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Abstract
The Connected Vertex Cover problem is to decide if a graph G has a vertex
cover of size at most k that induces a connected subgraph of G. This is a well-studied
problem, known to be NP-complete for restricted graph classes, and, in particular, for
H -free graphs if H is not a linear forest. On the other hand, the problem is known
to be polynomial-time solvable for sP2-free graphs for any integer s ≥ 1. We give
a polynomial-time algorithm to solve the problem for (sP1 + P5)-free graphs for
every integer s ≥ 0. Our algorithm can also be used for theWeighted Connected

Vertex Cover problem.

Keywords Vertex cover · Connected vertex cover · H-free graph · Polynomial-time
algorithm

1 Introduction

A set S of vertices in a graphG forms a vertex cover ofG if every edge ofG is incident
with a vertex of S. The set S is an independent set if no two vertices in S are adjacent.
These definitions lead to two classical graph problems, which are both NP-complete:
the Vertex Cover problem is to decide if a given graph G has a vertex cover of size
at most k for a given integer k; the Independent Set problem is to decide if a given
graph G has an independent set of size at least � for a given integer �. A set S of at
least k vertices of a graph G on n vertices is a vertex cover if and only if VG\S is an
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independent set (of size at most n−k). HenceVertex Cover and Independent Set

are polynomially equivalent. A vertex cover of a graph G is connected if it induces
a connected subgraph of G. In our paper, we focus on the corresponding decision
problem.

Connected Vertex Cover

Instance: a graph G and an integer k.
Question: does G have a connected vertex cover S with |S| ≤ k?

In 1977, Garey and Johnson [14] proved that Connected Vertex Cover is NP-
complete for planar graphs of maximum degree 4. More recently, Priyadarsini and
Hemalatha [31] and Fernau and Manlove [13] strengthened this result to 2-connected
planar graphs of maximum degree 4 and planar bipartite graphs of maximum degree 4,
respectively. Wanatabe, Kajita, and Onaga [36] proved that Connected Vertex

Cover is NP-complete even for 3-connected graphs. Very recently, Munaro [29]
proved the same for line graphs of planar cubic bipartite graphs and for planar bipartite
graphs of arbitrarily large girth, and Li, Yang, andWang [25] showedNP-completeness
for 4-regular graphs.

We now turn to tractable cases. Ueno, Kajitani, and Gotoh [34] proved that Con-
nected Vertex Cover is polynomial-time solvable for graphs of maximum degree
at most 3. Escoffier, Gourvès, and Monnot [12] proved the same result for chordal
graphs. As Vertex Cover is also polynomial-time solvable for chordal graphs [15],
the authors of [12] proposed a general study on the complexity of Connected Ver-

tex Cover on graph classes for whichVertex Cover is polynomial-time solvable.
This leads us to the research question of our paper:

For which classes of graphs do the complexities of Vertex Cover and Connected
Vertex Cover coincide?

Chiarelli et al. [10] studied this question by considering classes of graphs characterized
by a single forbidden induced subgraph H . Such graphs are called H -free. They
observed that the results of Munaro [29] imply that Connected Vertex Cover

is NP-complete for H -free graphs if H contains a cycle or a claw. Using Poljak’s
construction [30], Vertex Cover is readily seen to be NP-complete for graphs of
arbitrarily large girth and thus for H -free graphswhenever H contains a cycle.When H
is the claw,Vertex Cover becomes polynomial-time solvable for H -free graphs [27,
32]. Hence, there exist graphs H such thatConnected Vertex Cover andVertex
Cover have different complexities when restricted to H -free graphs (assuming P �=
NP); see [1,6] for some more examples.

So the complexity of Connected Vertex Cover is known for H -free graphs
unless H is a linear forest (the disjoint union of one ormore paths). Even the casewhere
H is a single path on r vertices (denoted Pr ) is settled neither forVertex Cover nor
for Connected Vertex Cover; it is not known if there exists an integer r such that
Vertex Cover or Connected Vertex Cover is NP-complete for Pr -free graphs.
Lokshtanov, Vatshelle, and Villanger [26] proved that Independent Set, and thus
Vertex Cover, is polynomial-time solvable for P5-free graphs. Recently, Grzesik,
Klimošová, Pilipczuk, and Pilipczuk [18] extended this to P6-free graphs. We also
note that if Vertex Cover is polynomial-time solvable on H -free graphs for some
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graph H , then it is polynomial-time solvable on (P1 + H)-free graphs. This follows
from the observation (see, e.g., [28]) that to solve the complementary problem of
Independent Set on a (P1 + H)-free graph one solves the problem on each H -free
graph obtained by removing a vertex and all its neighbours.

Theorem 1 [18] For every s ≥ 0, Vertex Cover can be solved in polynomial time
for (sP1 + P6)-free graphs.

By using the concept of the price of connectivity [7,9,20], Chiarelli et al. [10] proved
that Connected Vertex Cover is polynomial-time solvable for sP2-free graphs
for any integer s ≥ 1. For Vertex Cover this follows by combining two classical
results [4,33] (as is well-known). No other complexity results are known for Con-
nected Vertex Cover for H -free graphs if H is a linear forest.

1.1 Our Contribution

We continue the study of [10,12], and in Sects. 3 and 4, we prove the following result,
which includes polynomial-time solvability for P5-free graphs.

Theorem 2 For every s ≥ 0, Connected Vertex Cover can be solved in polyno-
mial time for (sP1 + P5)-free graphs.

In fact, bothLokshtanov et al. [26] andGrzesik et al. [18] showed that amore general
variant ofVertex Cover is polynomial-time solvable for P5-free graphs and P6-free
graphs, respectively. Namely, they considered the variant where each vertex v of the
input graph has an associated non-negative weight wu and the goal is to find a vertex
cover of total minimumweight. This result can be readily extended to (sP1 + P6)-free
graphs by using the same observation as before. In Sect. 5 we show how to generalize
Theorem 2 to hold for the weighted version of Connected Vertex Cover.

1.2 Our Method

It is easy to construct graphswith aminimumconnectedvertex cover that donot contain
a minimum vertex cover; see the graph G1 in Fig. 1. We also note that the difference
in size between a minimum vertex cover and a minimum connected vertex cover in
an (sP1 + P5)-free graph is at most 3 if s = 0, and at most 3s + 10 if s ≥ 1 [20]. We
cannot exploit this property directly as that would require an algorithm to enumerate
all minimum vertex covers in polynomial time. Moreover, the graph G2 in Fig. 1
shows that even if this were possible, it is not immediately obvious how to proceed;
one cannot necessarily hope to find a minimum connected vertex cover by extending
a minimum vertex cover. As an extra complication, for Connected Vertex Cover

one cannot extend results on H -free graphs to results on (sP1 + H)-free graphs in
a straightforward way (certainly one cannot use the technique for Vertex Cover

described before Theorem 1).
Ourmethod is based on an analysis of the structure of dominating sets in (sP1+P5)-

free graphs using a characterization of P5-free graphs due to Bacsó and Tuza [2]. We
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G1 G1 G2 G2

Fig. 1 An example of a P5-free graph G1 with a minimum connected vertex cover (coloured black in the
right-hand drawing) that contains no minimum vertex cover (there are exactly two, indicated by the sets of
black and white vertices in the left-hand drawing). The graph G2 is an example of a (P1 + P5)-free graph
with aminimum vertex cover (coloured black in the left hand drawing) that is not contained in anyminimum
connected vertex cover; clearly any connected vertex cover that contains it has at least five vertices and an
example of a minimum connected vertex cover on four vertices is indicated by the vertices coloured black
in the right-hand drawing

translate the problem into a problem in which we try to extend a partial vertex cover
into a full connected vertex cover. We solve this extension variant of Connected
Vertex Cover by using Theorem 1 (applied to the smaller class of (sP1 + P5)-free
graphs). We show how to do this in Sect. 3 and then show how to use this result to
prove Theorem 2 in Sect. 4.

