i=1 |Pi | = n, where the
points in each Pi share the same color. l-Diversity k-means clustering (denoted by
(l, k)-DMeans) on P is the problem of clustering P into k clusters such that the points
sharing the same color inside each cluster have a fraction no more than 1

l for some
l > 1, and the average squared Euclidean distance from each point in P to the mean
point of its cluster is minimized.

Similar to (r , k)-GMeans, we reduce the Partition problem of (l, k)-DMeans to a
minimum cost circulation problem for each k-tuple candidate Pv = {pv1, . . . pvk }.
The challenge is that we do not know the size of each resulting cluster, and therefore
it is difficult to control the flow on each edge if directly using the bipartite graph built
in Fig. 6a. Instead, we add a set of “gates” between the input P and the k-tuple Pv (see
Fig. 6b). First, following the definition of (l, k)-DMeans, we partition the “vertices”
P into ñ groups {P1, . . . , Pñ}. For each Pi , we generate a new set of vertices (i.e., the
gates) P ′

i = {ci1, . . . , cik}, and connect each pair of p ∈ Pi and cij ∈ P ′
i by an edge

with weight ||p − pv j ||2. We also connect each pair of cij and pv j by an edge with
weight 0. In Fig. 6b, the size of vertices |V | = n + kñ + k + 2 = O(kn), and the size
of edges |E | = n + kn + kñ + k = O(kn). Below we show that we can use cij to
control the flow from Pi to pv j by setting appropriate capacities and demands.

Let t = max1≤i≤ñ |Pi |. We consider the value �|Opt j |/l� that is the upper bound
on the number of points with the same color in Opt j (recall Opt j is the j th optimal
cluster defined in Sect. 3). The upper bound �|Opt j |/l� can be either between 1 and t
or larger than t . Clearly, if the upper bound is larger than t , there is no need to consider
the upper bound anymore. Thus, we can enumerate all the (t + 1)k cases to guess the
upper bound �|Opt j |/l� for 1 ≤ j ≤ k. Let u j be the guessed upper bound for Opt j .
If u j is no more than t , then each cij , 1 ≤ i ≤ ñ, has the capacity u j , and pv j has
the demand l × u j and capacity l × (u j + 1) − 1. Otherwise (i.e., u j > t), set the
capacity of each cij , 1 ≤ i ≤ ñ, to be n, and the demand and capacity of pv j to be

123

Algorithmica (2020) 82:808–852 831

l × (t + 1) and n, respectively. By using the algorithm in [49], we solve the minimum
cost circulation problem for each of the (t + 1)k guesses.

Theorem 5 For any colored point set P = ⋃ñ
i=1 Pi in R

d with n = |P| and

t = max1≤i≤ñ |Pi |, there exists an algorithm yielding, in O
(
2poly(

k
ε
)(log n)k+1(t +

1)kn
(
n log n + d

))
time, a (1 + ε)-approximation for (l, k)-DMeans with constant

probability.

NoteWe can solve the problem in [46] by slightly changing the above Partition algo-
rithm. In [46], it requires that the size of each cluster is at least l and the points inside
each cluster have distinct colors, which means that the upper bound u j is always equal
to 1 for each 1 ≤ j ≤ k. Thus, there is no need to guess the upper bounds in our Par-
tition algorithm. We can simply set the capacity for each cij to be 1, and the demand
for each pv j to be l. With this change, our algorithm yields a (1 + ε)-approximation

with constant probability in O
(
2poly(

k
ε
)(log n)k+1n

(
n log n + d

))
time.

4.4 Chromatic k-Means Clustering

Let P = ⋃ñ
i=1 Pi be a set of colored points in R

d and
∑ñ

i=1 |Pi | = n, where the
points in each Pi share the same color. Chromatic k-means clustering (denoted by
k-ChMeans) [7,23] on P is the problem of clustering P into k clusters such that no
pair of points with the same color is clustered into the same cluster, and the average
squared Euclidean distance from each point in P to the mean point of its cluster is
minimized.

To satisfy the chromatic requirement, each Pi should have a size no more than k.
Given a k-tuple candidate Pv = {pv1, . . . , pvk }, we can consider the partition problem
for each Pi independently, since there is nomutual constraint among them. It is easy to
see that finding a partition of Pi is equivalent to computing aminimum cost one-to-one
matching between Pi and Pv , where the cost of the matching between any p ∈ Pi
and pv j ∈ Pv is their squared Euclidean distance. We can build this bipartite graph
in O(k2d) time, and solve this matching problem by using Hungarian algorithm in
O(k3) time. Thus, the running time of the Partition step for each Pv is O(k2(k+d)n).

Theorem 6 There exists an algorithm yielding a (1+ε)-approximation for k-ChMeans

with constant probability, in O
(
2poly(

k
ε
)(log n)k+1nd

)
time.

4.5 Fault Tolerant k-Means Clustering

Fault Tolerant k-means clustering (denoted by (l, k)-FMeans) [54] on a set P of
n points in R

d and a given integer 1 ≤ l ≤ k is the problem of finding k points
C = {c1, . . . , ck} ⊂ R

d , such that the average of the total squared distances from each
point in P to its l nearest points in C is minimized.

To solve the Partition problem of (l, k)-FMeans, our idea is to reduce (l, k)-FMeans
to k-ChMeans, and use the Partition algorithm for k-ChMeans to generate the desired

123

832 Algorithmica (2020) 82:808–852

clusters. The reduction simply makes l monochromatic copies {p1i , . . . , pli } for each
pi ∈ P . The following lemma shows the relation of the two problems.

Lemma 9 For any constant λ ≥ 1, a λ-approximation of (l, k)-FMeans on P is equiv-
alent to a λ-approximation of k-ChMeans on

⋃n
i=1{p1i , . . . , pli }.

Proof We build a bijection between the solutions of (l, k)-FMeans and k-ChMeans.
First, we consider the mapping from (l, k)-FMeans to k-ChMeans. Let C =
{c1, . . . , ck} be the k mean points of (l, k)-FMeans, and {ci(1), . . . , ci(l)} ⊂ C be the
l nearest mean points to each pi ∈ P . If using C as the k mean points of k-ChMeans
on

⋃n
i=1{p1i , . . . , pli }, the l copies {p1i , . . . , pli } of pi will be respectively clustered to

the l clusters of {ci(1), . . . , ci(l)} to minimize the cost.
Now consider the mapping from k-ChMeans to (l, k)-FMeans. Let C′ =

{c′
1, . . . , c

′
k} be the k mean points of k-ChMeans. For each i , {c′

i(1), . . . , c
′
i(l)} are

the mean points of the l clusters that {p1i , . . . , pli } are clustered to. It is easy to see that
the l nearest mean points of pi are {c′

i(1), . . . , c
′
i(l)} if we use C′ as the k mean points

of (l, k)-FMeans.
With this bijection, we can pair up the solutions to the two problems. Clearly, each

pair of solutions to (l, k)-FMeans and k-ChMeans formed by the bijection have the
equal objective value. Further, their optimal objective values are equal to each other,
and for any pair of solutions, their approximation ratios are the same. Thus, Lemma 9
is true.
�

With Lemma 9, we immediately have the following theorem.

Theorem 7 There exists an algorithm yielding a (1 + ε)-approximation for (l, k)-

FMeans with constant probability, in O
(
2poly(

k
ε
)(log n)k+1nd

)
time.

Note As mentioned in [35], a more general version of fault tolerant clustering prob-
lem is to allow each point pi ∈ P to have an individual l-value li . From the above
discussion, it is easy to see that this general version can also be solved in the same way
(i.e., through reduction to k-ChMeans) and achieve the same approximation result.

