
Algorithmica (2019) 81:3936–3967
https://doi.org/10.1007/s00453-019-00614-4

Turing Kernelization for Finding Long Paths in Graph
Classes Excluding a Topological Minor

Bart M. P. Jansen1 ·Marcin Pilipczuk2 ·Marcin Wrochna2

Received: 6 November 2017 / Accepted: 23 July 2019 / Published online: 3 August 2019
© The Author(s) 2019

Abstract
The notion of Turing kernelization investigates whether a polynomial-time algorithm
can solve an NP-hard problem, when it is aided by an oracle that can be queried
for the answers to bounded-size subproblems. One of the main open problems in this
direction iswhether k-Path admits a polynomial Turing kernel: can a polynomial-time
algorithm determine whether an undirected graph has a simple path of length k, using
an oracle that answers queries of size kO(1)?We show this can be done when the input
graph avoids a fixed graph H as a topological minor, thereby significantly generalizing
an earlier result for bounded-degree and K3,t -minor-free graphs. Moreover, we show
that k-Path even admits a polynomial Turing kernel when the input graph is not H -
topological-minor-free itself, but contains a known vertex modulator of size bounded
polynomially in the parameter, whose deletion makes it so. To obtain our results, we
build on the graph minors decomposition to show that any H -topological-minor-free
graph that does not contain a k-path, has a separation that can safely be reduced after
communication with the oracle.

Keywords Turing kernelization · k-path · Graph minors decomposition

This work was supported by the Netherlands Organization for Scientific Research (NWO) Veni Grant
639.021.437 “Frontiers in Parameterized Preprocessing” and Gravitation Grant 024.002.003 “Networks”.
Marcin Pilipczuk is supported by the “Recent trends in kernelization: theory and experimental evaluation”
Project, carried out within the Homing programme of the Foundation for Polish Science co-financed by
the European Union under the European Regional Development Fund. Marcin Wrochna is supported by
the National Science Centre of Poland Grant Number 2013/11/D/ST6/03073 and by the Foundation for
Polish Science (FNP) via the START stipend programme.

B Marcin Wrochna
m.wrochna@mimuw.edu.pl

1 Eindhoven University of Technology, Eindhoven, The Netherlands

2 University of Warsaw, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00614-4&domain=pdf
http://orcid.org/0000-0001-9346-2172

Algorithmica (2019) 81:3936–3967 3937

1 Introduction

Suppose that Alice is a polynomial-time agent faced with an input to an NP-hard
problem that she wishes to solve exactly. To facilitate her in this process, she can ask
questions to an all-knowing oracle. These will be answered truthfully and instantly,
but the oracle is memory-less and will not take previous questions into account when
answering the next one. How large do these questions have to be, to allow Alice to find
the answer to her problem?Clearly, it suffices to send the entire input to the oracle, who
determines the answer and sends it to Alice. Could there be a more clever strategy?
Alice can attempt to isolate a small but meaningful question about the behavior of her
input, such that after learning its answer, she can reduce her current input to a smaller
input without changing the outcome. Iterating this process solves her problem: when
it has become sufficiently small, it can be posed to the oracle in its entirety.

Such problem-solving strategies can be rigorously analyzed using the notion of
Turing kernelization that originated in parameterized algorithmics. The parameter
makes it possible to express how the size of the questions that Alice asks, depends on
properties of the input that she is given. (See Sect. 3 for a formal definition.)

Understanding the power of Turing kernelization is one of the main open research
horizons in parameterized algorithmics. There is a handful of problems for which
a nontrivial Turing kernelization is known [1,3,4,6,16,20,22,23,29,31]. On the other
hand, there is a hierarchy of parameterized complexity classes which are conjectured
not to admit polynomial Turing kernels [19]. Arguably, the main open problem (cf. [4,
5,19]) in this direction is to determinewhether the k-Path problem (determinewhether
an undirected graph has a simple path of length k) has a polynomial Turing kernel.
In earlier work [21], the first author showed that k-Path indeed admits polynomial
Turing kernels on several graph classes. In this work, we develop Turing kernels for
k-Path in a much more general setting.

Our results Our algorithmic contributions are twofold. First of all, we extend the
Turing kernelization for k-Path to much broader families of sparse graphs. Whereas
the earlier work could only deal with K3,t -minor-free graphs, claw-free graphs, and
bounded-degree graphs, we show that a Turing kernelization exists on H -minor-free
graphs for all fixed graphs H . We even lift the kernelization to H -topological-
minor-free graphs, thereby capturing a common generalization of the bounded-degree
and K3,t -minor-free cases.

Theorem 1 For every fixed graph H, the k-Path problem, restricted to graphs exclud-
ing H as a topological minor, admits a polynomial Turing kernel. Furthermore, the
kernel runs in time kOH (1) · n2m and invokes kOH (1) · n calls to the oracle.1

Our second contribution is the following theorem. By a novel algorithmic approach,
we obtain a Turing kernelization even when the input graph does not belong to the
desired restricted graph class itself, but contains a small known vertex modulator
whose deletion places the graph in such a graph class.

1 OH (·) notation has the same meaning as O(·), but indicates that the hidden constant depends on H .

123

3938 Algorithmica (2019) 81:3936–3967

Theorem 2 For every fixed graph H, the k-Path problem, on instances consisting of
a graph G, integer k, and a modulator M ⊆ V (G) such that G−M is H-topological-
minor-free, admits a polynomial Turing kernel, when parameterized by k and |M |.

Techniques To explain our approach, we briefly recall the idea behind the Turing
kernelization for k-Path on planar graphs. The graph-theoretical core is a theorem
by Chen and Yu [8] stating that every n-vertex triconnected planar graph contains a
polynomially long cycle (of length Ω(nε) for some ε > 0). Hence given a tricon-
nected subgraph and an integer k, we can immediately conclude that a k-path exists
or continue knowing that the subgraph has size polynomially bounded in k. For a
general planar graph, Tutte’s decomposition into triconnected bags thus becomes a
tree decomposition with bags of size polynomially bounded in k. Furthermore, in this
decomposition the adhesions, i.e. intersections of two adjacent bags, have constant
size (at most 2). This makes it possible to find a separation (A, B) of the graph of
constant order |A ∩ B| and with A moderately large: polynomially bounded in k (so
that G[A] can be sent to the oracle) but large enough to contain an irrelevant vertex
(one whose removal will not change the answer).

To find such an irrelevant vertex, we use the constant bound on the order of the
separation to bound the number structurally different ways inwhich the k-pathwe seek
could intersect A. For example, if the separator A ∩ B consists of two vertices u, v

then a k-path in G may use A to form a long path connecting u and v. Alternatively,
a k-path in G may use A to realize two disjoint paths, one ending in u and one in v,
which are connected into a single path through B. Hence the way in which a k-path
uses A can be described by how the various pieces of its intersection with A connect
to A ∩ B. Details are presented in following sections, but the idea is that for each
such way, we ask the oracle whether sufficiently long paths in A realize it (using
the fact that an oracle to an NP-complete problem can answer any problem in NP)
and we ask for paths witnessing this (using self-reduction). This allows us to collect
a subset of A polynomially bounded in k (independent of |A|) that witnesses every
possible way, making all remaining vertices in A irrelevant. Hence by choosing A to
be moderately large we can guarantee to always remove some vertices, until the whole
graph is polynomially bounded.

Theorem 1 is established by lifting this approach to H -(topological)-minor-free
graphs: we show that every H -free graph that does not have a k-path, has a tree
decomposition of constant adhesion size andwidth poly(k). This requires an adaptation
of the decomposition theorems of Robertson and Seymour [28] (for minors) and of
Grohe andMarx [18] (for topologicalminors). These guarantee a tree decomposition of
constant adhesion (depending only on the fixed graph H) with bags that are possibly
large but nearly-embeddable or have bounded degree (for topological minors). As
before, if these bags are also triconnected, known theorems [7,9,30] can be used to
bound their size polynomially. However, several technical steps are needed to translate
this into the desired result, due to details of the decomposition theorems (vortices,
virtual edges, and the lack of a direct polynomial-time algorithm to compute the
decomposition).

To prove Theorem 2, we introduce a new algorithmic tool for finding irrelevant
vertices for the k-Path problem in the presence of amodulatorM in the input graphG.

123

Algorithmica (2019) 81:3936–3967 3939

Since Theorem 1 can be applied to find a k-path in G − M if one exists, the challenge
is to detect a k-path inG that jumps between M andG−M several times. The absence
of a k-path inG−M implies it has a tree decomposition of width poly(k) and constant
adhesion size. Using Theorem 1 as a subroutine, we compute paths in G−M between
every two vertices in M , and pack them to obtain a vertex set X of size polynomial
in k + |M | with the following guarantee. If there is a k-path, then there is a guarded
k-path in which each successive pair of vertices in M are connected by a subpath
throughG−M that intersects X . Using the tree decomposition ofG−M , the standard
ancestor-marking technique allows us to identify a vertex subsetC ofG−(M∪X) that
is adjacent to at most two adhesions and hence to constantly many vertices from X .
Unless G is already small, we can find such a set C that is sufficiently large to be
reducible but small enough that we may invoke the oracle for questions about it. We
then show that the constant bound on the adhesions (independent of |M |, k) suffices
to reduce the graph by finding an irrelevant vertex as before.

Organization After preliminaries in Sect. 2, we give a generic Turing-style reduction
rule for k-Path in Sect. 3. In Sect. 4 we show that an H -minor-free graph either has
a k-path or a separation that is suitable for reduction. In Sect. 5 we extend this to
topological minors. Finally, in Sect. 6 we present a Turing kernel applicable when the
input graph has a small modulator to a suitable graph class.

2 Preliminaries

Notation All graphs we consider are finite, simple, and undirected. A separation of a
graph G is a pair (A, B), A, B ⊆ V (G) such that A ∪ B = V (G) and there are no
edges between A \ B and B \ A. The order of the separation (A, B) is |A ∩ B|. A
graph is triconnected if it is connected and cannot be disconnected by deleting fewer
than three vertices. When referring to the size of a graph in our statements, we mean
the number of vertices.

A tree decomposition of a graphG is a pair (T ,X)where T is a rooted tree andX
is a function that assigns to every node t ∈ V (T) a subsetX (t) of V (G) called a bag
such that:

–
⋃

t∈V (T) X (t) = V (G);
– for each edge uv ∈ E(G), there is a node t ∈ V (T) with u, v ∈ X (t);
– for each v ∈ V (G), the nodes {t | v ∈ X (t)} induce a (connected) subtree of T .

The width of (T ,X) is maxt∈V (T) |X (t)| − 1. For an edge t t ′ of T , we call the set
X (t)∩X (t ′) the adhesion of tt ′. The adhesion size of (T ,X) is the maximum size
of an adhesion. For a decomposition (T ,X) of G and a node t ∈ V (T), the torso,
denoted torso(G,X (t)), is the graph obtained from G[X (t)] by adding an edge
between each pair of vertices in X (t) ∩ X (t ′), for every neighbor t ′ of t in T (so
each adhesion induces a clique in the torso). Added edges not present in G are called
virtual edges. For a subtree T ′ ⊆ T we writeX (T ′) for the union

⋃
t∈V (T ′) X (t) of

bags in T ′.

123

3940 Algorithmica (2019) 81:3936–3967

For an edge t1t2 ∈ E(T), let Ti be the connected component of T − {t1t2} that
contains ti . Let Vi = X (Ti). Observe that the properties of a tree decomposition
imply that (V1, V2) is a separation with V1 ∩ V2 = X (t1) ∩ X (t2).