An important ingredient of our proof is that we reduce the size of the input graph
by contracting an edge between two vertices u and v whenever we detect that u and v

will both belong to the connected vertex cover. This idea stems from the observation
that a connected graph G on n vertices has a connected vertex cover of size k if and
only if G contains the star K1,n−k on n − k + 1 vertices as a contraction.1

1.3 RelatedWork on (P1 + Pr)-Free Graphs and Pr-Free Graphs

The class of P5-free graphs has also been studied for other problems than Vertex

Cover and Connected Vertex Cover. In fact the computational complexity of
many of these problems jumps from polynomial-time solvable on Pr -free graphs to
NP-complete on (P1+Pr , Pr+1)-free graphs. For instance,Colouring is polynomial-
time solvable for P4-free graphs but isNP-complete for (P1+P4, P5)-free graphs [24].
Later, Hoàng et al. [21] proved that k- Colouring is polynomial-time solvable for
P5-free graphs for every k ≥ 1. Afterwards, this result was extended to (sP1 + P5)-
free graphs for any s ≥ 0 [11]. A clique transversal of a graph G is a set S ⊆ VG
such that S contains a vertex of each maximal clique of G (note that a vertex cover
can be viewed as a transversal which contains a vertex of each 2-vertex clique). It is
known that computing a smallest clique transversal can be done in polynomial time

1 If G has a connected vertex cover S of size k, then contracting every edge between vertices in S modifies
G into K1,n−k . IfG contains K1,n−k as a contraction, then VG can be partitioned into sets A, B1,…, Bn−k
that each induce a connected graph such that there exists at least one edge between a vertex from A and a
vertex from Bi for i = 1, . . . , n − k and no edges between two vertices from different B-sets. If |Bi | ≥ 2,
then we move every vertex that is adjacent to a vertex of A to A until we have only one vertex in Bi left.
This gives us a connected vertex cover of size k.
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for comparability graphs [3] and thus for P4-free graphs, but isNP-hard for cobipartite
graphs [19] and thus for (P1 + P4, P5)-free graphs. A graph G can be contracted to a
graph H if H can be obtained fromG by a sequence of edge contractions. TheLongest
Path Contractibility problem [35] is to determine the length of the longest path to
which a graph can be contracted. This problem is polynomial-time solvable for (P1 +
P5)-free graphs [23] butNP-hard for P6-free graphs [35].Golovach andHeggernes [16]
gave a fixed-parameter tractable algorithm forChoosability on P5-free graphs when
parameterized by the size of the lists of admissible colours. Recently, Bonamy et al. [5]
proved that the problems Independent Feedback Vertex Set and Independent
Odd Cycle Transversal are polynomial-time solvable for P5-free graphs.

2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops. Let
G = (V , E) be a graph. We let n = |V |. For a set S ⊆ V , the graph G[S] denotes
the subgraph of G induced by S, and we say that S is connected if G[S] is connected.
We write G − S = G[V \S], and if S = {u} we may simply write G − u. For a vertex
u ∈ V , we write NG(u) = {v | uv ∈ E} to denote the neighbourhood of u. For a set
S ⊆ V , we write NG(S) = (

⋃
u∈S NG(u))\S. A subset D ⊆ V is a dominating set

of G if every vertex of V \D is adjacent to at least one vertex of D. An edge uv of a
graph G = (V , E) is dominating if {u, v} is dominating. The contraction of an edge
uv ∈ E is the operation that replaces u and v by a new vertex adjacent to precisely
those vertices of V \{u, v} adjacent to u or v in G. Recall that for a graph H , we say
that another graph G is H-free if it does not contain an induced subgraph isomorphic
to H . The disjoint union G + H of two vertex-disjoint graphs G and H is the graph
(VG ∪VH , EG ∪ EH ). The disjoint union of r copies of a graph G is denoted by rG. A
linear forest is the disjoint union of one or more paths. The following, straightforward
lemma holds for any linear forest, but, as we repeatedly make use of it, it is convenient
to state in these terms.

Lemma 1 Let G be a connected (sP1 + P5)-free graph for some s ≥ 0. The graph
obtained from G after contracting an edge is also connected and (sP1 + P5)-free.

We will use the following result of Bacsó and Tuza [2] as a lemma in our proof.

Lemma 2 [2] Every connected P5-free graph G has a dominating set D, computable
in O(n3) time, that induces either a P3 or a complete graph.

Note that it is not difficult to compute the set D in O(n3) time; this also follows from
a more general result of Camby and Schaudt [8] for Pr -free graphs (r ≥ 1).

3 An Auxiliary Problem

In this section we prove that a variant of Connected Vertex Cover can be solved
in polynomial time for (sP1 + P5)-free graphs for every integer s ≥ 0. To prove
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Fig. 2 An example of a cover-complete triple (G, J , y) and the cover-complete triple (G′, J ′, yw)

obtained from set-contracting G via vertex w. The sets J ′ = (J\Jw) ∪ {yw}, L = NG (J\{y}) and
L ′ = NG′ (J ′\{yw}) are also displayed (the latter two sets will be formally introduced later)

Theorem 2 we will solve a polynomial number of instances of this variant, which we
show can be solved in polynomial time for (sP1 + P5)-free graphs for every s ≥ 0.
We introduce the variant by first describing its input. Let G be a connected graph, let
J ⊆ VG be a subset of the vertex set of G and let y be a vertex of J . We call the triple
(G, J , y) cover-complete if it has the following properties (see also Fig. 2):

(A) J is an independent set;
(B) y is adjacent to every vertex of G − J ;
(C) the neighbours of each vertex in J\{y} form an independent set in G − J .

We now describe the problem.

Connected Vertex Cover Completion

Instance: a cover-complete triple (G, J , y).
Goal: find a smallest connected vertex cover S of G such that J ⊆ S.

We will show how to solve this problem in polynomial time for (sP1 + P5)-free
graphs for any s ≥ 0. We first make some further definitions and then prove a number
of lemmas.

Let (G, J , y) be a cover-complete triple, where G is a connected (sP1 + P5)-free
graph. For a vertex w ∈ NG(J\{y}), we write Jw = NG(w) ∩ J . Note that, by
(B), y ∈ Jw. Let G ′ be the graph obtained from G by contracting every edge of
G[Jw ∪{w}]. As G[Jw ∪{w}] is connected, contracting its edges reduces it to a single
vertex which we denote yw. We say that we have set-contracted G into G ′ via w and
that we contracted Jw ∪ {w} into yw; see Fig. 2 for an example.

The following lemma is crucial.

