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Abstract
Constructing a spanning tree of a graph is one of the most basic tasks in graph theory.
We consider a relaxed version of this problem in the setting of local algorithms. The
relaxation is that the constructed subgraph is a sparse spanning subgraph containing
at most (1+ ε)n edges (where n is the number of vertices and ε is a given approxima-
tion/sparsity parameter). In the local setting, the goal is to quickly determine whether
a given edge e belongs to such a subgraph, without constructing the whole subgraph,
but rather by inspecting (querying) the local neighborhood of e. The challenge is to
maintain consistency. That is, to provide answers concerning different edges accord-
ing to the same spanning subgraph. We first show that for general bounded-degree
graphs, the query complexity of any such algorithm must be �(

√
n). This lower

bound holds for constant-degree graphs that have high expansion. Next we design an
algorithm for (bounded-degree) graphs with high expansion, obtaining a result that
roughly matches the lower bound. We then turn to study graphs that exclude a fixed
minor (and are hence non-expanding). We design an algorithm for such graphs, which
may have an unbounded maximum degree. The query complexity of this algorithm
is poly(1/ε, h) (independent of n and the maximum degree), where h is the number
of vertices in the excluded minor. Though our two algorithms are designed for very
different types of graphs (and have very different complexities), on a high-level there
are several similarities, and we highlight both the similarities and the differences.

This work is based on part of the extended abstract [32] and on the extended abstract [33]. Other parts
of [32] have appeared in the journal publication [30].
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1 Introduction

When dealing with large graphs, it is often important to work with a sparse subgraph
that maintains essential properties, such as connectivity, bounded diameter and other
distance properties (e.g., small stretch [48,49]), of the original input graph. Can one
provide fast random access to such a sparsified approximation of the original input
graph? In this work, we consider the property of connectivity: Given a connected graph
G = (V , E) over n vertices, find a sparse subgraph of G ′ that spans G. This task can
be accomplished by constructing a spanning tree in linear time. However, it may be
crucial to quickly determine whether a particular edge e belongs to such a subgraph
G ′, where by “quickly” we mean in time much faster than constructing all of G ′. The
hope is that by inspecting only some small local neighborhood of e, one can answer
in such a way that maintains consistency with the same G ′ for all edges e. We focus
on such algorithms (referred to as (centralized) local algorithms [53]), which are of
use when we do not need to know the answer for every edge at any single point in
time, or if there are several independent processes that want to determine the answer
for edges of their choice, possibly in parallel.

Ifwe insist thatG ′ should have theminimum number of edges sufficient for spanning
G, namely, that G ′ be a spanning tree, then it is easy to see that the task cannot be
performed in general without inspecting almost all of G. To verify this, observe that
if G consists of a single path, then the algorithm must answer positively on all edges,
while if G consists of a cycle, then the algorithm must answer negatively on one edge.
However, the two cases cannot be distinguished without inspecting a linear number
of edges. On the other hand, suppose we allow the algorithm some more slackness.
Namely, rather than requiring that G ′ be a tree, require that it be relatively sparse, i.e.,
contains at most (1+ ε)n edges, (allowing it to contain more than n − 1 edges). Now
the algorithm may answer positively on all cycle edges, so distinguishing between
these two cases is no longer necessary.

Given the above observation, the question we consider is whether a relaxed version
of this task can be solved by inspecting a sublinear number of edges. Specifically, the
relaxation is that the spanning subgraph G ′ may contain (1+ ε) · n edges, for a given
approximation/sparsity parameter ε. To be more precise we consider the problem as
formulated next.

Definition 1 An algorithmA is a Local Sparse Spanning Graph (LSSG) algorithm if,
given n ≥ 1, ε > 0, a sequence of random bits r ∈ {0, 1}∗ and query access to the
incidence-lists representation of a connected graph G = (V , E) over n vertices,1 it
provides oracle access to a subgraph G ′ = (V , E ′) of G such that:

1. G ′ is connected.

1 Namely, the algorithm can query, for any vertex v ∈ V and index i , who is the i th neighbor of v (where
if v has less than i neighbors, then a special symbol is returned).
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2.
∣
∣E ′∣∣ ≤ (1 + ε) · n with probability at least 1 − 1/�(n), where E ′ is determined
by G and r .

By “providing oracle access to G ′” we mean that on input (u, v) ∈ E , A returns
whether (u, v) ∈ E ′, and for any sequence of edges, A answers consistently with the
same G ′. We consider the following performance measures of the algorithm.

• Query complexity Number of graph-queries it makes in order to answer a single
oracle-query.

• Running time the time it takes to answer a single oracle-query (in the word-RAM
model).2

• Total number of random bits the algorithm uses (i.e. |r |).
An algorithmA is an LSSG algorithm for a family of graphs C if the above conditions
hold, provided that the input graph G belongs to C.

We note that the randomness of the algorithm does not affect its query complexity
and running time, but only the number of edges in the sparse spanning graph.

The complexity of the algorithm may depend on a bound, d, on the maximum
degree.We note that if |E | = O(n) (i.e., themaximumor average degree is a constant),
then clearly one can get a constant factor approximation (to the minimum number of
edges necessary for connectivity) by simply taking E ′ = E .However,we are interested
in a much better approximation of (1 + ε) for any given approximation parameter ε.

Two comments are in place regarding the success probability of an LSSG algorithm.
First, Definition 1 can bemodified so as to allow a higher probability of failure in terms
of the sparsity (that is, higher than 1/�(n) in Item 2). Second, the definition can be
modified so as to allow a probability of failure in terms of connectivity (that is, in
Item 1). Since our algorithms ensure the required sparsity with probability 1−1/�(n)

and always ensure connectivity, for the sake of succinctness, we have chosen not to
introduce additional parameters in the definition.

We are interested in LSSG algorithms that for each given edge, perform as few
queries as possible to G. We are also interested in bounding the total amount random-
ness used by such algorithms, and their running time (in the word-RAMmodel). Note
that Item 2, which states that the set of edges E ′ is determined by the graph G and
the randomness r , implies that the answers of an LSSG algorithm to queries cannot
depend on previously asked queries.

1.1 Our Results

We start by showing that even after the aforementioned relaxation, local algorithms for
sparse spanning graphs require the inspection of �(n1/2) edges for each given edge e
and for a constant ε. This lower bound holds for constant-degree graphs with strong
expansion properties, and in our first positive result we provide an almost matching
upper bound for such graphs. Namely, the first algorithm we present, the Sparse-

2 In this model (which is attributed to Fredman and Willard [19]), memory is divided into words of length
w bits each. Every basic operation on words (in particular, comparison and addition), is assumed to take
unit time. In our setting a word is �(log n) bits.

123



750 Algorithmica (2020) 82:747–786

Centers algorithm3 gives meaningful results for graphs in which the neighborhoods
of almost all the vertices in the graph expand in a similar rate. In particular, for
graphs with high expansion we get complexity that grows approximately like n1/2.
More precisely, if the expansion of small sets (of size roughly O(n1/2)) is �(d),
where d is the maximum degree in the graph, then the complexity of the algorithm
is n1/2+O(1/ log d). The number of random bits the algorithm uses, in terms of n, is
Õ(

√
n).4

We then turn to consider non-expanding graphs. A family of non-expanding graphs
that is of wide interest, is the family of minor-free graphs, which can be parameter-
ized by the size, h, of the excluded minor. In particular, this family includes planar
graphs. Note that although the average degree in graphs with an excluded fixed minor
is constant, the maximum degree might be large as �(n). Our second algorithm, the
Dense-Centers algorithm, is designed forminor-free graphs, and has complexity poly-
nomial in h and 1/ε (with no dependence on n or on the maximum degree,5 so that it
works for unbounded-degree graphs). Another parameter of interest is the stretch6 of
G ′ [48,49]. The spanning subgraph G ′ has stretch Õ(h/ε). The length of the random
seed the algorithm uses is poly(h/ε) · log n.

Observe that while the query complexity of our algorithm for expanding graphs has
relatively high dependence on n, our algorithm for minor-free graphs has no depen-
dence on n. This raises the natural question regarding the relation between expansion
properties of graphs and the query complexity of the LSSG problem (in terms of the
dependence on n). This question was addressed in [30], as we further elaborate in
Sect. 1.3.

1.2 Our Algorithms

Interestingly, though our two algorithms are designed for very different types of graphs
(and have very different complexities), on a high-level there are several similarities.
In particular, underlying each of the two algorithms is the existence of a (global)
partition of the graph vertices where the partition determines the sparse spanning
subgraph, and the local algorithmdecideswhether a given edge belongs to the spanning
subgraph by constructing parts of the partition. The differences between the algorithms
are in the way the partition is defined, the precise way the spanning subgraph is
determined by the partition (in particular, the choice of edges between parts) and
the local (partial) construction of the partition. We further discuss the similarities
and differences between the algorithms in Sect. 1.2.3 following their descriptions,
presented next.

3 In the extended abstract [32], the algorithm is referred to simply as the Centers algorithm. Here we
name it the Sparse-Centers algorithm so as to distinguish it from the other (centers based) algorithm that
is presented in this work.
4 We use Õ for Õ(x) = O(x) · poly(log x).
5 The extension to unbounded degrees does not appear in the extended abstract [33] and appears only in
this version.
6 Given a connected graphG = (V , E), a subgraphG′ = (V , E ′) is a t-spanner ofG if for every u, v ∈ V ,
�G′ (u,v)

�G (u,v)
≤ t (where for a graph H and two vertices u, v in H , �H (u, v) denotes the distance between u

and v in H ). We refer to t as the stretch factor of G′.
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1.2.1 The Sparse-Centers Algorithm (for Expanding Graphs)

This algorithm is based on the following idea. Suppose we can partition the graph
vertices into

√
εn disjoint partswhere each part is connected. Ifwe now take a spanning

tree over each part and select one edge between every two parts that have an edge
between them, then we obtain a connected subgraph with at most (1 + ε)n edges.

The Partition The partition is defined based on
√

εn special center vertices, which are
selected uniformly at random. Each vertex is assigned to the closest center (breaking
ties according to a fixed order over the centers), unless it is further than some threshold t
from all centers, in which case it is a singleton in the partition. This definition ensures
that for each center the subgraph induced on the vertices assigned to that center is
connected.

The Local Algorithm Given an edge (u, v), the local algorithm finds the centers to
which u and v are assigned (or determines that they are singletons). This is simply
done by performing a Breadth First Search (BFS) to distance at most t from each of the
two vertices, until a center is encountered (or no center is encountered, in which case
we get a singleton). If one of the two vertices is a singleton, then (u, v) is always taken
to the spanning subgraph. Otherwise, if u and v are assigned to the same center, σ ,
then the algorithm determines whether the edge between them belongs to the BFS-tree
rooted at σ that spans the vertices assigned to σ . (Since there may be many such trees,
we consider a fixed choice, based on the vertices’ ids.)

To this end it is actually not necessary to determine for each vertex at distance at
most t from σ whether it is assigned to σ or not (which would be too costly in terms of
the local algorithm’s query complexity). Rather, given that it is known that both u and v

are assigned to σ , it suffices to compare the distances of u and v to σ , and if they differ
by 1, to determine the distances between the neighbors of the further vertex, and σ .

If u and v belong to different centers,σ(u) andσ(v), respectively, then the algorithm
determineswhether (u, v) is the single edge allowed to connect the parts corresponding
to the centers σ(u) and σ(v). This is done according to a prespecified rule which, once
again, can be decided without identifying exactly which vertices belong to the two
parts. Specifically, consider the shortest path between σ(u) and σ(v) that is first in
lexicographic order, denoted P(σ (u), σ (v)). Observe that due to the edge (u, v), this
path has length at most 2t + 1. Therefore, it can be found efficiently by performing
a BFS to depth t from both σ(u) and σ(v). If the edge between u and v belongs to
P(σ (u), σ (v)), then it is taken to the spanning graph, and otherwise it is not taken.
Indeed it may be the case that no edge between a vertex assigned to σ(u) and a vertex
assigned to σ(v) is included in the spanning graph, despite the existence of such edges.
This occurs if P(σ (u), σ (v)) passes through vertices that are assigned to other centers.
As a consequence, the argument that the subgraph G ′ is connected is required to be
more subtle. Essentially, we show by induction that σ(u) and σ(v) will be connected,
but possibly by a path that passes through other centers.

The Complexity of the Algorithm From the above description one can see that there
is a certain tension between the complexity of the algorithm and the number of edges
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in the spanning subgraph G ′. On one hand, the threshold t should be such that with
high probability (over the choice of the centers) almost all vertices have a center at
distance at most t from them. Thus we need a lower bound (of roughly

√
n/ε) on the

size of the distance-t neighborhood of (most) vertices. On the other hand, we also need
an upper bound on the size of such neighborhoods so that we can efficiently determine
which edges are selected between parts. Hence, this algorithm works for graphs in
which the sizes of the aforementioned local neighborhoods do not vary by too much
and its complexity (in terms of the dependence on n) is nearly Õ(

√
n). In particular

this property holds for good expander graphs.

The Threshold t If the threshold t is not given to the algorithm, then as a first step, the
algorithm approximates t . Namely, it finds a threshold t ′ that gives similar guarantees
as t , both in terms of the sparsity of the output subgraph and in terms of the query
complexity of the algorithm.

