
Algorithmica (2020) 82:107–117
https://doi.org/10.1007/s00453-019-00605-5

Succinct Non-overlapping Indexing

Arnab Ganguly1 · Rahul Shah2 · Sharma V. Thankachan3

Received: 4 November 2015 / Accepted: 8 July 2019 / Published online: 30 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Text indexing is a fundamental problem in computer science. The objective is to
preprocess a text T , so that, given a pattern P , we can find all starting positions (or
simply, occurrences) of P in T efficiently. In some cases, additional restrictions are
imposed. We consider two variants, namely the non-overlapping indexing problem,
and the range non-overlapping indexing problem. Given a text T having n characters,
the non-overlapping indexing problem is defined as follows: pre-process T into a data
structure, such that for any pattern P , containing |P| characters, we can report a set
containing the maximum number of non-overlapping occurrences of P in T . Cohen
and Porat (in: Algorithms and computation, 20th international symposium, ISAAC
2009,Honolulu,Hawaii. Proceedings, 2009) showed that bymaintaining a linear space
index in which the suffix tree of T is augmented with an O(n) word data structure, a
query P can be answered in optimal time O(|P|+nocc), where nocc is the number of
occurrences reported. We present the following new result. Let CSA (not necessarily a
compressed suffix array) be an index of T that can compute (i) the suffix range of P in
search(P) time, and (ii) a suffix array or an inverse suffix array value in tSA time. By
using CSA alone, we can answer a query P in search(P)+ sort(nocc)+O(nocc · tSA)

time. The function sort(k) denotes the time for sorting k numbers in {1, 2, . . . , n}. In
the range non-overlapping indexing problem, along with the pattern P , two integers
a and b, b ≥ a, are provided as input. The task is to report a set containing the
maximum number of non-overlapping occurrences of P that lie within the range
[a, b]. For any arbitrarily small positive constant ε, we present an O(n logε n) word
index with O(|P|+ nocca,b) query time, where nocca,b is the number of occurrences
reported. Our index improves upon the result of Cohen and Porat [6].

Keywords Succinct data structures · Range queries · Suffix trees · String algorithms

B Arnab Ganguly
gangulya@uww.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00605-5&domain=pdf
http://orcid.org/0000-0003-3331-0913

108 Algorithmica (2020) 82:107–117

1 Introduction and RelatedWork

The rapid growth of textual data and the increasing need to extract information from
it has led to numerous applications of pattern matching in fields such as Bioinformat-
ics, Data Mining, Web Mining, Computational Biology, and Information Retrieval in
general. Given a text T and a pattern P , the pattern matching problem is to find all
starting positions (or simply, occurrences) of sub-strings of T that match exactly with
P . Earlier works [4,18,20] concentrated on the scenario in which both text and pattern
were provided at query time. In most cases, however, the text is static, and patterns
come in a query. This motivated the development of full-text-indexes so as to facilitate
pattern matching efficiently. More specifically, the objective is to pre-process a text
T and build a data structure, such that whenever a pattern P comes as a query, all
occurrences of P in T can be reported efficiently. Suffix tree [9,25,26] (resp. suffix
array [22]) are the most well known full-text-indexes supporting O(|P| + occ) (resp.
O(|P| + log n + occ)) query time, where |P| is the length of P and occ is the output
size (i.e., the number of occurrences of P in T). The query time for suffix arrays
can be reduced to O(|P| + occ) by using a modified form of it, called enhanced
suffix arrays [1]. Both suffix trees and suffix arrays require Θ(n log n) bits of space,
which is too large for most practical purposes. Consequently, the focus became to
design indexes which occupy space close to the size of the text and achieve the full
functionality of suffix trees/arrays, even if it results in a small penalty in query time.
Grossi and Vitter [14], and Ferragina and Manzini [10] addressed this by presenting
space efficient indexes named Compressed Suffix Array and FM-Index respectively.
Subsequently, an exciting field of compressed text indexing was established. We refer
the reader to [23] for an excellent survey on compressed text indexing.

Unfortunately, traditional pattern matching, on its own, does not capture many
real-world applications. This led to the formulation of many variants, and the subse-
quent design of data structures to handle them. Among the notable, two variants are
(i) pattern matching with errors/don’t-cares [7], where the pattern and a sub-string of
the text match if they differ by a bounded number of errors/don’t cares, (ii) parame-
terized pattern matching [3] in which the match is defined by a one-to-one function
that renames characters from the matched sub-string of the text to that of the pat-
tern.