4.6 Semi-supervised k-Means Clustering

As shown in Sect. 1.1, semi-supervised clustering has various forms. In this paper, we
consider the semi-supervised k-means clustering problem which takes into account
the geometric cost and priori knowledge. Let P be a set of n points in R

d , and S =
{S1, . . . , Sk} be a given clustering of P . Semi-supervised k-means clustering (denoted
by k-SMeans) on P and S is the problem of finding a clustering S = {S1, . . . , Sk} of
P such that the following objective function is minimized,

α
Cost(S)

E1
+ (1 − α)

dist{S,S}
E2

, (29)

where α ∈ [0, 1] is a given constant, E1 and E2 are two given scalars to normalize
the two terms, Cost(S) is the k-means clustering cost of S, and dist{S,S} is the

123

Algorithmica (2020) 82:808–852 833

distance between S and S defined in the same way as in [11]. For any pair of S j and
Si , 1 ≤ j, i ≤ k, their difference is |S j\Si |. Given a bipartite matching σ between S
and S, dist{S,S} is defined as

∑k
j=1 |S j\Sσ(j)|.

The challenge is that the bipartite matching σ is unknown in advance. We fix the
k-tuple candidate Pv = {pv1, . . . pvk }. To find the desired σ to minimize the objective
function (29), we build a bipartite graph, where the left (resp., right) column contains
k vertices corresponding to pv1 , . . . , pvk (resp., S1, . . . , Sk), respectively. For each
pair (pv j , Si), we connect them by an edge; we calculate the edge weight w(i, j) in
the following way. For each p ∈ Si , it could be potentially assigned to any of the k
clusters in S; if i = σ(j), the induced k costs of p will be {c1p, c2p, . . . , ckp}, where
clp = α

||p−pvl ||2
E1

if l = j , or clp = α
||p−pvl ||2

E1
+ (1 − α) 1

E2
otherwise. Thus, we set

w(i, j) =
∑

p∈Si
min
1≤l≤k

clp. (30)

We solve the minimum cost bipartite matching problem to determine σ . To build such
a bipartite graph, we need to first compute all the kn distances from the points in P
to the k-tuple Pv; then, we calculate the k2 edge weights via (30). The bipartite graph
can be built in a total of O(knd+k2n) time, and the optimal matching can be obtained
via Hungarian algorithm in O(k3) time.

Theorem 8 There exists an algorithm yielding a (1+ ε)-approximation for k-SMeans

with constant probability, in O
(
2poly(

k
ε
)(log n)k+1nd

)
time.

5 Constrained k-Median Clustering (k-C Median)

In this section, we extend our approach for k-CMeans to the constrained k-median
clustering problem (k-CMedian). Similar to k-CMeans, we show that the Peeling-and-
Enclosing framework can be used to construct a set of candidates for the constrained
median points. Combining thiswith the selection algorithms (with trivialmodification)
in Sect. 4, we achieve the (1+ ε) approximations for a class of k-CMedian problems.

To solve k-C Median, a straightforward idea is to extend the simplex lemma to
median points and combine it with the Peeling-and-Enclosing framework to achieve
an approximate solution. However, due to the essential difference between mean and
median points, such an extension for the simplex lemma is not always possible. The
main reason is that the median point (i.e., Fermat point) does not necessarily lie inside
the simplex, and thus there is no guarantee to find the median point by searching
inside the simplex. Below is an example showing that the median point actually can
lie outside the simplex.

Let P = {p1, p2, . . . , p9} be a set of points in R
d . We consider the following

partition of P , P1 = {pi | 1 ≤ i ≤ 5} and P2 = {pi | 6 ≤ i ≤ 9}. Assume that all the
points of P locate at the three vertices of a triangle Δabc. Particularly, {p1, p2, p6}
coincide with vertex a, {p3, p4, p5} with vertex b, and {p7, p8, p9} with vertex c (see
Fig. 7). It is easy to see that the median points of P1 and P2 are b and c, respectively.

123

834 Algorithmica (2020) 82:808–852

Fig. 7 An example showing non-existence of a simplex lemma for k-CMedian

If the angle ∠bac ≥ 2π
3 , the median point of P is vertex a (note that the median point

can be viewed as the Fermat point of Δabc with each vertex associated with weight
3). This means that the median point of P is outside the simplex formed by the median
points of P1 and P2 (i.e., segment bc). Thus, a good approximation of the median
point cannot be obtained by searching a grid inside bc.

To overcome this difficulty, we show that a weaker version of the simplex lemma
exists for median, which enables us to achieve similar results for k-CMedian.

5.1 Weaker Simplex Lemma for Median Point

Comparing to the simplex lemma in Sect. 2, the following Lemma 10 has two dif-
ferences. One is that the lemma requires a partial partition on a significantly large
subset of P , rather than a complete partition on P . Secondly, the grid is built in the
flat spanned by {o1, . . . , o j }, instead of the simplex. Later, we will show that the grid
is actually built in a surrounding region of the simplex, and thus the lemma is called
“weaker simplex lemma”.

Lemma 10 (Weaker Simplex Lemma) Let P be a set of n points inRd , and
⋃ j

l=1 Pl ⊂
P be a partial partition of P with Pl1 ∩ Pl2 = ∅ for any l1 �= l2. Let ol be the
median point of Pl for 1 ≤ l ≤ j , and F be the flat spanned by {o1, . . . , o j }. If
|P\(⋃ j

l=1 Pl)| ≤ ε|P| for some constant ε ∈ (0, 1/5) and each Pl is contained inside
a ball B(ol , L) centered at ol and with radius L ≥ 0, then it is possible to build a grid

in F with size O(j2(j
√

j
ε

) j) such that at least one grid point τ satisfies the following
inequality, where o is the median point of P (see Fig. 8).

1

|P|
∑

p∈P

||τ − p|| ≤
(

1 + 9

4
ε

)
1

|P|
∑

p∈P

||p − o|| + (1 + ε)L. (31)

Proof Synopsis To prove Lemma 10, we let õ be the orthogonal projection of o to F
(see Fig. 8). In Claim 4, we show that the distance between o and õ is bounded, and
consequently, the induced cost of õ, i.e., 1

|P|
∑

p∈P ||p−õ||, is also bounded according
to Claim 5. Thus, õ is a good approximation of o, and we can focus on building a grid
inside F to approximate õ. Since F is unbounded, we need to determine a range for
the grid. Claim 6 resolves the issue. It considers two cases. One is that there are at least
two subsets in the partial partition, {P1, . . . , Pj }, having large enough fractions of P;
the other is that only one subset is large enough. For either case, Claim 6 shows that

123

Algorithmica (2020) 82:808–852 835

Fig. 8 An illustration for Lemma10

Fig. 9 An illustration for
Claim 4

we can determine the range of the grid using the location information of {o1, . . . , o j }.
Finally, we can obtain the desired grid point τ in the following way: draw a set of balls
centered at {o1, . . . , o j } with proper radii; build the grids inside each of the balls, and
find the desired grid point τ in one of these balls. Note that since all the balls are inside
F , the complexity of the union of the grids is independent of the dimensionality d.