A decomposition (T ,X) is connected if for every t ∈ V (T) and its child t ′, if
Tt ′ is the subtree of T rooted at t ′, we have (i) that G[X (Tt ′) \ X (t)] is connected,
and (ii) thatX (Tt ′) \X (t) has edges to every vertex of the adhesionX (t) ∩X (t ′).
It is straightforward to turn any decomposition into a connected one without increas-
ing its width nor adhesion. For (i), as long as there exists a pair (t, t ′) violating the
requirement, make a distinct copy TC

t ′ of Tt ′ for each connected component C of
G[X (Tt ′) \ X (t)], restrict the bags of TC

t ′ to the vertices of C ∪ X (t) only, and
attach TC

t ′ as a subtree with the root being a child of t . For (ii), while there is a ver-
tex v ∈ X (t)∩X (t ′) that has no neighbors inX (Tt ′)\X (t), simply remove v from
all bags in Tt ′ . Connected tree decompositions are useful for our arguments, because
they imply that the virtual edges of torso(G,X (t)) can in fact be realized by paths
in the graph whose internal vertices are represented in T − {t}.

We will also need the following non-standard complexity measure of a tree decom-
position (T ,X). For every t ∈ V (T), the number of distinct adhesionsX (t)∩X (t ′)
for t ′ ∈ NT (t) is called the adhesion degree of t . The maximum adhesion degree over
all nodes t is the adhesion degree of the decomposition (T ,X). Observe that if a tree
decomposition (T ,X) has width less than � and adhesions of size at most h, then its
adhesion degree is at most

h∑

i=0

(
�

i

)

≤ (1 + �)h .

However, in sparse graph classes we can prove a much better bound on the adhesion
degree due to linear bounds on the number of cliques in such graphs; cf. Lemma 17.

A path decomposition is a tree decomposition where T is a path; we will denote it
simply as a sequence of bags Z1, . . . ,Z|V (T)|.

3 Turing Kernels

In this section we introduce a general toolbox and notation for proving our Turing
kernel bounds.

3.1 Definitions and the Auxiliary Problem

For a parameterized problem Π and a computable function f , a Turing kernel for Π

of size f is an algorithm that solves an input instance (x, k) of Π in polynomial time,
given access to an oracle that solves instances (x ′, k′) of Π with |x ′|, k′ ≤ f (k). A
Turing kernel is a polynomial one if f is a polynomial.

If we are only interested in distinguishing between NP-complete problems admit-
ting a polynomial Turing kernel from the ones that do not admit such a kernel, we
can assume that the oracle solves an arbitrary problem in NP, not necessarily the k-

123

Algorithmica (2019) 81:3936–3967 3941

Fig. 1 A set A (blue) and a path
with three A-traverses (bold).
The path is guarded
w.r.t. Z ⊆ N (A) (the red set),
since each A-traverse has an
endpoint in it. (A path fully
contained in A (with one
A-traverse) or disjoint from A
(with no A-traverses) would also
be guarded) (Color figure online)

Path problem. Indeed, note that by the definition of NP-completeness, an oracle to a
problem in NP can be implemented with an oracle to k-Path with only polynomial
blow-up in the size of the passed instances.

In our work, it will be convenient to reduce to the Auxiliary Linkage problem,
defined as follows. The input consists of an undirected graph G ′, an integer k′, a set of
terminals S ⊆ V (G ′), and a number of requests R1, R2, . . . , Rr ; a request is a set of
at most two terminals. A path Pi in G is said to satisfy a request Ri if V (Pi)∩ S = Ri

and every vertex of V (Pi)∩ S is an endpoint of Pi . With such an input, theAuxiliary
Linkage problem asks for a sequence of r paths P1, P2, . . . , Pr such that Pi satisfies
Ri for every 1 ≤ i ≤ r , |⋃r

i=1 V (Pi)| = k′, and every vertex of V (G)\ S is contained
in at most one path Pi (i.e., the paths Pi are vertex-disjoint, except that they may share
an endpoint, but only if the requests ask them to do so).

We remark that Auxiliary Linkage is a more general problem than k-Path: an
instance with G ′ = G, k′ = k, S = ∅, r = 1, and R1 = ∅ asks precisely for a k-path
in G.

Clearly, the decision version of the Auxiliary Linkage problem belongs to the
class NP. By using its self-reducibility (cf. [21, Lemma 2]), we assume that the oracle
returns a sequence of paths (Pi)ri=1 in case of a positive answer. That is, in all subse-
quent bounds on the number of Auxiliary Linkage oracle calls, the bound adheres
to the number of calls to an oracle that returns the actual paths Pi ; if one wants to
use a decision oracle, one should increase the bound by the blow-up implied by the
self-reducibility application (i.e., at most |E(H)| for calls on a graph H).

3.2 Generic Reduction Rule

We now show a generic reduction rule for the k-Path problem. We start with a few
definitions.

Definition 3 For a graph G, a subset A ⊆ V (G), and a simple path P in G, an A-
traverse of P is a maximal subpath of P that contains at least one vertex of A and has
all its internal vertices in A.

Note that if Q is an A-traverse of P , then every endpoint of Q is either an endpoint
of P or lies in NG(A). See Fig. 1.

123

3942 Algorithmica (2019) 81:3936–3967

Definition 4 Let G be a graph, A ⊆ V (G), and let k be an integer. A set Z ⊆ N (A)

is called a k-guard of A if the following implication holds: if G admits a k-path, then
there exists a k-path P in G that is either contained in A or such that every A-traverse
of P has at least one endpoint in Z .

Given a graph G, a set A ⊆ V (G), and a k-guard Z ⊆ N (A) of A, a k-path P
satisfying properties as in the above definition is called guarded (w.r.t. k, A, and Z).
If the integer k and the set A are clear from the context, we call such a set Z simply a
guard.

Observe that Z = N (A) is always a guard, but sometimes we will be able to find
smaller ones. Of particular interest will be guards of constant size, as our kernel sizes
will depend exponentially on the guard size. To describe our single reduction rule, we
show how solutions to Auxiliary Linkage can be used to preserve the existence of
guarded k-paths.

Assume we are given a graph G, a set A ⊆ V (G), an integer k, and a k-guard
Z ⊆ N (A) of A. Let h = |Z | and � = |N (A)|. Furthermore, assume that G admits
a k-path, and let P be a guarded one w.r.t. A and Z . Let (Q1, Q2, . . . , Qr) be the A-
traverses of P , let Ri = V (Qi)\A = V (Qi)∩N (A) for 1 ≤ i ≤ r , letG ′ = G[N [A]],
S = N (A), and let k′ = | ⋃r

i=1 V (Qi)|. Observe that (Q1, Q2, . . . , Qr) is a feasible
solution to the Auxiliary Linkage instance IP := (G[N [A]], k′, S, (Ri)

r
i=1); the

instance IP is henceforth called induced by P and A. Furthermore, it is easy to see
that if (Q′

1, Q
′
2, . . . , Q

′
r) is a different feasible solution toIP , then a path P ′ obtained

from P by replacing every subpath Qi with Q′
i is also a guarded k-path in G.

The crucial observation is that a small guard limits the number r of A-traverses.

Lemma 5 The number of traverses of a guarded k-path P is bounded bymax(1, 2|Z |).
Proof Let r be the number of A-traverses. Every vertex of Z can be an endpoint of at
most two traverses. If r > 1, then none of the traverses Qi are contained in G[A], and
thus every traverse has at least one endpoint in the guard Z . 	

Lemma 5 in turn limits the number of possible instances I that can be induced by
a guarded k-path, for a fixed set A and guard Z . Note that we have 0 ≤ k′ ≤ k and
0 ≤ r ≤ max(1, 2|Z |). Furthermore, unless r = 1 and R1 = ∅, we have Ri ⊆ N (A),
|Ri | ∈ {1, 2}, and every set Ri needs to have at least one element of Z ; there are at
most |Z | + |Z | · |N (A)| = h(� + 1) choices for such a set Ri . Consequently, the
number of possibilities for the instance I is at most

(k + 1) ·
(

1 +
2h∑

r=0

hr (� + 1)r
)

≤ (k + 1) · (h(� + 1))2h+1 =: p(k, �, h). (1)

Reduction rule If |A| > k · p(k, �, h), then we can apply the following reduction
rule. For each Auxiliary Linkage instance I out of at most p(k, �, h) reasonable
instances for A-traverses of a guarded k-path inG, we invoke an oracle on the instance
I , and mark the vertices of the solution if the oracle finds one. The whole process will
mark at most k · p(k, �, h) < |A| vertices, thus at least one vertex of |A| will remain
unmarked. We delete any such vertices.

123

Algorithmica (2019) 81:3936–3967 3943

The observation that on a guarded k-path P one can replace a solution to the instance
IP induced by P and A by a different solution ensures the safeness of this reduction.
Finally, note that the reduction invokes at most p(k, �, h) calls to the oracle; each call
operates on a subgraph of the graph G[N [A]] with k′ ≤ k and r ≤ 2|Z |.

We shall apply the Reduction Rule for a medium-sized set A and a guard set Z of
constant size formed from adhesions of a tree decomposition. For most of the paper
we will use Z = N (A) with � = h = |Z | a constant (depending on the excluded
(topological) minor, in the results of Sects. 4 and 5). Only in Sect. 6, when dealing
with a modulator M such that G−M has an appropriate structure, it will be important
to consider N (A) potentially containing all of M , with a guard set Z of constant size
disjoint from M .

3.3 Separation Oracles

The natural way of using our reduction rule is to find in a graph a large (but not too
large) part of the graph with a small (preferably, constant) boundary. Let us first make
an abstract definition of an algorithm finding such a separation.

Definition 6 For a graph class G , a constant h, and a computable coordinate-wise
nondecreasing function q : Z≥0×Z≥0 → Z≥0, an algorithmS is called a (h, q, TS)-
separation oracle if, given a graph G ∈ G and integers k and p, in time TS (|G|, k, p)
it finds a separation (A, B) in G of order at most h with p < |A| ≤ q(k, p), or
correctly concludes that G contains a k-path.

For all considered graph classes, we will be able to provide a separation oracle with
q being a polynomial. This, in turn, allows the following generic Turing kernel.

Lemma 7 Let S be a (h, q, TS)-separation oracle for a hereditary graph class G .
Take ĥ := (2h)4h+3. Then, the k-Path problem restricted to graphs from G can be
solved:

– in time O
(
TS (|G|, k, k2ĥ) · |V (G)| + kĥ · |V (G)| · |E(G)|),

– using at most kĥ · |V (G)| calls to Auxiliary Linkage
– each call on an induced subgraph of the input graph of size at most q(k, k2ĥ).

Proof Let

p = k · p(k, h, h) + h ≤ k(k + 1)(h(h + 1))2h+1 + h ≤ 2k2(2h)4h+2 ≤ k2ĥ.

As long as |V (G)| > p, we proceed as follows. Invoke algorithmS onG. IfS claims
that G admits a k-Path, we simply output the answer yes. Otherwise, let (A′, B ′) be
the separation output by S . Apply the Reduction Rule for k, A := A′ \ B ′, and
Z = N (A) ⊆ A′ ∩ B ′. Note that as |Z | ≤ h, the Reduction Rule deletes at least one
vertex of A. Furthermore, the Reduction Rule invokes at most

p(k, h, h) ≤ kĥ

123

3944 Algorithmica (2019) 81:3936–3967

calls to the oracle, each call on an induced subgraph of G of size at most

|A′| ≤ q(k, p) = q(k, k2ĥ).

Once we obtain |V (G)| ≤ p, we solve the instance using a single call to Auxiliary
Linkage with k′ = k, r = 1, and R1 = ∅. The bounds follow, as there are at most
|V (G)| applications of theReductionRule, and each call to the oracle takesO(|E(G)|)
time to prepare the instance and parse the output. 	

Note that for any graph class where separations as in Definition 6 exist, there exists
a trivial separation oracle which finds them, running in time nh+O(1): one iterates over
every candidate for A ∩ B and, for fixed set A ∩ B, a straightforward knapsack-type
dynamic programming algorithm checks if one can assemble A \ B of the desired size
from the connected components of G − (A ∩ B).

However, this running time bound is unsatisfactory, as it greatly exceeds the number
of used oracle calls. For all considered graph classeswe prove amuch stronger property
than just merely the prerequisites of Lemma 7, in particular providing a more efficient
separation oracle. We provide necessary definitions in the next section.

3.4 Decomposable Graph Classes

The following definition captures the key concept of this section.