The first problem addressed in this paper is a variant of the pattern matching prob-
lem. It asks to report the non-overlapping occurrences of P in T . Apart from its
theoretical interest, the problem finds a lot of potential applications [6] in areas related
to data compression, speech recognition, and linguistics. For instance, one can com-
press a text by replacing each non-overlapping occurrence of P by a single character
from a new alphabet, where each symbol in the new alphabet is the image obtained
by applying a hash-function on P . The following is a formal definition of the prob-
lem.

Problem 1 (Non-overlapping indexing)Given a text T of n characters, pre-process T
into a data structure, such that for any input pattern P, we can report a set of starting
positions of P of maximum size, where any two distinct reported positions are at least
|P| characters apart.

123

Algorithmica (2020) 82:107–117 109

Cohen and Porat [6] presented the first optimal time solution to this problem. Their
data structure consists of a suffix tree of T , which is augmented with an additional
O(n)-word data structure. However, it was left unanswered, whether Problem 1 can
be handled in succinct (or, compact) space, or not. We answer this affirmatively by
showing that the problem can be solved efficiently using any index of T alone, as
summarized in the following theorem.1

Theorem 1 Let CSA (not necessarily a compressed suffix array) be a full-text-index
of T , that can compute (i) the suffix range of a pattern P in search(P) time and (ii)
suffix array or an inverse suffix value in tSA time. By using CSA alone, we can answer
a query P in search(P)+ sort(nocc)+O(nocc · tSA) time, where nocc is the number
of occurrences reported. The function sort(k) denotes the time for sorting k numbers
in {1, 2, . . . , n}.
Henceforth, σ is the size of the alphabet from which the characters in T are drawn
and ε > 0 is an arbitrarily small constant.

Yet another variant of the traditional pattern matching problem is the well known
position restricted substring searching problem of Mäkinen and Navarro [21], where
the only occurrences to be reported are those which lie within a specified range of T .
The second problem addressed in this paper can be seen as a variation of this problem
and can be stated as follows.

Problem 2 (Range non-overlapping indexing) Given a text T of n characters, pre-
process T into a data structure, such that whenever a pattern P, and a range [a, b],
1 ≤ a ≤ b ≤ n, are provided as input, we can report a set of maximum size containing
the starting positions of P in the range [a, b]where any two distinct reported positions
are at least |P| characters apart.

For Problem 2, Keller et al. [19] presented an O(n log n) space and O(|P| +
nocca,b log log n) time data structure, where nocca,b is the number of (non-
overlapping) occurrences reported. Crochemore et al. [8] presented an O(n1+ε)

space and O(|P| + nocca,b) time solution. Nekrich and Navarro [24] presented
a linear space and O(|P| + nocca,b logε n) time solution. Cohen and Porat [6]
improved upon the solution of Keller et al. by presenting an O(n logε n) space and
O(|P| + log log n + nocca,b) time index. The following theorem summarizes our
solution to Problem 2.

Theorem 2 We can pre-process T to create data structures of total size O(n logε n)

words, such that a query 〈P, a, b〉 can be answered in optimal O(|P|+nocca,b) time,
where nocca,b is the number of occurrences reported.

Organization of the paper The rest of the paper is dedicated to proving Theorems 1
and 2. In Sect. 2, we introduce notations and terminologies. We prove Theorem 1 in
Sect. 3. In Sect. 4, we prove Theorem 2. Finally, we conclude the paper in Sect. 5.

1 A preliminary version [11] of this paper appeared in the 26th Annual Symposium on Combinatorial
Pattern Matching (CPM) 2015.

123

110 Algorithmica (2020) 82:107–117

2 Preliminaries and Notations

We refer the reader to [15] for standard definitions and terminologies. Throughout this
paper, T is a text having n characters, and P is a pattern having |P| characters. We
assume the standardWord-RAMmodel of computationwhere theword sizeω ≥ log n.
Also, assume that T terminates in a special character $ that does not appear at any
other position in the document. Denote by T [t, t ′] the substring of T from t to t ′ (both
inclusive), and by ε an arbitrarily small positive constant. A pattern P is said to occur
at a position t in T if P starts at t . Let nocc denote the size of a set containing the
maximum number of non-overlapping occurrences of P in T . Likewise, nocca,b is
the size of a set containing the maximum number of non-overlapping occurrences in
the range [a, b] i.e., in the sub-string T [a, b].