Lemma 3 Let (G, J , y) be a cover-complete triple, where G is a connected (sP1+P5)-
free graph for some s ≥ 0. Let w ∈ NG(J\{y}), and let G ′ be the graph obtained
from G after set-contracting via w. Let J ′ = (J\Jw) ∪ {yw} and y′ = yw. Then the
following statements hold:

1. G ′ is a connected (sP1 + P5)-free graph;
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2. (G ′, J ′, y′) is a cover-complete triple;
3. A set S ⊆ VG is a (smallest) connected vertex cover of G that contains J ∪ {w} if

and only if (S\(J ∪ {w})) ∪ J ′ is a (smallest) connected vertex cover of G ′ that
contains J ′.

Proof We will prove 1–3 separately.

1. By Lemma 1, G ′ is connected and (sP1 + P5)-free. This proves 1.
2. We will prove (A)-(C) for (G ′, J ′, y′). Before we do this we first observe the

following. As (B) holds for (G, J , y), we find that y ∈ J is adjacent to w in G.
Hence y belongs to Jw and thus to Jw ∪ {w}, which is contracted to the single
vertex y′ in G ′. Hence, y is not in G ′ and its role has been taken over by y′, as we
show below.
We first prove (A). As J is an independent set in G, we find that J\Jw is an
independent set in G ′. For contradiction, suppose that y′ is adjacent to a vertex in
J\Jw. Then there is an edge between a vertex of J\Jw and a vertex of Jw ∪ {w}
in G. However, this not possible as J is independent in G, and thus every edge in
G[J ∪ {w}] is incident with w. Hence J ′ = (J\Jw) ∪ {y′} is an independent set
in G ′. This proves (A).
We now prove (B). Recall that y belongs to Jw ∪ {w}, which is contracted to y′
in G ′. Hence, as y is adjacent to every vertex of G − J in G, we find that y′ is
adjacent to every vertex of G ′ − J ′. This proves (B).
Finally we prove (C). Let x ∈ J ′\{y′}. Then x is not adjacent to y′, as we showed
above that J ′ is an independent set inG ′. Then NG ′(x) = NG(x) is an independent
set, as (C) holds for (G, J , y). This proves (C) and 2.

3. Let S be a connected vertex cover ofG that contains J∪{w}. Then S contains every
vertex of Jw ∪ {w}. Hence, contracting Jw ∪ {w} to y′ yields a connected vertex
cover (S\(J ∪ {w})) ∪ J ′ of G ′ that contains J ′. Any connected vertex cover S′
of G ′ that contains J ′ contains y′. Hence uncontracting the edges of G[Jw ∪ {w}]
yields a connected vertex cover (S′\J ′) ∪ J ∪ {w} of G that contains J ∪ {w}.
Moreover, a set S∗ of G that contains J ∪ {w} is a connected vertex cover of G
that is smaller than S if and only if the set (S∗\(J ∪ {w})) ∪ J ′, which contains
J ′, is a connected vertex cover of G ′ that is smaller than (S\(J ∪ {w})) ∪ J ′. This
proves 3. ��
Let (G, J , y) be a cover-complete triple.We define L J = NG(J\{y}). If there is no

ambiguity, we will just write L = L J (see also Fig. 2). Note that, by (C), NG(z) is an
independent set in G − J for every z ∈ J\{y}, but L itself might not be independent.
However, we can deduce the following lemma, which follows immediately from (C).

Lemma 4 Let (G, J , y) be a cover-complete triple. If w1 and w2 are two adjacent
vertices in L, then no vertex of J\{y} is adjacent to both w1 and w2.

We introduce two key definitions for a cover-complete triple (G, J , y). Two vertices
w1, w2 ∈ L form a pseudo-dominating pair if

– w1 and w2 are non-adjacent;
– w1 has a neighbour x1 ∈ J not adjacent to w2; and
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Fig. 3 Examples, on the left, of a pseudo-dominating pair (w1, w2), and, on the right, of a pseudo-
dominating triple (w1, w2, w3). As easily seen, the presence of either implies the existence of at least one
induced P5. To explain our notion of pseudo-domination, note that the vertices of any induced (s−1)P1+P5
dominate the graph

– w2 has a neighbour x2 ∈ J not adjacent to w1.

Three vertices w1, w2, w3 ∈ L form a pseudo-dominating triple if

– w1 is adjacent to neither w2 nor w3;
– w2 and w3 are adjacent;
– J contains two distinct vertices x1 and x2 such that

• x1 ∈ NG(w1)\NG({w2, w3}) and
• x2 ∈ (NG(w1) ∩ NG(w2))\NG(w3).

See the illustrations in Fig. 3, from which we also observe that no pseudo-dominating
pair or pseudo-dominating triple can be found in a P5-free graph.

Let S be a connected vertex cover of G that contains J . Recall that J is an indepen-
dent set. A subset L∗ ⊆ L ∩ S is a connector of S if J ∪ L∗ is connected. We present
the following two lemmas.

Lemma 5 Let (G, J , y) be a cover-complete triple, where G is an (sP1 + P5)-free
graph for some s ≥ 0. Let S be a connected vertex cover of G that contains J . If S
contains both vertices of a pseudo-dominating pair w1, w2, then S has a connector of
size at most s + 1 that contains both w1 and w2.

Proof By definition, there exist two vertices x1 and x2 in J , such thatw1 is not adjacent
to x2 and w2 is not adjacent to x1. As J is an independent set by (A) and each vertex
of L is adjacent to y by (B), we find that {x1, w1, y, w2, x2} induces a P5 in that
order. As G is (sP1 + P5)-free and J is an independent set, this means that {w1, w2}
dominates all vertices of J except for a subset I ⊆ J of at most s − 1 vertices. We
choose L∗ to consist of w1, w2 and a neighbour in L ∩ S of each vertex of I (note that
such a neighbour must exist for each vertex of I as S is connected). Then J ∪ L∗ is
connected, that is, L∗ is a connector, as each vertex of J is adjacent to somevertex of L∗
and each vertex of L∗ is adjacent to y ∈ J due to (B). Moreover, L∗ has size at most
s + 1. ��
Lemma 6 Let (G, J , y) be a cover-complete triple, where G is an (sP1 + P5)-free
graph for some s ≥ 0. Let S be a connected vertex cover of G that contains J . If
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S contains all three vertices of a pseudo-dominating triple w1, w2, w3, then S has a
connector of size at most s + 2 that contains {w1, w2, w3}.
Proof By definition, there exist two vertices x1 and x2 in J such that x1 is adjacent
to w1 but not to w2 and w3, and x2 is adjacent to w1 and w2 but not w3. Then
{x1, w1, x2, w2, w3} induce a P5 in that order. As G is (sP1 + P5)-free and J is an
independent set, this means that {w1, w2, w3} dominates all vertices of J except for a
subset I ⊆ J of at most s − 1 vertices. We choose L∗ to consist of w1, w2, w3 and a
neighbour in L ∩ S of each vertex of I (note that such a neighbour must exist for each
vertex of I as S is connected). Then J ∪ L∗ is connected, that is, L∗ is a connector, as
each vertex of J is adjacent to some vertex of L∗ and each vertex of L∗ is adjacent to
y ∈ J due to (B). Moreover, L∗ has size at most s + 2. ��

Let (G, J , y) be a cover-complete triple. Let S be a connected vertex cover of G
that contains J . If S contains both vertices of some pseudo-dominating pair of G or all
three vertices of some pseudo-dominating triple of G, then S is of type 1. Otherwise
S must contain at most one vertex of any pseudo-dominating pair and at most two
vertices of any pseudo-dominating triple of G. In that case we say that S is of type 2.
We observe that G might have connected vertex covers of only one type.