Claim 4

||o − õ|| ≤ L + 1

1 − ε

1

|P|
∑

p∈P

||o − p||. (32)

Proof Lemma 10 assumes that
⋃ j

l=1 Pl ≥ (1 − ε)|P|. By Markov’s inequality, we

know that there exists one point q ∈ ⋃ j
l=1 Pl such that

||q − o|| ≤ 1

1 − ε

1

|P|
∑

p∈P

||o − p||. (33)

Let Plq be the subset containing q. Then from (33), we immediately have

||o − õ|| ≤ ||olq − o||
≤ ||olq − q|| + ||q − o||
≤ L + 1

1 − ε

1

|P|
∑

p∈P

||o − p||. (34)

This implies Claim 4 (see Fig. 9).
�

123

836 Algorithmica (2020) 82:808–852

Fig. 10 An illustration for
Claim 5

Claim 5

1

|P|
∑

p∈P

||p − õ|| ≤ 1

1 − ε

1

|P|
∑

p∈P

||p − o|| + L. (35)

Proof For any point p ∈ Pl , let dist{oõ, p} (resp., dist{F , p}) denote its distance to
the line oõ (resp., flat F). See Fig. 10. Then we have

||p − õ|| =
√

dist2{oõ, p} + dist2{F , p}, (36)

||p − o|| ≥ dist{oõ, p}. (37)

Combining (36) and (37), we have

||p − õ|| − ||p − o|| ≤
√

dist2{oõ, p} + dist2{F , p} − dist{oõ, p}
≤ dist{F , p}
≤ ||p − ol || ≤ L. (38)

For any point p ∈ P\(⋃ j
l=1 Pl), we have

||p − õ|| ≤ ||p − o|| + ||o − õ||. (39)

Combining (38), (39), and (32), we have

1

|P|
∑

p∈P

||p − õ|| = 1

|P|

⎛

⎜
⎜
⎝

∑

p∈⋃ j
l=1 Pl

||p − õ|| +
∑

p∈P\
(⋃ j

l=1 Pl
)
||p − õ||

⎞

⎟
⎟
⎠

≤ 1

|P|

⎛

⎜
⎜
⎝

∑

p∈⋃ j
l=1 Pl

(L + ||p − o||) +
∑

p∈P\
(⋃ j

l=1 Pl
)
(||p − o|| + ||o − õ||)

⎞

⎟
⎟
⎠

≤ (1 − ε)L + 1

|P|
∑

p∈P

||p − o|| + εL + ε

1 − ε

1

|P|
∑

p∈P

||p − o||

= 1

1 − ε

1

|P|
∑

p∈P

||p − o|| + L. (40)

123

Algorithmica (2020) 82:808–852 837

Fig. 11 An illustration for
Claim 6

Thus the claim is true.
�
Claim 6 At least one of the following two statements is true.

1. There exist at least two points in {o1, . . . , o j } whose distances to õ are no more

than L + 3 j
1−ε

1
|P|

∑
p∈P ||p − o||.

2. There exists one point in {o1, . . . , o j }, say ol0 , whose distance to õ is no more than
(1 + 1+2ε√

3−12ε
)L.5

Proof We consider two cases: (i) there are two subsets Pl1 and Pl2 of P with size at
least 1−ε

3 j |P|, and (ii) no such pair of subsets exists.
For case (i), by Markov’s inequality, we know that there exist two points q ∈ Pl1

and q ′ ∈ Pl2 such that

||q − o|| ≤ 3 j

1 − ε

1

|P|
∑

p∈P

||p − o||; (41)

||q ′ − o|| ≤ 3 j

1 − ε

1

|P|
∑

p∈P

||p − o||. (42)

This, together with triangle inequality, indicates that both ||ol1 − o|| and ||ol2 − o||
are no more than L + 3 j

1−ε
1

|P|
∑

p∈P ||p − o||. Since õ is the orthogonal projection of
o to F , we have ||ol1 − õ|| ≤ ||ol1 − o|| and ||ol2 − õ|| ≤ ||ol2 − o||. Thus, the first
statement is true in this case.

For case (ii), i.e., no two subsets with size at least 1−ε
3 j |P|, since ∑ j

l=1 |Pl | ≥
(1−ε)|P|, by pigeonhole principle we know that there must exist one Pl0 , 1 ≤ l0 ≤ j ,
with size

|Pl0 | ≥
(

1 − (j − 1)
1

3 j

)

(1 − ε)|P| ≥ 2

3
(1 − ε)|P|. (43)

Let x = ||o − ol0 ||. We assume that x > L , since otherwise the second statement is
automatically true.

Now imagine moving o slightly toward ol0 by a small distance δ. See Fig. 11. For
any point p ∈ Pl0 , let p̃ be its orthogonal projection to the line ool0 , and a and b be

5 Note that we assume ε < 1
5 in Lemma 10, so (1 + 1+2ε√

3−12ε
)L is a finite real number.

123

838 Algorithmica (2020) 82:808–852

the distances ||o − p̃|| and ||p − p̃||, respectively. Then, the distance between p and
o is decreased by

√
a2 + b2 − √

(a − δ)2 + b2. Also, we have

lim
δ→0

√
a2 + b2 − √

(a − δ)2 + b2

δ
= lim

δ→0

2a − δ√
a2 + b2 + √

(a − δ)2 + b2

= (a/b)
√

(a/b)2 + 1
. (44)

Since p is inside ball B(ol0 , L), we have a/b ≥ (x − L)/L . For any point p ∈ P\Pl0 ,
the distance to o is non-increased or increased by at most δ. Thus, the average distance
from the points in P to o is decreased by at least

2

3
(1 − ε)

((x − L)/L)δ
√

((x − L)/L)2 + 1
−

(

1 − 2

3
(1 − ε)

)

δ. (45)

Since the original position of o is the median point of P , the value of (45) should be
non-positive. With simple calculation, we have

(x − L)/L ≤ 1 + 2ε√
3 − 12ε

�⇒ x ≤
(

1 + 1 + 2ε√
3 − 12ε

)

L. (46)

By the same argument in case (i), we know that ||ol0 − õ|| ≤ ||ol0 −o||. This, together
with (46), implies that the second statement is true for case (ii). This completes the
proof for this claim.
�

With the above claims, we now prove Lemma 10.

Proof of Lemma 10 We build a grid in F as follows. First, draw a set of balls.

– For each ol , 1 ≤ l ≤ j , draw a ball (called type-1 ball) centered at ol and with
radius (1 + 1+2ε√

3−12ε
)L .

– For each pair of ol and ol ′ , 1 ≤ l, l ′ ≤ j , draw a ball (called type-2 ball) centered
at ol and with radius (1 + 1+2ε√

3−12ε
)(||ol − ol ′ || + L).

We claim that among the above balls, there must exist one ball that contains õ.
If there is only one subset in {P1, . . . , Pj } with size no smaller than 1−ε

3 j |P|, it
corresponds to the second case in Claim 6, and thus there exists a type-1 ball con-
taining õ. Now consider the case that there are multiple subsets, say {Pl1 , . . . , Plt }
for some t ≥ 2, all with size no smaller than 1−ε

3 j |P|. Without loss of generality,
assume that ||ol1 − ol2 || = max{||ol1 − ols || | 1 ≤ s ≤ t}. Then, we can view⋃t

s=1 Pls as a big subset of P bounded by a ball centered at ol1 and with radius
||ol1 − ol2 || + L . By the same argument given in the proof of Claim 6 for (43), we
know that |⋃t

s=1 Pls | ≥ 2
3 (1 − ε)|P|. This also means that we can reduce this case

to the second case in Claim 6, i.e., replacing Pl0 , ol0 and L by | ⋃t
s=1 Pls |, ol1 and

||ol1 − ol2 || + L respectively. Thus, there is a type-2 ball containing õ.

123

Algorithmica (2020) 82:808–852 839

Next, we discuss how to build the grids inside these balls. For type-1 balls with
radius (1+ 1+2ε√

3−12ε
)L , we build the grids inside themwith grid length ε√

j
L . For type-2

balls with radius rl,l ′ = (1+ 1+2ε√
3−12ε

)(||ol − ol ′ || + L) for some l and l ′, we build the
grids inside them with grid length

1

1 + 1+2ε√
3−12ε

(1 − ε)ε

6 j
√

j
rl,l ′ . (47)

If õ is contained in a type-1 ball, then there exists one grid point τ whose distance
to õ is no more than εL . If õ is contained in a type-2 ball, such a distance is no more
than

(1 − ε)ε

6 j
(||ol − ol ′ || + L) (48)

by (47). By the first statement in Claim 6 and triangle inequality, we know that

||ol − ol ′ || ≤ ||ol − õ|| + ||õ − ol ′ || ≤ 2

⎛

⎝L + 3 j

1 − ε

1

|P|
∑

p∈P

||p − o||
⎞

⎠. (49)

Equations (48) and (49) imply that there exists one grid point τ whose distance to õ
is no more than

ε
1

|P|
∑

p∈P

||p − o|| + (1 − ε)ε

2 j
L ≤ ε

1

|P|
∑

p∈P

||p − o|| + εL. (50)

Thus in both types of ball-containing, by triangle inequality and Claim 5, we have

1

|P|
∑

p∈P

||p − τ || ≤ 1

|P|
∑

p∈P

(||p − õ|| + ||õ − τ ||)

≤
(

1

1 − ε
+ ε

)
1

|P|
∑

p∈P

||p − o|| + (1 + ε)L

≤
(

1 + 9

4
ε

)
1

|P|
∑

p∈P

||p − o|| + (1 + ε)L, (51)

where the second inequality follows from the assumption that ε ≤ 1
5 .