2.1 Suffix Tree and Suffix Array

A suffix tree, denoted by ST, is a compact trie that stores all the suffixes of T . The
leaves in a suffix tree are numbered in the lexicographic order of the suffix they
represent. The locus of a pattern P is the highest node u such that P is a prefix of
the string formed by the concatenation of the edge labels from the root to u. The
suffix range of P is denoted by [sp, ep], where sp (resp. ep) is the leftmost (resp.
rightmost) leaf in the subtree of ST rooted at the locus of P . Using a suffix tree, the
locus node (or equivalently, the suffix range) of any pattern P can be computed in
time O(|P|).

A suffix array, denoted by SA, is an array of size n that maintains the lexico-
graphic arrangement of all the suffixes of the text. More specifically, if the i th smallest
suffix of T starts at j , then SA[i] = j and SA−1[j] = i . Using suffix arrays, the
locus node of any pattern P (or equivalently, the suffix range of P), can be found in
O(|P| + log n) time. Using enhanced suffix arrays [1], this can be done in O(|P|)
time. Moving forward, we use the term suffix array to denote enhanced suffix arrays.
The suffix value SA[·] and the inverse suffix value SA−1[·] can be found in constant
time.

In general, suffix trees (arrays) require O(n) words for storage. Compressed Suffix
Arrays reduce this space to O(n log σ) bits (or close to the size of the text) with a
slowdown in query time.

In what follows, we use CSA to denote a full-text-index of T (not necessarily a
compressed index) that can compute the suffix range of P in search(P) = Ω(|P|)
time, and can compute a suffix array or inverse suffix array value in tSA = Ω(1) time.
We assume that search(P) is proportional to the length of the pattern P .

Lemma 1 Given the suffix range [sp, ep] of pattern P, using CSA, we can verify in
time tSA whether P appears at a text-position t, or not.

Proof The lexicographic position � of the suffix T [t, n] (i.e., SA−1[t]) can be found
in tSA time. The lemma follows by observing that P occurs at t iff � lies in the range
[sp, ep]. ��

123

Algorithmica (2020) 82:107–117 111

2.2 Periodicity

Definition 1 The period of a pattern P is its shortest non-empty prefix Q, such that P
can be written as the concatenation of several (say α > 0) number of copies of Q and
a (possibly empty) prefix Q′ of Q. Specifically, P = QαQ′. The period of P can be
computed in O(|P|) time using the failure function of the KMP algorithm [15,20].

For example, if P = abcabcab, then Q = abc, α = 2, and Q′ = ab. If P = aaa,
then Q = a, α = 3, and Q′ is empty. If P = abc, then Q = abc, α = 1, and Q′ is
empty.

Definition 2 We say that the pattern P = QαQ′ is periodic if α ≥ 2, else P is
aperiodic.

2.3 Simplifying Assumptions

Observe that if P does not occur in T , both Problems 1 and 2 can be trivially answered
using any full-text-index of T . This condition can be verified in search(P) time using
a full-text-index of T . Also, observe that P can overlap itself iff there is a proper
suffix of P which is also its (proper) prefix; in this case, Q is a proper prefix of
P = QαQ′. If this condition does not hold, which can be verified in O(|P|) time
using theKMP algorithm [15,20], we can find the desired occurrences using traditional
pattern matching. So, moving forward, we assume that P appears in T and that there
is a proper suffix of P which is also its (proper) prefix.

3 Non-overlapping indexing

In this section, we present our solution (in Theorem 1) to Problem 1. Based on whether
the input pattern is periodic or aperiodic, we have the following two cases.

3.1 Case 1: Input Pattern P = Q˛Q′ is Aperiodic (˛ < 2)

Note that the desired non-overlapping occurrences can be found as follows: (i) first
report all occ occurrences in the sorted order, (ii) report the last occurrence, and then
perform a right to left scan of the occurrences, and report an occurrence if it is at least
|P| characters away from the previously reported occurrence. The complexity of this
procedure is O(search(P) + occ · tSA + sort(occ)). We observe that occ ≤ 2 · nocc,
when the pattern is aperiodic. Therefore, the above time complexity is in line with
Theorem 1.