We will now see, in Lemma 8, how to find a smallest type 1 connected vertex cover
of a graph G of a cover-complete triple (G, J , y) in polynomial time (if it exists).
After that we shall prove how to find a smallest type 2 connected vertex cover of G
in polynomial time (if it exists). To compute these sets we need the following lemma,
which uses Theorem 1 in its proof.

Lemma 7 Let (G, {y}, y) be a cover-complete triple, where G is an (sP1 + P5)-free
graph for some s ≥ 0. Then it is possible to compute a smallest connected vertex cover
of G that contains y in O(ns+14) time.

Proof As G − y is (sP1 + P5)-free, we can, by Theorem 1, compute in polynomial
time a smallest vertex cover S of G − y. As (G, {y}, y) is a cover-complete triple, y
dominates G. Hence, S ∪ {y} is a smallest connected vertex cover of G that contains
y.

To establish the bound on the running time we need only describe how to compute
a smallest vertex cover of G − y in O(ns+14) time. This is achieved by presenting an
algorithm for the complementary problem of computing a maximum independent set
in G − y. We first determine by brute force, in time O(ns), the largest integer s′ ≤ s,
such that G − y has an independent set of size s′. If s′ ≤ s − 1, then s′ is the size of a
largest independent set of G − y and we are done. Otherwise, if s′ = s, we consider
each set S′ of s independent vertices ofG− y. For each choice, we remove the vertices
of S′ and their neighbours from G − y. The remaining graph is P5-free and we use
the algorithm of [26], which runs in O(n14) time, to find a maximum independent
set therein. This set is added to S′ to give an independent set of G − y. The largest
independent set found in this way must be of maximum size. ��

Using Lemmas 5–7, we are now ready to deal with type 1 smallest connected vertex
covers.
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Lemma 8 Let (G, J , y) be a cover-complete triple. It is possible to find in O(n2s+16)

time a smallest type 1 connected vertex cover of G.

Proof We can compute all pseudo-dominating pairs of G by examining each pair of
vertices in turn. This takes O(n) time per pair. As the number of pseudo-dominating
pairs is O(n2), this takes O(n3) time in total.

For each pseudo-dominating pair (w1, w2) of G, we describe how to compute a
smallest connected vertex cover Sw1,w2 of G that contains J ∪{w1, w2}. By Lemma 5,
such a vertex cover must have a connector L∗ of size at most s + 1 that contains w1
and w2. We find each such connector L∗ by considering all sets of up to s − 1 vertices
and asking whether, combined with w1 and w2, they form such a connector.

For each such set L∗, we do as follows. We first check if J ∪ L∗ is connected. If so,
then we apply Lemma 3 recursively for each w ∈ L∗. This takes O(n2) time, as we
can use Breadth First Search and set contract at the same time. Let (G ′, J ′, y′) be the
resulting cover-complete triple. Then J ′ = {y′}, which means we can apply Lemma 7
to find a smallest connected vertex cover S′ of G ′ in O(n14+s) time. By Lemma 3, we
can translate S′ into the desired vertex cover Sw1,w2 by uncontracting any contracted
edges. As, for each pseudo-dominating pair, the number of sets L∗ that contain them
is O(ns−1), and the number of pseudo-dominating pairs is O(n2), the time needed to
find these vertex covers is O(n2s+15).

For each pseudo-dominating triple (w1, w2, w3) of G we compute a smallest con-
nected vertex cover Sw1,w2,w3 of G that contains J ∪ {w1, w2, w3}. We can do this
in O(n2s+16) time by exactly the same arguments: the only differences are that the
number of pseudo-dominating triples is O(n3) and that we need to apply Lemma 6
instead of Lemma 5.

From all the computed sets Sw1,w2 and Sw1,w2,w3 we keep track (in constant time)
of a smallest one, and in the end this yields a smallest type 1 connected vertex cover
of G. This proves Lemma 8. ��

Let (G, J , y) be a cover-complete triple. Using Lemma 8 we can find a smallest
type 1 connected vertex cover of G in polynomial time. However, it might be possible
thatG has a smaller connected vertex cover of type 2. To investigate this, we introduce
two reduction rules that will transform a cover-complete triple (G, J , y) into a triple
(G ′, J ′, y′) with |J ′| < |J |. We say that such a rule is safe if the following three
conditions hold:

1. If G is (sP1 + P5)-free and connected, then G ′ is (sP1 + P5)-free and connected.
2. (G ′, J ′, y′) is cover-complete.
3. Given a smallest connected vertex cover S′ of G ′ that contains J ′, it is possible, in

O(n2s+16) time, to find a smallest connected vertex cover S of G that contains J .

Rule 1. Set-contract via x whenever x is a vertex in L ∩ NG(w1) ∩ NG(w2) for some
pseudo-dominating pair (w1, w2).
Rule 2. For any vertex w5 ∈ L that is not adjacent to any vertex of a clique of
four vertices w1, w2, w3, w4 in L , delete w5 and set-contract via u for every u ∈
L ∩ NG(w5).

Lemma 9 Rules 1 and 2 are safe.
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Proof We first consider Rule 1.
Let (G ′, J ′, y′) be the resulting triple after an application of Rule 1, where J ′ =

(J\Jx ) ∪ {yx } and y′ = yx . By Lemma 3, (G ′, J ′, y′) is a cover-complete triple. By
the same lemma, G ′ is (sP1 + P5)-free and connected if G is (sP1 + P5)-free and
connected. Hence we have proven that conditions 1 and 2 hold.

We are left to prove condition 3. Let S′ be a smallest connected vertex cover in G ′
that contains J ′. Then S = (S′\{y′}) ∪ Jx ∪ {x} is a smallest connected vertex cover
of G that contains J ∪ {x} due to Lemma 3. We prove the following claim.

Claim 1. For any type 2 connected vertex cover T of G, it holds that |T | ≥ |S|.
We prove Claim 1 as follows. Let T be a connected vertex cover T of G that is of
type 2. Suppose x /∈ T . Then, as x is adjacent to both w1 and w2, we find that T
contains both w1 and w2. Thus T is not of type 2, a contradiction. Hence T contains
x . This implies that the set T ′ = (T \(J ∪ {x})) ∪ J ′ is a connected vertex cover of
G ′ that contains J ′. As S′ is a smallest connected vertex cover of G ′ that contains J ′,
we find that |T ′| ≥ |S′|. Hence |T | = |T ′| + |Jx | ≥ |S′| + |Jx | = |S|. This proves
Claim 1.

The above means that we can do as follows. Given S′ we compute S = (S′\{y′}) ∪
Jx ∪ {x} in constant time. By Lemma 8 we can also compute, in O(n2s+16) time, a
smallest type 1 connected vertex cover S∗ of G (note that S = S∗ is possible). If S
is of type 2, then S is a smallest type 2 connected vertex cover of G, due to Claim 1.
We compare |S| and |S∗| and choose the smallest one. If S is of type 1, then S∗ is a
smallest connected vertex cover of G, again due to Claim 1. This proves condition 3
and completes the proof that Rule 1 is safe.
We now consider Rule 2. We first show that w5 cannot be in any connected vertex
cover S ofG that is of type 2. For contradiction, suppose thatw5 is in such a connected
vertex cover S. Because S is a vertex cover and {w1, w2, w3, w4} is a clique, S contains
at least three of {w1, w2, w3, w4}, say w1, w2, w3.