1.2.2 TheDense-Centers Algorithm (for Minor-Free Graphs)

In what follows we assume that the graph has a bounded degree, d, which is provided
to the algorithm. We then explain how to remove this assumption.

Similarly to the Sparse-Centers algorithm, the algorithm for families of graphswith
a fixed excluded minor is based on a global partition that is determined by a random
set of centers. However, the number of centers in this algorithm is linear in n (hence
we call it the Dense-Centers algorithm), and the definition of the partition is more
involved. Also similarly to what was described in Sect. 1.2.1, given such a partition,
the edge set E ′ of the spanning subgraph G ′ is defined by taking a spanning tree in
each part, and a single edge between every pair of parts that have at least one edge
between them (though the choice of the edge is different). Here, the minor-freeness
of the graph, together with a bound on the number of parts, ensure that the number of
pairs of parts that have at least one edge between them is at most εn, and therefore
|E ′| ≤ (1 + ε)n.

We now provide a high level description of the partition and the corresponding local
algorithm.

Properties of the Partition We define a partition that has each of the following four
properties (which for simplicity are not precisely quantified in this introductory text):
(1) the number of parts in the partition is not too large (though it is linear in n); (2)
the size of each part is not too large (it is polynomial in d, h and 1/ε); (3) each part
induces a connected subgraph; (4) for every vertex v it is possibly to efficiently find
(that is, in time polynomial in d, h and 1/ε), the subset of vertices in the part that v

belongs to.

An Initial Centers-Based Partition Initially, the partition is defined (as in the Sparse-
Centers algorithm) by a selection of centers, where the centers are selected randomly
(though not completely independently). Each vertex is initially assigned to the closest
selected center. For an appropriate setting of the probability that a vertex is selected to
be a center, with high probability, this initial partition has the first property. Namely,
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the number of parts in the partition is not too large. By the definition of the partition,
each part is connected, so that the partition has the third property as well. However,
the partition is not expected to have the second property. That is, some parts may be
too large. Even for a simple graph such as the line, we expect to see parts of size
logarithmic in n. In addition, the same example shows that the fourth property may
not hold, i.e., there may be many vertices for which it takes super-constant time to
find the part that the vertex belongs to. To deal with these two problems, we give a
procedure for refining the partition in two phases, as explained next.

Refining the Partition, Phase 1 (and a Structural Lemma) A first refinement is
obtained by the separation of vertices that in order to reach their assigned center
in a BFS, must observe a number of vertices that is above a certain predetermined
threshold, k. Each of these remote vertices becomes a singleton subset in the partition.
We prove that with probability 1 − 1/�(n), the number of these remote vertices is
not too large, so that the first property (concerning the number of parts) is maintained
with high probability.

The probabilistic analysis builds on a structural lemma, which may be of indepen-
dent interest. The lemma upper bounds, for any given vertex v, the number of vertices
u such that v can be reached from u by performing a BFS until at most k vertices are
observed. This number in turn upper bounds the size of each part in the partition after
the aforementioned refinement. While this upper bound is not polynomial in k and d,
it suffices for the purposes of our probabilistic analysis (and we also show that there
is no polynomial upper bound). Specifically, we use this bound in order to obtain a
bound on the variance of the number of remote vertices.

In addition to the first property, the third property (connectivity of parts) is also
maintained in the resulting refined partition, and the refinement partially addresses
the fourth property, as remote vertices can quickly determine that they are far from all
centers. In addition, the new parts of the partition will be of size 1 and thus will not
violate the second property.

Refining the Partition, Phase 2 After the the first phase of the refinement, there
might be some large parts remaining so that the second and fourth properties are not
necessarily satisfied. We further partition large parts into smaller (connected) parts by
a certain decomposition based on the BFS-tree of each large part.

The Local Algorithm Given an edge (u, v) ∈ E , the main task of the local algorithm
is to find the two parts to which the vertices belong in the final partition. Once these
parts are found, the algorithm can easily decide whether the edge between u and v

should belong to E ′ or not (since each part is small, and every vertex has a bounded
degree). In order to find the part that u (similarly, v) belongs to, the local algorithm
does the following. First it performs a BFS until it finds a center, or it sees at least k
vertices (none of which is a center). In the latter case, u is a singleton (remote) vertex.
In the former case, the algorithm has found the center that u is assigned to in the initial
partition, which we denote by σ(u). The algorithm next performs a BFS starting from
σ(u). For each vertex that it encounters, it checks whether this vertex is assigned to
σ(u) (in the initial partition). If the number of vertices that are found to be assigned to
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σ(u) is above a certain threshold, then the decomposition of the part assigned to σ(u)

needs to be emulated locally. We show that this can be done recursively in an efficient
manner.

The Unbounded-Degree Case We next describe how to remove the dependence on
the given degree bound d and obtain an algorithm that works for unbounded-degree
minor-free graphs. For a degree threshold d̃ = d̃(h, ε), we say that a vertex u is a
heavy vertex if the degree of u is greater than d̃ , and otherwise it is a light vertex. We
denote the set of heavy vertices by H, and the set of light vertices by L. The degree
threshold d̃ is set so that |H| is sufficiently small, and (since the graph is minor-free)
the total number of edges between vertices inH is εn/4. This already implies that we
can take to the sparse spanning graph all edges between vertices in H.

Consider the graph G[L] induced by L. Observe that given a vertex v, we can
determine with a single query whether it is heavy or light (simply by checking if it has
a neighbor at index d̃ or not). Furthermore, we can run a BFS on G[L] starting from
any light vertex, by performing at most d̃ · q queries, where q is the number of light
vertices reached in the BFS. Also note that G[L] is not necessarily connected.

Suppose we run a slight variant of the algorithm for bounded-degree graphs on
G[L] with the degree d set to d̃. The variant is that within each connected component
of size less than k (where the parameter k is as defined for the bounded-degree case),
we simply construct a (BFS) spanning tree rooted at the vertex with the smallest rank
(id) in the component (this can be easily implemented in a local manner). For larger
connected components, the bounded-degree algorithm is run as is. We thus obtain a
graph that spans each connected component of G[L], and contains at most |L|+ εn/4
edges with high probability.

It remains to decide which edges between heavy and light vertices should be taken
to the spanning graph. For each part P of the partition computed on G[L] (where each
small connected component constitutes a part), we can select a single edge connecting
the part to a heavy vertex (if such an edge exists). We say in such a case that the
vertices in P are assigned to u, and refer to the set of vertices assigned to u, together
with u as the cluster of u, denoted C(u).

The remaining decisions are with respect to edges between vertices in different
clusters: a light vertex v in one cluster and a heavy vertex u in another. This is the
challenging part in the extension of the algorithm to unbounded-degree graphs. Ideally,
we would like to select one edge between every two clusters that have an edge between
them. The difficulty is that due to the high degree of heavy vertices, clusters may be
very large, so we cannot afford to determine for a given vertex who are all the vertices
in its cluster. On the other hand, if we take all edges between clusters, then sparsity
may not be maintained.7 We address this difficulty by selecting only a small fraction
of edges between adjacent clusters, or all of them if there aren’t too many (see more
details in Sect. 5.5.3).

7 To illustrate this, consider the following (planar) graph. It has two vertices, u1 and u2 whose degree is
D = (n − 2)/2 each. Let us denote the neighbors of u1 by v1,1, . . . , v1,D , and the neighbors of u2 by
v2,1, . . . , v2,D , where these two subsets of vertices are disjoint and there is an edge between v1, j and v2, j
for each j = 1, . . . , D. Observe that for this graph, all connected components of G[L] are small (with 2
vertices). For any assignment of the light vertices to the heavy ones, the number of edges between clusters
is n/2 − 1.
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1.2.3 A Discussion of the Similarities and Differences Between the Algorithms

As noted previously, our two local algorithms share several common features (but
differ in others). We next emphasize both the similarities and the differences.

1. The first and most basic similarity is that they are both based on a partition of
the vertices into connected subsets. Furthermore, the partition is (either fully or
partially) determined by Voronoi cells of centers, where the centers are chosen
randomly, and (relatively few) cells of single vertices.

2. The second similarity is that the sparse spanning subgraph is defined by the edges
of BFS trees, one for each part of the partition (rooted at the centers), and (at most)
one edge between every pair of parts, (or relatively few in the unbounded-degree
variant of the Dense-Centers algorithm).

3. The first difference is in the number of centers (and hence the number of parts).
For the Sparse-Centers algorithm this number grows like

√
n, and for the Dense-

Centers algorithm it is linear in n. The bound on the number of parts in the case
of the Sparse-Centers algorithm immediately gives a bound on the sparsity of the
resulting spanning subgraph, while in the case of the Dense-Centers algorithm
we rely on the minor-freeness of the graph.

4. The second difference is in theway singletons are defined. For the Sparse-Centers
algorithm these are vertices that in their bounded-distance neighborhood there is
no center, and for the Dense-Centers algorithm, these are vertices that in their
bounded-size neighborhood there is no center (where the neighborhood is allowed
to have relatively large diameter).

5. The third difference is in the way the edges between parts are selected, and
identified (locally), and the related need to refine the partition for the Dense-
Centers algorithm. Specifically, given a vertex u, the Dense-Centers algorithm
finds all the vertices that belong to u’s part. (Here we are not referring yet to
the clusters, which are defined in the unbounded-degree case, but rather only
to the parts defined in the bounded-degree case.) It is then easy to decide for
an edge (u, v) where u and v belong to different parts, whether the edge (u, v)

belongs to the spanning subgraph. However, this requires to refine the partition
so as to obtain sufficiently small parts, while being able to construct a part in a
local manner. On the other hand, the Sparse-Centers algorithm decides whether
an edge (u, v) belongs to the spanning subgraph by identifying the centers that u
and v are assigned to, but without determining the vertices in the corresponding
parts (and the spanning subgraph might not include an edge between some pairs
of parts even though there are edges between them).

6. The fourth difference is that theDense-Centers algorithm extends to unbounded-
degree (minor-free) graphs, by applying an additional edge-sampling technique.

Given the above, the main challenge in the design and analysis of the Sparse-Centers
algorithm is in maintaining connectivity in a sufficiently efficient manner by avoiding
the need to construct complete parts of the partition. The main challenge in the design
and analysis of theDense-Centers algorithm is in proving that sparsity is obtainedwith
high probability (at least 1− �(1/n)). This requires a careful analysis of the number
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of singletons (which relies on structural properties of the graph), and in bounding the
number of edges between clusters in the unbounded-degree variant of the algorithm.

1.3 RelatedWork

The work that is most closely related to the current work is [30]. The upper bound
in [30] builds on a part of the extended abstract [32] (while the current work builds on a
different part). Itwas shown in [30] that for families of graph that are, roughly speaking,
sufficiency non-expanding, one can provide anLSSGalgorithmwith query complexity
that is independent of n (however, super-exponential in 1/ε). This is achieved by
simulating a localized version of Kruskal’s algorithm. On the negative side, it was
also shown in [30] that for graphs with expansion properties that are a little better,
there is no local algorithm that inspects a number of edges that is independent of n.

A couple of additional LSSG algorithms for families of minor-free graphs, which
we do not include in this paper, are presented in [32]. The first algorithm is based
on a reduction to the partition oracle in [31] and the second one is designed for
weighted graphs. For the unweighted case, the result presented here for minor-free
graphs significantly improves on what was shown in [32]. Specifically, the algorithm
presented in [32] has complexity (d/ε)poly(h) log(1/ε) (as well as higher stretch, which
in particular depends polynomially on d). Furthermore, the success probability of the
algorithm presented in this work (that is, the probability that G ′ has at most (1 + ε)n
edges), is 1 − 1/�(n), while it was only ensured to be a high constant in the [32]
algorithm.

Graph partitioning for graphs with an excluded minor has been studied extensively
(see e.g., [4,26]), and was found useful in constructing spanners and distance oracles
(see e.g., [25]). Compared to previous results, the main disadvantage of our partition
is that the edge cut is not guaranteed to be small. However, its main benefit is that it
is designed to be constructed locally in an efficient manner.

1.3.1 FollowupWork on LSSG

Recently, Lenzen and Levi [28] provided an LSSG algorithm for general bounded
degree graphs with query complexity Õ(n2/3) · poly(1/ε, d), where d is the bound
on the maximum degree. Parter et al. [46] provide local algorithms for constructing
spanners in graphs with unbounded degree, part of their techniques are inspired by the
algorithms for LSSG on bounded degree graphs.

1.3.2 Local Algorithms for Other Graph Problems

The model of local computation algorithms as used in this work, was defined by
Rubinfeld et al. [53] (see also [3] and survey in [29]). Such algorithms for maximal
independent set, hypergraph coloring, k-CNF, approximated maximum matching and
approximated minimum vertex cover for bipartite graphs are given in [3,17,18,34,
37,38,53]. This model generalizes other models that have been studied in various
contexts, including locally decodable codes (e.g., [57]), local decompression [15],
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and local filters/reconstructors [1,11,14,23,24,54]. Local computation algorithms that
give approximate solutions for various optimization problems on graphs, including
vertex cover, maximal matching, and other packing and covering problems, can also
be derived from sublinear time algorithms for parameter estimation [21,39,43,45,58].