3.2 Case 2: Input Pattern P = Q˛Q′ is Periodic (˛ ≥ 2)

Definition 3 (Critical occurrence of a periodic pattern) A position t in the text T is
called a critical occurrence of a periodic pattern P = QαQ′ iff t is an occurrence of
P but the position t + |Q| is not. Here Q is the period of P .

123

112 Algorithmica (2020) 82:107–117

Definition 4 (Span of a critical occurrence) Let tc be a critical occurrence of the
pattern P in the text T . Let t ′ ≤ tc be the maximal position such that t ′, t ′ + |Q|, t ′ +
2|Q|, . . . , tc are occurrences of P but the position t ′ − |Q| is not. The span of tc is
span(tc) = [t ′, t + |P| − 1].

For example, let the text T [1, 18] be XY ZabcabcabcabXY Z$. Then t = 7 is a
critical occurrence of P = abcabcab, but t = 4 is not. Also, span(7) = [4, 14].
Following are some crucial observations.

Observation 1 Let t be a critical occurrence of P. Then, t is the rightmost occurrence
of P in span(t). Also, the spans of two critical occurrences cannot overlap by more
than |Q| − 1 characters.

Observation 2 Let ti−1, ti , and ti+1 be 3 consecutive critical occurrences, where
ti−1 < ti < ti+1. Then, span(ti−1) and span(ti+1) do not overlap. Thus, the number
of critical occurrences of P is at most 2 · nocc.

It follows fromObservations 1 and 2 that in order to find the desired non-overlapping
positions of P in the text T , it suffices to find the non-overlapping occurrences of P in
the range of every critical occurrence of P , and ensure that such a reported occurrence
does not overlap with an occurrence in the span of an adjoining critical occurrence.

At this point, we assume that we have located all the critical occurrences of P .
We sort them in sort(nocc) time (based on Observation 2). Let {t1, t2, . . . , tk} be
the critical occurrences in sorted order. Essentially, to report all the non-overlapping
occurrences of P , we report the rightmost occurrence (which is the critical occurrence
tk) and then scan from right to left skipping over the occurrences that overlap with the
last reported occurrence within the span of the current critical occurrence. Once we
cross the span, we repeat the process in the span of the previous critical occurrence.
More specifically, we use the following algorithm:

1. Let t0 = 0, c = k, and t = tk .
2. Report t as a non-overlapping occurrence of P . (Conceptually, t will keep track of the last

reported occurrence.)
3. Let t ′ = t − (α + 1)|Q|. If t ′ > tc−1 and if P appears at t ′ (verified using Lemma 1), then t ′

is the rightmost occurrence in span(tc) that does not overlap with t ; we set t = t ′, and repeat
from Step 2. Otherwise, goto Step 4.

4. If c = 1 then stop, else, c = c − 1. If t − tc < |P|, then span(tc) contains t , and we set
t = tc − |Q|, else we set t = tc . Repeat from Step 2.

It is easy to see that the above algorithm will output a set of the maximum number
of non-overlapping occurrences of P . Note that once the suffix range of P is known,
reporting each position (by checking whether it is an occurrence of P or not) takes
tSA time using Lemma 1. Summarizing, we have the following lemma.

Lemma 2 Given a periodic pattern P = QαQ′, the suffix range of P, and the critical
occurrences of P, we can find a set of the maximum number of non-overlapping
occurrences of P in time sort(nocc) + O(nocc · tSA).

123

Algorithmica (2020) 82:107–117 113

locus of P

locus of QP

sp sp′ ep′ ep

Fig. 1 Illustration of Lemma 4. Since Q′ is a prefix of Q, the locus of P = QαQ′ lies on the path from the
root to the locus of QP . For each leaf � in [sp, sp′ − 1] ∪ [ep′ + 1, ep], the text position SA[�] is a critical
occurrence of P in T

Lemma 3 A critical occurrence of a periodic pattern P is the same as the text position
of a leaf which belongs to the suffix range of P, but not of QP.