For i = 1, . . . , 5, let Xi be the set of neighbours of wi in J . As wi ∈ L , every
Xi �= ∅ by definition of L . By Lemma 4, we find that X1∩X2∩X3 = ∅. Let x ∈ X1. If
x /∈ X5, then X5 ⊆ X1, as otherwise (w1, w5) is a pseudo-dominating pair of vertices
that are both contained in S, which is not possible as S is of type 2. As X1 ∩ X2 = ∅,
we find that X5 ∩ X2 = ∅. This means that (w2, w5) is a pseudo-dominating pair of
vertices that are both contained in S, which is not possible either. Hence x ∈ X5. We
conclude that X1 ⊆ X5. For the same reason, we find that X2 ⊆ X5 and X3 ⊆ X5.

Recall that X1 ∩ X2 ∩ X3 = ∅. Hence we can pick a vertex x1 ∈ X1 and a vertex
x3 ∈ X3, which are both adjacent to w5 but not to w2, and so find that (w5, w1, w2)

is a pseudo-dominating triple. As all three vertices w1, w2, w5 belong to S, while S is
of type 2, this is not possible. Hence S does not contain w5.

If G − w5 is disconnected, then w5 belongs to every connected vertex cover of G.
From the above it follows that it is not possible to find a connected vertex cover of G
that contains J of type 2 in this case. Now suppose that G − w5 is connected. As no
connected vertex cover of G of type 2 may contain w5, any connected vertex cover
of G that is of type 2 must contain all neighbours of w5, and we can delete w5. The
proof of conditions 1–3 is identical to the proof for Rule 1 where the neighbours of
w5 in L take the role of the vertex x in the proof for Rule 1. ��
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We call a cover-complete triple (G, J , y) free if G has no pseudo-dominating pair
with a common neighbour in L , andmoreover,G[L] is (P1+K4)-free. By exhaustively
applying Rules 1 and 2 in arbitrary order, which we may safely do due to Lemma 9,
we have the following lemma.

Lemma 10 A cover-complete triple (G, J , y) can be modified, in O(n6) time, into a
free cover-complete triple (G ′, J ′, y′) with the following properties:

1. If G is (sP1 + P5)-free and connected, then G ′ is (sP1 + P5)-free and connected.
2. Given a smallest connected vertex cover S′ of G ′ that contains J ′, it is possible to

find in O(n2s+17) time a smallest connected vertex cover S of G that contains J .

Proof We exhaustively apply Rules 1 and 2 in arbitrary order. Checking if Rule 1 can
be applied takes O(n3) time, as there are O(n2) pairs of vertices and for each pair
it takes O(n) time to check if it is pseudo-dominating. Similarly, checking if Rule 2
can be applied takes O(n5) time. As each application of each of these rules takes
O(n) time, and reduces the size of G, this procedure will complete in O(n6) time.
By repeated use of Lemma 9, this results in a cover-complete triple (G ′, J ′, y′) that
satisfies the two properties of the lemma; in particular given a a smallest connected
vertex cover S′ ofG ′ that contains J ′, it is possible to find in O(n2s+17) time a smallest
connected vertex cover S of G that contains J , as we applied Rules 1 and 2 at most
n times and by condition 3 we need O(n2s+16) time per application. Moreover, G ′
contains no pseudo-dominating pair with a common neighbour in L ′ = L J ′ andG ′[L ′]
is (P1 + K4)-free, as otherwise we could still apply Rule 1 or Rule 2, respectively.
Hence (G ′, J ′, y′) is a free cover-complete triple. ��

Let (G, J , y) be a free cover-complete triple. A connector of a connected vertex
cover S of G is minimal if it does not properly contain a smaller connector of S. The
next three lemmas are on free cover-complete triples; the second makes use of the
first.

Lemma 11 Let (G, J , y) be a free cover-complete triple. Then every minimal connec-
tor L∗ of every type 2 connected vertex cover S of G is a clique.

Proof For contradiction, suppose that L∗ is not a clique. Then L∗ contains two non-
adjacent vertices w1 and w2. As L∗ is a minimal connector, w1 has a neighbour in J
not adjacent to w2, and vice versa. However, then (w1, w2) is a pseudo-dominating
pair of G. This is not possible, as S is of type 2. ��
Lemma 12 Let (G, J , y) be a free cover-complete triple that has a pseudo-dominating
pair (w1, w2). Then every minimal connector L∗ of every type 2 connected vertex
cover S of G has size at most 5.

Proof For contradiction, suppose that |L∗| ≥ 6. By Lemma 11, L∗ is a clique. As
(G, J , y) is free,G ′[L ′] is (K4+ P1)-free by definition. Hencew1 must be adjacent to
at least three vertices of L∗, which we denote by x1, x2, x3. Note that {w1, x1, x2, x3}
induces a K4 in G[L]. By definition of a pseudo-dominating pair, w1 and w2 are
non-adjacent. As (G, J , y) is free, w2 is not adjacent to any neighbour of w1 in L by
definition. Hence w2 is not adjacent to any vertex of {x1, x2, x3}. This means that the
set {w1, w2, x1, x2, x3} induces a K4 + P1 in G[L], a contradiction. ��
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Lemma 13 Let (G, J , y) be a free cover-complete triple that has no pseudo-
dominating pair. It is possible to find in O(n3) time a clique K ⊆ L with NG(K )∩ J =
J .

Proof We describe how to construct K . Consider a vertex w1 ∈ L that has maximal
neighbourhood in J , that is, there is no vertexw ∈ L with NG(w1)∩ J � NG(w)∩ J .
We put w1 in K . Suppose that at some point we have constructed a clique K =
{w1, . . . , wi } for some i ≥ 1. If NG(K ) ∩ J = J , then we stop. Otherwise we pick
a vertex wi+1 with maximal neighbourhood in J\NG(K ) over all vertices in L (or
equivalently, all vertices in L\{w1, . . . , wi }). Note that wi+1 exists as G is connected.

Suppose thatwi+1 is adjacent to some x ∈ NG(K )∩ J . Then, by Lemma 4, we find
that x is adjacent to a unique vertexwh in K . By the same lemma,wi+1 is not adjacent
to wh . As G has no pseudo-dominating pair and wi+1 has a neighbour in J\NG(K )

(that is, a neighbour not adjacent to wh), we find that NG(wh) � NG(wi+1). This
means that we would have chosen wi+1 earlier, namely instead of wh . Hence, wi+1
is not adjacent to any x ∈ NG(K ) ∩ J . As G has no pseudo-dominating pairs, this
means that wi+1 is adjacent to every w j with 1 ≤ j ≤ i . That is, we can extend K
into a larger clique by adding wi+1.

As we increase NG(K ) ∩ J each time we add a new vertex to K , our procedure
will stop with the desired output K = {w1, . . . , wr } for some r ≥ 1. We note that
constructing K takes O(n3) time. ��

We are now ready to prove the following theorem.

Theorem 3 For every s ≥ 0, Connected Vertex Cover Completion can be
solved in O(n2s+19) time for cover-complete triples (G, J , y), where G is an (sP1 +
P5)-free graph.