Definition 8 For a constant h and a computable nondecreasing function w : Z≥0 →
Z≥0, a graph class G is called (w, h)-decomposable if for every positive integer k and
every G ∈ G that does not admit a k-path, the graph G admits a tree decomposition
of width less than w(k) and adhesions of size at most h.

A standard argument shows that in a decomposable graph class, given the decom-
position with appropriate parameters, it is easy to provide a separation oracle.

Lemma 9 Assume we are given a graph G and a tree decomposition (T ,X) of G of
width less than w, adhesion size at most h, and adhesion degree at most a ≥ 2. Then,
given an integer p such that |V (G)| > p, one can in time hO(1) · (|V (G)|+ |E(G)|+
|V (T)| + ∑

t∈V (T) |X (t)|) find a separation (A, B) of order at most h such that

p < |A| ≤ w + p · a.

Proof Root the tree T in an arbitrary node, and for t ∈ V (T) let Tt be the subtree of
T rooted in t . Let t0 be a lowest node of T such that |X (V (Tt0))| > p; such a node
can be computed in linear time in the size of G and (T ,X).

Group the children t ′ of t0 according to their adhesionsX (t ′)∩X (t0). Due to the
bound on the adhesion degree, there are at most a groups. For every adhesion S, let
Xt0,S be the set of the children of t0 with S = X (t ′) ∩ X (t0). Define

VS =
⋃

t ′∈Xt0,S

X (Tt ′).

123

Algorithmica (2019) 81:3936–3967 3945

We consider now two cases. First, assume that |VS| ≤ p for every adhesion S. Then,
by the adhesion degree bound, we have

|X (Tt0)| ≤ |X (t0)| + ap ≤ w + ap.

Consequently,we can return the separation (A, B)with A = X (Tt0) and B = X (T−
V (Tt0)).

In the other case, there exists an adhesion S with |VS| > p. We greedily take a
minimal subset Yt0,S ⊆ Xt0,S such that

V ′
S :=

⋃

t ′∈Yt0,S

X (Tt ′)

is of size greater than p. By the minimality of t0, for every t ′ ∈ Xt0,S we have
|X (Tt ′)| ≤ p and, consequently |V ′

S| ≤ 2p. Thus, we can return the separation
(A, B) for A = V ′

S and B = NG [V (G) \ V ′
S], as then A ∩ B ⊆ S. 	

To apply the above lemma for a (w, h)-decomposable class, we need to compute
a decomposition approximating these parameters, which takes the remainder of this
section. A critical insight is that the decomposition used by Cygan et al. [10] to
solve the Minimum Bisection problem provides this. The decomposition is based
on the notion of an unbreakable vertex set X . Intuitively, a set X ⊆ V (G) is (q, h)-
unbreakable in G if it is impossible to break X into two pieces of size more than q
each, by removing only h vertices. The formal statement in terms of separations is as
follows.

Definition 10 A vertex set X ⊆ V (G) of a graph G is called (q, h)-unbreakable if
every separation (A, B) of order atmost h satisfies |(A\B)∩X | ≤ q or |(B\A)∩X | ≤
q.

Let us now recall the main technical result of [10].

Theorem 11 [10] There is an algorithm that, given a graph G and integer h, runs in
time 2O(h2)|V (G)|2|E(G)| and outputs a connected tree decomposition (T ,Y) of G
such that:

1. for each t ∈ V (T), the bag Y (t) is (2O(h), h)-unbreakable in G, and
2. for each tt ′ ∈ E(T) the adhesion Y (t) ∩ Y (t ′) has at most 2O(h) vertices and

is (2h, h)-unbreakable in G.

Lemma 12 Let G be a graph and suppose there exists a tree decomposition (T ,X) of
G of width less than w, adhesion size h, and adhesion degree a. Let (T ′,Y) be a tree
decomposition of G and t ∈ V (T ′) such that the bag Y (t) is (2O(h), h)-unbreakable
in G. Then |Y (t)| ≤ w + a · 2O(h).

Proof Consider such a bag Y = Y (t) of the second decomposition, or in fact any
(f (h), h)-unbreakable set Y ⊆ V (G), where f (h) = 2O(h). We orient every edge of
T toward Y in the following sense. For an edge t t ′ ∈ E(T) of the first decomposition,

123

3946 Algorithmica (2019) 81:3936–3967

removing it partitions T into subtrees Tt ′t and Ttt ′ containing t ′ and t , respectively.
The induced separation (X (Ttt ′),X (Tt ′t)) on G has order at most h, so one of the
sides, say X (Tt ′t) \ X (t), contains at most f (h) vertices of Y , by definition of
unbreakability. We orient the edge t t ′ away from t ′ (the ‘small’ side). After orienting
each edge of T , since T is acyclic, we can find a node t0 of T such that all incident edges
point to it. That is, for every neighbor t ′ of t0, we have |Y ∩X (Tt ′t0)\X (t0)| ≤ f (h).
We now want to bound |Y \ X (t0)|.

While t0 can have many neighbors, we can group those neighbors t ′ based on
the adhesion X (t ′) ∩ X (t0) to which they correspond. By the adhesion degree
bound, there are at most a such groups. If for any such group U ⊆ N (t0), the union⋃

t ′∈U X (Tt ′t0)\X (t0) containedmore than 3 · f (h) vertices of Y , then the group can
be partitioned into two parts with more than f (h) vertices of Y each. This would give a
separation of order h of G with too many vertices of Y on both sides, contradicting its
unbreakability. Therefore, there are at most a groups, each containing at most 3 · f (h)

vertices of Y , thus the size of Y is bounded by |X (t0)| + a · 3 · f (h). 	

By definition, a graph G in a (w, h)-decomposable graph class that admits no k-

path has a decomposition (T ,X) of width less than w(k) and adhesion size h. The
trivial bound on its adhesion degree is a := ∑

i≤h

(
w(k)
i

) ≤ (w(k) + 1)h . Given G
and h, the algorithm of Theorem 11 yields an ‘unbreakable’ decompositon (T ′,Y) of
adhesion size 2O(h). By the above lemma, its width is bounded by w(k) + a · 2O(h) ≤
(w(k) + 1)O(h).

Corollary 13 Let G be a (w, h)-decomposable graph class. Then, for every G ∈ G

and every integer k, one can in 2O(h2)|V (G)|2|E(G)| time either correctly conclude
that G admits a k-path, or find a tree decomposition of G of width (w(k)+1)O(h) and
adhesion size 2O(h).

To conclude our Turing kernel, we can bound the adhesion degree of the computed
decomposition again trivally by (w(k) + 1)2

O (h)
. We use this decomposition to find

separations of any induced subgraphs of G using the algorithm of Lemma 9 in time
2O(h) times linear in the size of G and the computed decomposition. This gives a
(h, q, T)-separation oracle with q(k, p) = p · (w(k) + 1)2

O (h)
and T (n, k, p) =

2O(h) · n · (w(k) + 1)O(h), for any (w, h)-decomposable graph class. By plugging it
into Lemma 7 (which additionally requires the class to be hereditary), we obtain the
following.

Corollary 14 Let G be a hereditary (w, h)-decomposable graph class. Then the k-
Path problem restricted to graphs from G can be solved in time 22

O (h) |V (G)|2|E(G)|
using 22

O (h)
kn calls toAuxiliary Linkage on induced subgraphs of the input graph

of size k2(1 + w(k))2
O (h)

.

In the next section, we prove that H -minor-free graphs are (OH (k22),OH (1))-
decomposable by analyzing the Global Structure Theorem of H -minor-free graphs
due to Robertson and Seymour. A subsequent section provides an analogous result for
graphs excluding a fixed topological minor. In both cases we also get better bounds

123

Algorithmica (2019) 81:3936–3967 3947

on the adhesion degree of the approximate decomposition outputted by Theorem 11,
improving the bounds in the final kernel.

We would like to remark that we do not want to claim in this paper the idea that, in
the context of H -(topological)-minor-free graphs, the decomposition of Theorem 11
should be related to the decomposition of the Global Structure Theorem via an argu-
ment as in the proof of Lemma 12. In particular, this observation appeared previously
in a work of the second author with Daniel Lokshtanov, Michał Pilipczuk, and Saket
Saurabh [24].

4 Excluding aMinor

In this sectionwe tackle properminor-closed graph classes, that is,we proveTheorem1
for graph classes excluding a fixed minor, by proving the following.

Theorem 15 For every graph H, the k-Path problem restricted to H-minor-free
graphs can be solved in time OH (n2m) using OH (kn) calls to Auxiliary Link-
age on instances being induced subgraphs of the input graph of size OH (k24).

Our main technical result is the following:

Theorem 16 For every graph H, the class of H-minor-free graphs is (w, h)-
decomposable for w(k) = OH (k22) and h = OH (1).

By plugging the above into Corollary 14, we obtain the desired polynomial Turing
kernel, but with worse bounds than promised by Theorem 15. To obtain better bounds,
we need to recall the folklore bound on the adhesion degree in sparse graph classes;
for completeness, we provide a full proof in “Appendix A.1”.

Lemma 17 Let G be a graph not containing H as a topological minor, and let (T ,X)

be a connected tree decomposition of G of width less than � and adhesion size h. Then
the adhesion degree of (T ,X) is bounded by f (h, H) · � for some integer f (h, H)

depending only on h and H.

This way, we conclude that H -minor-free graphs without k-paths have tree decompo-
sitions of widthOH (k22), adhesion sizeOH (1) and adhesion degreeOH (k22). We can
use the algorithm of Theorem 11 for h to find (by Lemma 12) an approximate decom-
position of widthOH (k22), adhesion sizeOH (1), and thus, again using Lemma 17, of
adhesion degree OH (k22). Theorem 15 follows from Lemma 7 if we find separations
using the algorithm of Lemma 9 applied to this decomposition.

Thus, it remains to prove Theorem 16. For the proof, we use the graphminors struc-
ture theorem, decomposing an H -minor-free graph G into parts ‘nearly embeddable’
in surfaces (precise definitions are given in the next subsection). By carefully analyz-
ing details of the structure, we either find a large triconnected embedded part, which
must contain a long path by the following theorem of Chen et al. [9], or we tighten
the graph structure to give a tree decomposition where all parts are small (polynomial
in k) and adhesions (‘boundaries’) between them are of constant size.

123

3948 Algorithmica (2019) 81:3936–3967

Theorem 18 [9] There is a constant ε > 0 such that for every integer t , every tricon-
nected graph on n ≥ 3 vertices embeddable in a surface of (Euler) genus g contains
a cycle of length at least nε/2(2g+3)2 .

We note that Chen et al. phrase the theorem (more generally) for K3,t -minor-free
graphs, but a folklore edge-counting argument shows that graphs embeddable on a
surface of genus g are K3,t -minor-free for t = 2g + 3 (see e.g. [2]).

Two intertwined problems that arise with this approach is that torsos of decom-
positions are not necessarily triconnected, and long paths in them do not necessarily
imply long paths in the original graph, because of virtual edges added in torsos. Tor-
sos can be made triconnected if their near-embeddings include cycles or paths around
each vortex, but these may use virtual edges in essential ways. On the other hand, the
decomposition can be modified so that virtual edges can be replaced with paths in the
original graph, but this requires changes that remove virtual edges, hence potentially
removing paths around vortices and destroying triconnectedness.

Because of that, we need to go a little deeper and use a local, strong version of
the structure theorem from Graph Minors XVII [28]. For the same reason we cannot
use existing algorithms for finding the graph minors decompositions. Instead, we only
prove the existence of a tree decomposition of bounded size adhesions, small width,
and with nearly embeddable bags.

Global and Local GraphMinor Structure Theorems

The major result proved by Robertson and Seymour in their Graph Minors series of
papers is the Global Structure Theorem, which describes the structure of large graphs
excluding a fixed graph as a minor. Before we summon the formal statement, let us
recall a basic overview. We refer the reader to Diestel’s book [11] for basic definitions
(Section 12.4 in [11]) and a description of how surfaces (orientable or not) are classified
by their genus (Appendix B in [11]).