Proof Weprove the lemma by contradiction. Observe that since Q′ is a prefix of Q, the
suffix range of QP is contained within that of P . Say there exists a critical occurrence
tc in text order, such that SA−1[tc] lies in the suffix range of QP = Qα+1Q′. Clearly,
there is an occurrence of P at the position t = tc + |Q|, a contradiction. ��

Our task is now to find all critical occurrences. The following lemma shows how
to achieve this.

Lemma 4 Given a periodic pattern P = QαQ′, we can find all critical occurrences
of P in T in time bounded by O(search(P) + nocc · tSA).

Proof Observe that since Q′ is a prefix of Q, the suffix range of QP is contained
within that of P . Applying Lemma 4, our objective translates to locating the suffix
range of P , say [sp, ep], and of QP , say [sp′, ep′]. This can be achieved in time
search(QP), which can be bounded by O(search(P)). We assume that search(P) is
proportional to |P|. See Fig. 1 for an illustration.

Note that for each leaf � lying in [sp, sp′ −1]∪[ep′ +1, ep], the text position SA[�]
is a (distinct) critical occurrence of P . Thus, the total number of these leaves is the
same as the number of critical occurrences of P in T . By Observation 2, the number of
critical occurrences is at most 2 · nocc. For every leaf, we can find the corresponding
critical occurrence (i.e., its text position) in time tSA using SA[·]. Therefore, once the
suffix ranges of P and QP are located, all the critical occurrences are found in time
O(nocc · tSA). ��

This completes the proof of Theorem 1. By avoiding the use of any additional data
structures,we ensure that various space and time trade-offs can be easily obtained.Also
notice that an optimal-time linear-space solution, much simpler than that of Cohen
and Porat [6], can also be obtained as follows: maintain a linear-space sorted range

123

114 Algorithmica (2020) 82:107–117

reporting structure [5] over the suffix array. With this, sort(·) tasks in our algorithm
can be implemented in linear time. Essentially, for the aperiodic case we simply obtain
all the occurrences in sorted order using this data structure in time proportional to the
number of occurrences. For the periodic case, we obtain the critical occurrences in
sorted order using this data structure in time proportional to the number of critical
occurrences. After that we follow the same querying process as described for the two
cases previously.

4 Range Non-overlapping Indexing

In the range non-overlapping indexing problem, a range [a, b] is provided as input in
addition to the pattern P , and we are required to report a set containing the maximum
number of non-overlapping occurrences of P that start within the range [a, b]. For
this problem, we use suffix trees or (enhanced) suffix arrays as the full-text-indexes
for T . Therefore, search(P) = Θ(|P|) and tSA = Θ(1).

Based on the length of the pattern P , we divide the proof of Theorem 2 into two
cases. We say that P is long if |P| > log log n, and short, otherwise. Cohen and
Porat [6] showed that one can answer Problem 2 using O(n logε n)words, in O(|P|+
log log n+nocc) time. Thus, for long patterns, the bounds in Theorem2 follow directly
from this result. We prove the following lemma in the remainder of this section, which
leads to Theorem 2.

Lemma 5 There exists a data structure that takes O(n log log n) words of space, such
that given a range [a, b], we can report a set of the maximum number non-overlapping
occurrences of P in this range in time O(|P| + nocca,b), where nocca,b is the output
size and |P| ≤ log log n.

4.1 Proof of Lemma 5

It is to be observed that the index in [6] will report non-overlapping occurrences in
[a, b] even for short patterns i.e., when |P| ≤ log log n. In this case, however, the
query complexity will incur an extra log log n factor (because |P| does not necessarily
cascade log log n). The motivation, therefore, is to find them in time bounded by
O(nocca,b), once the suffix range of P is found.

To develop the intuition, we first note that we can find all the occurrences in the
following way. First locate the first occurrence of P in the range [a, b], and report
it. Now, repeat the following process until we reach an occurrence outside the range
[a, b]: jump to next occurrence (from the last reported one) in text-order that is at least
|P| characters away, and report it. Clearly, the query time is bounded by O(nocca,b)

as long as given the suffix range of P , we can find the first occurrence in O(nocca,b)

time, and given an occurrence, jump to the next non-overlapping one in O(1) time.
We show how to achieve this using an O(n log log n)-word data structure for patterns
having length at most log log n, thereby completing the proof of Lemma 5.