Proof Let s ≥ 0 and let (G, J , y) be a cover-complete triple, whereG is an (sP1+P5)-
free graph. We first apply Lemma 10 to obtain a free cover-complete triple (G ′, J ′, y′)
in O(n6) time. By the same lemma,G ′ is (sP1+ P5)-free. Our aim is to find a smallest
connected vertex cover of G ′ that contains J ′ in polynomial time, so that we can apply
statement 2 of Lemma 10. We first compute in O(n2s+16) time a smallest type 1
connected vertex cover S∗ of G ′ using Lemma 8. We now need to compute a smallest
type 2 connected vertex cover S′ of G ′ and compare |S′| with |S∗|.

We check if G ′ contains a pseudo-dominating pair. This takes O(n3) time, as G ′
contains O(n2) pairs of vertices and for each pair it takes O(n) time to check if it is
pseudo-dominating.

First suppose that G ′ contains a pseudo-dominating pair. For each set of at most
five vertices, we check if it is a minimal connector of size at most 5, and if so we apply
Lemma 3 on its vertices. This takes O(n2) time per set. If we obtain an instance of
the form (G ′′, {y′′}, y′′), then we apply Lemma 7, which takes O(ns+14) time. Then
we uncontract all contracted edges in O(n) time to get a connected vertex cover of G ′
of type 2. By Lemma 12, doing this for every possible minimal connector of size at
most 5 gives us a smallest type 2 connected vertex cover S′ of G ′. As we process each
set of at most five vertices in O(ns+14) time and the number of such sets is O(n5), we
find S′ in O(ns+19) time. We compare S′ and S∗ and choose the smaller of the two.
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Now suppose that G ′ has no pseudo-dominating pair. Let L ′ = NG ′(J ′\{y′}). By
Lemma 13, we can obtain in O(n3) time a clique K ⊆ L ′ with NG ′(K ) ∩ J ′ = J ′.
Let K = {w1, . . . , wr } for some r ≥ 1. As K is a clique, every vertex cover contains
at least r − 1 vertices of K . We will do as follows: first we will find in O(ns+14) time
a smallest connected vertex cover of G ′ that contains J ′ ∪ K , and then we will find in
O(ns+17) time, for i = 1, . . . , r , a smallest connected vertex cover ofG ′ that contains
J ′ ∪ (K\{wi }) and that does not contain wi . As there are O(n) cases, the total time
of processing this case is O(ns+18).

We start by computing a smallest connected vertex cover ofG ′ that contains J ′ ∪K
by set-contracting via each vertex of K . This takes O(n2) time. By Lemma 3, this
yields a cover-complete triple (G ′′, {y′′}, y′′) to whichwe apply Lemma 7 in O(ns+14)

time. Uncontracting all contracted edges yields, by Lemma 3, a smallest connected
vertex cover SK of G ′ that contains J ′ ∪ K ; this takes O(n) time. Hence, the total
running time for this step is O(ns+14), as we claimed above.

We now show how to compute, in O(ns+17) time, a smallest connected vertex cover
ofG ′ that contains J ′ ∪(K\{w1}) and that does not containw1. The cases where i ≥ 2
are done in the same way.

We first note that if G − w1 is disconnected, then w1 belongs to every connected
vertex cover of G ′. Hence, in that case there is no connected vertex cover of G ′ that
contains J ′∪(K\{w1})but does not containw1.Nowsuppose thatG−w1 is connected.
Let A = L ′\NG ′(w1) consist of all non-neighbours ofw1 in L ′. AsG ′[L ′] is (K4+P1)-
free by definition, we find that G ′[A] is K4-free. As w1 is not in the connected vertex
cover we are looking for, we remove w1. Then we set-contract, in O(n2) time, via
each neighbour of w1 in L . By Lemma 3, we may now consider the resulting cover-
complete triple (G ′′, J ′′, y′′) where G ′′ is connected and (sP1 + P5)-free. As G ′ had
no pseudo-dominating pairs, we have that G ′′ has no pseudo-dominating pairs. We
write L ′′ = NG ′′(J ′′\{y′′}). As L ′′ ⊆ A, we find that G ′′[L ′′] is K4-free.

Claim. Every minimal connector L∗ of every connected vertex cover of G ′′ that con-
tains J ′′ has size at most 3.
We prove the claim by showing that L∗ is a clique, which implies that L∗ has size
at most 3, as G ′′[L ′′] is K4-free. Suppose instead that L∗ is not a clique. Then L∗
contains two non-adjacent vertices w1 and w2. As L∗ is a minimal connector, w1 has
a neighbour in J ′′ not adjacent to w2, and vice versa. But then (w1, w2) is a pseudo-
dominating pair of G ′′: this is not possible, as G ′′ has no pseudo-dominating pairs.
This contradiction proves the claim.

We now consider all subsets in L ′′ that have size at most 3. For each set we check if it
is a minimal connector, and if so we apply Lemma 3 on its vertices. This takes O(n2)
time per subset. If we obtain an instance (G ′′′, {y′′′}, y′′′), then we apply Lemma 7
in O(ns+14) time. Then uncontracting all contracted edges yields a connected vertex
cover of G ′′ that contains J ′′. As there are O(n3) subsets in L ′′ of size at most 3, the
total running time is O(ns+17), as we claimed above. We keep track (in constant time)
of the smallest one of these connected vertex covers of G ′′. For this connected vertex
cover of G ′′, we uncontract all contracted edges again to obtain a smallest connected
vertex cover Sw1 of G

′ that contains J ′ ∪ (K\{w1}) and that does not contain w1.
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As mentioned, we pick the smallest one out of the connected vertex covers SK and
Swi , 1 ≤ i ≤ r , to obtain a smallest type 2 connected vertex cover of G ′, the size of
which we compare with the size of S∗. We pick the smallest one.

Thus we obtain in O(n6) + O(n2s+16) + O(n3) + O(ns+19) + O(ns+18) =
O(n2s+19) time a smallest connected vertex cover of G ′ that contains J ′ (both in
the case where G ′ has a pseudo-dominating pair and in the case where G ′ has no
pseudo-dominating pair). As stated, it remains to apply statement 2 of Lemma 10
to find in O(n2s+17) time a smallest connected vertex cover of G that contains J .
Hence the total running time is O(n2s+19). The correctness of our algorithm follows
immediately from the above case analysis and the description of the cases. ��

4 Our Main Result

In this sectionwe proveTheorem2, that is, we show thatConnected Vertex Cover

can be solved in polynomial time for (sP1 + P5)-free graphs for every integer s ≥ 0.
The proof relies heavily on Theorem 3. The main idea is to reduce an (sP1 + P5)-free
input graph G of Connected Vertex Cover to a polynomial number of instances
(Gi , Ji , yi ) of Connected Vertex Cover Completion. We can then solve each
of these instances (Gi , Ji , yi ) in polynomial time by Theorem 3. Then we translate
the resulting connected vertex covers of Gi (which contain Ji ) into connected vertex
covers of G. We pick the smallest of these sets as our final output.

We need two more lemmas. We use Lemma 2 to prove the first one.

Lemma 14 Let s ≥ 0 and let G be a connected (sP1 + P5)-free graph. Then G has
a connected dominating set D that is either a clique or has size at most 2s2 + s + 3.
Moreover, D can be found in O(n2s

2+s+3) time.