The Global Structure Theorem states that for every graph H , there is a constant
α = α(H) such that every H -minor free graph G admits a tree decomposition whose
adhesions have size at most α, and whose torsos are possibly large, but “α-nearly
embedabble”. Recall that a torso in a decomposition (T ,X) is a graph obtained from
a bag X (t) (for some t ∈ V (T)) by taking G[X (t)] and turning each adhesion
X (t)∩X (t ′) (for t ′ ∈ NT (t)) into a clique (adding a virtual edge between every two
vertices in an adhesion, if they were not already connected). Informally, “α-nearly-
embeddable” means that the torso can be obtained as follows:

– draw a graph on a surface of constant (i.e. at most α) genus (called the embedded
part),

– for a constant number of faces in the drawing, add a graph of constant pathwidth
“inside the face” (called the vortices),

– add a constant number of vertices with arbitrary connections (called the apices).

The different constant bounds are essentially unrelated, but we prefer to use only one
constantα for all of them, sincewe are not interested in the exact dependency on H . Let
us now formally define near-embeddability and the graph minors α-decomposition.

123

Algorithmica (2019) 81:3936–3967 3949

Fig. 2 A fragment of a nearly embedded graph with two vortices: top (blue) and bottom (red). Society
vertices are squares. Note that a ‘disk’ on a surface means a subset homeomorphic to a closed disk in the
plane (Color figure online)

Definition 19 For an integer α, an α-near embedding of a graph G consists of:

(i) a set A ⊆ V (G) of at most α vertices (called the apex set);
(ii) a family G0 ∪ G1 ∪ · · · ∪ Gα′ = G \ A of edge-disjoint subgraphs of G \ A,

where:

– G0 is called the embedded part,
– V = {G1, . . . ,Gα′ } for some α′ ≤ α are called (large) vortices,
– the intersection Ωi := V (G0) ∩ V (Gi) is called the society of vortex Gi ,
– vortices are pairwise vertex-disjoint,

(iii) an embedding of G0 in a surface of genus at most α such that for i ∈ [α′], the
society Ωi is embedded on the boundary of a disk whose interior is empty (i.e.,
does not intersect the embedding nor other disks), called the disk accommodating
Gi ;

(iv) a linear ordering w1, . . . , w|Ωi | of each vortex society Ωi , corresponding to its
natural ordering around its disk (for some choice of direction and starting point);

(v) for each large vortexGi ∈ V , a path decompositionZ1, . . . ,Z|Ωi | ofGi of width
at most α such that w j ∈ Z j , for j ∈ [|Ωi |].

We denote such an α-near embedding as (A,G0,V), with the embedding and path
decompositions only implicit in the notation.

See Fig. 2 for an illustration.

Definition 20 A (graph minors) α-decomposition of a graph G consists of:

– a rooted tree decomposition (T ,X) of G of adhesion size at most α;
– for each t ∈ V (T), an α-near embedding (At ,Gt0,Vt) of torso(G,X (t)).

Theorem 21 (Global Structure Theorem) For every graph H, there is a constant α =
α(H) such that every H-minor-free graph admits an α-decomposition.

In this sectionwe shall prove the following variant of theGlobal Structure Theorem,
which in particular implies Theorem 16, concluding our main result for minor-closed
classes.

123

3950 Algorithmica (2019) 81:3936–3967

Theorem 22 For every graph H, there is a constant α = α(H) such that the following
holds, for any integer k: any graph G excluding H as a minor and without a k-path
has an α-decomposition of width at most α · k22.

Unfortunatelywe do not see away to obtain this variant directly, just by adapting the
originalGlobal Structure Theorem.However,we can adapt a local version of it. Indeed,
the proof of the Global Structure Theorem by Robertson and Seymour proceeds by
analyzing only a single part of the graph (in fact the whole graph need not be H -minor-
free), improving its structure in a number of technical steps to obtain the so-calledLocal
Structure Theorem. Most of the analysis is hence done locally and it is only at the
end that one proceeds with a fairly general inductive argument to conclude the Global
Structure Theorem.

Informally, the Local Structure Theorem, instead of saying that the whole graph has
a tree decomposition into nearly-embeddable torsos, only states that a single subgraph
can be nearly-embedded so that its boundary (vertices with neighbors outside of this
subgraph) is contained in vortices or triangular faces (called small vortices). Proving
that this holds for every ‘part’ of the graph allows to inductively show that the remaining
graph behind the vortices is also structured, which is how the tree decomposition of
the Global Structure Theorem is obtained. Formalizing what is meant by ‘every part’
is a bit more technical (the somewhat nebulous notion of tangles is used for that).

This will also be our approach: we will improve the Local Structure Theorem to
conclude that either the graph has a k-path, or that the embedded part is polynomi-
ally bounded. The general inductive argument to deduce theGlobal Structure Theorem
will then work unchanged and the improvements will carry through, concluding Theo-
rem 22 (essentially, each bag of the Global Structure Theorem’s decomposition comes
directly from some nearly-embedded part from the Local Structure Theorem, so the
bound on the embedded part will imply the bound on each of the final bags).

An α-near local embedding of a graph G is defined similarly to an α-near embed-
ding, but we allow an arbitrary number of ‘small vortices’ W and we allow the path
decompositions of all vortices to have only bounded adhesion size instead of bounded
width; thus arbitrarily complicated graphs can hide behind vortices. Formally:

Definition 23 For an integer α, an α-near local embedding of graph G consists of:

(i) a set A ⊆ V (G) of at most α vertices (called the apex set);
(ii) a familyG0∪G1∪· · ·∪Gn = G \ A of edge-disjoint subgraphs ofG \ A, where:

– G0 is called the embedded part,
– V = {G1, . . . ,Gα′ } for some α′ ≤ α are called large vortices,
– W = {Gα′+1, . . . ,Gn} are called small vortices,
– vortices intersect only in G0: V (Gi) ∩ V (G j) ⊆ V (G0) for i
= j ∈ [n],
– the intersection Ωi := V (G0) ∩ V (Gi) is called the society of vortex Gi ,
– large vortices are pairwise vertex-disjoint,
– small vortices have societies of size ≤ 3;

(iii) an embedding of G0 in a surface of genus at most α such that for i ∈ [n], the
society Ωi is embedded on the boundary of a disk whose interior is empty (i.e.,
does not intersect the embedding nor other disks), called the disk accommodating
Gi ;

123

Algorithmica (2019) 81:3936–3967 3951

(iv) a linear ordering w1, . . . , w|Ωi | of each society Ωi , corresponding to its natural
ordering around its disk (for some choice of direction and starting point);

(v) for each large vortex Gi ∈ V , a path decomposition Z1, . . . ,Z|Ωi | of Gi of
adhesion size ≤ α such that Z j ∩ Ωi = {w j−1, w j } for 1 < j ≤ |Ωi | and
Z1 ∩ Ωi = {w1}.

We denote such an α-near local embedding as (A,G0,V ,W), with the embedding
and path decompositions only implicit in the notation.

We now recall the definition of tangles. Intuitively, a tangle defines what we’re
looking at by pointing every small-order separation “towards it”. For an integer θ , a
tangle of order θ in a graph G is a family T of separations of order at most θ such
that:

– for each separation (X ,Y) of order at most θ in G, exactly one of (X ,Y) and
(Y , X) belongs to T . If (X ,Y) ∈ T we call X the small side of the separation
and Y the large side.

– For every three separations (X1,Y1), (X2,Y2), (X3,Y3) in T , we have G[X1] ∪
G[X2] ∪ G[X3]
= G. That is, three small sides cannot cover the whole graph.

Informally, the Local Structure Theorem states for every graph G and every tangleT
that does not “point towards” an H -minor inG, the graphG has anα-near local embed-
ding such that the tangle “points towards” the embedded part, away from vortices. The
formal statement requires the following definitions.

Definition 24 Let G and H be graphs. An H-minor model in G is a family of branch
sets (Bh)h∈V (H) inducing vertex-disjoint, connected subgraphs inG such that for each
edge hh′ ∈ E(H), there is an edge between Bh and Bh′ in G.

A tangleT in G controls an H-minor if there is an H -minor model in G such that
no branch set is fully contained in a small side of a separation in T .

An α-near local embedding (A,G0,V ,W) of G is said to respect a tangle T if
for every large side Y of a separation in (X ,Y) ∈ T , Y \ A is not contained in a small
vortex W ∈ W or in a bag of the decomposition of a large vortex V ∈ V .

Theorem 25 (Local Structure Theorem, [14,28]) For every graph H there exist inte-
gers α, θ such that: for every graph G and every tangle T in G of order ≥ θ that
controls no H-minor, there is an α-near local embedding of G which respects T .

The statement comes from [14] (Theorem 1). It follows from [28], though that paper
uses different notation and is written in a way that requires the reader to understand all
the paper to use its conclusions. We refer the reader to [14] for a detailed explanations
of how [28] translates to this more modern language. We note that while [14] assumes
that the whole graph G is H -minor-free, the original statement in [28] only requires
that T controls no H -minor; we will need this stronger version when dealing with
topological minors.

Improving the Structure Theorems

Our aim is to improve the Local Structure Theorem 25 to say that the embedded part
either contains a k-path or has size polynomially bounded in k. This would follow

123

3952 Algorithmica (2019) 81:3936–3967

immediately from Theorem 18 if the embedded part was triconnected. The remainder
of this section hence focuses on working around the technical issue that we can only
ensure this by involving vortices.

Indeed, if it the embedded part is not triconnected, there is a separation (X ,Y)

of order at most 2: we would then like to limit the near-embedding to only Y , say
(if Y is the large side of the separation (X ,Y) in the tangle) and hide X in a new
small vortex. We would then repeat this until the embedded part is triconnected. This
simple idea is essentially applied as one of the improvement steps in [28]. However,
a separation of the embedded part may not extend to a separation of the whole graph,
as it could require to cut through a vortex. Because of that, triconnectivity can only be
shown for an auxiliary graph defined from the embedded part by adding a few ‘virtual’
edges and vertices to make the society of each vortex triconnected (formal definitions
follow below). Still, these virtual edges and vertices can be added to the embedding,
so Theorem 18 applies.

Therefore, if the embedded part is large, we will find a long path in it, except
that it might use these virtual edges and vertices added to vortex societies. To show
that this still implies a k-path in the original graph, we need to strengthen the Local
Structure Theorem to ensure that society vertices are connected by appropriate paths
(with which virtual edges will be replaced). Indeed, in a local near-embedding one can
always replace each edge of the embedded part with a small vortex (with two society
vertices, one edge inside the vortex, and an accommodating disk around where the
edge was originally embedded), so the embedded part can be edgeless! This is why
some connectivity conditions for vortices are necessary.

Such conditions follow from [28] (in fact the results there improve the structure of a
vortex significantly, in particular with a very strong connectivity condition, explaining
the title ‘Taming a Vortex’). Unfortunately not all of them are stated in the statement
we cite [14], so we need to explain where they come from by referring to the original
terminology in [28], but we limit these references to the next three lemmas. The reader
may skip their proofs and proceed to the only new contribution of this subsection:
Lemma 31.

We now proceed with formal definitions of these connectivity conditions. For a
large vortex, we require that its society is connected by a ‘comb’ (Fig. 3) that avoids
other large vortices:

Definition 26 A comb is a union of a path P with some mutually vertex-disjoint
(possibly trivial) paths that have their first vertex and no other vertex on P . The last
vertices of those paths are called the teeth of the comb, they are naturally ordered by
P .

Lemma 27 In Theorem 25, we can additionally assume that:

(vi) for each large vortex Gi ∈ V , there is a comb Ci in Gi ∪G0 ∪⋃
W whose teeth

are vertices w1, . . . , w|Ωi | of Ωi , in the same order as in (iv).

Proof This condition is in fact already included in the statement we cite from [14]
(in point 4. of the definition of α-near-embedding, which we call an α-near local
embedding for clarity). 	

123

Algorithmica (2019) 81:3936–3967 3953

Fig. 3 A comb with five teeth

We stress that the comb Ci contains a path of length at least |Ωi |. This condition is
useful for us, as a long vortex (i.e. with ≥ k society vertices) will imply this path to
be long, so we only need to continue if all societies are relatively small.

