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Abstract
The input for the Geometric Coverage problem consists of a pair Σ = (P,R),
where P is a set of points inRd andR is a set of subsets of P defined by the intersection
of P with some geometric objects inRd . Motivated bywhat are called choice problems
in geometry, we consider a variation of the Geometric Coverage problem where
there are conflicts on the covering objects that precludes some objects from being
part of the solution if some others are in the solution. As our first contribution, we
propose two natural models in which the conflict relations are given: (a) by a graph
on the covering objects, and (b) by a representable matroid on the covering objects.
Our main result is that as long as the conflict graph has bounded arboricity there is a
parameterized reduction to the conflict-free version. As a consequence, we have the
following results when the conflict graph has bounded arboricity. (1) If theGeometric
Coverage problem is fixed parameter tractable (FPT), then so is the conflict free
version. (2) If the Geometric Coverage problem admits a factor α-approximation,
then the conflict free version admits a factorα-approximation algorithm running inFPT
time. As a corollary to our main result we get a plethora of approximation algorithms
that run in FPT time. Our other results include an FPT algorithm and a hardness result
for conflict-free version of Covering Points by Intervals. The FPT algorithm
is for the case when the conflicts are given by a representable matroid. We prove
that conflict-free version of Covering Points by Intervals does not admit an
FPT algorithm, unless FPT =W[1], for the family of conflict graphs for which the
Independent Set problem is W[1]-hard.
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1 Introduction

In anyVLSI design, floorplanning is a process which includes geometric layout design
of the final integrated circuit. The basic problem is, given a set of geometric mod-
ules/blocks/shapes of arbitrary sizes, we have to place them on a plane within a
rectangle of minimum area without any overlaps. The problem of packing rectan-
gles in a minimum area is known to be NP-hard, and there exists a PTAS to solve this
problem [9]. An issue of practical concern in VLSI chip design is chip overheating.
Efforts have been made to address the overheating problem by incorporating thermal
constraints where the objective is to distribute heat more evenly over the chips and
reduce hot spots [30].

Consider the problem of covering a set of cell phone users by a minimum number
of mobile towers. In view of the adverse effect of radio waves, it might not be wise to
place two towers in close proximity of each other. That is, the placement of a tower at
one point should preclude the placement of towers in all nearby points.

There are many similar real life geometric covering problems, for which there exist
additional constrains that need to be enforced. In this paper, we attempt to address these
problems and hope that this will initiate a new line of research directed at bridging the
gap between theory and practice.

To define our model of covering with conflicts, we start by defining the classic
covering problem, Set Cover. The input to Set Cover consists of a universe U of
size n, a family F of size m of subsets ofU and a positive integer k, and the objective
is to check whether there exists a subfamily F ′ ⊆ F of size at most k such that F ′ is
required to contain all the elements ofU . The set F ′ is called a set cover. Set Cover

is one of the Karp’s 21 NP-complete problems [26]. It is one of the central problems
in all the paradigms that have been established to cope with NP-hardness, including
Approximation Algorithms, Randomized Algorithms and Parameterized Complexity.

NowweconsiderConflict Free Interval Covering (also referred to asRain-
bow Covering in the literature), described in [1,2,6]. Let P be a set of points on
the x-axis, and I = {I1, . . . , Im} be a set of intervals on the x-axis. Also, let C =
{C1,C2, . . . ,C�} denote a set of color classes, where each color class Ci consists of a
pair of intervals from I. Moreover, for any pair of integers i, j (1 ≤ i < j ≤ �), Ci ∩
C j = ∅. We term C amatching family. For a set of intervals Q ⊆ I, Q is conflict free if
Q contains atmost one interval from each color class. Finally, we say I = [a, b] covers
a point p if and only if a ≤ c ≤ b. Now we are ready to define the problem formally.

Conflict Free Interval Covering

Input: A set of points P on the x-axis, a set of intervals I = {I1, . . . , Im} on the
x-axis and a matching family C = {C1,C2, . . . ,C�}.
Question: Does there exist a conflict free subset Q of intervals which covers all
the points in P?

The set C represents conflicts between pairs of intervals. If C is an empty set, that is,
if there are no conflicts among the intervals, then the problem (known as Cover-
ing Points by Intervals) is polynomial time solvable [17, p. 240]. On the other
hand if C is non-empty, then Arkin et al. [1] showed that Conflict Free Interval

Covering is NP-complete.

123



Algorithmica (2020) 82:1–19 3

Our first goal is to define a model in which we can express a muchmore generalized
version of conflicts beyond thematching family of conflict graphs.We use Set Cover

to defineourmodel.Anaturalway tomodel conflict is byusinggraphs. Formally stated,
we have a graph CGF , on the vertex set F and there is an edge between two sets
Fi , Fj ∈ F , if Fi and Fj represent a conflict. We call CGF a conflict graph. Observe
that in Conflict Free Interval Covering, the family C would correspond to
CGC with degree at most one. And the question of finding a conflict free subset Q of
intervals covering all the points in P becomes a problem of finding a set Q of intervals
that covers all the points in P and CGC[Q] contains only isolated vertices. The set
cover F ′ such that the vertex subset F ′ ⊆ V (CGF ) is an independent set in CGF is
called conflict free set cover.

Our Model In this paper we study the following problems in “geometric setting” in
the realm of Parameterized Complexity.

Graphical Conflict Free Set Cover (Graphical CF- SC)
Input: A universe U of size n, a family F of size m of subsets of U , a conflict
graph CGF and a positive integer k,
Parameter: k
Question: Is there a conflict free set cover F ′ ⊆ F of size at most k?

Let (A,B)-Set Cover denote a restriction of Set Cover, where every instance
(U ,F , k) of Set Cover satisfies the property thatU ⊆ A and F ⊆ B. For example,
Covering Points by Intervals corresponds to (A,B)-Set Cover where A is
the set of points on x-axis and B is the set of intervals on x-axis. Given (A,B)-Set
Cover, the corresponding Graphical CF- SC corresponds to (A,B)-Graphical
CF- SC. We refer to Sect. 2 for the definition of FPT, FPT-approximation, W[1]-
hardness and other related notions. For more details about parameterized complexity,
refer to monographs [12,15].