As for the grid size, since we build the grids inside the balls in the (j − 1)-
dimensional flat F , through simple calculation, we know that the grid size is

O(j2(j
√

j
ε

) j). This completes the proof.
�

123

840 Algorithmica (2020) 82:808–852

Fig. 12 The gray area is U

5.2 Peeling-and-Enclosing Algorithm for k-CMedian UsingWeaker Simplex
Lemma

In this section, we present a unified Peeling-and-Enclosing algorithm for generating a
set of candidate median points for k-CMedian. Similar to the algorithm for k-CMeans,
our algorithm iteratively determines the k median points. At each iteration, it uses a set
of peeling spheres and a simplex to search for an approximate median point. Since the
simplex lemma no longer holds for k-CMedian, we use the weaker simplex lemma as
a replacement. Thus a number of changes are needed to accommodate the differences.

Before presenting our algorithm, we first introduce the following lemma proved by
Badŏiu et al. in [10] for finding an approximate median point of a given point set.

Theorem 9 [10] Let P be a normalized set of n points in R
d space, 1 > ε > 0, and

R be a random sample of O(1/ε3 log 1/ε) points from P. Then one can compute, in
O(d2O(1/ε4) log n) time, a point set S(P, R) of cardinality O(2O(1/ε4) log n) , such
that with constant probability (over the choices of R), there is a point τ ∈ S(P, R)

such that
∑

p∈P ||τ − p|| ≤ (1 + ε)
∑

p∈P ||o − p||, where o is the optimal median
point of P.

Sketch of the proof of Theorem 9. Since our algorithm uses some ideas in Theorem 9,
we sketch its proof for completeness. First, byMarkov’s inequality, we know that there
exists one point, say s1, from Rwhose distance to o is nomore than 2 1

|P|
∑

p∈P ||o−p||
with certain probability. Then the sampling procedure can be viewed as an incremental
process starting with s1; a flat F spanned by all previously obtained sample points is
maintained; at each time that a new sample point is added, F is updated. Let õ be the
projection of o on F , and

U =
{
p ∈ R

d | π

2
− ε

16
≤ ∠oõp ≤ π

2
+ ε

16

}
. (52)

See Fig. 12. It has been shown that this incremental sampling process stops before at
most O(1/ε3 log 1/ε) points are taken, and one of the following two events happens
with constant probability: (1) F is close enough to o, and (2) |P\U | is small enough.
For either event, a grid can be built insideF , and one of the grid points τ is the desired
approximate median point.

Belowwegive an overviewof our Peeling-and-Enclosing algorithm for k-CMedian.
Let P = {p1, . . . , pn} be the set of R

d points in k-CMedian, and OPT =
{Opt1, . . . , Optk} be the k (unknown) optimal clusters with m j being the median
point of cluster Opt j for 1 ≤ j ≤ k. Without loss of generality, we assume that
|Opt1| ≥ |Opt2| ≥ · · · ≥ |Optk |. Denote by μopt the optimal objective value, i.e.,
μopt = 1

n

∑k
j=1

∑
p∈Opt j ||p − m j ||.

123

Algorithmica (2020) 82:808–852 841

Algorithm overview We mainly focus on the differences with the k-CMeans algo-
rithm. First, our algorithm uses Theorem 9 (instead of Lemma 4) to find an
approximation pv1 for m1. Then, it iteratively finds the approximate median points
for {m2, . . . ,mk} using the Peeling-and-Enclosing strategy. At the (j + 1)th itera-
tion, it has already obtained the approximate median points pv1 , . . . , pv j for clusters
Opt1, . . . , Opt j , respectively. Tofind the approximatemedian point pv j+1 forOpt j+1,
the algorithm draws j peeling spheres Bj+1,1, . . . , Bj+1, j centered at {pv1, . . . , pv j },
respectively, and considers the size of A = Opt j+1\(⋃ j

l=1 Bj+1,l). If |A| is small,
it builds a flat (instead of a simplex) spanned by {pv1, . . . , pv j }, and finds pv j+1 by
using the weaker simplex lemma where the j peeling spheres can be viewed as a
partial partition on Opt j+1. If |A| is large, it adopts a strategy similar to the one in
Theorem 9 to find pv j+1 : start with the flat F spanned by {pv1, . . . , pv j }, and grow
F by repeatedly adding a sample point in A to it. As it will be shown in Lemma 11,
F will become close enough to m j+1, and pv j+1 can be obtained by searching a grid
(built in a way similar to Lemma 10) inF . By choosing a proper value (i.e., O(ε)μopt)
for L in Lemmas 10 and 11, we can achieve the desired (1 + ε)-approximation.

As for the running time, although Theorem 9 introduces an extra factor of log n for
estimating the optimal cost of each Opt j+1, our algorithm actually does not need it as
such estimations have already been obtained during the Peeling-and-Enclosing step
(see Claim 2 in the proof of Lemma 6). Thus, the running time is still O(n(log n)k+1d),
which is the same as k-CMeans.

The algorithm is shown in Algorithm 3. The following lemma is needed to ensure
the correctness of our algorithm.

Lemma 11 Let F be a flat in R
d containing {pv1, . . . , pv j } and having a distance

to m j+1 no more than 2
|Opt j+1|

∑
p∈Opt j+1

||p − m j+1||. Assume that all the peeling
spheres B j+1,1, . . . , Bj+1, j are centered at {pv1, . . . , pv j }, respectively, and have a

radius L ≥ 0. Then if |Opt j+1\((⋃ j
w=1 Bj+1,w)

⋃
U)| ≤ ε|Opt j+1|, we have

1

|Opt j+1|
∑

p∈Opt j+1

||p − m̃ j+1||

≤ (1 + 2ε)
1

|Opt j+1|
∑

p∈Opt j+1

||p − m j+1|| + L (53)

for any 0 ≤ ε ≤ 1, where m̃ j+1 is the projection of m j+1 on F and U is defined in
(52) (after replacing o and õ by m j+1 and m̃ j+1, respectively).

Proof To prove this lemma, we first compare it with Lemma 10. The main difference
is that there is an extra part U ∩ Opt j+1 in Opt j+1, where Opt j+1 can be viewed as
the point set P in Lemma 10. Thus, Opt j+1 can be viewed as having three subsets,

(
⋃ j

w=1 Bj+1,w)
⋂

Opt j+1, U
⋂

Opt j+1 and Opt j+1\((⋃ j
w=1 Bj+1,w)

⋃
U).

For each point p ∈ (
⋃ j

w=1 Bj+1,w)
⋂

Opt j+1, similar to (38) in Claim 5, we know
that the cost increases by at most L if the median point moves from m j+1 to m̃ j+1.