Campagna et al. [12] provide a local reconstructor for connectivity. Namely, given
a graph which is almost connected, their reconstructor provides oracle access to the
adjacencymatrix of a connected graph which is close to the original graph.We empha-
size that our model is different from theirs, in that they allow the addition of new edges
to the graph, whereas our algorithms must provide spanning subgraphs whose edges
are present in the original input graph.

1.3.3 Distributed Algorithms

The term local algorithms was originally coined in the distributed context [35,40,41].
As observed by Parnas and Ron [45], local distributed algorithms can be used to
obtain local computation algorithms as defined in this work, by simply emulating the
distributed algorithm on a sufficiently large subgraph of the graph G. However, while
the main complexity measure in the distributed setting is the number of rounds (and
messages may be required to be of bounded size), our main complexity measure is the
number of queries performed on the graph G. By this standard reduction, the bound
on the number of queries (and hence running time) depends on the size of the queried
subgraph and may grow exponentially with the number of rounds. Therefore, this
reduction gives meaningful results only when the number of rounds is significantly
smaller than the diameter of the graph.

Ram and Vicari [52] studied the problem of constructing sparse spanning sub-
graphs in the distributed LOCAL model [35] and provided an algorithm that runs in
min{D(G), O(log n)} number of rounds where D(G) denotes the diameter of G.

In the next paragraphs, unless stated otherwise, we refer to algorithms in the CON-
GEST model (in which the size of the messages is bounded by O(log n)) [50]. The
problem of computing a minimum weight spanning tree in this model is a central one.

Kutten and Peleg [27] provided an algorithm that works in O(
√
n log∗ n + D)

rounds, where D denotes the diameter of the graph. Their result is nearly optimal in
terms of the complexity in n, as shown by Peleg and Rubinovich [47] who provided
a lower bound of �(

√
n/ log n) rounds (when the length of the messages must be

bounded).
Another problem studied in the distributed setting that is related to the one studied in

this paper, is finding a sparse spanner. The requirement for spanners is much stronger
since the distortion of the distance should be as minimal as possible. Thus, to achieve
this property, it is usually the case that the number of edges of the spanner is super-
linear in n. Spanners with only O(n) edges are usually referred to as ultra-sparse
spanners. Pettie [51] was the first to provide a distributed algorithm for finding ultra-
sparse spannerswithout requiringmessages of unbounded length or O(D) rounds. The
number of rounds of his algorithm is log1+o(1) n. Recently, Elkin and Neiman [16]
introduced an algorithm that produces a spanner of size n(1 + o(1)), as long as the
number of rounds is ω(log n). However, in both cases, the standard reduction of [45]
yields a local algorithm with a trivial linear bound on the query complexity.
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1.3.4 Parallel Algorithms

The problems of computing a spanning tree and aminimumweight spanning tree were
studied extensively in the parallel computing model (see, e.g., [8], and the references
therein). However, these parallel algorithms have time complexity that is at least loga-
rithmic in n and therefore do not yield an efficient algorithm in the local computation
model. See [3,53] for further discussion on the relationship between the ability to
construct local computation algorithms and the parallel complexity of a problem.

1.3.5 Local Cluster Algorithms

Local algorithms for graph theoretic problems have also been given for PageRank
computations on the web graph [5,6,9,22,55]. Local graph partitioning algorithms
have been presented in [6,7,44,56,59], which find subsets of vertices whose internal
connections are significantly richer than their external connections in time that depends
on the size of the cluster that they output. Evenwhen the size of the cluster is guaranteed
to be small, it is not obvious how touse these algorithms in the local computation setting
where the cluster decompositions must be consistent among queries to all vertices.

1.3.6 Other Related Sublinear-Time Approximation Algorithms for Graphs

The problem of estimating the weight of a minimumweight spanning tree in sublinear
time was considered by Chazelle, Rubinfeld and Trevisan [13]. They describe an
algorithm whose running time depends on the approximation parameter, the average
degree and the range of the weights, but does not directly depend on the number of
nodes.

1.3.7 Organization

We start with some preliminaries in Sect. 2. In Sect. 3 we prove our lower bound (an
alternative, direct proof can be found inAppendix B). In Sects. 4 and 5we describe and
analyze our two algorithms. Since we introduce many notations throughout the paper,
for the aid of the reader we provide two tables with these notations in Appendix A.

2 Preliminaries

Let G = (V , E) be a graph over n vertices. Each vertex v ∈ V has an id, id(v), where
there is a full order over the ids.We assumewe have query access to the incidence-lists
representation of G. Namely, for any vertex v and index i ≥ 1 it is possible to obtain
the i th neighbor of v by performing a query to the graph (if v has less than i neighbors,
then a special symbol is returned).8

8 Graphs are allowed to have self-loops and multiple edges, but for our problem we may assume that there
are no self-loops and multiple-edges (since the answer on a self-loop can always be negative, and the same
is true for all but at most one among a set of parallel edges).
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We denote the distance between two vertices u and v in G by �G(u, v). For vertex
v ∈ V and an integer r , let �r (v,G) denote the set of vertices at distance at most
r from v, referred to as the distance-r neighborhood of v, and let Cr (v,G) denote

the subgraph of G induced by �r (v,G). Let nr (G)
def= maxv∈V |�r (v,G)|. When

the graph G is clear from the context, we shall use the shorthand �(u, v), �r (v) and
Cr (v) for �G(u, v), �r (v,G) and Cr (v,G), respectively. We let N (v) denote the set
of neighbors of v.

For a subset of vertices X , we let G[X ] denote the subgraph of G induced by X .
The total order over the vertices induces a total order (ranking) ρ over the edges of

the graph in the following straightforward manner: ρ((u, v)) < ρ((u′, v)) if and only
if min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′}
(recall that V = [n]). The total order over the vertices also induces an order over those
vertices visited by a Breadth First Search (BFS) starting from any given vertex v, and
whenever we refer to a BFS, we mean that it is performed according to this order.

Recall that a graph H is called a minor of a graph G if H is isomorphic to a graph
that can be obtained by zero or more edge contractions on a subgraph of G. A graph
G is H-minor free if H is not a minor of G.

The next definition and theorem are used to measure the sparsity of minor-free
graphs.

Definition 2 The arboricty of a graph is the minimum number of forests into which
its edges can be partitioned.

The next theorem follows from [36] and [42].

Theorem 1 Let H be a fixed graph over h vertices and let G = (V , E) be an H-
minor free graph. Then the arboricity of G is at most c(h), where c(h) = O(h log h).
In particular, |E | ≤ c(h) · |V |.

We shall also make use of the following theorem regarding t-wise independent
random variables. Recall that a discrete random variable χ = (χ1, . . . , χm) ∈
[q]m (where [q] def= {1, . . . , q}) is t-wise independent if for every subset I =
(i1, . . . , is) ⊆ [m] such that s ≤ t and every set of values (a1, . . . , as) ∈ [q]s ,
Pr

[
∧

j∈[s](χi j = a j )
]

= ∏

j∈[s]Pr[χi j = a j ].
The following theorem is implied by the proof of Proposition 6.3 in [2].

Theorem 2 (Implied by [2]) For every 1 ≤ t ≤ m, there exists an explicit construction
of a t-wise independent random variable χ = (χ1, . . . , χm) for the following two
cases:

1. (χ1, . . . , χm) ∈ {0, 1}m and for every i ∈ [m], Pr[χi = 1] = ai/bi where
{ai }mi=1, {bi }mi=1 are integers and bi ≤ m for every i ∈ [m].

2. (χ1, . . . , χm) ∈ [q]m and the distribution of χi , for every i ∈ [m], is the uniform
distribution over [q], where q ≥ m is any prime power.

The seed length (the number of independent random bits used in the construction) is
O(t logm). Moreover, for any 1 ≤ i ≤ m, Xi can be computed in O(t) operations in
the word-RAM model.
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3 A Lower Bound for General Bounded-Degree Graphs

Theorem 3 AnyLSSGalgorithmmust have query complexity�(
√
n). This result holds

for graphs with a constant degree bound d and for constant 0 ≤ ε ≤ 2d/3. Further-
more, the result holds even if the algorithm is allowed a constant failure probability
(i.e., the number of edges in the subgraph G ′ may be larger than (1 + ε)n with small
constant probability).

The theorem, with a slightly lower upper bound on ε, can be proved based on a
reduction from one-sided error testing of cycle-freeness. We provide the reduction
below. In the appendix we give a direct proof for Theorem 3, where in fact, we prove
that a similar statement holds even when G ′ is allowed to be disconnected with some
constant probability. In both proofs of the lower bound the construction is of constant-
degree graphs with strong expansion properties and hence the lower bound holds even
when restricted to these families of graphs.

A Reduction from Testing Cycle-Freeness with One-Sided Error In [20, Proposition
3.4] Goldreich and Ron showed that any one-sided error algorithm for testing cycle-
freeness in bounded-degree graphs must perform �(

√
n) queries. Such a tester must

accept every cycle-free graph with probability 1, and must reject with probability at
least 2/3 every graph that is ε-far from being cycle free. A graph is said to be ε-far
from being cycle-free, if more than εdn edges must be removed in order to make it
cycle-free (where d is the degree bound). In other words, the graph contains at least
(1 + εd)n edges. The lower bound in [20] holds even if the input graph is promised
to be connected, and for constant ε and d.

We observe that a lower bound of �(
√
n) queries for the LSSG problem is implied

by this lower bound for testing cycle-freeness. To verify this, consider the following
reduction. Given an LSSG algorithm A, one can obtain a tester B for cycle-freeness
as follows. On input graph G = (V , E), B samples uniformly at random�(1/ε) pairs
(v, i)where v ∈ V and i ∈ [d]. It queries G to obtain each of the corresponding edges
(where some may not exist), and then queries A on all sampled edges, with sparsity
parameter set to εd/2. The algorithm B accepts if and only if A returns YES on all
the edges in the sample.

It remains to analyze B. Completeness: If G is cycle-free, thenAmust return YES
on all edges in E , and hence B accepts with probability 1. Soundness: if G is ε-far
from being cycle-free, then A must, with probability 1 − 1/�(n) return NO on at
least (εd − εd/2)n = εd/2 edges. Let E denote the event that indeed A returns NO
on at least εd/2 edges of G (recall that these edges are determined only by G and
the randomness of A). Thus, given that E occurs (which happens with probability
1−1/�(n)), each pair (v, i) that B samples is a witness for rejection with probability
at least ε. Hence, with probability 1 − (1 − ε)�(1/ε), B samples one of these edges
and rejects. Thus, B rejects with high constant probability, as desired.
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4 Graphs with High Expansion: The Sparse-Centers Algorithm

In this section we describe an algorithm that gives meaningful results for graphs in
which, roughly speaking, the local neighborhood of almost all vertices expands in a
similar rate and d is either a constant or grows very moderately as a function of n. In
particular this includes graphs with high expansion. In fact we only require that the
graph expands quickly for small sets: A graph G is an (s, h)-vertex expander if for
all sets S of size at most s, N+(S) is of size at least h · |S|, where N+(S) denotes
the set of vertices in S and vertices adjacent to vertices in S. Define hs(G) to be the
maximum h such that G is an (s, h)-vertex expander (hence, 1 ≤ hs(G) ≤ d).

Recall that for a vertex v ∈ V and an integer r , �r (v,G) denotes the set of vertices

at distance at most r from v, and nr (G)
def= maxv∈V |�r (v,G)|. We shall make use of

the following simple claim.

Claim 1 For every two integers t and s, nt (G) ≥ min{(hs(G))t , s} .

Proof By definition, for every integer s, and graphG is an (s, hs(G))-vertex expander.
Thus, for every vertex v and for every integer r for which |�r (v,G)| ≤ s, it holds that
|�r+1(v,G)| ≥ hs(G) · |�r+1(v,G)| and so the claim follows. 	


We shall prove the following theorem (where Algorithm 1 appears in Sect. 4.2).

Theorem 4 Algorithm1 is anLSSGalgorithm.For anygraphG over n vertices, and for

every ε > 0, its query complexity is O(d2 ·sloghs (G) d) for s = s(n, ε)
def= 2

√
2n/ε ln n.

The number of random bits the algorithm uses is O(
√

εn log n), and its running time
is the same as its query complexity up to a factor of O(log n).

By Theorem 4, for bounded degree graphs with high expansion we get query and
running time complexity nearly O(n1/2). In particular, if hs(G) = �(d) then the
complexity is d2·n1/2+O(1/ log d). In fact, even for hs(G) ≥ d1/2+1/ log n the complexity
is o(n). We remark that in the construction of our lower bound of�(n1/2), that appears
in Sect. B, we construct a pair of families of d-regular random graphs. In both families,
the expansion (of small sets) is�(d), implying that for these families the gap between
our lower bound and upper bound is at most nO(1/ log d).
Our algorithm, the Sparse-Centers algorithm (which appears as Algorithm 1 in
Sect. 4.2), is based on a global algorithm, which is presented in Sect. 4.1. The (local)
Sparse-Centers algorithm appears in Sect. 4.2 and it is analyzed in the proof of The-
orem 5.

4.1 The Global Algorithm

For a given parameter t , the global algorithm first defines a global partition of (part or
all of) the graph vertices in the following randomized manner.

1. Select �
def= √

εn/2 centers uniformly and independently at random from V , and
denote them σ1, . . . , σ�.