Proof If G is P5-free, then we apply Lemma 2 to find, in O(n3) time, a set D that
either induces a P3 or is a clique. Otherwise, as G is (sP1 + P5)-free, there exists an
integer 0 ≤ r ≤ s − 1 such that G contains an induced subgraph H isomorphic to
r P1 + P5. Let VH = {a1, . . . , ar , b1, . . . , b5} such that the b-vertices induce a P5 in
that order. We choose r to be maximum so G contains no induced (r + 1)P1 + P5.
Hence, VH dominates G. As G is (sP1 + P5)-free, G is P5+2s-free. Hence, for each
ai , there exists a path of at most 5 + 2s − 1 vertices that connects ai to b1. Let H∗
be the graph that contains H and all these ai − b1-paths. Then we choose D = VH∗ .
As VH dominates G, we find that D ⊇ VH also dominates G. Moreover, D has size
at most r(5 + 2s − 2) + 5 ≤ 2s2 + s + 2. We can find D by considering, if needed,
every set of at most 2s2 + s + 2 vertices in G and by checking if each such a set
is dominating. The latter takes O(n) time per set. Hence, this brute force procedure
takes O(n2s

2+s+3) time in total. ��
Lemma 15 Let J be an independent set in a connected graph G such that J has a
vertex y that is adjacent to every vertex of G − J . Let J ′ consist of those vertices
of J\{y} that have two adjacent neighbours in G − J (or equivalently, in G). Then
a subset S is a connected vertex cover of G that contains J if and only if S\J ′ is a
connected vertex cover of G − J ′ that contains J\J ′.
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Proof Let w ∈ J\{y} be a vertex in G with two adjacent neighbours a and b in G − J
(or equivalently in G). Let S be a subset of G. First suppose that S is a connected
vertex cover of G that contains J . Then S\{w} is a vertex cover ofG−w that contains
J\{w}. As y ∈ J and y �= w, we find that S\{w} contains y. Then every vertex of
S\{w} that belongs toG− J is adjacent to y inG[S\{w}]. Moreover, as S is connected
and J is independent, every vertex of J\{w} must be adjacent in G[S\{y}] to a vertex
of G − J . Hence, S\{w} is connected in G − w.

Now suppose that S\{w} is a connected vertex cover ofG−w that contains J\{w}.
Then S is a vertex cover of G that contains J . As y ∈ J , we find that S contains y.
As ab is an edge, S contains at least one of a and b. Then w and y are connected in S
either due to the edges ya, aw (if a is in S) or due to the edges yb, bw (if a is not in
S, as then b ∈ S). Hence S is connected in G.

We now consider the graph G − w and repeat the arguments above for any vertex
in J ′\{w}. ��

We are now ready to prove our main result.

Theorem 2 (Restated) For every s ≥ 0, Connected Vertex Cover can be solved
in O(n21s

3+26) time for (sP1 + P5)-free graphs.

Proof Let G be an (sP1 + P5)-free graph on n vertices for some s ≥ 0. We may
assume without loss of generality that G is connected. By Lemma 14 we can first
compute in O(n2s

2+s+3) time a connected dominating set D that either has size at
most 2s2 + s + 3 or is a clique. We note that, if D is a clique, any vertex cover of G
contains all but at most one vertex of D. This leads to a case analysis where we guess
the subset D∗ ⊆ D of vertices not in a minimum connected vertex cover of G. That is,
we choose a set of at most one vertex if D is a clique and a set of at most |D| vertices
otherwise, and eventually look at all such sets. As |D| ≤ 2s2 + s + 3 if D is not a
clique, the number of guesses is O(n2s

2+s+3). For each guess of D∗, we compute a
smallest connected vertex cover SD∗ that contains all vertices of D\D∗ and no vertex
of D∗. Then, in the end, we return one that has minimum size overall.

Let D∗ be a guess. Before we start our case analysis we first prove the following
claim.

Claim 1. We may assume, at the expense of an O(n16s
3+4) factor in the running time,

that D\D∗ is connected.
We prove Claim 1 as follows. Suppose D\D∗ is not connected. Recall that G[D] is
either a complete graph or has size at most 2s2 + s + 3. In the first case, G[D\D∗]
is connected. Hence, the second case applies so D has size at most 2s2 + s + 3.
Let v ∈ D\D∗. As G is (sP1 + P5)-free, G is also P5+2s-free. Hence, for each
u ∈ D\(D∗ ∪ {v}), any connected vertex cover of G contains a path of at most
5 + 2s − 1 vertices that connects u to v. We will guess all these paths from u to v

(using only vertices from G−D∗) and add their vertices to D. As the number of paths
is at most 2s2 + s + 2, this branching adds an O(n(5+2s−3)(2s2+s+2)) = O(n16s

3+4)

factor to our running time and increases our set D by at most 24s3 extra vertices. We
have proven Claim 1.
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Case 1 D∗ = ∅.
We compute a minimum vertex cover S′ of G − D in polynomial time by Theorem 1.
To be more precise, this takes O(ns+14) time by using the same arguments as in
the proof of Lemma 7. Clearly S′ ∪ D is a vertex cover of G. As D is a connected
dominating set, S′ ∪ D is even a connected vertex cover of G. Let S∅ = S′ ∪ D. As
S′ is a minimum vertex cover of G − D, S∅ is a smallest connected vertex cover of G
that contains all vertices of D. We remember S∅. Note that S∅ is found in O(ns+14)

time.

Case 2 1 ≤ |D∗| ≤ |D| (recall that |D| ≤ 2s2 + s + 3).
Recall that we are looking for a smallest connected vertex cover of G that contains
every vertex of D\D∗ but does not contain any vertex of D∗. Hence D∗ must be an
independent set and G − D∗ must be connected (if one of these conditions is false,
then we stop considering the guess D∗). Moreover, a vertex cover that contains no
vertex of D∗ must contain all vertices of NG(D∗). Hence we can safely contract not
only any edge between two vertices of D\D∗, but also any edge between two vertices
in NG(D∗) or between a vertex of D\D∗ and a vertex in NG(D∗). We perform edge
contractions recursively and as long as possible while remembering all the edges that
we contract. This takes O(n) time. Let G∗ be the resulting graph.

Note that the set D∗ still exists in G∗, as we did not contract any edges with an
endpoint in D∗. By Claim 1, the set D\D∗ in G corresponds to exactly one vertex
of G∗. We denote this vertex by y. We observe the following equivalence, which is
obtained after uncontracting all the contracted edges.

Claim 2. Every smallest connected vertex cover of G∗ that contains y and that does
not contain any vertex of D∗ corresponds to a smallest connected vertex cover of G
that contains D\D∗ and that does not contain any vertex of D∗, and vice versa.

As we obtained G∗ in O(n) time, and we can uncontract all contracted edges in O(n)

time as well, Claim 2 tells us that wemay considerG∗ instead ofG. AsG is connected
and (sP1 + P5)-free, G∗ is connected and (sP1 + P5)-free as well by Lemma 1.

We write J ∗ = NG∗(D∗) and note that y belongs to J ∗ as D is connected in G. We
now consider the graph G∗ − D∗. As G − D∗ is connected, G∗ − D∗ is connected.
By Claim 2, our new goal is to find a smallest connected vertex cover of G∗ − D∗ that
contains J ∗. By our procedure, J ∗ is an independent set of G∗ − D∗. As D dominates
G, we find that D\D∗ dominates every vertex of G − D∗ that is not adjacent to a
vertex of D∗. Hence the vertex y, to which the vertices of D\D∗ have been contracted,
is adjacent to every vertex of (G∗ − D∗) − J ∗ in the graph G∗ − D∗.