Observe that Graphical CF- SC reduces to Set Cover if CGF is an edgeless
graph. As the general Set Cover is hard in the parameterized framework, to design an
FPT algorithm forGraphical CF- SC, it is important that the base Set Cover prob-
lem is FPT. This restricts us to (A,B)-Set Coverwhich is either FPT or polynomial
time solvable. If we want FPT approximation algorithms then we can also restrict our-
selves to (A,B)-Set Coverwhich has either polynomial time approximation scheme
(PTAS), constant factor approximation algorithm or FPT approximation algorithms,
even if the problem is not in FPT.Wewill call (A,B)-Set Cover tractable if it admits
one of the following: a polynomial time algorithm, an FPT algorithm, an (E)PTAS, a
constant factor approximation algorithm, an FPT approximation algorithm.

The next natural question is, if we restrict ourselves to tractable (A,B)-Set Cover,
can an arbitrary conflict graph CGF yield tractable algorithms for the conflict-free
versions of (A,B)-Set Cover? Let G denote a family of graphs. Then the question
is, for which family of graphs G, does (A,B)-Graphical CF- SC admit an FPT
algorithm or an FPT approximation algorithm when CGF belongs to G.
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A problem that is central to our study is the following. Let P denote the
set of points on the x-axis and I denote the set of intervals on the x-axis.

(P,I )-Graphical CF- SC

Input:A set of points P ⊆ P , a set of intervals I = {I1, . . . , Im} ⊆ I , a conflict
graph CGI and a positive integer k.
Parameter: k
Question: Does there exist a conflict free set cover of size at most k?

In (P,I )-Graphical CF- SC, when CGI belongs to the family of matchings,
then the problem reduces to Parameterized Conflict Free Interval Cover-

ing. In fact, even if we do not care about the size of the conflict free set cover we
seek, just the decision version of a conflict free set cover set is the same as Conflict
Free Interval Covering, which is known to be NP-complete [1]. Thus, seeking a
conflict free set cover can transform a problem from being tractable to intractable.

We also use matroidal machinery to design algorithms for restricted classes of
Graphical CF- SC. Let (U ,F , k) be an instance of Set Cover. In the matroidal
model of representing conflicts, we are given a matroid M = (E,J ), where the
ground set E = F , and J is a family of subsets ofF satisfying all the three properties
of a matroid. In this paper we assume that M = (E,J ) is a linear or representable
matroid, and the corresponding linear representation is given as part of the input. See
Sect. 3.2.1 for the definition of matroid and related concepts. In the Conflict Free

Interval Covering problem, let Q denote the family of conflict free subsets of
intervals in I. One can define a partition matroid on F such that J = Q. Thus,
the question of finding a conflict free subset of intervals covering all the points in P
becomes a problem of finding an independent set in J that covers all the points in P .
The Matroidal Conflict Free Set Cover problem (Matroidal CF- SC, in
short) is defined similarly to Graphical CF- SC. In particular, the input consists of
a linear matroid M = (F ,J ) over the ground set F such that the set cover F ′ ∈ J .

Our Results In order to restrict the family of graphs towhich a conflict graph belongs,
we need to define the notion of arboricity. A graph G is said to have arboricity d if the
edges ofG can be partitioned into at most d forests. Let Gd denote the family of graphs
of arboricity d. This family includes the family of intersection graphs of low density
objects in low dimensional Euclidean space as explained in [24,25]. Specifically, this
includes planar graphs, graphs excluding a fixed graph as a minor, graphs of bounded
expansion, and graphs of bounded degeneracy. In most applications, conflict graphs
themselves belong to a family of geometric graphs. Har-Peled and Quanrud [24,25]
showed that low-density geometric objects form a subclass of the class of graphs
that have polynomial expansion, which in turn, is contained in the class of graphs of
bounded arboricity. Thus, our restriction of the family of conflict graphs to a family
of graphs of bounded arboricity covers a large class of low-density geometric objects.

Theorem 1 Let (A,B)-Set Cover be tractable and let Gd be the family of graphs
of arboricity d, where d is a constant. Then, the corresponding (A,B)-Graphical
CF- SC is also tractable if CGF belongs to Gd . In particular we obtain following
results when CGF belongs to Gd:
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– If (A,B)-Set Cover admits an FPT algorithm with running time τ(k) · nO(1),
then (A,B)-Graphical CF- SC admits an FPT algorithm with running time
2O(dk) · τ(k) · nO(1).

– If (A,B)-Set Cover admits a factor α-approximation running in time nO(1)

then (A,B)-Graphical CF- SC admits a factor α-FPT-approximation algorithm
running in time 2O(dk) · nO(1).

The proof of Theorem 1 is essentially a black-box reduction to the non-conflict
version of the problem. Thus, Theorem 1 covers a number of conflict-free version of
many fundamental Geometric Coverage problems as illustrated in Table 1. In light of
Theorem 1, it is natural to ask whether or not, these problems admit polynomial time
approximation algorithms. Unfortunately, we cannot expect these problems to admit
even a factor o(n)-approximation algorithm.This is because formost of these problems
even deciding whether there exists a conflict free solution, with no restriction on the
size of the solution, isNP-complete (for exampleRainbow Covering isNP-complete
[1]). Thus, having an o(n)-approximation algorithm would imply a polynomial time
algorithm for the decision version of the problem, which we do not expect unless
P=NP. Hence, the best we can expect for the (A,B)-Graphical CF- SC problems
is an FPT-approximation algorithm, as for many of them we can neither have an FPT
algorithm, nor a polynomial time approximation algorithm.

We complement our algorithmic findings by following hardness result. LetG denote
a family of graphs. LetG -Independent Set be the problemwhere the input is a graph
G ∈ G and a positive integer k and the objective is to decide whether there exists a
set S of size at least k such that S is an independent set in G.

Table 1 Corollaries of Theorem 1

(R2,A)-SC Complexity of
(R2,A)-SC

Complexity of (R2,A)-Graphical
CF-SC

Disks/pseudo-disks PTAS [35] α-FPT approx., ∀α > 1

Fat triangles of same size O(1) [10] O(1)-FPT approx.

Fat objects in R2 O(log∗ OPT) [5] O(log∗ OPT)-FPT approx.