2. Initially, all vertices are unassigned.
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3. For i = 0, . . . , t , for j = 1, . . . , �:
Let Li

j denote the vertices in the i
th level of the BFS tree of σ j (where L0

j = {σ j }).
Assign to σ j all vertices in Li

j that were not yet assigned to any other σ j ′ .

Let S(σ j ) denote the set of vertices that are assigned to the center σ j . By the above
construction, the subgraph induced by S(σ j ) is connected. To verify this, consider any
vertex x ∈ S(σ j ) and observe that the parent of x in the BFS tree of σ j has to be in
S(σ j ) as well (otherwise we get a contradiction to the fact that x ∈ S(σ j )).
The subgraph G ′ = (V , E ′) is defined as follows.

1. For each centerσ , let E ′(σ ) denote the edges of aBFS-tree that spans the subgraph
induced by S(σ ) (where the BFS-tree is determined by the order over the ids of
the vertices in S(σ )). For each center σ , put in E ′ all edges in E ′(σ ).

2. For each vertex w that does not belong to any S(σ ) for a center σ , put in E ′ all
edges incident to w.

3. For each pair of centers σ and σ ′, let P(σ, σ ′) be the shortest path between σ and
σ ′ that has minimum lexicographic order among all shortest paths (as determined
by the ids of the vertices on the path). If all vertices on this path belong either
to S(σ ) or to S(σ ′), then add to E ′ the single edge (x, y) ∈ P(σ, σ ′) such that
x ∈ S(σ ) and y ∈ S(σ ′), where we denote this edge by e(σ, σ ′).

In what follows we shall prove that G ′ is connected and that for t that is sufficiently
large, G ′ is sparse with high probability as well. We begin by proving the latter claim.
To this end we define a parameter that determines the minimum distance needed for
most vertices to see roughly

√
n vertices. More formally, define tε,d(G) to be the

minimum distance t ensuring that all but an ε/(2d)-fraction of the vertices have at
least s vertices in their t-neighborhood. That is,

tε,d(G)
def= min

t
{|{v : |�t (v)| ≥ s}| ≥ (1 − ε/(2d)) |V |} . (1)

Lemma 2 For t ≥ tε,d(G) it holds that |E ′| ≤ (1 + ε)n with probability at least
1 − 1/n over the random choice of centers.

Proof Since for j = 1, . . . , � the sets E ′(σ j ) are disjoint,wehave that
∣
∣
∣

⋃�
j=1 E

′(σ j )

∣
∣
∣ <

n. Since there is at most one edge (x, y) added to E ′ for each pair of centers σ, σ ′
and the number of centers is � (= √

εn/2), the total number of these edges in E ′ is
at most εn/2. Finally, Let Vt,s ⊆ V denote the subset of the vertices, v, such that
|�t (v)| ≥ s. Since the centers are selected uniformly, independently at random, for
each w ∈ Vt,s the probability that no vertex in �t (w) is selected to be a center, is
at most (1 − s/n)� < 1/n2. By taking a union bound over all vertices in Vt,s , with
probability at least 1 − 1/n, every w ∈ Vt,s is assigned to some center σ . Since the
number of vertices in V \Vt,s is at most εn/(2d) and each contributes at most d edges
to E ′, we get the desired upper bound on |E ′|. 	

Lemma 3 G ′ is connected.

Proof It suffices to prove that there is a path in G ′ between every pair of centers σ and
σ ′. This suffices because for each vertex w that is assigned to some center σ , there
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is a path between w and σ (in the BFS-tree of σ ), and for each vertex w that is not
assigned to any center, all edges incident to w belong to E ′. The proof proceeds by
induction on �(σ, σ ′) and the sum of the ids of σ and σ ′ as follows.

For the base case, consider a pair of centers σ and σ ′ for which �(σ, σ ′) = 1. In
this case, the shortest path P(σ, σ ′) consists of a single edge (σ, σ ′) (where σ ∈ S(σ )

and σ ′ ∈ S(σ ′) by the definition of S(·)), implying that (σ, σ ′) ∈ E ′.
For the induction step, consider a pair of centers σ and σ ′ for which �(σ, σ ′) > 1,

and assume by induction that the claim holds for every pair of centers (τ, τ ′) such that
either �(τ, τ ′) < �(σ, σ ′) or �(τ, τ ′) = �(σ, σ ′) and id(τ ) + id(τ ′) < id(σ ) +
id(σ ′). Similarly to base case, if the set of vertices in P(σ, σ ′) is contained entirely
in S(σ ) ∪ S(σ ′), then σ and σ ′ are connected by construction. Namely, P(σ, σ ′) =
(σ, x1, . . . , xq , x ′

s, . . . , x
′
q ′ , σ ′) where x1, . . . , xq ∈ S(σ ) and x ′

1, . . . , x
′
q ′ ∈ S(σ ′).

The edge (xq , x ′
q ′) was added to E ′ and there are paths in the BFS-trees of σ and σ ′

between σ and xq and between σ ′ and x ′
q ′ , respectively.

Otherwise (P(σ, σ ′) is not contained entirely in S(σ ) ∪ S(σ ′)), we consider two
cases.

1. There exists a vertex x in P(σ, σ ′), and a center (different from σ and σ ′), τ ,
such that x ∈ S(τ ). Note that this must be the case when �(σ, σ ′) ≤ 2t + 1.
This implies that either �(x, τ ) < �(x, σ ′) or that �(x, τ ) = �(x, σ ′) and
id(τ ) < id(σ ′). Hence, either

�(σ, τ) ≤ �(σ, x) + �(x, τ ) < �(σ, x) + �(x, σ ′) = �(σ, σ ′)

or �(σ, τ) = �(σ, σ ′) and id(σ ) + id(τ ) < id(σ ) + id(σ ′). In either case
we can apply the induction hypothesis to obtain that σ and τ are connected. A
symmetric argument gives us that σ ′ and τ are connected.

2. Otherwise, all the vertices on the path P(σ, σ ′) that do not belong to S(σ )∪S(σ ′)
are vertices that are not assigned to any center. Since E ′ contains all edges incident
to such vertices, σ and σ ′ and connected in this case as well.

The proof of Lemma 3 is completed. 	


4.2 The Local Algorithm

Theorem 5 Algorithm 1, when run with t ≥ tε,d(G), is an LSSG algorithm. The query
complexity and the running time of the algorithm are O(d · nt (G)) and O(d · nt (G) ·
log n), respectively. The random seed it uses is of size O(

√
εn log n).

Proof We prove the theorem by showing that Algorithm 1 is a local emulation of the
global algorithm that appears in Sect. 4.1. Given u and v, by performing a BFS to depth
t from each of the two vertices, Algorithm 1 either finds the centers σ(u) and σ(v) that
u and v are (respectively) assigned to (by the global algorithm, for the same selection
of centers), or for at least one of them it finds no center in its distance-t neighborhood.
In the latter case, the edge (u, v) belongs to E ′, and Algorithm 1 returns a positive
answer, as required. In the former case, there are two subcases.
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Algorithm 1 – Sparse-Centers Algorithm (with known t)
For a random choice of � = √

εn/2 centers, σ1, . . . , σ� in V (which is fixed for all queries), and for a given
parameter t , on query (u, v):

1. Perform a BFS to depth t in G from u and from v.
2. If either �t (u) ∩ {σ1, . . . , σ�} = ∅ or �t (v) ∩ {σ1, . . . , σ�} = ∅, then return YES.
3. Otherwise, let σ(u) be the center closest to u and let σ(v) be the center closest to v (if there is more

than one such center, break ties according to the order σ1, . . . , σ�).
4. If σ(u) = σ(v) = σ then do the following:

• If �(u, σ ) = �(v, σ ), then return NO.
• If �(v, σ ) = �(u, σ ) + 1, then consider all neighbors w of v on a shortest path between v and

σ . If there exists such a neighbor w for which id(w) < id(u), then return NO, otherwise, return
YES. (The case �(u, σ ) = �(v, σ ) + 1 is handled analogously).

5. If σ(u) �= σ(v), then perform a BFS to depth t from both of the centers σ(u) and σ(v). Query also all
neighbors of vertices at distance t from σ(u) and σ(v) (note that for every vertex at distance less than
t from one of these vertices, all its neighbors were queried in the course of the corresponding BFS).
Find the shortest path between σ(u) and σ(v) that has the smallest lexicographic order and denote
it by P(σ (u), σ (v)). Finding this path can be implemented by considering the subgraph induced
by all queried edges. This subgraph contains all shortest paths between σ(u) and σ(v), from which
the one having smallest lexicographic order can be selected. Return YES if both u and v belong to
P(σ (u), σ (v)). Otherwise, return NO.

1. If u and v are assigned to the same center, that is, σ(u) = σ(v) = σ , then
Algorithm 1 checks whether the edge (u, v) is an edge in the BFS-tree of σ (i.e.,
(u, v) ∈ E ′(σ )). If u and v are on the same level of the tree (i.e., are at the same
distance from σ ), then Algorithm 1 returns a negative answer, as required. If v is
one level further than u, then Algorithm 1 checks whether v has another neighbor,
w, that is also assigned to σ , is on the same level as u and has a smaller id than
u. Namely, a neighbor of v that is on a shortest path between v and σ and has a
smaller id than u. If this is the case, then the edge (u, v) does not belong to the
tree (but rather the edge (w, v)) so that the algorithm returns a negative answer.
If no such neighbor of v exists, then the algorithm returns a positive answer (as
required).

2. If u and v are assigned to different centers, that is, σ(u) �= σ(v), then Algorithm 1
determines whether (u, v) = e(σ (u), σ (v)) exactly as defined in the global
algorithm: The algorithm finds P(σ (u), σ (v)) and returns a positive answer if
and only if (u, v) belongs to P(σ (u), σ (v)). Notice that since u ∈ S(σ (u))

and v ∈ S(σ (v)), if (u, v) belongs to P(σ (u), σ (v)) then all the vertices on
P(σ (u), σ (v)) belong to either S(σ (u)) or S(σ (v)). This is implied by the fact
that for every center σ and a vertex w that is assigned to σ , it holds that every
vertex on a shortest path between σ and w is also assigned to σ .

The bound on the query complexity of Algorithm 1 follows directly by inspection of
the algorithm. The running time of performing Steps 2–4 is upper bounded by the
query complexity of performing the BFS, i.e., O(d · nt (G)), times the time sufficient
for determining if a vertex is a center. The latter can be done in O(log n) time. To
see this we explain next how the algorithm access the set of centers. In order to select
� random centers, the algorithm uses a random seed of length O(

√
εn log n), which

is interpreted as a sequence of O(
√

εn) uniformly selected random centers (with
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replacement). If we first sort this sequence of random centers in O(
√

εn log n) time,
then we can decide for each vertex if it is a center in O(log n) time. Hence, the running
time of of performing Steps 2–4 is bounded by the query complexity of the algorithm
up to a factor of O(log n). The running time of Step 5 is linear in the size of the
subgraph induced on the BFS trees (from both centers) and therefore is linear in the
query complexity. Overall, we obtain that the running time is O(log n) times the query
complexity, as desired. 	


4.3 The Parameter t

Recall that Algorithm 1 is given a parameter t that determines the depth of the BFS
that the algorithm performs. By Theorem 5 is suffices to require that t ≥ tε,d(G) in
order to ensure that the spanning graph obtained by the algorithm is sparse. For the
case that t is not given in advance we describe next how to compute t such that with
probability at least 1 − 1/n it holds that

tε,d(G) ≤ t ≤ t ′ε,d(G) , (2)

where t ′ε,d(G) = mint {|{v : �t (v) ≥ s}| ≥ (1 − ε/(4d)) |V |}. Select uniformly at

random q = �(log n/ε2) vertices from V . Let x1, . . . , xq denote the selected vertices.
For each vertex x j in the sample, let t j = mint {�t (x j ) ≥ s}. Assume without loss of
generality that t1 ≤ . . . ,≤ tq and set t = t�1− 3ε

8d �. By Chernoff’s inequality we obtain
that with probability greater than 1 − 1/n Equation (2) holds.
We are now ready to prove Theorem 4.

Proof of Theorem 4 Assume without loss of generality that tε,d(G) is unknown and
we run Algorithm 1 with t such that tε,d(G) ≤ t ≤ t ′ε,d(G). Recall that nt (G) is the
maximum size of a distance-t neighborhood in G and that hs(G) is the maximum
h such that G is an (s, h)-vertex expander. By Claim 1, nt (G) ≥ min{(hs(G))t , s}.
By the definition of t ′ε,d(G) we obtain that (hs(G))

t ′ε,d−1 ≤ s, since otherwise we get

a contradiction to the minimality of t ′ε,d . Thus, we obtain that (hs(G))t−1 ≤ s and

so t ≤ log s
log hs (G)

+ 1. On the other hand, since the degree is bounded by d, it holds

that nt (G) ≤ 1 + dt . By Theorem 5, the query complexity and the running time of
the algorithm are O(d · nt (G)) and O(d · nt (G) · log n), respectively. Hence, we get

a bound of O(d · (1 + d
log s

log hs (G)
+1

)) and O(d · (1 + d
log s

log hs (G)
+1

) log n) on the query
complexity and the running time of the algorithm, as desired. 	


5 The Algorithm for Graphs with an ExcludedMinor

In this section we prove the following theorem. We say that a family of graphs is
minor-free if the graphs in the family exclude some fixed minor.