123

842 Algorithmica (2020) 82:808–852

Thus we have

∑

p∈Opt j+1
⋂(⋃ j

w=1 Bj+1,w

)
||p − m̃ j+1||

≤
∑

p∈Opt j+1
⋂(⋃ j

w=1 Bj+1,w

)
(||p − m j+1|| + L). (54)

For the part Opt j+1\((⋃ j
w=1 Bj+1,w)

⋃
U), by triangle inequality we have

∑

p∈Opt j+1\
((⋃ j

w=1 Bj+1,w

)⋃
U

)
||p − m̃ j+1||

≤
∑

p∈Opt j+1\
((⋃ j

w=1 Bj+1,w

)⋃
U

)
(||p − m j+1|| + ||m j+1 − m̃ j+1||)

≤
∑

p∈Opt j+1\
((⋃ j

w=1 Bj+1,w

)⋃
U

)
||p − m j+1|| + 2ε

∑

p∈Opt j+1

||p − m j+1||,(55)

where the second inequality follows from the assumption that F’s distance to m j+1

is no more than 2
|Opt j+1|

∑
p∈Opt j+1

||p − m j+1|| and

|Opt j+1\
⎛

⎝

⎛

⎝
j⋃

w=1

Bj+1,w

⎞

⎠
⋃

U

⎞

⎠ | ≤ ε|Opt j+1|.

For each point p ∈ Opt j+1∩U , recall that the angle∠m j+1m̃ j+1 p ∈ [π
2 − ε

16 ,
π
2 +

ε
16] in (52). In Theorem 3.2 of [10], it showed that ||p−m̃ j+1|| ≤ (1+ε)||p−m j+1||.
Therefore,

∑

p∈Opt j+1∩U
||p − m̃ j+1|| ≤ (1 + ε)

∑

p∈Opt j+1∩U
||p − m j+1||. (56)

Combining (54), (55) and (56), we obtain (53).
�
To complete the Peeling-and-Enclosing algorithm for k-CMedian, we also need an

upper bound for the optimal objective value. In Sect. 5.3, we will show how to obtain
such an estimation. For this moment, we assume that the upper bound is available.

Using the same idea for proving Theorem 1, we obtain the following theorem for
k-CMedian.

Theorem 10 Let P be a set of n points in R
d and k ∈ Z

+ be a fixed constant.

Given a constant ε ∈ (0, 1
4k2

), in O(2poly(
k
ε
)n(log n)k+1d) time, Algorithm 3 out-

puts O(2poly(
k
ε
) (log n)k) k-tuple candidate median points. With constant probability,

123

Algorithmica (2020) 82:808–852 843

Algorithm 3 Peeling-and-Enclosing for k-CMedian

Input: P = {p1, . . . , pn} in Rd , k ≥ 2, a constant ε ∈ (0, 1
4k2

), and an upper bound Δ ∈ [μopt , cμopt]
with c ≥ 1.
Output: A set of k-tuple candidates for the k constrained median points.

1. For i = 0 to
log1+ε c� do
(a) Set μ = (1 + ε)iΔ/c, and run Algorithm 4.
(b) Let Ti be the output tree.

2. For each root-to-leaf path of every Ti , build a k-tuple candidate using the k points associated with
the path.

Algorithm 4 Peeling-and-Enclosing-Tree II
Input: P = {p1, . . . , pn} in R

d , k ≥ 2, a constant ε ∈ (0, 1
4k2

), and μ > 0.

1. Initialize T with a single root node v associated with no point.
2. Recursively grow each node v in the following way

(a) If the height of v is already k, then it is a leaf.
(b) Otherwise, let j be the height of v. Build the radius candidates set R =

∪log n
t=0 { 1+l ε

2
2(1+ε)

j2t εμ | 0 ≤ l ≤ 4 + 2
ε }. For each r ∈ R, do

i. Let {pv1 , . . . , pv j } be the j points associated with nodes on the root-to-v path.
ii. For each pvl , 1 ≤ l ≤ j , construct a ball B j+1,l centered at pvl and with radius r .
iii. Compute a flat spanned by {pv1 , . . . , pv j }, and build a grid inside it by Lemma 10.

iv. Take a random sample from P\ ∪ j
l=1 B j+1,l with size s = k3

ε11
ln k2

ε6
, and compute the

flat determined by these sample points and {pv1 , . . . , pv j }. Build a grid inside the flat by
Theorem 9.

v. In total, there are O(2poly(
k
ε)) grid points inside these two flats. For each grid point, add

one child to v, and associate it with the grid point.

3. Output T .

there exists one k-tuple candidate in the output which is able to induce a
(
1+ O(ε)

)
-

approximation of k-CMedian.

5.3 Upper Bound Estimation for k-CMedian

In this section, we show how to obtain an upper bound of the optimal objective value
of k-CMedian.

Theorem 11 Let P = {p1, . . . , pn} be the input points of k-CMedian, and C be the
set of k median points of a λ-approximation of k-median on P (without considering
the constraint) for some constant λ ≥ 1. Then the Cartesian product [C]k contains at
least one k-tuple which is able to induce a (3λ + 2)-approximation of k-CMedian.

Let {c1, . . . , ck} be the k median points in C, and ω be the corresponding objective
value of the k-median approximate solution on P . Recall that {m1, . . . ,mk} are the k
unknown optimal constrained median points of P , and OPT = {Opt1, . . . , Optk}
are the corresponding k optimal constrained clusters. To prove Theorem 11, we create
a new instance of k-CMedian in the following way: for each point pi ∈ P , move it

123

844 Algorithmica (2020) 82:808–852

to its nearest point, say ct , in {c1, . . . , ck}; let p̃i denote the new pi (note that ct and
p̃i overlap with each other). Then the set P̃ = { p̃1, . . . , p̃n} forms a new instance
of k-CMedian. Let μopt and μ̃opt be the optimal cost of P and P̃ respectively, and
μopt ([C]k) be the minimum cost of P by restricting its k constrained median points to
being a k-tuple in [C]k . The following two lemmas are keys to proving Theorem 11.

Lemma 12 μ̃opt ≤ ω + μopt .

Proof For each pi ∈ Optl , by triangle inequality we have

|| p̃i − ml || ≤ || p̃i − pi || + ||pi − ml ||. (57)

For both sides of (57), taking the averages over i and l, we get

1

n

k∑

l=1

∑

pi∈Optl

|| p̃i − ml || ≤ 1

n

n∑

i=1

|| p̃i − pi || + 1

n

k∑

l=1

∑

pi∈Optl

||pi − ml ||. (58)

Note that the left-hand side of (58) is not smaller than μ̃opt , since μ̃opt is the opti-
mal object value of k-CMedian on P̃ . For the right-hand side of (58), the first
term 1

n

∑n
i=1 || p̃i − pi || = ω (by the construction of P̃), and the second term

1
n

∑k
l=1

∑
pi∈Optl ||pi − ml || = μopt . Thus, we have μ̃opt ≤ ω + μopt .
�

Lemma 13 μopt ([C]k) ≤ ω + 2μ̃opt .

Proof Consider k-CMedian on P̃ . Let {m̃1, . . . , m̃k} be the optimal constraint median
points, and {Õ1, . . . , Õk} be the corresponding optimal constraint clusters of P̃ . Let
{c̃1, . . . , c̃k} be the k-tuple in [C]k with c̃l being the nearest point in C to m̃l . Thus, by
an argument similar to the one for (57), we have the following inequality, where p̃i is
assumed to be clustered in Õl .

|| p̃i − c̃l || ≤ || p̃i − m̃l || + ||m̃l − c̃l || ≤ 2|| p̃i − m̃l ||. (59)

In (59), the last one follows from the facts that c̃l is the nearest point in C to m̃l and
p̃i ∈ C, which implies ||m̃l − c̃l || ≤ ||m̃l − p̃i ||. For both sides of (59), taking the
averages over i and l, we have

1

n

k∑

l=1

∑

p̃i∈Õl

|| p̃i − c̃l || ≤ 2
1

n

k∑

l=1

∑

p̃i∈Õl

|| p̃i − m̃l ||. (60)

Now, consider the following k-CMedian on P . For each pi , if p̃i ∈ Õl , we cluster
it to the corresponding median point c̃l . Then the objective value of the clustering is

123

Algorithmica (2020) 82:808–852 845

1

n

k∑

l=1

∑

p̃i∈Õl

||pi − c̃l || ≤ 1

n

k∑

l=1

∑

p̃i∈Õl

(||pi − p̃i || + || p̃i − c̃l ||)

≤ 1

n

k∑

l=1

∑

p̃i∈Õl

||pi − p̃i || + 2
1

n

k∑

l=1

∑

p̃i∈Õl

|| p̃i − m̃l ||.