For a small vortex, we require its society vertices to be connected by paths that are
strictly inside the vortex:

Lemma 28 In Lemma 27, we can additionally assume that:

(vii) for each small vortex Gi ∈ W and every v1, v2 ∈ Ωi , there is a path in Gi

between v1 and v2, with no internal vertices in Ωi .

Proof Property (vii) is guaranteed by (9.1) in [28]. (As explained in [14], the border
cells of [28] are translated into bags of large vortex decompositions, so small vortices
arise only from internal cells; for an internal cell c0, α(c0)∗ is translated into a small
vortex Gi , while γ (c̃0) is translated into Ωi , giving exactly the statement we want.)
Alternatively, we can repeat the proof of (9.1): simply partition a vortex with no v1-v2
path into two vortices with at most two vertices in their societies; recall that societies
of small vortices are allowed to intersect. 	

Next, we define the graph obtained from the embedded part by adding virtual edges
and vertices around vortices: this is the graph that can be shown to be triconnected,
yet can still be embedded in the same surface. (In contrast, recall that the embedded
part G0 can be edgeless.)

Definition 29 For an α-near local embedding (A,G0,V ,W) ofG, defineG∗
0 to be the

graph obtained from G0 by adding an edge between every two consecutive vertices in
each societyΩi , and a new vertex for each society of a large vortex, with edges to every
vertex of the society. The embedding of G0 is naturally extended to an embedding of
G∗

0: the new vertices and edges are embedded in place of the accommodating disks.

Lemma 30 In Lemma 28, we can additionally assume that:

(viii) G∗
0 is triconnected.

Proof Suppose G∗
0 has a separation (X ,Y) of order ≤ 2. Since societies of small

vortices induce cliques in G∗
0, they are contained in X or Y . Similarly for each

large vortex Gi ∈ V , its society Ωi , together with the new vertex in G∗
0 with Ωi

as neighborhood, induces a wheel in G∗
0 , which is triconnected, hence contained

in X or Y . In the language of [28], this translates back into a partition I , J of
cells, whose intersection corresponds to at most two embedded vertices v, v′ (that
is, γ (I) ∩ γ (J) = X ∩ Y = {v, v′}). But this contradicts (11.1) in [28], which states
that such an intersection has size at least 3. 	

123

3954 Algorithmica (2019) 81:3936–3967

From these connectivity conditions, we are able to deduce what we need from the
Local Structure Theorem:

Lemma 31 In Lemma 30, we can additionally assume that there is a constant α′
depending on H only such that:

(ix) for any integer k, if G does not contain a path of length ≥ k, then |V (G0)| <

α′ · k22.
Proof For a given graph H , letα be the constant given byTheorem 25. ByTheorem18,
there is a universal constant ε such that any triconnected graph G0 embeddable in a
surface of genus at most α contains a cycle of length at least |G0|ε/2(2α+2)2 . Let
c := 2

ε
and α′ := (α · 2(2α+2)2)1/ε. For an H -minor-free graph G, suppose the α-

near local embedding given by Lemma 30 has |V (G0)| ≥ α′ · kc. Then G∗
0 is a

triconnected graph (by property (viii)) embedded in a surface of genus at most α (by
Definition 29) with at least as many vertices, so G∗

0 must contain a cycle C of length

at least (α′kc)ε/2(2α+2)2 = α · k2.
If the society Ωi of any vortex of the α-near local embedding of G has at least k

vertices, then G contains a path of at least that length (in the comb from property (vi)),
in which case the lemma follows. Otherwise, there are at most α large vortices, hence
at most α · (k − 1) vertices in their societies, and at most α virtual vertices that were
inserted as the centers of the wheels. Let P be the longest subpath of C avoiding
these α · (k − 1) + α vertices. Then P is a path of length at least α·k2

α·k = k in G∗
0

whose edges in E(G∗
0) \ E(G0) came only from small vortices, by the definition of

G∗
0 (Definition 29). By property (vii), these edges can be replaced with paths inside the

corresponding small vortices, giving a path in G. Only one or two consecutive edges
can come from the same small vortex (since their societies have at most 3 vertices),
so the resulting path has length at least k.

The constant from Theorem 18 given by Chen et al. [9] is ε = log1729 2, hence the
universal constant here is c = 2

ε
= 2 log2(1729) < 22. 	

Finally, we deduce Theorem 22 (our variant of the Global Structure Theorem) from
the improved variant of Theorem 25 (the Local Structure Theorem) by a standard
induction, exactly as done by Diestel et al. [12, Theorem 4]. (Note that in case the
excluded graph H is planar, we can already conclude the theorem trivially from the
fact that there is a tree-decomposition of width OH (1) [26]). The only difference is
that in the Local Structure Theorem we add the bound on the size of the embedded
part from Lemma 31. In the proof from [12], every bag of the created decomposition
is either constructed as a set of size bounded as OH (1), or is constructed from an
α-near local embedding by taking the vertices of: the embedded part G0, the set of
apices A, and for each large vortex, the intersection of every two consecutive bags
of its path decomposition, each of size at most α = OH (1). The number of bags in
a path decomposition of a large vortex is equal to the size of its society, and large
vortex societies are disjoint subsets of V (G0). Therefore every tree decomposition
bag constructed in the proof has size at most |V (G0)| + α + α · |V (G0)| = OH (k22),
by Lemma 31. This proves the additional condition we require in Theorem 22.

123

Algorithmica (2019) 81:3936–3967 3955

5 Excluding a Topological Minor

In this section we tackle graph classes excluding a topological minor, that is, we prove
Theorem 1 by proving the following.

Theorem 32 For every graph H, the k-Path problem restricted to H-topological-
minor-free graphs can be solved in time OH (n2m) using OH (kn) calls to Auxiliary
Linkage on instances being induced subgraphs of the input graph of size kOH (1).

This follows as before from the following decomposition theorem. Note the expo-
nent in the polynomial bound on the width (bag size) now depends on H .

Theorem 33 For every graph H, the class of H-topological-minor-free graphs is
(w, h)-decomposable for w(k) = kOH (1) and h = OH (1).

We proceed with the proof of the above theorem. Grohe and Marx [18] proved
that when excluding a topological minor, graphs admit a similar decomposition as
for excluding a minor, but apart from nearly embeddable parts, one needs to consider
parts that have bounded degree except for a bounded number of vertices:

Definition 34 A graph G has (a, d)-bounded degree (for a, d ∈ N) if ≤ a vertices of
G have degree > d in G.

The main ‘Global Structure Theorem’ of [18] is that graphs excluding a topological
minor H admit a tree decomposition with bounded size adhesions, where the torso
of every bag is either nearly embeddable (as when excluding a minor), or has (h, d)-
bounded degree, for h, d = OH (1). We still need the slightly stronger notion of
near embeddability (with combs) for our proofs, which is why we will work with the
following definition of ‘Local Structure’, analogous to α-near local embeddings.

A star decomposition of a graph is a (rooted) tree decomposition (T ,X) where
T is a star: a root node troot with only leaf nodes attached. We call the bag X (troot)
the root bag and the remaining ones leaf bags. The root torso is torso(G,X (troot)).
A star decomposition respects a tangle T if the large side of any separation in T is
not fully contained in any single leaf bag. Grohe and Marx [18, Lemma 6.12] proved
the following Local Structure Theorem.2

Theorem 35 [18] For every integer k there exist integers θ, d, k′ such that: for every
graph G excluding Kk as a topological minor and every tangle T of order ≥ θ that
controls a Kk′ -minor, there is a star decomposition of G that respectsT , has adhesion
size < θ , and such that the root torso has (k, d)-bounded degree.

Corollary 36 For every graph H there exist integers θ, α, d such that: for every graph
G excluding H as a topological minor and every tangleT in G of order≥ θ , the graph
G has one of the following:

2 Grohe andMarx [18] use a slightly stronger definition of respecting a tangle, which is however equivalent
to the conjunction of this one and the assertion that all adhesions in the star decomposition are strictly smaller
than the order of T , which we prefer to state separately. Their theorem also works even under a slightly
weaker condition than that of a tangle controlling a minor (which they call not being removed by the tangle).

123

3956 Algorithmica (2019) 81:3936–3967

– a star decomposition that respects T , has adhesion size α, and such that the root
torso has (|V (H)|, d)-bounded degree, or

– an α-near local embedding that respects T , satisfying properties (vi)-(ix).

Proof For k = |V (H)| let the constants given by Theorem 35 be θ ′, d ′, k′. Let α′′, θ ′′
be the constants given by Theorem 25 for graphs excluding Kk′ as a minor. We prove
the claim for θ = max(θ ′, θ ′′), α = max(θ ′, α′′) and d = d ′. If the tangle T of G
controls no Kk′ -minor, then the claim follows from Theorem 25. Otherwise T does
control a Kk′ -minor and Theorem 35 applies. 	

The main theoretical tool we use, besides the Grohe and Marx decomposition in
the form of Corollary 36, is the following lower bound on cycles in graphs of bounded
degree by Shan [30] (we note the constant Δ − 1 is asymptotically optimal; for small
Δ, previous results by Chen et al. [7] give a slightly better bound).

Theorem 37 [30] If G is a triconnected graph with maximum degree at mostΔ ≥ 425,
then G has a cycle of length at least n1/ log2(Δ−1)/4 + 2.

With this in hand, we will bound the bags of almost bounded degree as follows:

Lemma 38 In Corollary 36, we can additionally assume that in the first outcome, for
any integer k, if G has no k-path, then the root bag has size kOH (1).

Before we prove this, let us show how this concludes our main result. The global
decomposition stated inTheorem33 (and hence the polynomial Turing kernel) follows,
as before, from the Local Structure Theorem inCorollary 36 improved by the bound on
bag size in Lemma 38. The construction only changes in that it can take root bags from
the local structure (the star decomposition) given by the first outcome of Corollary 36
and use them as bags of the global decomposition, without any modifications. (We
note this can also be seen as an instance of a general theorem (11.1) by Robertson and
Seymour [27] which allows to turn ‘local decompositions’ with respect to a tangle into
global ones; however, giving a precise translation would involve too much notational
overhead.)

The remainder of this section is devoted to proving Lemma 38. That is, assuming
a star decomposition with a root of almost bounded degree, we want to show that it
contains a k-path or that we can improve the star decomposition so that the root bag has
size polynomial in k. Similarly as before, this would follow trivially from Theorem 37
if the root bag, after removing the few high-degree vertices, was triconnected.

Otherwise, the informal idea is to cut the root bag into two parts, putting one part
(the one pointed to by the tangle) as the new root bag and the other part as a new leaf
bag, repeating this until the root bag is triconnected. However, as before, we will not
be able to guarantee that the subgraph induced by the root bag is by itself triconnected.
Instead, we consider a graph obtained by contracting each leaf bag into a single vertex.
Furthermore, instead of repeatedly cutting this graph until we make it triconnected,
we will cut it all at once by considering its Tutte decomposition (which subsumes all
separations of order ≤ 2), as detailed later.

We now proceed with the formal proof. Without loss of generality assume that
θ ≥ α(|V (H)| + 2), in the statement of Corollary 36 (otherwise increase θ). Let us
first ensure that the star decomposition (T ,X) is connected:

123

Algorithmica (2019) 81:3936–3967 3957

Claim 39 We can additionally assume that

For every leaf node t ∈ V (T), the setX (t) \ X (troot) is connected, and (C1)

X (t) \ X (troot) has edges to each vertex in the adhesion X (t) ∩ X (troot) (C2)

Proof If (C1) fails we can partition the leaf bag into many leaf bags. If (C2) fails we
can remove the adhesion vertex in question from the leaf bag. 	

We need to define a variant of the torso that is similarly connected as the root torso,
but has no virtual edges (so that long paths in it imply long paths inG). ConstructG∗

root
from G as follows: contractX (t) \X (troot) to a single vertex xt for each leaf t ∈ T
and merge any such vertices xt , xt ′ that have equal neighborhoods (corresponding to
the same adhesion) into one. Let X be the set of all those new vertices.