Theorem 6 There exists an LSSG algorithm for any family of minor-free graphs. The
query complexity and running time of the algorithm are poly(h/ε), where h is the
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number of vertices in the excludedminor. The algorithmuses poly(h/ε)·log(n) random
bits, and the stretch factor of the sparse spanning graph G ′ is Õ(h/ε).

For the sake of simplicity, we did not try to optimize the various complexity measures
of the LSSG algorithm (query complexity, running time, and number of random bits
it uses). Hence, the exponents in the polynomial expressions for these complexities
are quite high, and can probably be improved.

In order to prove Theorem 6, we first design an LSSG algorithm for (minor-free)
graphs whose maximum degree is upper bounded by a given integer d. Thereafter, we
show how to adapt this algorithm to graphs with unbounded degree. We begin with
proving the following theorem, where Algorithm 3 is provided in Sect. 5.4.

Theorem 7 Algorithm 3 is an LSSG algorithm for the family of graphs that exclude a
minor over h vertices. The query complexity of the algorithm is Õ((h/ε)4d5) and its
running time is Õ((h/ε)5d5). The algorithm uses Õ((h/ε)d log n) random bits, and
the stretch factor of the sparse spanning graph G ′ is Õ(h/ε).

In Sects. 5.1–5.4 we describe our LSSG algorithm (Algorithm 3) for graphs with
degree bounded by d. In Sect. 5.5 we explain how to use this algorithm as a subroutine
in an LSSG algorithm for graphs with unbounded degree. For this purpose we require
that Algorithm 3 work also for graphs that are not connected. Namely, the guarantee
for the algorithm is that every connected component in G remains connected in G ′,
and that |E ′| ≤ (1 + ε) · n. More precisely, since we are interested in bounding the
total number of edges in the final sparse spanning subgraph by (1 + ε) · n, we shall
actually ensure (with high probability) that Algorithm 3 answers positively on at most
(1 + ε/4) · n edges.

We start by describing a global partition of the vertices. We later explain how to
locally generate this partition and design our algorithm (and the sparse subgraph it
defines), based on this partition.

5.1 The PartitionP

The partition described in this subsection, denoted byP , is a result of a randomprocess.
We describe how the partition is obtained in three steps where in each step we refine
the partition from the previous step. The partition is defined based on two parameters:
γ ∈ (0, 1), and an integer k > 1, which are set subsequently (as a function of d, ε

and h). Another central ingredient in the definition of the partition is a subset W ⊆ V
of vertices. This subset is selected randomly as follows: each vertex v ∈ V draws a
γ -biased bit, denoted bv , and v ∈ W if an only if bv = 1. The joint-distribution of

(bv)v∈V is t-wise independent where t
def= 2kd. (The reason that the choice of W is

determined by a t-wise independent distribution rather than an n-wise independent
distribution is so as to bound the number of random bits used by the local emulation
of the global algorithm.) In the next three Sects. (5.1.1–5.1.3) we explain how the
partition P is defined, given the choice of W .
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5.1.1 First Step

We begin with some notation. For a vertex v ∈ V , let cc(v) denote the subset of
vertices in the connected component of v in G. Let Z denote the set of vertices v such
that |cc(v)| ≥ k. Given a vertex v ∈ V , we define the center of v with respect to W ,
denoted σ(v) as follows.

1. If v /∈ Z , or if v ∈ Z and cc(v) ∩ W = ∅, then σ(v) is the vertex with the
minimum id (identifier) in cc(v).

2. If v ∈ Z and cc(v) ∩ W �= ∅, then σ(v) is the vertex in W that is closest to
v, breaking ties using vertex ids. That is, σ(v) is the vertex with the minimum

identifier in the subset
{

y ∈ W : �(y, v) = minw∈W {�(w, v)}
}

.

For each w ∈ W we define the cell of w with respect to W as C(w)
def= {v ∈

V : σ(v) = w}. Namely, the set of vertices in C(w) consists of the vertices that are
closer to w than to any other vertex in W (where ties are broken according to the ids
of the vertices). For every vertex w ∈ V such that w has the minimum identifier in
cc(w), and cc(w) ∩ W = ∅, C(w) is defined the same way (namely, as the subset of
all vertices v for which σ(v) = w). Notice that these cells form a partition of V .

5.1.2 Second Step

In this step we identify a subset of special vertices, which we call the remote vertices
and make these vertices singletons in the partition P . The set of remote vertices, R,
which is a subset of Z , is defined with respect to W and the integer parameter k as
described next. For every vertex v ∈ Z , let �k(v) be the minimum integer � such that
the BFS tree rooted at v of depth � has size at least k. Let Bk(v) be the set of vertices
in the BFS tree rooted at v of depth �k(v). We define R = {v ∈ Z : Bk(v) ∩ W = ∅},
i.e., those vertices v for which Bk(v) does not contain a vertex (center) inW . Clearly, a
vertex can identify efficiently if it is in R by probing at most kd vertices and checking
whether they intersect W . In Sect. 5.3 we obtain a bound on the size of R.

5.1.3 Third Step

In this step we decompose cells that are too big. We first argue that the cells are still
connected (after the removal of the vertices in R from all original cells defined in
Sect. 5.1.1). Thereafter we will use a procedure of tree decomposition in order to
break the cells into smaller parts.

Claim 4 For every w ∈ W, the subgraph induced by C(w) \ R is connected. Further-
more, for every v ∈ C(w)\ R, the subgraph induced by C(w)\ R contains all vertices
that belong to the shortest paths between v and w.

Proof Fix w ∈ W , and consider any v ∈ C(w) \ R. We will prove that the subgraph
induced by C(w) \ R contains all vertices on the shortest paths between v and w and
this will imply the connectivity as well. The proof is by induction on the distance to
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w. In the base case v = w. In this case C(w) \ R clearly contains a path between v

to itself because it contains v. Otherwise, we shall show that for any u ∈ N (v) for
which �(u, w) < �(v,w) it holds that u ∈ C(w) \ R. The proof will then follow by
induction. Let P be a shortest path between v andw and let (v, u) ∈ E denote the first
edge in P . We first observe that σ(u) = w and thus u ∈ C(w). Assume otherwise
and conclude that there is a vertex in w′ ∈ W for which either �(v,w′) < �(v,w) or
�(v,w) = �(v,w′) and id(w′) < id(w), in contradiction to the fact that σ(v) = w

(see the definition of σ(·) in Sect. 5.1.1). Since u is on a shortest path between v and
w it follows that

��(u,w)−1(u) ⊆ ��(v,w)−1(v) . (3)

From the fact that v /∈ R it follows that |��(v,w)−1(v)| ≤ k and hence from Equa-
tion (3) it follows that |��(u,w)−1(u)| ≤ k and so u /∈ R as well. We conclude that
u ∈ C(w) \ R and �(u, w) = �(v,w) − 1 as desired. 	


We shall use the following notation. For each w ∈ W let T (w) denote the BFS tree
rooted at w of the subgraph induced by C(w) \ R (recall that the BFS is performed by
exploring the vertices according to the order of their identifiers). To obtain the final
refinement of our partition, for eachw ∈ W such that |T (w)| > k, we run Algorithm 2
on T (w), w and k.

Algorithm 2 – Recursive Tree decomposition
Input: A tree T , the root of the tree v and an integer k.
Output: A decomposition of T into subtrees, where each subtree is assigned a (sub-)center.

1. Initialize the set of vertices of the current part Q := ∅.
2. Perform a BFS starting from v and stop at level �

def= �k (v) (see the definition of �k (·) in the Second
Step). Add to Q all the vertices explored in the BFS.

3. Let S denote the set of all the children of the vertices in the �th level of the BFS (namely, all the
vertices in level � + 1).

4. For each vertex u ∈ S:

(a) If the subtree rooted at u, Tu , has size at least k, then disconnect this subtree from T and continue
to decompose by recursing on input Tu , u and k.

(b) Otherwise, add the vertices of Tu to Q.

5. Set v to be the sub-center of all the vertices in Q.

5.2 The Edge Set

Given the partition P defined in the previous Sect. 5.1, we define the edge set, E ′, of
our sparse spanning graph in the following simple manner. In each part ofP that is not
a singleton, we take a spanning tree. Specifically, we take the BFS-tree rooted at the
sub-center of that part (see Algorithm 2, Step 5). For every pair of parts of X ,Y ∈ P ,

if the set E(X ,Y )
def= (x, y) ∈ E : x ∈ X and y ∈ Y } is not empty, then we add to

E ′ the edge e ∈ E(X ,Y ) with minimal ranking (where the ranking over edges is as
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defined in Sect. 2). Clearly every connected component of G is spanned by E ′. We
would like to bound the size of E ′. To this end we will use the following claim.

Claim 5 Let P ′ denote the partition P when restricted to Z. The number of parts in
P ′ is bounded as follows: |P ′| ≤ |W | + |R| + n

k .

Proof Consider the three steps of refinement of the partition. Clearly, after the first step
the number of cells for which somew ∈ W is the center is at most |W |. Therefore, after
the second step, the size of the partition when restricted to Z , is at most |W | + |R|.
Finally, since in the last step we break only parts whose size is greater than k into
smaller parts that are of size at least k, we obtain that the number of new parts that are
introduced in this step is at most n/k. The claim follows. 	


The next lemma establishes the connection between the size of P ′ and the sparsity
of G ′.

Claim 6 For an input graph G that is H-minor free for a graph H over h vertices,

|E ′| < n + |P ′| · c(h) ,

where c(h) is a bound on the arboricity of G (as defined in Theorem 1) and P ′ is as
defined in Claim 5.

Proof Since for each X ∈ P the subgraph induced by X is connected, we can contract
each part inP and obtain an H -minor free graph. The number of vertices in this graph
is |P|. If we replace multi-edges with single edges, then by the bound on the number
of edges of H -minor free graph (see Theorem 1), we obtain that the number of edges
in this graph is at most |P ′| · c(h) (observe that every part that is in P but not in P ′
becomes an isolated vertex in the contracted graph). Finally, since the total number of
edges in the union of spanning trees of each part is n−|P| < n, we obtain the desired
result. 	


5.3 Bounding the Number of Remote Vertices

In this subsection we prove the following lemma.

Lemma 7 If k = �((log2(1/γ ) + log d)/γ ), then with probability at least 1 − 1
�(n)

over the choice of W, it holds that |R| ≤ γ n.

We note that by Lemma 7 it follows that there exists a distributed algorithm in the
CONGESTmodel for the LSSG problem with round complexity O(k) which proceeds
as follows. At the first step the setW is selected distributively. Afterwards, each vertex
inW sends a unique token which is forwarded to neighbors by all vertices that did not
receive a token so far. This goes on for k steps. By the end of this process each vertex
in the network knows to which part it belongs to (if it did not receive a token then it
is in R which means it is a singleton).

On this note, we also remark that the partition-oracle of Hassidim et al. [21], which
can be used to obtain an LSSG algorithm, can be implemented in the LOCAL model
in time which is also poly(ε−1).
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In order to establish Lemma 7 we start by defining for every v ∈ Z ,

Yk(v)
def= {u ∈ V : v ∈ Bk(u)} . (4)

Informally, Yk(v) is the set of vertices that encounter v while performing a BFS that
stops after the first level in which the total number of explored vertices is at least k.
We first establish the following simple claim.

Claim 8 For every vertex u ∈ Yk(v) and for every vertex w that is on a shortest path
between u and v, we have that w ∈ Yk(v).

Proof Let � = �(u, v) and �′ = �(w, v), so that �(u, w) = � − �′ ≥ 1. Assume,
contrary to the claim, that w /∈ Yk(v). This implies that |��′−1(w)| ≥ k. But since
��′−1(w) ⊆ ��−1(u), we get that |��−1(u)| ≥ k, contrary to the premise of the claim
that u ∈ Yk(v). 	


We now turn to upper bound the size of Yk(v).

Lemma 9 For every graph G = (V , E) with degree bounded by d, and for every
v ∈ Z,

|Yk(v)| ≤ d3 · klog k+1 .

Proof Fix a vertex v ∈ Z . For every 0 ≤ j ≤ k, define Y j
k (v)

def= {u ∈ Yk(v) :
�(v, u) = j}. Observe that Yk(v) = ⋃k

j=0 Y
j
k (v). Therefore, if we bound the size of

Y j
k (v), for every 0 ≤ j ≤ k, we will get a bound on the size of Yk(v). Consider first

any 3 ≤ j < k and any vertex u ∈ Y j
k (v). Recall that �k(u) is the minimum integer

� such that the BFS tree rooted at v of depth � has size at least k. Since j ≤ �k(u), it
follows that |� j−1(u)| < k. Now consider a shortest path between u and v and let w

be the vertex on this path for which �(u, w) = �( j − 1)/2�. Denote q def= �(w, v).
By Claim 8, w ∈ Yk(v), and by the definition of q, w ∈ Yq

k (v). Therefore,

|�q−1(w)| ≤ k . (5)

From the fact that w is on the shortest path between u and v it also follows that

q = �(v, u) − �(u, w) = j − �( j − 1)/2�
= �( j − 1)/2� + 1

≥ �( j − 1)/2� + 1 = �(u, w) + 1 . (6)

Therefore q − 1 ≥ �(u, w) and so u ∈ �q−1(w). It follows that

Y j
k (v) ⊆

⋃

w∈Yq
k (v)

�q−1(w) . (7)
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From Eqs. (5) and (7) we get that |Y j
k (v)| ≤ k · |Yq

k (v)|. For every j ≤ 3 we have

the trivial bound that |Y j
k (v)| ≤ d3. By combining with Equation (6) we get that

|Y j
k (v)| ≤ d3 · klog j . Since Yk(v) = ⋃k

j=0 Y
j
k (v) we obtain the desired bound. 	