(61)

The left-hand side of (61), i.e., 1n
∑k

l=1
∑

p̃i∈Õl
||pi−c̃l ||, is no smaller thanμopt ([C]k)

(by the definition), and the right-hand side of (61) is equal to ω + 2μ̃opt . Thus, we
have μopt ([C]k) ≤ ω + 2μ̃opt .
�
Proof of Theorem 11 By Lemmas 12 and 13, we know that μopt ([C]k) ≤ 3ω + 2μopt .
It is obvious that the optimal objective value of the k-median clustering is no larger
than that of k-CMedian on the same set of points in P . This implies that ω ≤ λμopt .
Thus, we have

μopt ([C]k) ≤ (3λ + 2)μopt . (62)

The above inequality means that there exists one k-tuple in [C]k , which is able to
induce a (3λ + 2)-approximation.
�

5.4 Selection Algorithms for k-CMedian

For each of the six constrained clustering problems studied in Sect. 4, the same results
(including the approximation ratio and time complexity) can be extended to the cor-
responding constrained k-median version with slight modification (e.g., assigning the
edge cost to be the Euclidean distance rather than squared Euclidean distance when
computing the minimum cost circulation on the graph G). Thus, we only focus on the
probabilistic clustering problem.

Probabilistic k-Median Clustering (k-PMedian) [19]. Let V = {v1, . . . , vn} be a
set of nodes; each node vi is associated with a point set Di = {pi1, . . . , pih} ⊂ R

d ,

where each pil has a probability t il ≥ 0 satisfying the condition
∑h

l=1 t
i
l ≤ 1. Let

wi = ∑h
l=1 t

i
l for 1 ≤ i ≤ n andW = ∑n

i=1 wi . k-PMedian is the problem of finding
k points {m1, . . . ,mk} in R

d such that
∑n

i=1 min1≤ j≤k dist{vi ,m j } is minimized,
where dist{vi ,m j } = ∑h

l=1 t
i
l ||pil − m j ||.

Note that for the k-means version of probabilistic clustering, Cormode andMcGre-
gor [19] have showed that it can be reduced to an ordinary k-means clustering problem
after replacing each Di by its weighted mean point. However, this strategy can only
yield a (3+ ε)-approximation for the k-median version [19,58]. We briefly sketch our
idea for solving k-PMedian below.

Actually, k-PMedian is equivalent to the k-median clustering on the weighted point
set

⋃n
i=1 Di with the constraint that for each 1 ≤ i ≤ n, all the points in Di should be

clustered into the same cluster. Thus, we can use our Peeling-and-Enclosing algorithm

123

846 Algorithmica (2020) 82:808–852

for k-CMedian in Sect. 5.2 to generate a set of candidates for the constrained k median
points; the difference is that the points have weights, and thus in each sampling step
we sample points with probabilities proportional to their weights. To accommodate
such a difference, several minor modifications need to be made to Lemma 10 and
Lemma 11: all distances are changed to weighted distances, and the involved set sizes
(such as |P|) are changed to nh.

As for the running time of the Peeling-and-Enclosing algorithm, it still builds the
trees with heights equal to k. But the number of children for each node is different.
Recall that in the proof of Claim 2, in order to obtain an estimation for β j = |Opt j |

n ,
we need to try O(log n) times since 1

n ≤ β j ≤ 1; but for k-PMedian, the range of β j

becomes [wmin
W , 1] where wmin = min1≤i≤n wi (note that W = ∑n

i=1 wi ≤ n). Thus,
the running time of Peeling-and-Enclosing algorithm becomes O(nh(log n

wmin
)k+1d).

Furthermore, for each k-tuple candidate, we perform the Partition step through assign-
ing each Di to them j with the smallest dist{vi ,m j }. Obviously, the Partition step can
be finished within linear time. Thus we have the following theorem.

Theorem 12 There exists an algorithm yielding a (1 + ε)-approximation for k-

PMedian with constant probability, in O(2poly(
k
ε
) nh (log n

wmin
)k+1 d) time, where

wmin = min1≤i≤n wi .

6 FutureWork

Following this work, some interesting problems deserve to be further studied in the
future. For example, we reduce the partition step to theminimum cost circulation prob-
lem for several constrained clustering problems in Sect. 4; however, since the goal is
to find an approximate solution, one may consider using the geometric information
to solve the Partition step approximately. In Euclidean space, several techniques have
been developed for solving approximate matching problems efficiently [6,51]. But it is
still not clear whether such techniques can be extended to solve the constrainedmatch-
ing problems (such as the r -gather or l-diversity) considered in this paper, especially
in high dimensional space. We leave it as an open problem for future work.

7 Appendix

7.1 Proof of Lemma 3

Similar to Lemma 1, we prove this lemma by mathematical induction on j .
Base case For j = 1, since o1 = o, we just need to let τ = o′

1. Then, we have

||τ − o|| = ||o′
1 − o|| = ||o′

1 − o1|| ≤ L ≤ √
εδ + (1 + ε)L. (63)

Thus, the base case holds.
Induction step Assume that the lemma holds for any j ≤ j0 for some j0 ≥ 1

(i.e., the induction hypothesis). Now we consider the case of j = j0 + 1. Similar to

123

Algorithmica (2020) 82:808–852 847

the proof of Lemma 1, we assume that |Ql ||Q| ≥ ε
4 j for each 1 ≤ l ≤ j . Otherwise,

through a similar idea from Lemma 1, it can be reduced to the case with smaller j , and
solved by the induction hypothesis. Hence, in the following discussion, we assume
that |Ql ||Q| ≥ ε

4 j for each 1 ≤ l ≤ j .

First, we know that o = ∑ j
l=1

|Ql ||Q| ol . Let o
′ = ∑ j

l=1
|Ql ||Q| o

′
l . Then, we have

||o − o′|| = ||
j∑

l=1

|Ql |
|Q| ol −

j∑

l=1

|Ql |
|Q| o

′
l || ≤

j∑

l=1

|Ql |
|Q| ||ol − o′

l || ≤ L. (64)

Thus, if we can find a grid point τ having ||τ − o′|| ≤ √
εδ + εL , by inequality (64),

we will have ||τ − o|| ≤ ||τ − o′|| + ||o′ − o|| ≤ √
εδ + (1 + ε)L . So we only need

to find a grid point close enough to o′.
To find such a τ , we consider the distance from o′

l to o
′ for any 1 ≤ l ≤ j . We have

||o′
l − o′|| ≤ ||o′

l − ol || + ||ol − o|| + ||o − o′|| ≤ 2

√
j

ε
δ + 2L, (65)

where the first inequality follows from triangle inequality, and the second inequality
follows from the facts that ||o′

l − ol || and ||o − o′|| are both bounded by L , and

||ol − o|| ≤ 2
√

j
ε
δ (by Lemma 2).

This implies that we can use a similar idea in Lemma 1 to construct a ballB centered
at any o′

l0
and with radius r = max1≤l≤ j {||o′

l − o′
l0
||}. Also, the simplex V ′ is inside

B. Note that

||o′
l − o′

l0 || ≤ ||o′
l − o′|| + ||o′ − o′

l0 || ≤ 4

√
j

ε
δ + 4L (66)

by (65), which implies r ≤ 4
√

j
ε
δ + 4L . Similar to Lemma 1, we can build a grid

inside B with grid length εr
4 j , and the number of grid points is O((8 j/ε) j). Moreover,

o′ must lie inside V ′ by the definition. In this grid, we can find a grid point τ such that
||τ−o′|| ≤ ε

4
√

j
r ≤ √

εδ+εL . Thus, ||τ−o|| ≤ ||τ−o′||+||o′−o|| ≤ √
εδ+(1+ε)L ,

and the induction step, as well as the lemma, holds.