Claim 40 If G has no k-path, then neither does G∗
root .

Proof For each leaf node t ∈ V (T), the set X (t) \ X (troot) is connected by (C1)
and can therefore be contracted to a single vertex xt by repeated edge contractions.
Since G∗

root is a subgraph of the graph obtained by these edge contractions, it follows
that G∗

root is a minor of G. As minor operations do not increase the length of a longest
path, the claim follows.

We show that G∗
root, just as the root torso, has almost bounded degree.

Claim 41 G∗
root has (|V (H)|,max(α, d + 2d))-bounded degree.

Proof Observe that G∗
root can be obtained from the root torso of (T ,X) by removing

virtual edges and adding the vertices of X . Each vertex in X has degree equal to
the size of some corresponding adhesion, which is ≤ α. Each vertex v in the torso
gains as neighbors only vertices in X , which correspond to different (as vertex subsets)
adhesions containing v; since these adhesions induced cliques containing v in the torso
(which had (|V (H)|, d)-bounded degree), their number is bounded by 2d (unless v

was already one of the ≤ |V (H)| vertices of high degree).

The last two claims allow us to apply Theorem 37 to any triconnected subgraph of
G∗

root (after removing high-degree vertices). We apply it to bags of a Tutte decompo-
sition, obtaining:

Claim 42 If G does not contain a path of length at least k, then G∗
root has a tree

decomposition of adhesion size at most |V (H)| + 2 and width kOH (1).

Proof Assume that G, and hence G∗
root, does not contain a path of length at least k.

By the previous claim, in G∗
root one can delete ≤ |V (H)| vertices to obtain a subgraph

of degree bounded by Δ := max(α, d + 2d); name this subgraph G†
root. Consider the

Tutte decomposition [32] of G†
root. In modern terms (cf. [21, Theorem 1]), it is a tree

decomposition of G†
root of adhesion size at most two, whose torsos are triconnected

123

3958 Algorithmica (2019) 81:3936–3967

topological minors of G†
root. Consequently, each torso again has degree bounded by

Δ and cannot contain a path of length at least k. By Theorem 37, if n denotes the
size of such a bag, then nε/4 + 2 < k, where ε = 1/ log2(max(425, α, d + 2d) − 1).
Thus the size of each bag is n < (4(k − 2))1/ε = kO(d+log2 α) = kOH (1). Adding the
≤ |V (H)| deleted vertices back to every bag, we obtain a tree decomposition of G∗

root
as claimed.

Denote the root torso of (T ,X) as Groot. We now transfer the decomposition of
G∗

root to Groot.

Claim 43 For every tree decomposition of G∗
root, one can find a tree decomposition of

Groot with adhesion and maximum bag size at most α times larger than the adhesion
and maximum bag size of the original tree decomposition.

Proof Let (S,Y) be a tree decomposition ofG∗
root. DefineY

′(s) asY (s)with vertices
xt ∈ X replaced by all of NG∗

root
(xt).We claim (S,Y ′) is a tree decomposition ofGroot.

Every edge of Groot is either an edge of G∗
root − X , still contained in the same bag, or

a virtual edge between two vertices of an adhesion, hence contained in NG∗
root

(xt) for
some xt ∈ X and thus in a bag Y ′(s) (for an s such that Y (s) contained xt). To show
that the subset Y ′−1(v) := {s ∈ S : v ∈ Y ′(s)} is connected, for any given vertex
v ∈ V (Groot), observe that it is the union of Y −1(v) with Y −1(xt) for all xt ∈ X
adjacent to v in G∗

root; since such sets Y −1(v) and Y −1(xt) are connected in S and
intersect (as xt is adjacent to v), their union is connected. Each vertex in each bag
has been replaced by at most |NG∗

root
(xt)| vertices, which is the size of an adhesion

in (T ,X) and hence at most α. It follows that the maximum bag size increases by a
factor at most α.

To bound the size of any adhesion, observe similarly that for s1, s2 ∈ V (S), the
adhesion is

Y ′(s1) ∩ Y ′(s2) = ((Y (s1) ∩ Y (s2)) \ X) ∪
⋃

xt1∈Y (s1),xt2∈Y (s2)

N (xt1) ∩ N (xt2).

For any vertex v ∈ N (xt1) ∩ N (xt2) (for some xti ∈ Y (si)), the set Y −1(v) is
connected and must intersect both Y −1(xt1) and Y −1(xt2). Hence either Y −1(xt1)
contains both s1 and s2, or Y −1(xt2) does, or Y

−1(v) does. This means xt1 , xt2 or v

is contained in Y (s1) ∩ Y (s2). Therefore

Y ′(s1) ∩ Y ′(s2) ⊆ ((Y (s1) ∩ Y (s2)) \ X) ∪
⋃

xt∈Y (s1)∩Y (s2)

N (xt).

This again implies each adhesion increases at most α times in size. 	

By the last two claims, assuming G has no k-path, the root torso Groot has a tree

decomposition (S,Y) of adhesion size α′ := α(|V (H)| + 2) and width kOH (1).
Having a decomposition of the root torso Groot allows us to ‘compose it’ with the

star decomposition (T ,X) of thewhole graphG. The rough idea of this ‘composition’
is to replace the root bag of the star decomposition (T ,X) by a subset containing the

123

Algorithmica (2019) 81:3936–3967 3959

unique bag of (S,Y) that is pointed to by the tangle. The composition results in a star
decomposition with a small root bag, which will conclude the proof of Lemma 38.

To formally define the bag in (S,Y) that is pointed to by the tangle T , let us
first see how T orients separations of Groot. For a separation (A, B) of Groot, every
adhesion X (t) ∩ X (troot) of (T ,X) induces a clique in Groot, hence it is fully
contained in A or in B; thus (A, B) can be extended to a separation of G by adding
all of X (t) to A or B, correspondingly (the choice is arbitrary for X (t) such that
X (t)∩X (troot) ⊆ A∩B). We call such separations ofG extensions of the separation
(A, B) of Groot. For a separation (A, B) of order ≤ θ of Groot, observe that either all
extensions of (A, B) and no extensions of (B, A) belong to T , or vice-versa: this
follows from tangle axioms and the fact that (T ,X) respects T (that is, each X (t)
such that X (t) ∩ X (troot) ⊆ A ∩ B is small w.r.t. T , so putting it one side of an
extension (A′, B ′) instead of the other cannot change whether A′ is small, as otherwise
the two small sides together withX (t) would cover all of G).

Wenoworient edges of the decomposition (S,Y) according toT , to find a (unique)
bag we can focus on. For each edge s1s2 ∈ E(S), if S1, S2 denote the two connected
components of S − s1s2 containing s1, s2, respectively, then (Y (S1),Y (S2)) is a
separation with |Y (S1) ∩ Y (S2)| = |Y (s1) ∩ Y (s2)| ≤ α′ ≤ θ , hence either all of
its extensions or all extensions of (Y (S2),Y (S1)) belong to the tangle T . We direct
the edge s1s2 to either s2 or s1 accordingly (towards the side with large extensions).
After repeating this for every edge of S, we find a node s0 with no outgoing edges.
This means that if we root S at s0 and S1, S2, . . . , S� are the subtrees of S − s0, then
all extensions of (Y (Si),Y (S − Si)) belong to T , for i ∈ [�].

We can now forget about some details of the tree decomposition and define the
following star decomposition (S′,Y ′) of Groot: its nodes are sroot := s0 and its direct
children s1, . . . , s� in S, while its bags are Y ′(sroot) := Y (s0) and Y ′(si) := Y (Si)
for i ∈ [�]. By construction (S′,Y ′) is a star decomposition of Groot of adhesion size
α′, with a root bag of size kOH (1), which satisfies the following:

all extensions of (Y (si),Y (S − si)) are in T , for i ∈ [�]. (2)

The following claim thus concludes the proof of the lemma, by extending this star
decomposition of Groot to a star decomposition of G respecting T , with a root torso
of almost bounded degree and size kOH (1).

Claim 44 If Groot has a star decomposition (S,Y) of adhesion size α′ ≤ θ satisfy-
ing (2), then G has a star decomposition of adhesion size max(α, α′) respecting T
where the root torso has (|V (H)|, d + α′ · d)-bounded degree and its vertex set is
equal to the root bag of (S,Y).

Proof Let (S,Y) be a star decomposition of Groot satisfying (2). Without loss of
generality assume that for every leaf s ∈ V (S), every vertex of the adhesion Y (s) ∩
Y (sroot) has a neighbor in Y (s) \Y (sroot) (otherwise we can remove it from Y (s)).
Every adhesion of the (larger) star decomposition (T ,X) of G induces a clique in
Groot by definition, hence we can choose for each t ∈ V (T) a node s(t) ∈ V (S) such
thatX (t)∩X (troot) ⊆ Y (s(t)). We construct a new star decomposition (T ′,X ′) of
G from (T ,X) as follows: the root bag becomes Y (sroot), leaves t with s(t) = sroot

123

3960 Algorithmica (2019) 81:3936–3967

and their bags remain unchanged, the remaining leaves are deleted, and each leaf s of
(S,Y) is added as a new leaf of T ′, withX ′(s) := Y (s) ∪ ⋃

t : s(t)=s X (t).
It is straightforward to check that (T ′, X ′) is a star decomposition of G of adhesion

size max(α, α′), as follows. Every edge is covered by a bag in X ′, because it was
covered by a bag in X , which is either a subset of a bag in X ′, or in X (troot), and
hence in a bag of Y , which are again subsets of bags in X ′. Every vertex occurs
in bags X ′ of a connected subtree of T ′, because if a vertex occurs in two different
leaf bags of X ′, then either it occurs in two different leaf bags of Y and hence in
Y (sroot) = X ′(troot), or in two leaf bags X (t) and X (t ′) with s(t)
= s(t ′) and
hence inX (troot), which means it occurs in the adhesions ofX (t) andX (t)′; these
adhesion are contained in Y (s(t)) and Y (s(t ′)) respectively, so the vertex must be
contained in Y (sroot) = X ′(troot) as well. Finally to check the sizes of adhesions,
observe that each adhesion of (T ,X ′) is either (for leaf nodes t coming from T) a
subset of an adhesion in X , namely X ′(t) ∩ X ′(troot) ⊆ X (t) ∩ X (troot), or (for
leaf nodes s coming from S) equal to an adhesion of (S,Y):

X ′(s) ∩ X ′(troot) =
⎛

⎝Y (s) ∪
⋃

t : s(t)=s

X (t)

⎞

⎠ ∩ Y (sroot) = Y (s) ∩ Y (sroot),

since every vertex inX (t) ∩ Y (sroot) ⊆ X (t) ∩ X (troot) is contained in Y (s(t)).
To show that the new decomposition respectsT , suppose to the contrary that some

leaf bag contains the large side B of a separation (A, B) ∈ T . Then either this bag
is X ′(t) = X (t) for t ∈ V (T), contradicting that (T ,X) respects T , or X ′(s) =
Y (s)∪⋃

t : s(t)=s X (t) for some s ∈ V (S). Then since (X ′(s),
⋃

s′
=s∈V (S) X
′(s′))

is a separation induced by the adhesion at X ′(s), of order ≤ α′ (as shown in the
previous paragraph), X ′(s) (which contains B) must be the large side of this sep-
aration in T . But this is an extension of the separation (Y (s),

⋃
s′
=s∈V (S) Y (s′)),

contradicting (2).
The part that is not entirely straightforward is bounding the degrees in the root

torso of the new star decomposition (T ′,X ′). Observe that this new torso can be
obtained from the root torso Groot of (T ,X) by taking the subgraph induced by
X ′(troot) = Y (sroot), removing certain virtual edges (from adhesions corresponding
to deleted leaves) and adding virtual edges between every two vertices of each new
adhesion X ′(s) ∩ X ′(troot), s ∈ V (S). We need to bound the number of such edges
added to a vertex v ∈ Y (sroot), assuming it was not already one of the |V (H)| high-
degree vertices of the root torso of (T ,X). Thus v had at most d neighbors in Groot.
Since for each new adhesionX ′(s)∩X ′(troot) = Y (s)∩Y (sroot) (as shown above)
which contains v we assumed that v has a neighbor in Y (s) \Y (sroot) (and these are
disjoint sets, for distinct s), it follows that v received new edges from at most d distinct
new adhesions, at most α′ edges from each. Therefore, the degree of all but |V (H)|
vertices in the root torso of (T ′,X ′) is bounded by d + α′ · d, that is, Corollary 36
holds with this constant in place of d. 	