While the bound on |Yk(v)| in Lemma9may not be tight, it suffices for our purposes.
One might conjecture that it is possible to prove a polynomial bound (in k and d). We
show that this is not the case (see Lemma 12 in the appendix).

We now use the bound in Lemma 9 in order to bound the number of remote vertices.

Proof of Lemma 7 Let χW denote the characteristic vector of the set W . For a subset
S ⊆ V , let χW(S) denote the projection of χW onto S. That is, χW(S) is a vector of
length |S| indicating for each x ∈ S whether χW(x) = 1.

For each vertex v ∈ V define a random variable ζv indicating whether it is a remote
vertex with respect toW . Recall that v is remote if and only if v ∈ Z and Bk(v)∩W =
∅. Recalling that W is selected according to a t-wise independent distribution where
t = 2kd and that k ≤ |Bk(v)| < k · d, we get that Pr[ζv = 1] ≤ (1 − γ )k . We

also define Sv
def= {u ∈ Z : Bk(u) ∩ Bk(v) �= ∅}. Let v ∈ V . If v /∈ Z then the

value of ζv is fixed and equals 0. Otherwise, observe that the value of ζv is determined
by χW(Bk(v)). Furthermore, since for every v ∈ Z and u ∈ Z \ Sv , χW(Bk(v)) and
χW(Bk(u)) are independent it follows that ζu and ζv are independent as well. Hence,
in this case Cov[ζv, ζu] = 0, and we obtain the following upper bound on the variance
of the number of remote vertices.

Var

[
∑

v∈V
ζv

]

=
∑

(v,u)∈V
Cov[ζv, ζu] =

∑

v∈V

∑

u∈Sv

(Exp[ζv · ζu] − Exp[ζu] · Exp[ζv])

≤
∑

v∈Z

∑

u∈Sv

Exp[ζv · ζu |ζv = 1] · Pr[ζv = 1] ≤
∑

v∈Z
|Sv| · (1 − γ )k .

(8)

By the definition of Yk(·) in Equation (4) it follows that Sv ⊆ ⋃

u∈Bk (v) Yk(u). By
Lemma 9, maxv∈V {|Yk(v)|} ≤ d3 · klog k+1. Therefore

|Sv| ≤ |Bk(v)| · d3 · klog k+1 ≤ d4 · klog k+2 . (9)

Hence, by Equations (8) and (9) we get Var
[∑

v∈V ζv

] ≤ nd4 · klog k+2 · (1− γ )k .
Since (1−γ )k ≤ e−γ k we obtain that Var

[∑

v∈V ζv

] ≤ γ 2n for k = �((log2(1/γ )+
log d)/γ ). Since for every v ∈ V , Pr [ζv = 1] ≤ (1 − γ )k ≤ γ , we get that
Exp

[∑

v∈V ζv

] ≤ γ n/2. By applying Chebyshev’s inequality we get that

Pr

[
∑

v∈V
ζv ≥ Exp

[
∑

v∈V
ζv

]

+ γ n/2

]

≤ 4Var
[∑

v∈V ζv

]

γ 2n2
≤ 4

n
.

Since |R| = ∑

v∈V ζv it follows that |R| < γ n with probability at least 1 − (4/n), as
desired. 	


123



772 Algorithmica (2020) 82:747–786

5.4 The Local Algorithm

In this subsection we provide Algorithm 3, which on input e ∈ E , locally decides
whether e ∈ E ′, as defined in Sect. 5.2, based on the (random, but not completely
independent) choice of W . Given an edge e = (u, v) we distinguish between two
cases. In the first case, v /∈ Z . In this case, the center of u is identical to the center of v

and can be found by performing a BFS from v until the entire connected component
cc(v) is revealed. This is done in Step 1 of Algorithm 4. In this case, (u, v) belongs
to E ′ if and only if it belongs to the BFS tree rooted at σ(v).

In the second case, v ∈ Z . In this case, the algorithm first finds, for each y ∈ {u, v},
the center, σ(y), that y is assigned to by the initial partition, under the condition that
σ(y) ∈ Bk(y). This is done in Step 2 of Algorithm 4, which simply performs a BFS
starting from y until it encounters a vertex in W , or it reaches level �k(y) without
encountering such a vertex (in which case y is a remote vertex). Algorithm 4 assumes
access to χW, which is implemented using the random seed that defines the t-wise
independent distribution, and hence determines W . If y is not found to be a remote
vertex, then Algorithm 3 next determines to which sub-part of C(σ (y)) \ R does y
belong. This is done by emulating the tree decomposition of the BFS tree rooted at
σ(y) and induced byC(σ (y))\R. A central procedure that is employed in this process
is Algorithm 5. This algorithm is given a vertex v ∈ W , and a vertex u in the BFS
subtree rooted at v and induced by C(v) \ R. It returns the edges going from u to its
children in this tree, by performing calls to Algorithm 4.

Algorithm 3 – Dense-Centers Algorithm
Input: An edge (u, v) ∈ E .
Output: YES if (u, v) ∈ E ′ and NO otherwise.

1. For each y ∈ {u, v} find the part that y belongs to as follows:

(a) Use Algorithm 4 to obtain σ(y).
(b) If σ(y) is ‘null’, then the part that y belongs to is the singleton set {y}.
(c) Otherwise, let T denote the BFS tree rooted at σ(y) in the subgraph induced by C(σ (y)) \ R.

By Claim 4 every shortest path between σ(y) and v ∈ C(σ (y)) \ R is contained in the subgraph
induced on C(σ (y)) \ R. Therefore the edges of T can be explored via Algorithm 5.
Reveal the part (the subset of vertices) that y belongs to in P (as defined in Sect. 5.1). Recall
that the part of y is the subtree of T that contains y after running Algorithm 2 on input T , σ(y)
and k. This part can be revealed locally as follows.

i. Reveal the path between σ(y) and y in T , denoted by P(y). Since P(y) is the shortest
path between y and σ(y) with the lexicographically smallest order, it can be revealed by
performing a BFS from y until σ(y) is encountered.

ii. Run Algorithm 2 on T while recursing in Step 4a only on the subtrees in which the root is
contained in P(y).

2. If u and v are in the same part, then return YES iff the edge (u, v) belongs to the BFS tree of that part.
3. Otherwise, return YES iff the edge (u, v) is the edge with minimum rank connecting the two parts.

Proof of Theorem 7 Let c(h) as defined inTheorem1 (namely, a boundon the arboricity
of H -minor free graphs). We set γ = ε/(16c(h)) and k = c′ · (log2(1/γ )+ log d)/γ ,
where c′ is a sufficiently large constant. We start by bounding the size of W (with
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Algorithm 4 – Find Center
Input: A vertex v and an integer k. Query access to χW.
Output: σ(v) if σ(v) ∈ Bk (v) or |cc(v)| < k, otherwise return ‘null’.

1. Perform a BFS from v until at most k vertices are revealed. If the entire connected component of v is
revealed, then return the vertex with the minimum id from cc(v).

2. Otherwise, perform a BFS from v until the first level that contains a vertex in W or until at

least k vertices are reached. That is, defining Wj
def= � j (v) ∩ W , stop at level � where �

def=
min{�k (v),min j {Wj �= ∅}}.

3. If W� = ∅ then return ‘null’ (v is remote).
4. Otherwise, return the vertex with the minimum id from W�.

high probability). Recall that W is selected according to t-wise independent random
variable over {0, 1}n where Pr[χW(i) = 1] = γ for each i ∈ [n] (and recall that
t = 2kd). By the definition ofW we have that Exp[|W |] = Exp

[∑

i∈[n] χW(i)
] = γ n.

Since for every 1 ≤ i < j ≤ n, χW(i) and χW( j) are pairwise-independent, we obtain
that

Var

⎡

⎣
∑

i∈[n]
χW(i)

⎤

⎦ =
∑

i∈[n]
Var [χW(i)] =

∑

i∈[n]

(

Exp
[

χ2
W(i)

] − Exp [χW(i)]2
) = nγ (1 − γ ) .

Therefore, by Chebyshev’s inequality Pr
[|W | ≥ 2γ n

] ≤ 1−γ
γ n . By Lemma 7 (and the

setting of k), with probability 1 − 1/�(n), |R| ≤ γ n. By Claims 5 and 6 and the
settings of γ and k, we get that

|E ′| ≤ n + (|W | + |R| + n/k) · c(h) ≤ n + 4γ · c(h) ≤ (1 + ε/4)n

with probability 1 − 1/�(n).
The connectivity in G ′ of each connected component of G follows by construction

of E ′. The claim about the stretch of G ′ follows from the fact that the diameter of
every part of P is bounded by 2k.

The number of vertices that Algorithm 4 traverses while performing a BFS (for
any vertex v it is called with) is at most (k − 1)d < kd. To verify this, observe
that the algorithm continues to explore another level of the BFS only if strictly less
than k vertices were encountered so far. Since the degree of each vertex is bounded
by d, the query complexity of performing the BFS is bounded by kd2. Algorithm 4
makes at most O(kd) accesses to χW. By Theorem 2, each access to χW takes O(kd)

time (as the distribution of χW is O(kd)-wise independent). Hence, the running time
of the algorithm is bounded by O(k2d2). The query complexity of Algorithm 5 is
upper bounded by the total query complexity of at most d calls to Algorithm 4, plus d
executions of a BFS until at most kd vertices are encountered (Steps 2b and 2c , which
for simplicity we account for separately from Algorithm 4). A similar bound holds for
the running time. Hence, the total query complexity and running time of Algorithm 5
are O(kd3) and O(k2d3), respectively.

The size of any subtree returned by Algorithm 2 is upper bounded by k2d2. To
verify this, recall that at the end of Step 2 of Algorithm 2, at most kd vertices were
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explored. Hence, the number of vertices that are incident to the explored vertices is
at most kd2. Thus, due to Step 4a, the total number of vertices in each part is at most
k2d2. Recall that the distance of every vertex in T from the root v is at most k. Hence,
Step 4a can be implemented locally by calling Algorithm 5 at most k times. Thus, we
obtain that the total query complexity and running time of constructing each part is at
most O(k3d5) and O(k4d5), respectively. The query complexity and running time of
Algorithm 3 are dominated by those of Step 1c. Observe that in Step 1c at most |P(y)|
parts are constructed. Since |P(y)| ≤ k, we obtain that the overall query complexity
and running time of Algorithm 3 are bounded by O(k4d5) and O(k5d5), respectively.
By the setting of k we obtain the final result. 	


Algorithm 5 - Get BFS outgoing-edges endpoints
Input: v ∈ W and a vertex u ∈ T (v) where T (v) denotes the BFS tree induced by C(v) \ R and rooted at
v.
Output: The outgoing edges from u in T (v) (the orientation of the edges is from the root to the leaves).

1. Initialize S := {v}
2. For each u′ ∈ N (u), if the following three conditions hold, then add u′ to S:

(a) Algorithm 4 on input u′ returns v. Namely, σ(u′) = v.
(b) u is on a shortest path between u′ and v. Namely, �(u′, v) = �(u, v) + 1.
(c) u is the vertex with the minimum id among all vertices in {w ∈ N (u′) : �(w, v) = �(u′, v)−1}.

3. Return S.

5.5 Removing the Dependence on theMaximumDegree

In this subsection we show how to adapt Algorithm 3 toworkwith unbounded degrees.
Let c(h) be a bound on the arboricity of H -minor free graphs (as defined inTheorem1),
where h denotes the number of vertices in the excluded minor H . We say that a vertex

is heavy if its degree is greater than d̃
def= 8(c(h))2/ε. Let H denote the set of heavy

vertices and let L def= V \ H denote the set of light vertices. As we explain next, we
deal separately (and differently) with edges in H × H, L × L, and H × L.

5.5.1 The Edges Between Pairs of Heavy Vertices

We add all the edges in G[H], namely, all the edges between pairs of heavy vertices,
to the spanning graph. Since G[H] excludes H as a minor, by Theorem 1, the number
of edges in G[H] is at most c(h) · |H|. On the other hand, the size of H is at most
εn/(4c(h)) (otherwise, we obtain a contradiction to the size of E). Hence, G[H] has
at most (ε/4)n edges.

5.5.2 The Edges Between Pairs of Light Vertices

Consider G[L], namely, the subgraph that remains after removing the vertices in H
(and the edges incident to them). By its definition, the maximum degree in G[L] is
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at most d̃. For an edge (u, v) such that u, v ∈ L, consider emulating the execution of
Algorithm 3 on G[L] given the query (u, v). Observe that such an emulation can be
easily implemented on G at a multiplicative cost of at most d̃ . The edge (u, v) belongs
to the spanning graph if and only if the emulation of Algorithm 3 returns YES on
query (u, v).