7.2 Proof of Claim 2 for Lemma 6

Since 1 ≥ β j ≥ 1
n , there is one integer t between 1 and log n, such that 2

t−1 ≤ 1
β j

≤ 2t .

Thus 2t/2−1√εδopt ≤
√

ε
β j

δopt ≤ 2t/2
√

εδopt . Together with δ ∈ [δopt , (1 + ε)δopt],
we have

2t/2−1√ε
δ

1 + ε
≤

√
ε

β j
δopt ≤ 2t/2

√
εδ. (67)

123

848 Algorithmica (2020) 82:808–852

Thus if setting r̂ j = 2t/2
√

εδ, we have

√
ε

β j
δopt ≤ r̂ j ≤ 2(1 + ε)

√
ε

β j
δopt . (68)

We consider the interval I = [j
2(1+ε)

r̂ j , j r̂ j]. Equation (68) ensures that j
√

ε
β j

δopt ∈
I. Also, we build a grid in the interval with grid length ε

2
1

2(1+ε)
j r̂ j , i.e., R j =

{ 1+l ε
2

2(1+ε)
j r̂ j | 0 ≤ l ≤ 4 + 2

ε
}. Moreover, the grid length ε

2
1

2(1+ε)
j r̂ j ≤ ε

2 j
√

ε
β j

δopt ,

which implies that there exists r j ∈ R j such that

j
√

ε

β j
δopt ≤ r j ≤

(
1 + ε

2

)
j
√

ε

β j
δopt . (69)

Note that R j ⊂ R, where R = ∪log n
t=0 { 1+l ε

2
2(1+ε)

j2t/2
√

εδ | 0 ≤ l ≤ 4 + 2
ε
}. Thus, the

Claim is true.

7.3 Proof of Claim 3 for Lemma 6

Note that δ2opt = ∑k
j=1 β jδ

2
j , and β j ≤ βl for each 1 ≤ l ≤ j − 1. Thus, we have

δl ≤
√

1
βl

δopt ≤
√

1
β j

δopt . Together with j
√

ε
β j

δopt ≤ r j (Claim 2) and ||pvl −ml || ≤
εδl + (1 + ε)l

√
ε
βl

δopt (by the induction hypothesis), we have

r j − ||pvl − ml || ≥ j
√

ε

β j
δopt −

(

εδl + (1 + ε)(j − 1)
√

ε

βl
δopt

)

≥ (1 − (j − 1)ε)
√

ε

β j
δopt − εδl

≥ (1 − (j − 1)ε − √
ε)

√
ε

β j
δopt . (70)

Since ε ∈ (0, 1
4k2

) in the input of Algorithm 1, we know r j − ||pvl − ml || > 0. That
is, ml is covered by the ball Bj,l .

For each 1 ≤ l ≤ j − 1, we have |Optl\(⋃ j−1
w=1 Bj,w)| ≤ |Optl\Bj,l |. For any

p ∈ Optl\Bj,l , ||p − ml || ≥ r j − ||pvl − ml ||. By Markov’s inequality, we have

|Optl\Bj,l | ≤ δ2l

(r j − ||pvl − ml ||)2 |Optl |. (71)

Together with (70), we have

|Optl\Bj,l | ≤ δ2l

(1 − (j − 1)ε − √
ε)2 ε

β j
δ2opt

|Optl |

123

Algorithmica (2020) 82:808–852 849

≤ δ2l

(1 − (j − 1)ε − √
ε)2 ε

β j
βlδ

2
l

|Optl |

= β j

(1 − (j − 1)ε − √
ε)2εβl

|Optl |

= β j n

(1 − (j − 1)ε − √
ε)2ε

≤ β j n

(1 − j
√

ε)2ε
, (72)

where the second inequality follows from the fact that βlδ
2
l ≤ δ2opt , and the fourth

equation follows from that |Optl |
βl

= n. Again, ε ∈ (0, 1
4k2

) implies that
β j n

(1− j
√

ε)2ε
≤

4β j n
ε

. Thus, in total, we have

|Optl\Bj,l | ≤ 4β j n

ε
. (73)

Hence, the Claim is true.

References

1. Ackermann, M.R., Blömer, J., Sohler, C.: Clustering for metric and non-metric distance measures.
ACM Trans. Algorithms 6(4), 59 (2010)

2. Aggarwal, G., Panigrahy, R., Feder, T., Thomas, D., Kenthapadi, K., Khuller, S., Zhu, A.: Achieving
anonymity via clustering. ACM Trans. Algorithms 6(3), 49 (2010)

3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering.
J. ACM 55(5), 23 (2008)

4. Awasthi, P., Charikar,M., Krishnaswamy, R., Sinop, A.K.: The hardness of approximation of euclidean
k-means. In: Proceedings of 31st International Symposium on Computational Geometry (SoCG’15),
pp. 754–767 (2015)

5. An, H.-C., Bhaskara, A., Chekuri, C., Gupta, S., Madanand, V., Svensson, O.: Centrality of Trees
for Capacitated k-Center, Proc. 7th International Conference Integer Programming and Combinatorial
Optimization (IPCO’14), pp. 52-63, (2014)

6. Andoni, A., Onak, K., Nikolov, A., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems.
In: Proceedings of 46th Symposium on Theory of Computing Conference (STOC’14) (2014)

7. Arkin, E.M., Díaz-Báñez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B., Pérez-Lantero,
P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points. In: Proceedings of 10th Latin
American Theoretical Informatics Symposium (LATIN’12), pp. 25–36 (2012)

8. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 1027–1035 (2007)

9. Awasthi, P., Blum, A., Sheffet, O.: Stability yields a PTAS for k-median and k-means clustering.
In: Proceedings of 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS’10),
pp. 309–318 (2010)

10. Badŏiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of 34th
ACM Symposium on Theory of Computing (STOC’02), pp. 250–257 (2002)

11. Balcan, M.-F., Blum, A., Gupta, A.: Clustering under approximation stability. J. ACM 60(2), 8 (2013)
12. Balcan, M.-F., Braverman, M.: Finding low error clusterings. In: Proceedings of 22nd Conference on

Learning Theory (COLT’09) (2009)
13. Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic framework for semi-supervised clustering. In:

Proceedings of 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’04), pp. 59–68 (2004)

123

850 Algorithmica (2020) 82:808–852

14. Bhattacharya, A., Jaiswal, R., Kumar, A.: Faster algorithms for the constrained k-means problem. In:
Proceedings of 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16), pp. 16:1–
16:13 (2016)

15. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06), pp. 554–
560 (2006)

16. Chaudhuri, S., Garg, N., Ravi, R.: The p-neighbor k-center problem. Inf. Proc. Lett. 65(3), 131–134
(1998)

17. Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications. SIAM J. Comput. 39(3), 923–947 (2009)

18. Coleman, T., Wirth, A.: A polynomial time approximation scheme for k-consensus clustering. In:
Proceedings of 21st ACM-SIAMSymposium onDiscrete Algorithms (SODA’10), pp. 729–740 (2010)

19. Cormode, G., McGregor, A.: Approximation algorithms for clustering uncertain data. In: Proceedings
of 27thACMSIGMOD-SIGACT-SIGARTSymposiumonPrinciples ofDatabase Systems (PODS’08),
pp. 191–200 (2008)

20. Cygan, M., Hajiaghayi, M.T., Khuller, S.: LP rounding for k-centers with non-uniform hard capacities.
In: Proceedings of 53rd IEEE Symposium on Foundations of Computer Science (FOCS’12), pp. 273–
282 (2012)

21. Dasgupta, S.: The hardness of k-means clustering. Technical Report (2008)
22. Ding, H.: Faster balanced clusterings in high dimension (2018). arXiv preprint arXiv:1809.00932
23. Ding, H., Xu, J.: Solving chromatic cone clustering via minimum spanning sphere. In: Proceedings of