O(1) density objects in R2 PTAS [25] α-FPT approx., ∀α > 1

Objects with polylog density QPTAS [25] 2O(k)nO(log∗ n) time approx., ∀α > 1

Objects with density O(1) in Rd PTAS [25] α-FPT approx., ∀α > 1

(A,B)-Set Cover where every
instance (U ,F) has VC
dimension c

O(c log(cOPT)) [8] O(c log(cOPT))-FPT approx.

Point Guard Art Gallery O(logOPT) [7] O(logOPT)-FPT approx.

Terrain Guarding PTAS [28] α-FPT approx., ∀α > 1

(P,I )-Set Cover Polynomial time [17] 2O(dk) · nO(1)-FPT algorithm

Here (R2,A)-Set Cover ((R2,A)-SC) is a geometric set cover problem where R2 is a set of points in
the plane and the covering objects are specified in the first column. The conflict graph for all the problems
is Gd , family of graphs of arboricity d, for some constant d. Density and fatness are defined in Sect. 2 for
completeness. The entries in the second column give the approximation ratio of the (R2,A)-SC problem
based on Theorem 1
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Theorem 2 Let G denote a family of graphs such that G -Independent Set isW[1]-
hard. If CGI belongs to G , then (P,I )-Graphical CF- SC does not admit an FPT
algorithm, unless FPT =W[1].

The proof of Theorem 2 is a Turing reduction based on (n, k)-perfect hash families
[36] that takes time 2O(k) · nO(1). In fact, for any fixed A and B, one should be able
to follow this proof and show W[1]-hardness for (A,B)-Graphical CF- SC, where
CGF belongs to a graph family G for which G -Independent Set is W[1]-hard.

Theorem 1 captures those families of conflict graphs that are “everywhere sparse”.
However, the (A,B)-Graphical CF- SC problem is also tractable if the conflict
graphs belong to the family of cliques. When the conflict graph belongs to a “dense
family” of graphs, we design a general theorem using matroid machinery as follows.

Theorem 3 (P,I )-Matroidal CF- SC is FPT for all representable matroids M =
(I,J ) defined over I. In fact, given a linear representation, the algorithm runs in time
2ωk · (n+m)O(1). Here, ω is the exponent in the running time of matrix multiplication.

A graph is called a cluster graph, if all its connected components are cliques. Since
cluster graphs can be captured by partition matroids, Theorem 3 implies that (P,I )-
Graphical CF- SC is FPT ifCGF belongs to the family of cluster graphs. The proof
of Theorem 2 is given in Sect. 4.

RelatedWork To the best of our knowledge, “choice” problems of this kindwere first
studied byGabowet al. [22]. The input to the problem is a directed acyclic graphG, two
vertices s and t and k other pairs of vertices. Thus, |V (G)| = 2k + 2. The objective is
to decide whether there exists a path from s to t such that at most one vertex from each
pair can be chosen. Problems of the same flavor in geometric settings were considered
by Arkin and Hassin [4]. The problem they considered is: Given a set V , a collection
of (possibly nondisjoint) subsets of V and a real matrix describing distances between
elements of V , a cover is a subset of V containing at least one representative from
each subset. The multiple-choice minimum-diameter problem is to select a cover of
minimum diameter. They also considered multiple-choice dispersion problem, which
asks to maximize the minimum distance between any pair of elements in the cover.
The problems were proven to be NP-hard. Another such problem considered by Arkin
et al. [3] is given a set of pairs of points in the plane, we want to color one point red and
another point blue in each pair so as to optimize the radii of the minimum enclosing
ball of the red points and the minimum enclosing ball of the blue points. Consuegra
and Narasimhan [11] also considered various geometric problems such as minimum
maximum gap problem, convex hull, line segment intersection, minimum spanning
Euclidean tree and others in “multiple-choice” setting.

In the parameterized setting, Set Cover, parameterized by k, is W[2]-hard [16].
In literature, various special cases of Set Cover have been studied. A few examples
are instances with sets of bounded size [18], sets with bounded intersection [29,38],
and instances where the bipartite incidence graph corresponding to the set family has
bounded treewidth or excludes some graph H as a minor [13,20]. Apart from these
results, there have also been extended study on different parameterizations of Set

Cover. A special case of Set Cover which is central to the topic of this paper is the
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one where the sets in the family correspond to some geometric object. In the simplest
geometric variant of Set Cover, called Point Line Cover, the elements of U
are points in R

2 and each set contains a maximal number of collinear points. This
version of the problem is FPT and in fact has a polynomial kernel [29]. Moreover,
the size of these kernels have been proved to be tight, under standard assumptions,
in [27]. When we take the sets to be the space bounded by unit squares, Set Cover

is W[1]-hard [33]. On the other hand when surfaces of hyperspheres are sets then
the problem is FPT [29]. These geometric results motivate a systematic study of the
Parameterized Complexity of Graphical CF- SC and Matroidal CF- SC when
the input set families as well as conflict graphs are taken from geometric settings.

2 Preliminaries

For a positive integer t , we use [t] as a shorthand for {1, 2, . . . , t}. Given a function
f : D → R and a subset D′ ⊆ D, let f |D′ denote the restriction of the function f to
the domain D′ and we say that f |D′ is injective if for any x, y ∈ D′, f (x) �= f (y).
A family of sets A is called a p-family, if the cardinality of all the sets in A is p.
Given two families of sets A and B, we define A • B = {X ∪ Y | X ∈ A and Y ∈
B and X ∩ Y = ∅}. Throughout the paper we use ω to denote the exponent in the
running time of matrix multiplication, the current best known bound for ω is < 2.373
[39]. We use e to denote the base of natural logarithm.

We use standard notation and terminology from the book of Diestel [14] for graph-
related terms which are not explicitly defined here. Given a graph G, V (G) and E(G)

denote its vertex-set and edge-set, respectively.

Low Density Graphs and Cluster Graphs A graph G is called a cluster graph, if each
connected component of G is a clique.

Definition 1 ([25]) A set of objects A in R
d (not necessarily convex or connected)

has density ρ if any object f (not necessarily in A) intersects at most ρ objects in A
with diameter greater than or equal to the diameter of f . The minimum such quantity
is called the density of A. If ρ is a constant, then A has low density.