5.5.3 The Edges Between Heavy and Light Vertices

For every light vertex v, let P(v) denote the part that v belongs to in the partition P
of G[L] as computed in Step 1c of Algorithm 3. If there is at least one edge (u, v′)
between a heavy vertex u and a (light) vertex v′ ∈ P(v), then we assign P(v) to the
adjacent heavy vertex with the minimum id. For a heavy vertex u, the cluster of u,
denoted by C(u), includes u and all the vertices in the parts that are assigned to u. We
refer to u as the leader of the vertices in C(u).

On query (u, v) where u is heavy and v is light, the query is answered as described
in Algorithm 6. We next discuss how the algorithm works, and give some high-level
intuition for its correctness (a formal proof appears in Sect. 5.5.4).

If v belongs to the cluster of u, i.e., v ∈ C(u), then the answer to the query (u, v) is
YES if and only if v has the minimum id among the vertices in P(v) that are adjacent
to u. Otherwise (v does not belong to C(u)), let w denote the leader of v (so that
w �= u). Consider all the edges in H × L between C(u) and C(w), whose set we
denote by Ẽ(u, w), so that (u, v) ∈ Ẽ(u, w). Observe that all edges in Ẽ(u, w) are
incident to either u orw. We would have liked to include in E ′ only a single edge from
Ẽ(u, w), say the edge with minimum rank (recall that we consider a ranking over the
edges based on the ids of their endpoints). However, u and w may have a high degree,
so that we cannot afford querying all their incident edges in order to find the one with
minimum rank in Ẽ(u, w) (and answer the query on (u, v) accordingly).

In order to save in the number of queries, we allow for more than a single edge
in Ẽ(u, w) to be included in E ′. Suppose we had access to uniformly selected edges
in Ẽ(u, w) (at unit cost per edge). Then we could take a sample of such edges and
answer YES on (u, v) if and only if no edge in the sample has rank smaller than
(u, v). Roughly speaking, this would ensure (with high probability) that only edges
in Ẽ(u, w) with relatively low rank will be included in E ′.

Since we do not have direct access to uniformly selected edges in Ẽ(u, w) we do
the following. We take a random sample of edges incident to u and a random sample
of edges incident to w. For each selected edge (u, y) (and analogously for selected
edges (w, y)), we check what vertex is the leader of y. If the leader of y is w, then we
obtained an edge (u, y) in Ẽ(u, w). If the leader of y is u, then we find all vertices
in P(y), and if some z ∈ P(y) is a neighbor of w (recall that z has low degree), then
we obtained an edge (z, w) in Ẽ(u, w). (If the leader of y is neither w nor u, then the
sampled edge is not useful for us.) If we obtained an edge in Ẽ(u, w) that has rank
smaller than (u, v), then we answer NO on (u, v), otherwise we answer YES.

Conditioned on an edge in Ẽ(u, w) being obtained, while the distribution on these
edges is not uniform, we can lower bound the probability that each edge is selected,
which suffices for our purposes. If the probability that we obtain an edge in Ẽ(u, w)

is sufficiently large, then we are done (as we can upper bound the total fraction of
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edges in Ẽ(u, w) that are included in E ′). Otherwise, we may include in E ′ all edges
in Ẽ(u, w), where we upper bound the total number of such edges by using the fact
that G is H -minor free. For further details, see the proof of Theorem 6.

For each queried edge (u, v) (where u is heavy, v is light, and v ∈ C(w) forw �= u),
the sampled edges incident to u and w are distributed uniformly (among the edges
incident to u and w, respectively). However, similarly to the choice of the subset W
in the definition of the partition P (see Sect. 5.1), in order to save in randomness, the
selection of edges that is performed for different queries is not done independently.
Rather, the samples are all determined by a random seed of poly(h/ε) log(n) bits.

Algorithm 6 - Heavy-Light Edges
Input: query (u, v) where u is heavy and v is light.
Output: YES if (u, v) ∈ E ′ and NO otherwise.

1. Find the part of v, P(v) (as described in Step 1 of Algorithm 3). Find the leader of v, denoted w (by
querying all edges incident to vertices in P(v)).

2. If u = w, then return YES if and only if v has minimum id among all vertices inP(v) that are adjacent
to u.

3. Sample a set Xu of q = �̃((c3(h)k2d̃3)/ε3) vertices that are adjacent to u, where k is as defined in
the proof of Theorem 7, and similarly sample a set Xw of q vertices that are adjacent to w.

4. For each light vertex y in Xu :

(a) If its leader is w and ρ(u, y) < ρ(u, v), then return NO.
(b) If its leader is u and there is an edge (z, w) such that ρ(z, w) < ρ(u, v) and z ∈ P(y), then

return NO.

5. For each light vertex y in Xw :

(a) If its leader is u and ρ(w, y) < ρ(u, v), then return NO.
(b) If its leader is w and there is an edge (z, u) such that ρ(z, u) < ρ(u, v) and z ∈ P(y), then

return NO.

6. Return YES.

5.5.4 Correctness of the Algorithm—Proof of Theorem 6

The connectivity of G ′ follows directly from the construction of E ′. Namely: (1) Pairs
of vertices that belong to the same connected components of G[L] are connected in
G ′ by the correctness of Algorithm 3. (2) Pairs of vertices that belong to the same
cluster are connected either within their part in the partition P of G[L] or via their
leader in the cluster. (3) Pairs of vertices in different clusters (that are not in the same
connected components of G[L]) are connected since there is at least one edge in E ′
between every pair of clusters for which such an edge exists.

By construction, the stretch factor is at most a constant factor greater than the
stretch factor of Algorithm 3. To verify this, observe that the diameter of each cluster
is bounded by 2k + 2 where k is a bound on the stretch factor of Algorithm 3. Since
for every pair of adjacent clusters there exists at least one edge in G ′ which connects
these clusters, we obtain that for each edge we remove from (u, v) ∈ H × L there
exists in G ′ a path of length at most 2k + 2 from u to v.
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We now turn to bound the total number of edges in E ′. Let F denote the set of edges
in E ′∩(H×L) that are incident to twodifferent clusters (namely, each endpoint belongs
to a different cluster).

Claim 10 With probability 1 − 1/�(1/n), |E ′ \ F | ≤ (1 + (ε/2))n .

Proof For a subset of vertices U , let E ′(U ) denote the subset of edges in E ′ between
vertices inU . For each part X in the partition P of G[L] we add to E ′ a spanning tree
and so we have that |E ′(X)| = |X | − 1. For a heavy vertex u, let X1, . . . , Xs be the
parts assigned to it (so that C(u) = {u} ∪ ⋃s

j=1 X j ). Since each part connects to its

leader by a single edge (in G ′), it follows that
∣
∣
∣

⋃s
j=1 E

′({u} ∪ X j )

∣
∣
∣ = |C(u)| − 1. As

for the rest of the edges in (L×L) ∩ E ′, by the proof of Theorem 7, with probability
1− 1/�(n) (over the choice of W ), their number is upper bounded by (ε/4)n. Since
the number of edges inH×H is at most (ε/4)n (see details in Sect. 5.5.1), the claim
follows. 	

Claim 11 With probability 1 − 1/�(n), |F | ≤ (ε/2)n .

Proof For each cluster B, we charge to B a subset of the edges incident to B so that
the union of all the charged edges (over all clusters) contains F . Our goal is to show
that with probability 1 − 1/�(n), the total number of charged edges is (ε/2)n.

Consider the auxiliary graph, denoted G̃, that results from contracting each cluster
B in G into amega-vertex in G̃, which we denote by v(B). For each pair of clusters B
and B ′ such that E(B, B ′) is non-empty, there is an edge (v(B), v(B ′)) in G̃, which
we refer to as amega edge, and whose weight is |E(B, B ′)|. Since G is H -minor free,
so is G̃. By Theorem 1, which bounds the arboricity of H -minor free graphs, we can
partition the mega-edges of G̃ into c(h) forests. Consider orienting the mega-edges
of G̃ according to this partition (from children to parents in the trees of these forests),
so that each mega-vertex has at most c(h) outgoing mega-edges. For cluster B and a
cluster B ′ such that (v(B), v(B ′)) is an edge in G̃ that is oriented from v(B) to v(B ′),
we shall charge to B a subset of the edges in E(B, B ′), as described next.

Recall first that each part in the partition P of G[L] has size at most k2d̃2. Let
Eb(B, B ′) denote the subset of edges in E(B, B ′) whose rank is in the bottom
(ε/(8c(h))) · |E(B, B ′)| edges of E(B, B ′). We charge all the edges in Eb(B, B ′)
to B. The rationale is that for these edges it is likely that the algorithm won’t sam-
ple an edge in E(B, B ′) with lower rank. The total number of such edges is at most
(ε/(8c(h))) · |E | ≤ (ε/8)n. Let u be the leader of the cluster B, and let Nb(u, B ′) be
the set of vertices, y ∈ N (u), such that:

(

y ∈ B ′ and (u, y) ∈ Eb(B, B ′)
)

or
(

∃(y′, z) ∈ Eb(B, B ′) s.t. y′ ∈ P(y)
)

.

That is, Nb(u, B ′) is the subset of neighbors of u such that if Algorithm 3 selects one
of them in Step 3, then it obtains an edge in Eb(B, B ′). We consider two cases.

First case |Nb(u, B ′)|/|N (u)| < ε2/(27c2(h)k2d̃3). In this case we charge all
edges in E(B, B ′) to B. For each part P(y) such that y ∈ Nb(u, B ′) there are at
most |P(y)| · d̃ edges (y′, z) ∈ Eb(B, B ′) for y′ ∈ P(y). Therefore, in this case
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|Eb(B, B ′)| ≤ k2d̃3 · |Nb(u, B ′)| ≤ N (u) · ε2/(27c2(h)) and hence |E(B, B ′)| <

(8c(h)/ε) · ε2/(27c2(h)) · N (u). It follows that the total number of charged edges of
this type is at most (ε/(24c(h))) · 2|E | ≤ (ε/8)n.

Second case |Nb(u, B ′)|/|N (u)| ≥ ε2/(27c2(h)k2d̃3). For each u and B ′ that fall
under this case we define the set of edges Y (u, B ′) = {(u, v) : v ∈ Nb(u, B ′)} and
denote by Y the union of all such sets (over all such pairs u and B ′). Edges in Y are
charged to B if and only if they belong to F and are incident to a vertex in B. Fix an
edge in Y that is incident to B, and note that the selection of neighbors of u is done
according to a t-wise independent distribution for t > 4q, where q is the sample size
set in Step 3 of the algorithm. Therefore, the probability that the edge belongs to F
is upper bounded by (1 − ε2/(27c2(h)k2d̃3))q , which by the setting of q, is at most
p = ε/(8c(h)).

We next show, using Chebyshev’s inequality, that with high probability, the number
of edges in Y that are in F is at most 2p|E |. For y ∈ Y , define Jy to be an indicator
variable that is 1 if and only if y ∈ F . Then for a fixed y ∈ Y , E[Jy] ≤ p and {Jy} are
pairwise independent (this is due to the fact that the samples of every pair of edges
are pairwise independent). Therefore, by Chebyshev’s inequality,

Pr

⎡

⎣
∑

y∈Y
Jy ≥ 2p|E |

⎤

⎦ ≤ Var[∑y∈Y Jy]
(p|E |)2 =

∑

y∈Y Var(Jy)

(p|E |)2 ≤ p(1 − p)|E |
(p|E |)2

= 1 − p

p|E | = 1

�(n)
,

and the proof of Claim 11 is completed. 	

By combining Claims 10 and 11 we get that |E ′| ≤ (1 + ε) · n with probability

1 − 1/�(n), as required.
The random seed that Algorithm 6 uses consists of two parts. The first part is for

running Algorithm 3, whose random seed has length Õ((h/ε)d log n), and hence for
d = d̃, its length is Õ((h/ε)2 log n). The second part is for selecting randomneighbors
in Step 3. Since for each edge in E we pick a random sample of �̃((c3(h)k2d̃3)/ε3) =
Õ((h11/ε8)) neighbors independently, we obtain by Theorem 2 that a random seed of
length Õ(h11/ε8) log n) is sufficient.

The running time of Algorithm 6 is upper bounded by a constant times the running
time of Algorithm 3 times the number of edges sampled in Step 3. which by Theo-
rem 7 and the setting of q in the algorithm is poly(h/ε). This completes the proof of
Theorem 6.
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A Tables of Notations and Parameters

Table of notations and parameters for Sect. 4

Notation Meaning

�r (v,G) The set of vertices at distance at most r from v (distance-r neighborhood of v).
Cr (v,G) The subgraph of G induced by �r (v,G).
nr (G) maxv∈V |�r (v,G)|.
hs (G) Maximum h such that G is an (s, h)-vertex expander.
s = s(n, ε) 2

√
2n/ε ln n.