Let J ⊆ J ∗ consist of y and those vertices in J ∗ whose neighbourhood in G∗ −D∗
is an independent set. As y is adjacent to every vertex of (G∗ − D∗)− J ∗ in G∗ − D∗,
and we can remember the set J ∗\J , we can apply Lemma 15 and remove J ∗\J . That
is, it suffices to find a smallest connected vertex cover of the graph G ′ = (G∗ −D∗)−
(J ∗\J ) that contains J .

As J ∗ is an independent set of G∗ − D∗, we find that J is an independent set of G ′.
By definition, y ∈ J . As y is adjacent to every vertex of (G∗ − D∗)− J ∗ in G∗ − D∗,
we find that y is adjacent to every vertex in G ′ − J . By definition, the neighbours of
each vertex in J\{y} form an independent set in G ′ − J . Hence the triple (G ′, J , y) is

123



Algorithmica (2020) 82:20–40 37

cover-complete. This means that we can apply Theorem 3 to find in O(n2s+19) time
a smallest connected vertex cover S′ of G ′ that contains J .

We translate S′ in constant time into a smallest connected vertex cover S∗ ofG∗−D∗
that contains J ∗ by adding J ∗\J to S′. We translate S∗ in O(n) time into a smallest
connected vertex cover SD∗ of G that contains no vertex of D∗ by uncontracting any
contracted edges. It takes O(n2s+19) time to find SD∗ .
As mentioned, in the end we pick a smallest set of the sets SD∗ . This set is then a
minimum connected vertex cover of G. As there are O(n2s

2+s+3 · n16s3+4) of such
sets, each of which is found in O(n2s+19) time, the total running time is O(n21s

3+26).
The correctness of our algorithm follows immediately from the above case analysis
and the description of the cases. ��

Note that the algorithm in Theorem 2 not only solves the decision problem, but also
finds a minimum connected vertex cover of a given (sP1 + P5)-free graph.

5 Weighted Connected Vertex Cover

Let G = (V , E) be a vertex-weighted graph, that is, each vertex v of G has an
associated non-negative weight wv . The weight of a subset S ⊂ V is defined as
w(S) = ∑

v∈S wv . A vertex cover S of G is a minimum weight vertex cover if G has
no vertex cover S′ with w(S′) < w(S). The Weighted Vertex Cover problem is
to find a minimum weight vertex cover of a vertex-weighed graph G. As mentioned,
Theorem 1 can be generalized to hold for Weighted Vertex Cover [18]. As we
use Theorem 1 to prove Theorem 2, this allows us to solve the following more general
problem in polynomial time for (sP1+P5)-free graphs (s ≥ 0); note that we formulate
this generalization as an optimization problem.

Weighed Connected Vertex Cover

Instance: agraphG, an integer k and anon-negative vertexweight functionw.
Goal: find a minimum weight connected vertex cover of G.

In order to prove this result we first need to generalize the Connected Vertex

Cover Completion problem.

Weighted Connected Vertex Cover Completion

Instance: a cover-complete triple (G, J , y), whereG has a non-negative ver-
tex weight function w.

Goal: find a minimum weight connected vertex cover S of G that con-
tains J .

We first prove the following theorem.

Theorem 4 For every s ≥ 0,Weighted Connected Vertex Cover Completion

can be solved in polynomial time for cover-complete triples (G, J , y), where G is an
(sP1 + P5)-free graph with a non-negative vertex weight function w.
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Proof We can follow the same approach as in the proof of Theorem 3.We first note that
Lemma 1 is a structural lemma unrelated to the vertex weight function w. Lemma 2
was not needed for the proof of Theorem 3 and we do not need it here either. For
Lemma 3, we do not have to adjust statements 1 and 2 and only have to replace
statement 3 by its weighted version. In order to do so, we define the weight of the new
vertex yw, obtained from set-contracting via a vertex w, as the sum of the weights
of all the vertices in Jw ∪ {w}. We can then use the same arguments. Lemmas 4–6
are structural lemmas that are unrelated to the vertex weight function w, so we can
still use them. We need to replace Lemma 7 by its weighted version. We can then
use the same arguments; in particular, as we may replace Theorem 1 by its weighted
version [18]. We can also replace Lemma 8 by its weighted version: its proof uses
brute force searching, and instead of remembering and updating the smallest size of
a connected vertex cover, we keep track of the smallest weight. Lemma 9 still holds
in our setting as well. That is, after replacing condition 3 by its weighted version, we
can still use the same arguments (modified for weights of sets instead of their sizes).
The same holds for Lemma 10 (we need to replace property 2). Lemmas 11 and 12
are structural lemmas unrelated to the vertex weight function w, so we can still use
them. Lemma 13 is algorithmic, but as this lemma is not related to vertex weight
functions we can still use it. That is, any clique K ⊆ L with NG(K ) ∩ J = J found
by Lemma 13 suffices, as every (connected) vertex cover must use all but at most one
vertices of a clique. Hence, for proving Theorem 4 we can use the same arguments
as in the proof of Theorem 3; in particular the claim inside the proof of Theorem 3 is
still valid and instead of remembering the smallest size of the vertex covers found by
the algorithm so far, we remember the smallest weight. ��
We are now ready to show the following result.

Theorem 5 For every s ≥ 0,Weighted Connected Vertex Cover can be solved
in polynomial time for (sP1 + P5)-free vertex-weighted graphs.

Proof Let s ≥ 0, and let G be an (sP1 + P5)-free graph with a non-negative vertex
weight function w. We first recall that Lemma 1 is unrelated to the vertex weight
function w. The same holds for Lemma 2. Hence we may still use both lemmas. In
particular this implies that Lemma 14 still holds. Lemma 15 is a structural lemma
that is unrelated to the vertex weight function w, so we can safely use it. By these
observations and Theorem 4, we can now follow the same arguments as used in the
proof of Theorem 2. This proof is based on brute force searching. The only thing we
need to do is to remember the smallest weight of the vertex covers found during the
execution of the algorithm instead of their sizes. ��

6 Conclusions

We proved that (Weighted) Connected Vertex Cover is polynomial-time solv-
able for (sP1 + P5)-free graphs for every integer s ≥ 0. We finish our paper by posing
the following two open problems.

1. What is the complexity of Connected Vertex Cover for P6-free graphs?
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2. Does there exist an integer r such that Connected Vertex Cover is NP-
complete for Pr -free graphs?

For Question 1, it might be easier to consider first the class of (P2 + P3)-free graphs,
for which we do not know the complexity of Connected Vertex Cover either.
For Question 2, we need a better understanding of Pr -free graphs. The Connected
Vertex Cover problem belongs to a range of problems which we only know to be
polynomial-time solvable on Pr -free graphs up to some value of r . These problems
include Vertex Cover, Feedback Vertex Set, Connected Feedback Ver-

tex Set, Independent Feedback Vertex Set, Odd Cycle Transversal,
Connected Odd Cycle Transversal, Independent Odd Cycle Transver-

sal, 3-Colouring and (Dominating) Induced Matching, see [5,17] for further
details. Even our understanding of bipartite Pr -free graphs is limited. For instance,
we only know that Hypergraph 2- Colourability is polynomial-time solvable on
P7-free incidence graphs (which are bipartite) [8].
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