Definition 2 ([25]) For α > 0, an object g ⊆ R
d is α-fat if for any ball b with a center

inside g, that does not contain g in its interior, we have vol(b∩ g) ≥ α · vol(b). A set
A of objects is fat if all its members are α-fat for some constant α.

PTAS A polynomial time approximation scheme (PTAS) for a minimization problem
is an algorithmA that takes an input instance, a constant ε > 0, and returns a solution
SOL such that SOL ≤ (1 + ε)OPT, where OPT is the optimal value, and the running

time of A is nO( f ( 1
ε
)), for some computable function f depending only on ε.

Parameterized Complexity The goal of Parameterized Complexity is to find ways
of solving NP-hard problems more efficiently than brute force: here the aim is to
restrict the combinatorial explosion to a parameter that is hopefully much smaller
than the input size. Formally, a parameterization of a problem is assigning a positive
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integer parameter k to each input instance and we say that a parameterized problem is
fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time
f (k)·|I |O(1), where |I | is the size of the input and f is an arbitrary computable function
depending only on the parameter k. Such an algorithm is called an FPT algorithm and
such a running time is called FPT running time. There is also an accompanying theory
of parameterized intractability using which one can identify parameterized problems
that are unlikely to admit FPT algorithms. These are essentially proved by showing
that the problem is W-hard. We will also need the concept of FPT approximation
algorithms. Towards this, we define the notion of parameterizedminimization problem
as defined in [32].

Definition 3 ([32]) A parameterized minimization problem Π is a computable func-
tion

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

The instances of a parameterized minimization problem Π are pairs (I , k) ∈ Σ∗ ×N,
and a solution to (I , k) is simply a string s ∈ Σ∗, such that |s| ≤ |I |+ k. The value of
the solution s isΠ(I , k, s). Just as for “classical” optimization problems the instances
of Π are given as input, and the algorithmic task is to find a solution with the best
possible value, where best means minimum for minimization problems.

Definition 4 ([32]) For a parameterized minimization problem Π , the optimum value
of an instance (I , k) ∈ Σ∗ × N is OPTΠ(I , k) = min s∈Σ∗

|s|≤|I |+k
Π(I , k, s). For an

instance (I , k) of a parameterized minimization problem Π , an optimal solution is a
solution s such that Π(I , k, s) = OPTΠ(I , k).

Definition 5 ([32]) Let α ≥ 1 be constant. A fixed parameter tractable α-
approximation algorithm for a parameterizedminimization problemΠ is an algorithm
that takes as input an instance (I , k), runs in time f (k)|I |O(1), and outputs a solution
s such that Π(I , k, s) ≤ α · OPT (I , k).

Note that Definition 5 only defines constant factor FPT-approximation algorithms.
The definition can in a natural way be extended to approximation algorithms whose
approximation ratio depends on the parameter k, on the instance I , or on both. The
parameterized minimization version of Set Cover (SC)1 can be defined as follows.

SC(((U ,F), k),F ′) =
{

∞ if F ′ is not a set cover of (U ,F)

min{|F ′|, k + 1} otherwise

One can similarly define parameterized minimization version of other problems such
as Graphical CF- SC and Matroidal CF- SC. For more background, the reader
is referred to the following books [12,15,19].

1 We refer readers to page number 15, paragraph titled “Capping the objective function at k + 1” in [32]
for the explanation of capping the objective function to k + 1 in the parameterized approximation.
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3 Fixed Parameter Algorithms: Proofs of Theorems 1 and 3

In this section we prove Theorems 1 and 3. The proof of Theorem 1 is based on a ran-
domization schemewhile the proof of Theorem3 uses the idea of efficient computation
of representative families [21].

3.1 FPT Algorithms forGRAPHICAL CF-SC

Our algorithm for Theorem 1 is essentially a randomized reduction from (A,B)-
Graphical CF- SC to (A,B)-Set Cover, when the conflict graph has bounded
arboricity. Towards this, we start with a forest decomposition of graphs of bounded
arboricity and then apply a randomized process to obtain an instance of (A,B)-Set
Cover. However, to design a deterministic algorithm we use the construction of
universal sets. Towards that we will exploit the following definition and theorem.

Definition 6 ([36]) An (n, t)-universal set F is a set of functions from {1, . . . , n} to
{0, 1}, such that for every subset S ⊆ {1, . . . , n}, |S| = t , the setF |S = { f |S | f ∈ F }
is equal to the set 2S of all the functions from S to {0, 1}.
Theorem 4 ([36]) There is a deterministic algorithm with running time
O(2t tO(log t)n log n) that constructs an (n, t)-universal set F such that |F | =
2t tO(log t) log n.

Now we are ready to give the proof of Theorem 1. For an ease of presentation we
restate Theorem 1.

Theorem 1 Let (A,B)-Set Cover be tractable and let Gd be the family of graphs
of arboricity d, where d is a constant. Then, the corresponding (A,B)-Graphical
CF- SC is also tractable if CGF belongs to Gd . In particular we obtain following
results when CGF belongs to Gd:
– If (A,B)-Set Cover admits an FPT algorithm with running time τ(k) · nO(1),
then (A,B)-Graphical CF- SC admits an FPT algorithm with running time
2O(dk) · τ(k) · nO(1).

– If (A,B)-Set Cover admits a factor α-approximation (or PTAS) running in
time nO(1) (or n f (ε)) then (A,B)-Graphical CF- SC admits a factor α FPT
approximation algorithm (or FPT PTAS) running in time 2O(dk) ·nO(1) (or 2O(dk) ·
n f (ε)).

Proof Let (U ,F ,CGF , k) be an instance of (A,B)-Graphical CF- SC, where
CGF , belongs to Gd . Our algorithm has the following phases.

Decomposing CGF into Forests We apply the known polynomial time algorithm
[23] to decompose the graph CGF into T1, . . . , Td where Ti is a forest in CGF and⋃d

i=1 E(Ti ) = E(CGF ). Let vroot be a special vertex such that vroot does not belong
to V (CGF ) = F . Now for every Ti , and for every connected component of Ti , we
pick an arbitrary vertex and connect it to vroot. Now if we look at the tree induced on
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V (Ti ) ∪ {vroot} then it is connected and we will denote this tree by T ′
i . Furthermore,

we will treat each T ′
i as a tree rooted at vroot. This automatically defines parent-child

relationship among the vertices of T ′
i . This completes the partitioning of the edge set

of CGF into forests.