Let d be a parameter to be defined later. Consider a string Pd of length d formed
by concatenating edge-labels on any path from root. We store every occurrence of Pd
in T in the data structure of the following lemma. Call this data structure APd .

123

Algorithmica (2020) 82:107–117 115

Lemma 6 [2] Given a set P of m integers from {0, 1, · · · , 2ω − 1}, where ω ≥ logm
is the word size, there exists an O(m)-word data structure, such that given a range
R = [x1, x2], we can report an integer (if exists) of P that lies in R in O(1) time.

Additionally for Pd , we store another data structure BPd that contains all occur-
rences of Pd in sorted order. Also, for each occurrence we store the following pointers:

– Type I: a pointer to the previous occurrence of Pd that is at least d characters
away. If the previous occurrence is not contained within BPd , then we point to the
first occurrence in BPd . For the first occurrence in BPd , we point to itself.

– Type II: a pointer to the next occurrence of Pd that is at least d characters away.
– Type III: a pointer to the next (not necessarily non-overlapping) occurrence of Pd .

We augment the suffix tree by storing at each node u the number of leaves that lie
to the left of the subtree of u. Finally, we maintain two pointers corresponding to d
from the locus of Pd to the corresponding stored data structures APd and BPd .

Denote by leaf(u) the set of leaves in the subtree of ST rooted at u, and by Uk

the set of all nodes at depth k. Since the number of leaves in ST is n, it follows that∑
u∈Uk

|leaf(u)| ≤ n. Therefore, the total space required for storing the data structure
of Lemma 6 for every d length string Pd is O(n)words.Wemaintain this data structure
for every d ∈ [1, �log log n�]. The total space is bounded by O(n log log n) words.

To answer queries for a short pattern P , we first locate the structure AP from the
locus node of P . Using this structure, we first find an occurrence of P within the range
[a, b] in O(1) time. Now, using this occurrence, say t , the inverse suffix array, and
the number of leaves lying to the left of the subtree of the locus node, we locate the
position corresponding to t in BP . Now, we use Type I pointers in BP to repeatedly
jump to the previous non-overlapping occurrence of P , until:

– We cross the boundary a and arrive at an occurrence, say t ′. Starting from t ′, we
successively follow Type III pointers to the next occurrence until we arrive at the
first occurrence, say t f , after a. Note that we will need to follow at most |Q| − 1
such pointers (due to Observation 1).

– We arrive at the first occurrence, say t f , of Pd in AP .

Now, we report a set of the maximum non-overlapping occurrences of P within [a, b]
by simply following Type II pointers starting from t f until we cross b. Since each
pointer jump requires O(1) time, the total time in addition to locating the locus node
of P is O(nocca,b). This completes the proof of Lemma 5.

5 Conclusion

In this paper, we revisit the problem of reporting a set containing themaximumnumber
of non-overlapping occurrences of a pattern P in a text T .We show that bymaintaining
only a full-text-index on T , we can find all nocc occurrences in time search(P) +
sort(nocc) + O(nocc · tSA), where search(P) is the time required to find the suffix
range of T , and tSA is the time required to find suffix value or inverse suffix value.
Very recently Hooshmand et al. [17] presented an I/O optimal data structure in the
cache-oblivious model with space O(n log n) words. An interesting open question

123

116 Algorithmica (2020) 82:107–117

is, can we design I/O optimal data structure in the cache-aware model with space
o(n log n) words. An interesting problem is to design an efficient data structure for
answering the counting queries: i.e. to compute the value nocc in time proportional to
|P|. It is also interesting to see whether non-overlapping (succinct) indexes could be
designed for some the variants of the pattern matching problem, such as parameterized
matching [3,12,13].

For the range-reporting version of the problem, where a range [a, b] is provided
as input in addition to the pattern P , we present an O(n logε n) space index which
can report all nocca,b occurrences in this range in optimal time O(|P| + nocca,b).
We remark that it is highly unlikely to have an efficient succinct data structure for this
problem, based on the hardness result of the position restricted substring searching
problem [16].