� = �(n, ε)
√

εn/2 (number of centers).
Lij Vertices in the i th level of the BFS tree of the center σ j .
S(σ j ) Vertices that are assigned to the center σ j .
E ′(σ ) Edges of the BFS-tree that spans the subgraph induced on S(σ ).
P(σ, σ ′) The shortest path between σ and σ ′ that has minimum lexicographic order

among all shortest paths.
e(σ, σ ′) If all vertices on P(σ, σ ′) belong either to S(σ ) or to S(σ ′, then e(σ, σ ′) is the

single edge (x, y) ∈ P(σ, σ ′) such that x ∈ S(σ ) and y ∈ S(σ ′).
tε,d (G) The minimum distance t ensuring that all but an ε/(2d)-fraction of the vertices

have at least s vertices in their t-neighborhood.
t ′
ε,d (G) The minimum distance t ensuring that all but an ε/(4d)-fraction of the vertices

have at least s vertices in their t-neighborhood.
P The partition of the graph which the spanning graph construction is based on.
γ The probability of a vertex to be a center.
k �((log2(1/γ ) + log d)/γ ) – size parameter used to bound number of vertices

in each part of P
W The set of centers.
t 2kd (the random string used by the algorithm is t-wise independent).
cc(v) Subset of vertices in the connected component of v in G.
Z The set of vertices v such that |cc(v)| ≥ k.
σ(v) The center of v with respect to W .
C(w) {v ∈ V : σ(v) = w} (the cell of w with respect to W ).
�k (v) The minimum integer � such that the BFS tree rooted at v of depth � has size at

least k.
Bk (v) Vertices in the BFS-tree rooted at v of depth �k (v).
R The set of vertices v for which Bk (v) does not contain a vertex (center) in W .
T (w) The BFS tree rooted at w of the subgraph induced by C(w) \ R
P ′ The partition P when restricted to Z .
Yk (v) {u ∈ V : v ∈ Bk (u)}
χW The characteristic vector of the set W .
χW(S) The projection of χW onto S (where S is a subset of V ).
ζv The random variable indicating whether v is a remote vertex with respect to W .
Sv {u ∈ Z : Bk (u) ∩ Bk (v) �= ∅}.
d̃ 8(c(h))2/ε.
H The set of heavy vertices (i.e., with degree greater than d̃).
L V \ H, the set of light vertices.
C(u) The cluster of u, includes u and all the vertices in the parts that are assigned to

u.
F The subset of edges in E ′ ∩ (H × L) that are incident to two different clusters

(namely, each endpoint belongs to a different cluster).
Eb(B, B′) The subset of edges in E(B, B′) whose rank is in the bottom

(ε/(8c(h))) · |E(B, B′)| edges of E(B, B′).
Nb(u, B′) For u that is the leader of a cluster B, it is the set of vertices in N (u) such that:

(

y ∈ B′ and (u, y) ∈ Eb(B, B′)
)

or
(

∃(y′, z) ∈ Eb(B, B′) s.t. y′ ∈ P(y)
)
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B Proof of Theorem 3

Proof of Theorem 3 Let V be a set of vertices and let v0 and v1 be a pair of distinct
vertices in V . In order to prove the lower bound we construct two families of random
d-regular graphs over V , F+

(v0,v1)
and F−

(v0,v1)
. F+

(v0,v1)
is the family of d-regular

graphs, G = (V , E), for which (v0, v1) ∈ E . F−
(v0,v1)

is the family of d-regular
graphs for which (v0, v1) ∈ E and the removal of (v0, v1) leaves the graph with
two connected components,9 each of size n/2. We prove that given (v0, v1), any
algorithm that performs at most

√
n/c queries for some sufficiently large constant

c > 1 cannot distinguish the case in which the graph is drawn uniformly at random
from F+

(v0,v1)
from the case in which the graph is drawn uniformly at random from

F−
(v0,v1)

. Essentially, if the number of queries is at most
√
n/c, then with high constant

probability, each new query to the graph returns a new random vertex in both families.
By “new vertex” we mean a vertex that neither appeared in the query history nor in the
answers history. Since the algorithmmust answer consistently with a connected graph
G ′, for every graph in the support of F−

(v0,v1)
it must answer positively on the query

(v0, v1), with probability 1 (or with high constant probability in case we allow G ′ to
be disconnected with some small constant probability). But since the distributions on
query-answer histories in both cases are very close statistically, this can be shown to
imply that there exist graphs for which the algorithm answers positively on a large
fraction of the edges.

We consider a pair of oracles that generate a random graph from F+
(v0,v1)

and

F−
(v0,v1)

, respectively, on the fly. On query (w, i) the oracle returns (v, j) where v is
i-th neighbor of w, denoted N (w, i), and w is the j-th neighbor of v. If w does not
have an i-th neighbor then the oracle returns ∅. Both oracles construct the graph on
demand, i.e. on on query (w, i), if N (w, i) was not determined in a previous step then
the oracle determines N (w, i).

First Oracle Recall that a random d-regular graph can be generated as follows. Define
a matrix M = [n]×[d]where the i-th row corresponds to the i-th vertex. Partition the
cells of M into nd/2 pairs, namely, find a random perfect matching on the cells of M .
Now let (w, i) and (v, j) be a pair of matched cells, then in the corresponding graph
it holds that N (w, i) = v and N (v, j) = w. Thus, to obtain a random d-regular graph
from the family of d-regular graphs G = (V , E), for which (v0, v1) ∈ E proceed as
follows.

1. Match a random cell in v0’s row to a random cell with v1’s row.
2. Find a random perfect matching of the remaining cells.

Our first oracle,O+
(v0,v1)

, determines the perfectmatching on demand aswe describe
next. The oracle keeps a matrix, M , with n rows which correspond to the n vertices
and d columns, which correspond to d neighbors. At the initialization step:

9 Although a graph that is drawn uniformly from F+
(v0,v1)

(or F−
(v0,v1)

) might be disconnected, this event
happens with negligible probability [10]. Hence, the proof of the lower bound remains valid even if we
consider F+

(v0,v1)
∩ C and F−

(v0,v1)
∩ C where C is the family of connected graphs.
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1. All the cells are initialized to ∅.
2. A single edge is determined: M(v0, t0) := (v1, t1) and M(v1, t1) := (v0, t0)

where t0 and t1 are chosen uniformly and independently over [d].
On query (w, i), the oracle O+

(v0,v1)
, proceeds as follows:

1. Checks if M(w, i) was determined in a previous step, i.e. if M(w, i) �= ∅, if so
it returns the matched cell (u, j).

2. Otherwise, it picks uniformly one of the empty cell in the matrix, (u, j).
3. Sets M(w, i) := (u, j), M(u, j) := (w, i). Namely, adds the edge (u, w) to the

graph.
4. Returns (u, j).

Without loss of generality assume that n · d is even.10 Thus, if the oracle is queried on
all the entries of the matrix, then the resulting graph is a random d-regular graph that
contain the edge (v0, v1) (where self-loops and parallel edges are allowed). Notice that
the resulting graph is drawn uniformly (and independently of the order of the queries)
from the family of graphs F+

(v0,v1)
.

SecondOracle Our second oracle,O−
(v0,v1)

generates a random graph from the family

of graphsF−
(v0,v1)

. The oracleO−
(v0,v1)

keeps a pair ofmatricesM0, M1. Thematrix,M0,

has �n/2� rows and d columns and the matrix, M1, has �n/2� rows and d columns.11

At the initialization step:

1. All the cells of both matrices are initialized to ∅.
2. The rows of the matrices are not allocated to any vertex.
3. A random row in Mb, ib, is allocated to vb for each b ∈ {0, 1}.
4. A single edge is determined: M0(i0, t0) := M1(i1, t1) and M1(i1, t1) :=

M0(i0, t0) where t0 and t1 are chosen uniformly and independently over [d].
For a vertex v, let r(v) denote the index of the row that is allocated to v and the
corresponding matrix by Mv . Given a row j and a matrix M , let v(M, j) denote the
vertex that the j-th row in M is allocated to. On query (w, i), O−

(v0,v1)
proceeds as

follows:

1. If a row was not allocated to w in previous steps then a random row is picked
uniformly (from the set of rows that are free) and is allocated to w.

2. If the i-th neighbor ofwwas determined previously, i.e., the cellMw(r(w), i)was
matched in previous steps to another cell Mw(�, j), then return (v(Mw, �), j).

3. Otherwise, select randomly and uniformly an empty cell in Mw, (�, j). If the �-th
row of Mw is free, then allocate this row to a vertex which is picked uniformly
from the set of vertices without an allocated row.

4. Add an edge between (w, i) and (v(Mw, �), j), i.e., setMw(r(w), i) := Mw(�, j)
and Mw(�, j) = Mw(r(w), i). Return (v(Mw, �), j).

10 In case that d · n is odd we add an extra entry to the matrix, (0, 0), so that M(w, i) = (0, 0) means that
w does not have an i-th neighbor.
11 Here too, if the number of entries in a matrix is odd we add an entry (0, 0).
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Let A be an algorithm that interacts with O+
(v0,v1)

and let π+
r = (q+

1 , a+
1 , . . . , q+

r ,

a+
r ) be the random variable describing the communication between A and O+

(v0,v1)
.

Namely, π+
r is a list of r queries of A and r corresponding answers of O+

(v0,v1)
.

Similarly, define π−
r for O−

(v0,v1)
. We claim that for r = c

√
n, the distribution of

π+
r is statistically close to the distribution of π−

r . Recall that every query qi is a pair
(qi,1, qi,2)where the first entry denotes a name of a vertex and the second entry denotes
an index in [d]. Similarly, every answer ai is a pair (ai,1, ai,2). Let A+ be the event
that for every i ∈ [r ] it holds that, a+

i,1 �= a+
j,1 for every i �= j ∈ [r ] and a+

i,1 �= q+
j,1 for

every j ∈ [r ]. Similarly, define A−. Without loss of generality we assume thatA does
not make queries that does not reveal any new information on the graph. Hence, in
words, A+ (respectively, A−) is the event thatwheneverO+

(v0,v1)
(respectivelyO+

(v0,v1)
)

selects an empty (un-matched) cell, the corresponding row is empty as well. It is easy
to verify that the distribution ofπ+

r conditioned on A+ is identical to the distribution of
π−
r conditioned on A−. Hence, the statistical distance between the distribution of π+

r
and the distribution of π−

r is bounded by 2|Pr(A+)−Pr(A−)|. Since both Pr(A+) and
Pr(A−) are upper bounded by 2r · 2r

n/2 = 8r2/n = 8c2, we obtain that the statistical

distance is bounded by 16c2 = 16/49 < 1/3 for c = 1/7.
From this the lower bound is implied as follows. Assume towards contradiction that

there exists an LSSG algorithm, A, with query complexity c
√
n. When A interacts

with O−
(v0,v1)

it must answer yes with probability 1 (over the random coins of A and

O−
(v0,v1)

) when queried on (v0, v1). Since O−
(v0,v1)

and O+
(v0,v1)

are statistically close,

A that interacts with O+
(v0,v1)

must answer yes with probability at least 2/3 (over the

random coins ofO−
(v0,v1)

and for every setting of random coins ofA) when queried on
(v0, v1). This implies that for every setting of random coins of A, A answers yes on
at least 2/3 of the d-regular graphs that contain (v0, v1). By an averaging argument it
follows that there exists a d-regular graph, G, such thatA answers yes on at least 2/3
of the edges of G. A contradiction.

Now consider the setting in which we allow G ′ to be disconnected with probability
1 − δ1 and we require that |E ′| ≤ (1/3)nd with probability at least 1 − δ2 for some
constants 0 < δ1, δ2 ≤ 1. In this case A must answer yes with probability 1 − δ1,
over the random coins of A, when queried on (v0, v1) and interacting with O−

(v0,v1)

(for any setting of random coins of O−
(v0,v1)

). Therefore, by an averaging argument,
there exists a d-regular graph G, such that in expectation, A answers yes on at least
(2/3)(1 − δ1) of the edges of G. However, since the expected size of E ′ is bounded
by (1 − δ2)(1/3)nd + δ2nd we reach a contradiction whenever δ1 + δ2 < 1/2. 	


C A Non-polynomial Relation Between k and Yk(v)

Recall that Yk(v)
def= {u ∈ V : v ∈ Bk(u)}. In the following lemma we show that

|Yk(v)| can be super polynomial.

Lemma 12 There exists a graph G = (V , E) with degree bounded by d and v ∈ V
such that |Yk(v)| = k�(log log d).
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Proof The graph G is a tree, rooted at v, and defined as follows. For simplicity, we let
the degree bound be d + 1 (so that a vertex may have d children, and hence degree
d + 1). We partition the levels of the tree into consecutive subsets: L0 = {1, . . . , �0}
(where the root is at level 1), L1 = {�0+1, . . . , �1}, . . . , Lr = {�r−1+1, . . . , �r }. For
each subset Li , and for each level j in the subset, all vertices in level j have the same

number of children, which is di
def= d2

−i
. We set r = log log d, so that all vertices in

levels belonging to Lr have two children. Finally we set si = |Li | = logdi g
1/(r+1),

where g determines the size of the tree, as well as the minimum k that ensures that all
vertices in the tree belong to Yk(v).

By the construction of the tree, the number of vertices in it is of the order of
∏r

i=0 d
si
i = g. In order to upper-bound k (such that all vertices belong to Yk(v)),

consider any vertex u in some level j ∈ Li , where 0 ≤ i ≤ r . Since di = d1/2i−1, so
that st = 2st−1 for each t , we get that si ≤ ∑

i ′<i si ′ . Therefore, �(u, v) ≤ 2si . It
follows that the number of vertices in the subtree rooted at u that are at distance at most
�(u, v) from u is upper bounded by dsii · dsii+1 < g3/2(r+1). Since this is true for every
vertex in the tree, we get that |��(u,v)(u)| = O(g3/2(r+1) · sr ) = O(g3/2(r+1) · log g),
which gives us an upper bound on k, from which the lemma follows. 	
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