Step 1: Random Coloring Independently color the vertices of CGF into blue and
green uniformly at random. That is, we color the vertices of CGF blue and green
with probability 1

2 . Furthermore, we color {vroot} to blue.

Step 2: A Cleaning Process Now we apply a cleaning procedure so that we get a set
Z such that Z is an independent set in CGF and it contains F ′. Let B denote the
set of vertices that have been colored blue. We start by deleting every vertex in B.
Now for every edge ( f1, f2) in CGF [V (CGF )\B], we do as follows. We know that
( f1, f2) belongs to some tree T ′

i and thus either f1 is a child of f2 or vice-versa. If f1
is a child then we delete f1, otherwise we delete f2. Let the resulting set of vertices
be Z . By construction Z is an independent set in CGF . Next we show that F ′ ⊆ Z
with probability at least 1

2k(d+1) . Towards that we say that the following event is good.

Every vertex in F ′ is colored green and every parent of every vertex in F ′ in
every tree T ′

i is colored textsfblue.

Let Sparent denote the set of parents of every vertex in F ′ in every tree T ′
i . Since,

we have at most d trees and the size of F ′ is upper bounded by k we have that
|Sparent| ≤ kd. We say that F ′ (Sparent) is green (blue) to mean that every vertex in
F ′ (Sparent) is colored green (blue). Thus,

Pr[good event happens] = Pr[F ′ is green ∧ Sparent is blue]
= Pr[F ′ is green] × Pr[Sparent is blue]
≥ 1

2k(d+1)
.

The second equality follows from the following fact. The set F ′ is an independent set
in CGF and Sparent ⊆ NCGF (F ′)∪ {vroot}. Thus, these sets are pairwise disjoint and
hence the events F ′ is colored green and Sparent is colored blue are independent.

Assume that the good event happened. Then, Sparent ∩ Z = ∅, and F ′ ⊆
V (CGF )\B. Moreover, since Sparent ⊆ B, a vertex x ∈ V (CGF )\B, colored
green, can not belongs toF ′, if it is a child of some vertex in some tree T ′

i after delet-
ing the vertices ofB. Thus, by deleting a vertex that is a child in an edge ( f1, f2), we
do not delete any vertex from F ′. This implies that with probability at least 1

2k(d+1) ,
we have that F ′ ⊆ Z .

Solving the Problem Let Q be a parameterized algorithm for (A,B)-Set Cover

running in time τ(k) · nO(1). Recall that (U ,F ,CGF , k) is an instance of (A,B)-
Graphical CF- SC. Now to test whether there exists a conflict free set cover F ′
of size at most k, we run Q on (U , Z , k). If the algorithm return Yes, we return
the same for (A,B)-Graphical CF- SC. Else, we repeat the process by randomly
finding another Z∗ by following Steps 1 and 2 and then running the algorithm Q on

123



Algorithmica (2020) 82:1–19 11

the instance (U , Z∗, k) and returning the answer accordingly. We repeat the process
2k(d+1) time. If we fail to detect whether (U ,F , k,CGF ) is a Yes instance of (A,B)-
Graphical CF- SC in 2k(d+1) rounds, then we return that the given instance is a
No instance. Thus, if (U ,F , k,CGF ) is No instance of (A,B)-Graphical CF- SC,
then we always return No. However, if (U ,F , k,CGF ) is a Yes instance of (A,B)-
Graphical CF- SC then there exists a set F ′, that is a conflict free set cover of size
at most k. The probability that we will not find a set Z containing F ′ in q = 2k(d+1)

rounds is upper bounded by

(
1 − 1

q

)q

≤ 1

e
.

Thus, the probability that we will find a set Z containing F ′ in q rounds is at least
1 − 1

e ≥ 1
2 . Thus, if the given instance is a Yes instance then the algorithm succeeds

with probability at least 1
2 . The running time of the algorithm is upper bounded by

τ(k) · 2k(d+1) · nO(1).

Derandomizing theAlgorithm Now to design our deterministic algorithm all wewill
need to do is to replace the randomized coloring function with a deterministic coloring
function that colors the vertices in F ′ green and all the vertices in Sparent blue. To
design such a coloring function we set t = k(d+1), and use Theorem 4 to construct an
(n, t)-universal setF such that |F | = 2t tO(log(t)) log n. The algorithm to constructF
takes O(2t tO(log(t))n log n) time. Finally, to derandomize our algorithm, rather than
randomly coloring vertices with {blue, green}, we go through each function f in the
familyF and view the vertices that have assigned 0 asblue and others asgreen. By the
properties of (n, t)-universal sets we know that there exists a function f that correctly
colors the vertices inF ′ with 1 and every vertex in Sparent with 0. Thus, the set Z f we
will obtain by applying Step 2 will contain the set F ′. After this the correctness of the
algorithm follows from the correctness of the algorithmQ. Thus, the running time of
the algorithm is upper bounded by τ(k) · |F | · nO(1) = τ(k) · 2k(d+1)+o(kd) · nO(1).
This completes the proof of the first part.