38th International Colloquium on Automata, Languages and Programming (ICALP’11), pp. 773–784
(2011)

24. Ding, H., Xu, J.: Sub-linear time hybrid approximations for least trimmed squares estimator and related
problems. In: Proceedings of 30th Annual Symposium on Computational Geometry (SoCG’14), p. 110
(2014)

25. Ding, H., Xu, J.: A unified framework for clustering constrained data without locality property. In:
Proceedings of 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pp. 1471–
1490 (2015)

26. Ding,H., Gao, J., Xu, J.: Finding global optimum for truth discovery: entropy based geometric variance.
In: Proceedings of 32nd Symposium on Computational Geometry (SoCG’16), pp. 34:1–34:16 (2016)

27. Ene, A., Har-Peled, S., Raichel, B.: Fast clustering with lower bounds: no customer too far, no shop
too small (2013). CoRR arXiv:1304.7318

28. Erickson, J.: Course lecture: extensions of maximum flow (2019). http://jeffe.cs.illinois.edu/teaching/
algorithms/index.html

29. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based on weak coresets.
In: Proceedings of 23rd ACM Symposium on Computational Geometry (SoCG’07), pp. 11–18 (2007)

30. Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: Proceed-
ings of 43rd ACM Symposium on Theory of Computing (STOC’11), pp. 569–578 (2011)

31. Fernandez de laVega,W.,Karpinski,M.,Kenyon,C.,Rabani,Y.:Approximation schemes for clustering
problems. In: Proceedings of 35th ACM Symposium on Theory of Computing (STOC’03), pp. 50–58
(2003)

32. Gao, J., Tan, P., Cheng, H.: Semi-supervised clustering with partial background information. In: Pro-
ceedings of 6th SIAM International Conference on Data Mining (SDM’06), pp. 489–493 (2006)

33. Guha, S., Munagala, K.: Exceeding expectations and clustering uncertain data. In: Proceedings of
28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’09),
pp. 269–278 (2009)

34. Guruswami, V., Indyk, P.: Embeddings and non-approximability of geometric problems. In: Proceed-
ings of 14th Annual ACM-SIAMSymposium onDiscrete Algorithms (SODA’03), pp. 537–538 (2003)

35. Hajiaghayi, M.T., Hu, W., Li, J., Li, S., Saha, B.: A constant factor approximation algorithm for fault-
tolerant k-median. In: Proceedings of 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’14), pp. 1–12 (2014)

36. Har-Peled, S., Raichel, B.A.: Net and Prune: a linear time algorithm for euclidean distance problems.
In: Proceedings of 45th ACM Symposium on Theory of Computing (STOC’13), pp. 605–614 (2013)

37. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to
variance-based k-clustering. In: Proceedings of 10th ACM Symposium on Computational Geometry
(SoCG’94), pp. 332–339 (1994)

123

http://arxiv.org/abs/1809.00932
http://arxiv.org/abs/1304.7318
http://jeffe.cs.illinois.edu/teaching/algorithms/index.html
http://jeffe.cs.illinois.edu/teaching/algorithms/index.html

Algorithmica (2020) 82:808–852 851

38. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3),
264–323 (1999)

39. Jaiswal, R., Kumar, A., Sen, S.: A simple D2-sampling based PTAS for k-means and other clustering
problems. Algorithmica 70(1), 22–46 (2014)

40. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theor. Comput. Sci. 242(1–2),
237–245 (2000)

41. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discrete Math. (SIAMDM)
13(3), 403–418 (2000)

42. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the euclidean k-median
problem. SIAM J. Comput. 37(3), 757–782 (2007)

43. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any
dimensions. J. ACM 57(2), 5 (2010)

44. Kumar,N., Raichel, B.: Fault tolerant clustering revisited. In: Proceedings of 25thCanadianConference
on Computational Geometry (CCCG) (2013)

45. Lammersen, C., Schmidt,M., Sohler, C.: Probabilistic k-median clustering in data streams. In: Proceed-
ings of 10th InternationalWorkshop on Approximation and Online Algorithms (WAOA’12), pp. 70–81
(2012)

46. Li, J., Yi, K., Zhang, Q.: Clustering with diversity. In: Proceedings of 37th International Colloquium
on Automata, Languages and Programming (ICALP’10), pp. 188–200 (2010)

47. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity: privacy beyond k-
anonymity. In: Proceedings of 22nd International Conference on Data Engineering (ICDE’06), p. 24
(2006)

48. Matousek, J.: On approximate geometric k-clustering. Discrete Comput. Geom. 24(1), 61–84 (2000)
49. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2), 338–350

(1993)
50. Ostrovsky, R., Rabani, Y.,Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-type methods for

the k-means problem. In: Proceedings of 47th IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 165–174 (2006)

51. Sharathkumar, R., Agarwal, P.K.:ANear-linear time ε-approximation algorithm for geometric bipartite
matching. In: Proceedings of 44th Symposium on Theory of Computing Conference (STOC’12),
pp. 385–394 (2012)

52. Singh, V., Mukherjee, L., Peng, J., Xu, Jinhui: Ensemble clustering using semidefinite programming
with applications. Mach. Learn. 79(1–2), 177–200 (2010)

53. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple par-
titions. J. Mach. Learn. Res. 3, 583–617 (2002)

54. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. ACM Trans. Algorithms (TALG) 4(4), 51
(2008)

55. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst. 10(5), 557–570 (2002)

56. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of 17th Interna-
tional Conference on Machine Learning (ICML’00), pp. 1103–1110 (2000)

57. Wagstaff, K., Cardie, C., Schroedl, S.: Constrained k-means clustering with background knowledge.
In: Proceedings of 8th International Conference onMachine Learning (ICML’01), pp. 577–584 (2001)

58. Xu, G., Xu, J.: Efficient approximation algorithms for clustering point-sets. Comput. Geom. 43(1),
59–66 (2010)

59. Zhu, Z.A., Lattanzi, S., Mirrokni, V.S.: A local algorithm for finding well-connected clusters. In:
Proceedings of 30th International Conference on Machine Learning (ICML’13), pp. 396–404 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

852 Algorithmica (2020) 82:808–852

Affiliations

Hu Ding1 · Jinhui Xu2

B Hu Ding
huding@ustc.edu.cn

Jinhui Xu
jinhui@buffalo.edu

1 School of Computer Science and Technology, University of Science and Technology of China,
Hefei, China

2 Department of Computer Science and Engineering, State University of New York at Buffalo,
Buffalo, USA

123

http://orcid.org/0000-0002-1307-6077

	A Unified Framework for Clustering Constrained Data Without Locality Property
	Abstract
	1 Introduction
	1.1 Our Main Results
	1.2 Related Works
	1.3 Our Main Ideas

	2 Simplex Lemma
	3 Peeling-and-Enclosing Algorithm for k-CMeans
	3.1 Overview of the Peeling-and-Enclosing Algorithm
	3.2 Peeling-and-Enclosing Algorithm
	3.3 Proof of Theorem 1
	3.4 Upper Bound Estimation

	4 Selection Algorithms for k-CMeans
	4.1 r-Gather k-Means Clustering
	4.2 r-Capacity k-Means Clustering
	4.3 l-Diversity k-Means Clustering
	4.4 Chromatic k-Means Clustering
	4.5 Fault Tolerant k-Means Clustering
	4.6 Semi-supervised k-Means Clustering

	5 Constrained k-Median Clustering (k-C Median)
	5.1 Weaker Simplex Lemma for Median Point
	5.2 Peeling-and-Enclosing Algorithm for k-CMedian Using Weaker Simplex Lemma
	5.3 Upper Bound Estimation for k-CMedian
	5.4 Selection Algorithms for k-CMedian

	6 Future Work
	7 Appendix
	7.1 Proof of Lemma 3
	7.2 Proof of Claim 2 for Lemma 6
	7.3 Proof of Claim 3 for Lemma 6

	References