This concludes the proof of Lemma 38.

123

Algorithmica (2019) 81:3936–3967 3961

6 Adding aModulator

In this section we prove Theorem 2. In fact, in line with the setting of Sect. 3, we
show the following generic version. Theorem 2 follows directly from it by applying
Theorem 33 (on the (w, h)-decomposability of H -topological-minor-free graphs for
w(k) = kOH (1) and h = OH (1)).

Theorem 45 One can solve in polynomial time a given k-Path instance (G, k),
given access to a set M ⊆ V (G) such that G − M admits a tree decomposi-
tion of width less than w and adhesion size h = O(1), and an oracle that solves
the Auxiliary Linkage problem for instances (G ′, k′, S, (Ri)

r
i=1) with G ′ being

a subgraph of G, max(r , k′) ≤ k, |S| ≤ |M | + O(1), and |V (G ′)| being bounded
polynomially in k, w, and |M |.

Contrary to Sect. 3, in this section we are not precise with the polynomial depen-
dency on the parameters k, w, and |M |, as well as the dependency on the adhesion
size h = O(1) of the decomposition. This is due to the fact that the latter dependency
on h is substantial, most notably in the exponent of the polynomial bound on the size
of the oracle calls. Therefore, the result of this section is a purely theoretical result
classifying the aforementioned parameterization as admitting a polynomial Turing
kernel.

DecompositionWe apply the algorithm of Theorem 11 to the graph G − M and sepa-
ration size h. Since h = O(1), the algorithm runs in polynomial time. By Lemma 12,
the output decomposition (T0,X0) has width wO(1) and adhesion size O(1).

Our algorithm will need a bound on the number of children of each node in
the decomposition tree. This is easy to guarantee by modifying the decomposition
(T0,X0) as follows. For every node t ∈ V (T), we group the children t ′ of t according
to the adhesions X (t) ∩ X (t ′). For every group U ⊆ NT (t), we add a new child tU
of t with X (tU) = X (t) ∩ X (t ′), t ′ ∈ U , and reattach the nodes of U as children
of tU . Now t has wO(1) children (using the trivial bound on the adhesion degree),
but tU might have many children. However, the bagX (tU) has constant size, we can
hence duplicate tU into O(|U |) copies, arranged in a binary tree, with the nodes of
U being different leaves of the binary tree. Let (T ,X) be the final decomposition: it
has unchanged width wO(1) and adhesion size O(1), and additionally every node has
wO(1) children.

Marking We continue the proof of Theorem 45 with a somewhat standard marking
process. The ideawill be tomark enough paths that realize a traverse inG−M between
each possible pair u, v ∈ M , so that we can assume every traverse of the sought k-path
intersects marked vertices. If there are many unmarked vertices, we will be able to
find a moderately large unmarked part A in the decomposition with a constant-size
boundary Z (separating A from marked vertices), which will be the guarded set and
the guard, respectively. This allows us to perform the Reduction Rule on A.

For an integer 0 ≤ k′ ≤ k−2 and two vertices u, v ∈ M , define a (u, v, k′)-path in
G as a (simple) path with k′ +2 vertices: two endpoints u and v and exactly k′ internal
vertices, all in G − M . Note that a (u, v, 0)-path is a path consisting of an edge uv.

123

3962 Algorithmica (2019) 81:3936–3967

Similarly, for 0 ≤ k′ ≤ k − 1 and a vertex u ∈ M , a (u, k′)-path in G is a path with
k′ + 1 vertices: one endpoint being u and all other vertices in G − M .

For every 0 ≤ k′ ≤ k − 2 and every u, v ∈ M , we shall compute an inclusion-
wise maximal family P0

u,v,k′ of internally vertex-disjoint (u, v, k′)-paths. Similarly,
for every 0 ≤ k′ ≤ k − 1 and u ∈ M we compute an inclusion-wise maximal family
P0

u,k′ of internally vertex-disjoint (u, k′)-paths. The computation can be done via the
previously established kernel for decomposable graph classes.

Lemma 46 The familiesP0
u,v,k′ andP0

u,k′ can be computed in polynomial time using
the assumed Auxiliary Linkage oracle.

Proof We focus on P0
u,v,k′ ; the proof for the second family is analogous. To find an

inclusion-wise maximal family, it suffices to find paths one-by-one and greedily add
them to the family as long as possible. That is, it suffices to find a path of the desired
length k′ ≤ k between two given vertices u and v in a given induced subgraph of
G − (M \ {u, v}) (obtained by removing the internal vertices of the paths previously
found), or conclude that none exists (meaning the packing we found is maximal).
We show that a slight modification of the previously established kernel in Sect. 3 for
decomposable graph classes (Corollary 14) works when endpoints u and v are given.

More precisely, first observe that the Reduction Rule is still correct when we are
looking for a k′-path between fixed endpoints u and v (as opposed to any k′-path) as
long as the endpoints do not lie in the set A. Thus, we can (just as in Corollary 14)
iteratively use the decomposition (T ,X) of G−M , reintroduce u and v to every bag,
and find a separation (A′, B ′) by Lemma 9 such that the Reduction Rule applies (with
A = A′ \ B ′ not containing u nor v), and iterate this until we find the k′-path between
u and v or conclude there is none, as in Lemma 7. 	

We definePu,v,k′ to be a subfamily of k + 1 arbitrarily chosen paths fromP0
u,v,k′ ,

or letPu,v,k′ = P0
u,v,k′ if |Pu,v,k′ | < k + 1. We define Pu,k′ similarly.

Let |M | = s. Let X1 be the set of all vertices of G − M that lie on some path in
any of the sets Pu,v,k′ or Pu,k′ (u, v ∈ M , k′ ≤ k). Note that, as we picked at most
k+1 paths to the familiesPu,v,k′ andPu,k′ , each consisting of at most k−1 vertices
from G − M , for each of at most k choices of the length k′ ≤ k, and

(s
2

) + s ≤ 2s2

choices for the endpoint(s), we have

|X1| < (k + 1) · (k − 1) · k · 2s2.

For every x ∈ X1, pick one node t(x) ∈ V (T) such that x ∈ X (t(x)). Let
B1 = {t(x) | x ∈ X1}. Let B2 ⊆ V (T) consist of all of B1, the root of T , and the
lowest common ancestor of every pair t1, t2 in B1. Let X2 = X (B2). It is folklore
that |B2| ≤ 2|B1|, hence:

|B2| ≤ 2(k + 1) · (k − 1) · k · 2s2,
|X2| = wO(1) · k3 · s2.

Let C be the set of connected components of T − B2. As B2 is closed under taking
lowest common ancestors of nodes, we have that |NT (C)| ≤ 2 for anyC ∈ C (indeed,

123

Algorithmica (2019) 81:3936–3967 3963

Fig. 4 Schematic illustration of the steps used to define the set A that is guarded by Z . The figure shows a
tree decomposition of G − M , whose vertices can have arbitrary connections to the modulator M

the set NT (C) ⊆ B2 consists of the parent of the root of C , if it has a parent, and the
children of leaves of C , of which there can be at most one, as otherwise their common
ancestor would be in C and B2, a contradiction).

Reducing a large componentOurmain goal is to show that if the bags of any component
C contain in total more than m = poly(k, w, s) vertices of G, that is, |X (C)| > m,
then one can use the Reduction Rule from Sect. 3 to reduce the graph G by at least one
vertex. Fix such a component C , and refer to Fig. 4 for an illustration of the following
steps.

Let t0 ∈ V (C) be the lowest node in C such that, if D is the set of nodes of C in
the subtree of T rooted in t0, then |X (D)| > m. Since in (T ,X) nodes have wO(1)

children and bags have size wO(1), the choice of t0 ensures that |X (D)| ≤ wO(1) ·m.
Let Z = X (D)∩X (NT (D)) and A = X (D)\X (NT (D)). Note that D has the

same neighborhood in T as C , except possibly for a different parent of its root. Hence
|NT (D)| ≤ 2 and since adhesions are of constant size, |Z | = O(1). Furthermore,
since D ⊆ C is disjoint from B2, we have (by properties of tree decompositions):

X (D) ∩ X2 = X (D) ∩ X (B2) ⊆ X (D) ∩ X (T − D)

= X (D) ∩ X (NT (D)) = Z .

Therefore A∩ X2 = ∅. Again by properties of tree decompositions, Z separates A
from the rest: NG−M (A) ⊆ Z , hence NG(A) ⊆ Z ∪ M .

The marking process ensures the following crucial property.

Lemma 47 The set A is guarded by Z.

Proof Let P be a k-path in G that contains a maximum possible number of vertices
from X1; we claim that P is guarded by Z in A. Assume the contrary, let Q be a
traverse of P through A for which neither endpoint belongs to Z . Since P is not

123

3964 Algorithmica (2019) 81:3936–3967

completely contained in A (as otherwise it would be guarded, by Definiton 4) and
NG(A) ⊆ Z ∪ M , we have that Q is either a (u, v, k′)-path for some u, v ∈ M and
1 ≤ k′ ≤ k − 2 or a (u, k′)-path for some u ∈ M and 1 ≤ k′ ≤ k − 1. Assume the
first case; the proof for the second case is analogous.

Since Q is contained in A ∪ M and A is disjoint from X2 ⊇ X1 (the marked
vertices), it is internally vertex-disjoint from all paths inPu,v,k′ . IfPu,v,k′ were equal
toP0

u,v,k′ , we could have added Q to the latter, contradicting its choice as inclusion-
wise maximal. Consequently, |Pu,v,k′ | = k + 1. Thus, at least one (u, v, k′)-path
Q′ ∈ Pu,v,k′ has no internal vertices on the k-path P . Consequently, by replacing Q
with Q′ on P , we obtain a simple k-path P ′ with strictly more vertices of X1 than P .
This is a contradiction. 	

Thus, ifm = poly(k, w, s) is large enough, we can apply the Reduction Rule for the
set A and the guard Z ; recall that |Z | = O(1) while m −O(1) < |A| ≤ poly(w) ·m.
The Reduction Rule deletes at least one vertex after invoking a number of calls to the
Auxiliary Linkage oracle on the subgraphG[N [A]]; note that N [A] ⊆ A∪M∪ Z .

Wrap up Recall that we have shown that one can apply the Reduction Rule if there
exists a componentC ∈ C with |X (C)| > m for somem bounded polynomially in k,
w, and s. However, since |B2| ≤ 2(k+1) · (k−1) ·k ·2s2 and a node of T has poly(w)

children, there are at most poly(w)k3s2 components. Consequently, if the reduction is
not applicable, we have |V (G)| bounded polynomially in k,w, and s. Such an instance
can be solved with a single call to Auxiliary Linkage with k′ = k, S = ∅, r = 1,
and R1 = ∅. This finishes the proof of Theorem 45 and, consequently, of Theorem 2.

7 Conclusions

We significantly extended the graph classes on which k-Path has a polynomial Turing
kernel. In addition,we showed that even an instance that does not belong to such a class,
but has a small vertex modulator whose deletion makes it so, can be solved efficiently
using small queries to an oracle. A subdivision-based argument (cf. [15]) shows that
we cannot generalize much beyond H -topological-minor-free graphs without settling
the problem in general. In particular, the existence of a polynomial Turing kernel for
graphs of bounded expansion implies its existence in general graphs.