Let S be a factor α-approximation algorithm for (A,B)-Set Cover running in
time nO(1). To obtain the desired FPT approximation algorithm with factor α, we do
as follows. We only give the deterministic version of the algorithm based on the uses
of universal sets. As before, let (U ,F ,CGF , k) be an instance of (A,B)-Graphical
CF- SC, whereCGF , belongs to Gd . We again set t = k(d+1), and use Theorem 4 to
construct an (n, t)-universal set F such that |F | = 2t tO(log(t)) log n. The algorithm
to construct F takes O(2t tO(log(t))n log n). We go through each function f in the
familyF and view the vertices that have been assigned 0 as blue and others as green.
If there exists a conflict-free set cover F
 of size at most k, then by the properties of
(n, t)-universal set we know that (a) there exists a function f that correctly colors the
vertices inF
 with 1 and every vertex in Sparent with 0. Thus, the set Z f wewill obtain
by applying the Step 2, will contain the set F
. Thus, to design the approximation
algorithm, for every f ∈ F , we first construct Z f . And for each such Z f we run
S on (U , Z f , k). This could either return that there is No solution, or returns a
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solution F ′ which is a factor α-approximation to the instance (U , Z f , k). If for some
f ∈ F , S returns F ′ of size at most αk when run on (U , Z f , k) then the algorithm
returns F ′. In all other cases the algorithm returns that the given instance is a No
instance. In other words, our algorithm returns No if the following happens: For every
f , S either returns that (U , Z f , k) is a No instance or the size of the solution, F ′,
returned by S when run on (U , Z f , k), is more than αk. The correctness of the
algorithm follows from the properties of universal sets (i.e., the statement (a)) and the
correctness of the algorithm S . The running time of the algorithm is upper bounded
by: |F | × Running time of S = 2k(d+1)+o(kd) · nO(1). This completes the proof of
the theorem. ��

3.2 FPT Algorithm for (P,I )-MATROIDAL CF-SC

In this section we will design an FPT algorithm proving Theorem 3. We start with
restating the statement.

Theorem 3 (P,I )-Matroidal CF- SC is FPT for all representable matroids M =
(I,J ) defined over I. In fact, given a linear representation, the algorithm runs in time
2ωk · (n+m)O(1). Here, ω is the exponent in the running time of matrix multiplication.

Towards that we need to define some basic notions related to representative families
and results regarding their fast and efficient computation.

3.2.1 Matroids and Representative Families

In this subsection we give definitions related to matroids and representative families.
For a broader overview on matroids we refer to [37], see also [12, Chapter 12].

Definition 7 A pair M = (E,J ), where E is a ground set andJ is a family of subsets
(called independent sets) of E , is a matroid if it satisfies the following conditions:

(I1) ∅ ∈ J .
(I2) If A′ ⊆ A and A ∈ J then A′ ∈ J .
(I3) If A, B ∈ J and |A| < |B|, then there is e ∈ (B\A) such that A ∪ {e} ∈ J .

An inclusion wise maximal set of J is called a basis of the matroid. Using axiom
(I3) it is easy to show that all the bases of a matroid have the same size. This size is
called the rank of the matroid M , and is denoted by rank(M).

Linear Matroids Let A be a matrix over an arbitrary field F and let E be the set of
columns of A. For A, we define matroid M = (E,J ) as follows. A set X ⊆ E is
independent (that is X ∈ J ) if the corresponding columns are linearly independent
over F. The matroids that can be defined by such a construction are called linear
matroids, and if a matroid can be defined by a matrix A over a field F, then we say
that the matroid is representable over F. That is, a matroid M = (E,J ) of rank d is
representable over a field F if there exist vectors in Fd corresponding to the elements
such that linearly independent sets of vectors correspond to independent sets of the
matroid. A matroid M = (E,J ) is called representable or linear if it is representable
over some field F.
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Partition Matroids A partition matroid M = (E,J ) is defined by a ground set
E being partitioned into (disjoint) sets E1, . . . , E� and by � non-negative integers
k1, . . . , k�. A set X ⊆ E is independent if and only if |X ∩ Ei | ≤ ki for all i ∈
{1, . . . , �}.
Proposition 1 ([34, Proposition 3.5]) A representation over a field of sizeO(|E |) of a
partition matroid can be constructed in polynomial time.

Representative Families Now we define the notion of q-representative family and
state the results about its efficient computation.

Definition 8 (q-Representative Family [34]) Given a matroid M = (E,J ) and a
family S of subsets of E , we say that a subfamily Ŝ ⊆ S is q-representative for S if
the following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S
disjoint from Y with X ∪ Y ∈ J , then there is a set X̂ ∈ Ŝ disjoint from Y with
X̂ ∪ Y ∈ J . If Ŝ ⊆ S is q-representative for S we write Ŝ ⊆q

rep S.
In other words if some independent set in S can be extended to a larger independent

set by adding q new elements, then there is a set in Ŝ that can be extended by the same
q elements.

Lemma 1 ([21]) Let M = (E,J ) be a matroid and S be a family of subsets of E. If
S ′ ⊆q

rep S and Ŝ ⊆q
rep S ′, then Ŝ ⊆q

rep S.
Theorem 5 ([21,31]) Let M = (E,J ) be a linear matroid of rank n, and let
S = {S1, . . . , St } be a p-family of independent sets. Let A be a n × |E | matrix
representing M over a field F, where F is Q or F = F( p̂)� for a prime p̂ and � ∈ N.

Then, there is a deterministic algorithm computing Ŝ ⊆q
rep S of size np

(p+q
p

)
in

O
((p+q

p

)
tp3n2 + t

(p+q
q

)ω−1
(pn)ω−1

)
+ (n + |E |)O(1) operations over F.

We also use the notion of [k]-representative families for our algorithm, which is
defined as follows.

Definition 9 ([k]-Representative Family) Let M = (E,J ) be a matroid, and let S be
a family of subsets of E such that for all S ∈ S, |S| ≤ k. For any i ∈ [k], S i denote
the subset of S exactly containing all the sets in S of size exactly i . We say that a
subfamily Ŝ ⊆ S is a [k]-representative for S if the following holds. For any i ∈ [k],
Ŝ i = Ŝ ∩ {A ∈ Ŝ : |A| = i} is a (k − i)-representative for S i (i.e., Ŝ i ⊆k− j

rep S i ). If

Ŝ ⊆ S is [k]-representative for S, we write Ŝ ⊆[k]
rep S or Ŝ ⊆1...k

rep S.