Acknowledgements This research is funded in part by National Science Foundation (NSF) Grant CCF
1218904.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. J.
Discrete Algorithms 2(1), 53–86 (2004)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimension. In: Proceedings
on 33rd Annual ACMSymposium on Theory of Computing, July 6–8, 2001, Heraklion, Crete, Greece,
pp. 476–482 (2001)

3. Baker, B.S.: A theory of parameterized pattern matching: algorithms and applications. In: Proceedings
of the Twenty-Fifth Annual ACMSymposium on Theory of Computing, May 16–18, 1993, San Diego,
CA, USA, pp. 71–80 (1993)

4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)
5. Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range reporting. In: Algorithms

and Computation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December
16–18, 2009. Proceedings, pp. 173–182 (2009)

6. Cohen, H., Porat, E.: Range non-overlapping indexing. In: Algorithms and Computation, 20th Interna-
tional Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, pp.
1044–1053 (2009)

7. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t
cares. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL,
USA, June 13–16, 2004, pp. 91–100 (2004)

8. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved algorithms for the
range next value problem and applications. In: STACS 2008, 25th Annual Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, February 21–23, 2008, Proceedings, pp. 205–216
(2008)

9. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19–22, 1997, pp.
137–143 (1997)

10. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
11. Ganguly, A., Shah, R., Thankachan, S.V.: Succinct non-overlapping indexing. In: Combinatorial Pat-

tern Matching—26th Annual Symposium, CPM 2015, Ischia Island, Italy, June 29–July 1, 2015,
Proceedings, pp. 185–195 (2015)

12. Ganguly, A., Shah, R., Thankachan, S.V: pBWT: achieving succinct data structures for parameterized
pattern matching and related problems. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 397–407. Society for Industrial and Applied Mathematics
(2017)

123

Algorithmica (2020) 82:107–117 117

13. Ganguly, A., Shah, R., Thankachan, S.V.: Structural pattern matching-succinctly. In: 28th International
Symposium on Algorithms and Computation, ISAAC 2017, December 9–12, 2017, Phuket, Thailand,
pp. 35:1–35:13 (2017)

14. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and
string matching (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21–23, 2000, Portland, OR, USA, pp. 397–406 (2000)

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge (1997)

16. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On position restricted substring searching in
succinct space. J. Discrete Algorithms 17, 109–114 (2012)

17. Hooshmand, S., Abedin, P., Külekci, M.O., Thankachan, S.V.: Non-overlapping indexing: cache obliv-
iously. In: Annual Symposium on Combinatorial Pattern Matching, CPM 2018, July 2–4, 2018 -
Qingdao, China, pp. 8:1–8:9 (2018)

18. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2),
249–260 (1987)

19. Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and successive list index-
ing. In: Algorithms and Data Structures, 10th International Workshop, WADS 2007, Halifax, Canada,
August 15–17, 2007, Proceedings, pp. 625–636 (2007)

20. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2),
323–350 (1977)

21. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: LATIN 2006: Theoretical Infor-
matics, 7thLatinAmericanSymposium,Valdivia,Chile,March20–24, 2006, Proceedings, pp. 703–714
(2006)

22. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput.
22(5), 935–948 (1993)

23. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39, 1 (2007)
24. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Algorithm Theory—SWAT 2012: 13th Scan-

dinavian Symposium and Workshops, Helsinki, Finland, July 4–6, 2012. Proceedings, pp. 271–282
(2012)

25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
26. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and

Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, pp. 1–11 (1973)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Arnab Ganguly1 · Rahul Shah2 · Sharma V. Thankachan3

Rahul Shah
rahul@csc.lsu.edu

Sharma V. Thankachan
sharma.thankachan@ucf.edu

1 Department of Computer Science, University of Wisconsin - Whitewater, Whitewater, USA

2 Department of Computer Science, Louisiana State University, Baton Rouge, USA

3 Department of Computer Science, University of Central Florida, Orlando, USA

123

http://orcid.org/0000-0003-3331-0913

	Succinct Non-overlapping Indexing
	Abstract
	1 Introduction and Related Work
	2 Preliminaries and Notations
	2.1 Suffix Tree and Suffix Array
	2.2 Periodicity
	2.3 Simplifying Assumptions

	3 Non-overlapping indexing
	3.1 Case 1: Input Pattern P=QαQ' is Aperiodic (α<2)
	3.2 Case 2: Input Pattern P=QαQ' is Periodic (α2)

	4 Range Non-overlapping Indexing
	4.1 Proof of Lemma 5

	5 Conclusion
	Acknowledgements
	References