While our narrative focused on k-Path, after small modifications our techniques
can also be applied to prove analogues of Theorems 1 and 2 for the k-Cycle problem
of detecting a simple cycle of length at least k. The main difficulty in adapting our
arguments to k-Cycle is the fact that, a priori, the only cycles of length at least k may
be arbitrarily much larger than k. However, this issue can easily be resolved in the
following way. Since a cycle is contained within a single biconnected component, a
Turing kernelization can decompose its input into biconnected components and solve
the problem independently in each of them. We then start by testing for the existence
of a path with k2 vertices using the algorithms developed in the paper. If there is a
path of length k2 in a biconnected component, then by a classic theorem of Dirac [13]
there is a cycle of length at least k, and we are done. If no such path exists, then the
longest cycle in G has length less than 2k, and we can continue under the guarantee

123

Algorithmica (2019) 81:3936–3967 3965

that the cycle we are looking for has length at least k and less than 2k. In this setting,
our arguments can be easily adapted. In particular, the absence of a path of length k2

implies the existence of suitable tree decompositions fromwhich reducible separations
can be extracted.

A significant portion of the technical work in this paper was devoted to modifying
the graph minors decomposition to obtain the win/win that either answers the problem
or finds a reducible separation. In this way, the algorithmic question has driven a
challenging graph-theoretic project. It would be interesting to find more problems
amenable to such an approach. We conclude with some concrete open problems. Does
k-Path have a polynomial Turing kernel on chordal graphs? How about Induced k-
Path or Directed k- Path, on planar graphs? The current approach fails for these
problems, since the presence of a large triconnected component does not necessarily
imply a positive answer to the problem. For example, there are triconnected planar
graphs on n vertices whose longest induced path has only O(log n) vertices [17].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Omitted proofs

A.1 Proof of Lemma 17

Consider a node t ∈ V (T), let Tt be the subtree of T rooted in t , and let Gt =
G[X (Tt)]. Note that (Tt ,X) is a tree decomposition of Gt with t being a root; with
regards to this decomposition, we consider the torso Ht := torso(Gt ,X (t)). Note
that the connectivity of (T ,X) implies that Ht can be obtained from Gt [X (t)] by
turning the neighborhood NGt (C) into a clique for every connected component C of
Gt − X (t). Hence every adhesion to a child of t corresponds to a clique in Ht , and
we may bound the adhesion degree by bounding the number of distinct cliques in Ht .

To show the bound on the number of cliques, we show a longer, more elaborate
process that turns Gt into Ht . Let C be the family of connected components of Gt −
X (t). For every C ∈ C and every vertex v ∈ N (C) ⊆ X (t), pick one neighbor
xv,C ∈ N (v) ∩ C . Let SC be a minimal connected subgraph of C that contains every
vertex xv,C forv ∈ N (C).Note that byminimality, SC is a treewith atmost |N (C)| ≤ h
leaves and thus less than h vertices of degree at least 3. Delete from Gt all vertices and
edges of G[C] that do not lie in SC , and suppress every node of degree 2 in SC that is
not of the form xv,C for v ∈ N (C). By performing this operation for every component
C ∈ C , we obtain a topological minorG1

t ofGt with the following property: the graph
Gt [X (t)] remains untouched in G1

t , while every C ∈ C is turned into its topological
minor C1 with N (C) = N (C1) and |C1| < 2|N (C)| ≤ 2h. Since G does not contain
H as a topological minor, neither does G1

t .
Wenowswitch to the theory of graphs of bounded expansion; for an introduction and

more notation we refer to the textbook [25]. A graph class G is of bounded expansion

123

http://creativecommons.org/licenses/by/4.0/

3966 Algorithmica (2019) 81:3936–3967

if there exists a function ∇ : Z≥0 → Z≥0 such that for every radius r , every graph
H ∈ G , and every r -shallow minor H ′ of H , we have |E(H ′)|/|V (H ′)| ≤ ∇(r).

LetG2
t be a graph obtained fromG1

t by contracting every componentC1 forC ∈ C
into a single vertex xC . Then, as |C1| < 2h, G2

t is a 2h-shallow minor of G1
t . Let G

3
t

be a graph obtained fromG2
t by replacing every vertex xC forC ∈ C with a clique KC

of |N (C)| copies of xC . Finally, note that Ht can be obtained from G3
t by contracting

every vertex of KC onto a distinct vertex of N (C), that is, Ht is a 1-shallow minor of
G3

t .
Since taking an O(1)-shallow-minor or replacing every vertex with a clique of

constant size in a graph from a class of bounded expansion gives a graph also from a
class of bounded expansion (but possibly worse function ∇) [25], we have that there
exists a graph class G of bounded expansion (with the function∇ depending on H and
h) such that Ht ∈ G . Since graphs of bounded expansion have bounded degeneracy
and therefore have linearly many cliques [25, Lemma 3.1], we have that Ht contains
at most f ′(h, H) · |X (t)| cliques for some constant f ′(h, H) depending on h and H .
Thus, in Lemma 17 we can take f (h, H) = 1 + f ′(h, H) to accommodate for the
additional adhesion corresponding to the parent of t .

References

1. Ambalath, A.M., Balasundaram, R.,Rao, R., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On
the kernelization complexity of colorful motifs. In: Proceedings of the 5th IPEC, pp. 14–25 (2010).
https://doi.org/10.1007/978-3-642-17493-3_4

2. Archdeacon, D.: Topological graph theory: a survey. Congr. Numerantium 115(5–54), 18 (1996)
3. Barbero, F., Paul, C., Pilipczuk, M.: Exploring the complexity of layout parameters in tournaments and

semicomplete digraphs. ACM Trans. Algorithms 14(3), 38:1–38:31 (2018). https://doi.org/10.1145/
3196276

4. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Kernel(s) for
problems with no kernel: on out-trees with many leaves. ACM Trans. Algorithms 8(4), 38 (2012).
https://doi.org/10.1145/2344422.2344428

5. Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Lokshtanov, D., Müller, M.,
Raman, V., Rooij, J.V., Rosamond, F.A.: Open problems in parameterized and exact computation—
IWPEC 2008. Technical Report UU-CS-2008-017, Utrecht University (2008)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.
SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240

7. Chen, G., Gao, Z., Yu, X., Zang, W.: Approximating longest cycles in graphs with bounded degrees.
SIAM J. Comput. 36(3), 635–656 (2006). https://doi.org/10.1137/050633263

8. Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory Ser. B 86(1), 80–99 (2002).
https://doi.org/10.1006/jctb.2002.2113

9. Chen, G., Yu, X., Zang, W.: The circumference of a graph with no K3,t -minor, II. J. Comb. Theory
Ser. B 102(6), 1211–1240 (2012). https://doi.org/10.1016/j.jctb.2012.07.003

10. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed
parameter tractable. In: Proceedings of STOC 2014, pp. 323–332. ACM (2014). https://doi.org/10.
1145/2591796.2591852

11. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
12. Diestel, R., Kawarabayashi, K., Müller, T., Wollan, P.: On the excluded minor structure theorem for

graphs of large tree-width. J. Comb. Theory Ser. B 102(6), 1189–1210 (2012). https://doi.org/10.1016/
j.jctb.2012.07.001

13. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond.Math. Soc. s3–2(1), 69–81 (1952). https://
doi.org/10.1112/plms/s3-2.1.69

123

https://doi.org/10.1007/978-3-642-17493-3_4
https://doi.org/10.1145/3196276
https://doi.org/10.1145/3196276
https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1137/120880240
https://doi.org/10.1137/050633263
https://doi.org/10.1006/jctb.2002.2113
https://doi.org/10.1016/j.jctb.2012.07.003
https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1016/j.jctb.2012.07.001
https://doi.org/10.1016/j.jctb.2012.07.001
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1112/plms/s3-2.1.69

Algorithmica (2019) 81:3936–3967 3967

14. Fröhlich, J., Müller, T.: Linear connectivity forces large complete bipartite minors: an alternative
approach. J. Comb. Theory Ser. B 101(6), 502–508 (2011). https://doi.org/10.1016/j.jctb.2011.02.002

15. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar,
S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84, 219–242
(2017). https://doi.org/10.1016/j.jcss.2016.09.002

16. Garnero, V., Weller, M.: Parameterized certificate dispersal and its variants. Theor. Comput. Sci. 622,
66–78 (2016). https://doi.org/10.1016/j.tcs.2016.02.001

17. Giacomo, E.D., Liotta, G., Mchedlidze, T.: Lower and upper bounds for long induced paths in 3-
connected planar graphs. Theor. Comput. Sci. 636, 47–55 (2016). https://doi.org/10.1016/j.tcs.2016.
04.034

18. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological
subgraphs. SIAM J. Comput. 44(1), 114–159 (2015). https://doi.org/10.1137/120892234

19. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A completeness theory for polyno-
mial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015). https://doi.org/10.1007/s00453-
014-9910-8

20. Hüffner, F., Komusiewicz, C., Sorge, M.: Finding highly connected subgraphs. In: Proceedings of 41st
SOFSEM, pp. 254–265 (2015). https://doi.org/10.1007/978-3-662-46078-8_21

21. Jansen, B.M.P.: Turing kernelization for finding long paths and cycles in restricted graph classes. J.
Comput. Syst. Sci. 85, 18–37 (2017). https://doi.org/10.1016/j.jcss.2016.10.008

22. Jansen, B.M.P.,Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-
time algorithms, kernels, and Turing kernels. In: Proceedings of 26th SODA, pp. 616–629 (2015).
https://doi.org/10.1137/1.9781611973730.42

23. Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r , �)-graphs. In: Proceedings of 35th
FSTTCS, pp. 420–433 (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.420

24. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Manuscript (2019)
25. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and

Combinatorics, vol. 28. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-27875-4
26. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Comb. Theory Ser. B

41(1), 92–114 (1986). https://doi.org/10.1016/0095-8956(86)90030-4
27. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory

Ser. B 52(2), 153–190 (1991)
28. Robertson, N., Seymour, P.D.: Graph minors: XVII. Taming a vortex. J. Comb. Theory Ser. B 77(1),

162–210 (1999). https://doi.org/10.1006/jctb.1999.1919
29. Schäfer, A., Komusiewicz, C.,Moser, H., Niedermeier, R.: Parameterized computational complexity of

finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012). https://doi.org/10.1007/s11590-
011-0311-5

30. Shan, S.: Homeomorphically irreducible spanning trees, Halin graphs, and long cycles in 3-connected
graphs with bounded maximum degrees. Ph.D. thesis, Georgia State University (2015). http://
scholarworks.gsu.edu/math_diss/23/. Accessed 5 Nov 2015

31. Thomassé, S., Trotignon, N., Vuskovic, K.: A polynomial turing-kernel for weighted independent set
in bull-free graphs. Algorithmica 77(3), 619–641 (2017). https://doi.org/10.1007/s00453-015-0083-
x

32. Tutte, W.T.: Connectivity in Graphs. Mathematical expositions. University of Toronto Press, Toronto
(1966)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.jctb.2011.02.002
https://doi.org/10.1016/j.jcss.2016.09.002
https://doi.org/10.1016/j.tcs.2016.02.001
https://doi.org/10.1016/j.tcs.2016.04.034
https://doi.org/10.1016/j.tcs.2016.04.034
https://doi.org/10.1137/120892234
https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.1007/978-3-662-46078-8_21
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.420
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1006/jctb.1999.1919
https://doi.org/10.1007/s11590-011-0311-5
https://doi.org/10.1007/s11590-011-0311-5
http://scholarworks.gsu.edu/math_diss/23/
http://scholarworks.gsu.edu/math_diss/23/
https://doi.org/10.1007/s00453-015-0083-x
https://doi.org/10.1007/s00453-015-0083-x

	Turing Kernelization for Finding Long Paths in Graph Classes Excluding a Topological Minor
	Abstract
	1 Introduction
	2 Preliminaries
	3 Turing Kernels
	3.1 Definitions and the Auxiliary Problem
	3.2 Generic Reduction Rule
	3.3 Separation Oracles
	3.4 Decomposable Graph Classes

	4 Excluding a Minor
	Global and Local Graph Minor Structure Theorems
	Improving the Structure Theorems

	5 Excluding a Topological Minor
	6 Adding a Modulator
	7 Conclusions
	A Omitted proofs
	A.1 Proof of Lemma 17

	References