3.2.2 Algorithm for (P,I )-MATROIDAL CF-SC

Now we have gathered all the tools required to prove Theorem 3. Let (P, I, k, M =
(I,J )) be an instance of (P,I )-Matroidal CF- SC, where P is a set of points
on the x-axis, I = {I1, . . . , Im} is a set of intervals on the x-axis, and M = (I,J ) is
a matroid over the ground set I. The objective is to find a set cover S ⊆ I of size at
most k such that S ∈ J .
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To design our algorithm for (P,I )-Matroidal CF- SC, we will use efficient
computation of representative families applied on a dynamic programming algorithm.
Let P = {p1, . . . , pn} denote the set of points sorted from left to right. Next, we
introduce the notion of family of partial solutions. Let

P i =
{
X

∣∣∣ X ⊆ I, X ∈ J , |X | ≤ k, X covers p1, . . . , pi
}

denote the family of subsets of intervals of size at most k that covers the first i points
and are independent in the matroid M = (I,J ). Furthermore, for every 1 ≤ j ≤ k,
by P i j , we denote the subset of P i containing sets of size exactly j . Thus,

P i =
k⊎
j=1

P i j .

In this subsection, whenever we talk about independent sets, these are independent
sets of the matroid M = (I,J ). Furthermore, we assume that we are given, AM , a
linear representation of M . Without loss of generality, we can assume that AM is a
n′ × |I| matrix, where n′ ≤ |I|.

Observe that (P, I, k, M = (I,J )) is a Yes instance of (P,I )-Matroidal

CF- SC if and only ifPn is non-empty. Also, observe thatPn is non-empty if and only
if P̂n ⊆0

rep Pn is non-empty. We capture this into the following lemma.

Lemma 2 Let (P, I, k, M = (I,J )) be an instance of (P,I )-Matroidal CF-

SC. Then, (P, I, k, M = (I,J )) is a Yes instance of (P,I )-Matroidal CF- SC

if and only if Pn is non-empty if and only if P̂n ⊆0
rep Pn is non-empty.

For an ease of presentation, by P0, we denote the set {∅}. The main step of the
algorithm is the computation of P̂ i ⊆1···k

rep P i for all i ∈ [n]. Recall from the definition

of [k]-representative family that P̂ i is a union of P̂ i1, . . . , P̂ ik where P̂ i j ⊆k− j
rep P i j

for all 1 ≤ j ≤ k. In particular, for every 1 ≤ i ≤ n, we compute

P̂ i =
k⋃
j=1

P̂ i j

where P̂ i j ⊆k− j
rep P i j for all 1 ≤ j ≤ k. The following observation follows from the

definition of representative families.

Observation 1 Let i ∈ [n] and P̂ i ⊆1···k
rep P i . Then, P̂ i is a 0-representative for P i

(i.e., P̂ i ⊆0
rep P i ).

Proof If P i = ∅, then P̂ i = ∅, and the proof of the observation is trivial. Now on,
we assume that P i �= ∅. Then, P̂ i is a 0-representative for P i if and only if P̂ i �= ∅.
Towards proving P̂ i �= ∅, consider a set X ∈ P i . Let j = |X |. By the definition
of P i , we have that 1 ≤ j ≤ k and X ∈ P i j . Since P̂ i ∩ {Y ∈ P̂ i : |Y | = j} is a
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(k − j)-representative for P i j (because P̂ i ⊆1···k
rep P i ), we have that P̂ i is nonempty.

This completes the proof of the observation. ��
Lemma 3 Let (P, I, k, M = (I,J )) be an instance of (P,I )-Matroidal CF-

SC. Then, a collection {P̂ i ⊆1···k
rep P i : 1 ≤ i ≤ n} of families where each family is of

size at most 2k · |I| · k, can be found in time 2ωk · (n + |I|)O(1).

Proof We describe a dynamic programming based algorithm. Let P = {p1, . . . , pn}
denote the set of points sorted from left to right and D be a n + 1-sized array indexed
with {0, . . . , n}. The entryD[i]will store a family P̂ i ⊆1···k

rep P i .Wefill the entries in the
array D in the increasing order of index. For i = 0, D[i] = {∅}. Let i ∈ {0, 1, . . . , n}
and assume that we have filled all the entries until the row i (i.e, D[i] will contain a
family P̂ i ⊆1···k

rep P i ). For any interval I ∈ I, let �I be the lowest index in [n] such
that p�I is covered by I . Let Zi+1 denote the set of intervals I ∈ I that covers the
point pi+1. Now we compute

N i+1 =
⋃

I∈Zi+1

(D[�I − 1] • {I }) ∩ J (1)

Notice that in the Eq. 1, the union is taken over I ∈ Zi+1. Since for any I ∈ Zi+1, I
covers pi+1, the value �I −1 is strictly less than i +1 and hence Eq. 1 is well defined.
Moreover, any set in the family N i+1 covers the points p1, . . . , pi+1. Let N (i+1) j

denote the subfamily of N i+1 containing the sets of size exactly j . ��
Claim N i+1 ⊆1···k

rep P i+1.

Proof Let S ∈ P(i+1) j and Y be a set of size at most k − j (which is essentially an
independent set in M) such that S ∩ Y = ∅ and S ∪ Y ∈ J . We will show that there
exists a set Ŝ ∈ N (i+1) j such that Ŝ ∩ Y = ∅ and Ŝ ∪ Y ∈ J . This will imply the
desired result.

Since S covers {p1, . . . , pi+1}, there is an interval J in S which covers pi+1.
Since S covers {p1, . . . , pi+1} and J covers pi+1, the set of intervals S′ = S\{J }
covers {p1, . . . , pi+1}\{p�J , . . . , pi+1} and J covers {p�J , . . . pi+1}. Let Y ′ = Y ∪
{J }. Notice that S′ ∪ Y ′ = S ∪ Y ∈ J , |S′| = j − 1, |Y ′| = k − j + 1 and
S′ covers {p1, . . . , pi+1}\{p�J , . . . , pi+1}. This implies that S′ ∈ P(�J−1)( j−1). By
our assumption, D[�J − 1] = P̂(�I−1) ⊆1···k

rep P(�I−1). Let P̂(�J−1)( j−1) = {X ∈
P̂(�J−1) : |X | = j − 1}. Since P̂(�J−1)( j−1) ⊆k− j+1

rep P(�J−1)( j−1), S′ ∈ P(�J−1)( j−1),
and S′ ∪ Y ′ ∈ J , we have that there exists S∗ ∈ P̂(�J−1)( j−1) ⊆ D[�J − 1] such
that S∗ ∩ Y ′ = ∅ and S∗ ∪ Y ′ ∈ J . By Eq. 1, Ŝ = S∗ ∪ {J } is in N i+1, because
S∗ ∪ {J } ∈ J . Since |S∗| = j − 1, we have that |Ŝ| = j . Observe that Ŝ ∈ N (i+1) j ,
Ŝ ∩ Y = ∅, and Ŝ ∪ Y ∈ J . This completes the proof of the claim. ��

For every 1 ≤ j ≤ k, we compute N̂ (i+1) j ⊆k− j
rep N (i+1) j using Theorem 5. Then,

we fill the entry for D[i + 1] as follows.

D[i + 1] =
k⋃
j=1

N̂ (i+1) j (2)
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Lemma 1 and Claim 3.2.2 implies that D[i + 1] ⊆1···k
rep P i+1.

Now we analyse the running time of the algorithm. Consider the time to compute
D[i+1].We alreadyhave computed the family corresponding toD[r ] for all r ∈ [i]. By
Theorem5, for any r ∈ [i] and j ∈ [k], the subset ofD[r ] containing sets of size exactly
j is upper bounded by |I| · k · (kj). Hence, the cardinality ofN (i+1) j is upper bounded

by |I|2 ·n · k · (kj). Thus, by Theorem 5, the time to compute N̂ (i+1) j ⊆k− j
rep N (i+1) j is

bounded by
((k

j

)2 + (k
j

)ω
)

(n + |I|)O(1) = (k
j

)ω · (n + |I|)O(1) number of operations

over the field in which AM is given and |N̂ (i+1) j | ≤ |I| · k · (k
j

)
. Hence the total

running time to compute D[i + 1] for any i + 1 ∈ [n] is
k∑
j=1

(
k

j

)ω

· (n + |I|)O(1) = 2ωk · (n + |I|)O(1).

By Theorem 5, the cardinality of D[i + 1] is bounded by,

|D[i + 1]| =
k∑
j=1

|N̂ (i+1) j | ≤
k∑
j=1

|I| · k ·
(
k

j

)
= 2k |I| · k.

This completes the proof. ��
Theorem 3 follows from Observation 1 and Lemmata 2 and 3. Now we explain an

application of Theorem 3. Consider the problem (P,I )-Graphical CF- SC, where
CGI is a cluster graph. Let (P, I,CGI , k) be an instance of (P,I )-Graphical
CF- SC. Let C1, . . .Ct be the connected components of CGI , where each Ci is a
clique for all i ∈ [t]. In any solution we are allowed to pick at most one vertex (an
interval) from Ci for any i ∈ [t]. This information can be encoded using a partition
matroid M = (I = V (C1)� . . .�V (Ct ),J )where any subset I ′ ⊆ I is independent
inM if and only if |I ′ ∩V (Ci )| ≤ 1 for any i ∈ [t]. As a result, by applying Theorem 3
along with Proposition 1, we get the following corollary.

Corollary 1 (P,I )-Graphical CF- SC, whenCGI is a cluster graph, canbe solved
in time 2ωk · (n + |I|)O(1).

This corollary also gives an FPT algorithm for the Conflict Free Set Cover

with the running time 2ωk · (n + |I|)O(1). However, Banik et. al [6] have already con-
sidered theConflict Free Set Cover from parameterized complexity perspective,
and gave an FPT algorithm with the running time 2k · (n + |I|)O(1).

4 Hardness

In this section we prove the following theorem.

Theorem 2 Let G denote a family of graphs such that G -Independent Set isW[1]-
hard. If CGI belongs to G , then (P,I )-Graphical CF- SC does not admit an FPT
algorithm, unless FPT =W[1].
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Fig. 1 Here Vi and Vj are the set of vertices in G which are colored by i and j , respectively

Towards provingTheorem2,wegive aTuring reduction fromG -Independent Set

to (P,I )-Graphical CF- SC where CGI belongs to G . To give such a reduction
we need the notion of (n, k)-perfect hash families. Towards that, we first define (n, k)-
perfect hash family and state a theorem about efficient computation of these objects.

Theorem 6 ([36]) There is a deterministic algorithm with running time
ekkO(log k)n log n that constructs an (n, k)-perfect hash family F of cardinality at
most ekkO(log k) log n.

Proof of Theorem 2 Wegive a Turing reduction fromG -Independent Set. Let (G, k)
be an instance of G -Independent Set and n = |V (G)|. We first apply Theorem 6
and construct a (n, k)-perfect hash familyF . Then, we construct |F | many instances
of (P,I )-Graphical CF- SC such that the parameter value in each instance is k
and (G, k) is a Yes instance of G -Independent Set if and only if at least one instance
constructed is a Yes instance of (P,I )-Graphical CF- SC. Moreover, the running
time of our reduction will be ekkO(log k)n log n.

Now we give details about the reduction. As mentioned earlier let (G, k) be the
given instance of G -Independent Set and n = |V (G)|. For each f ∈ F we create
an instance (P, I,G, k). Notice that in our reduction the conflict graph is G itself.
Now we create a set of points P = {p1 = (1, 0), p2 = (2, 0), . . . , pk = (k, 0)}. We
can think of f as a coloring function on V (G), where each vertex in v gets a color from
[k]. For each vertex v ∈ V (G) we create an interval Iv = [ f (v) − 0.5, f (v) + 0.5].
Notice that any interval Iv covers only the point p f (v). See Fig. 1 for an illustration.

Now we prove that (G, k) is a Yes instance of G -Independent Set if and only if
at least one instance constructed is a Yes instance of (P,I )-Graphical CF- SC.
Suppose (G, k) is a Yes instance of G -Independent Set and S is an independent set
of size k in G. By the property of (n, k)-perfect hash family, there is a function f such
that f |S is injective. Now consider the instance (P, I,G, k) created for f . The set of
intervals {Iv : v ∈ S} covers P and S is independent in G. Hence (P, I,G, k) is
a Yes instance. Now suppose there is an instance (P, I,G, k) created for a function
f ∈ F , such that (P, I,G, k) is a Yes instance. This implies that there is a k sized
independent set in G and hence (G, k) is a Yes instance of G -Independent Set.

Because of Theorem 6, the running time of our reduction is ekkO(log k)n log n. This
completes the proof of the theorem. ��
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