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Abstract
We study the Maximum Cardinality Matching (MCM) and the Maximum Weight
Matching (MWM) problems, on trees and on some special classes of graphs, in the
online preemptive and the incremental graphmodels. In theOnline Preemptivemodel,
the edges of a graph are revealed one by one and the algorithm is required to always
maintain a valid matching. On seeing an edge, the algorithm has to either accept
or reject the edge. If accepted, then the adjacent edges are discarded, and all rejec-
tions are permanent. In this model, the complexity of the problems is settled for
deterministic algorithms (McGregor, in: Proceedings of the 8th international work-
shop on approximation, randomization and combinatorial optimization problems, and
proceedings of the 9th international conference on randomization and computation:
algorithms and techniques, APPROX’05/RANDOM’05, Springer, Berlin, pp. 170–
181, 2005; Varadaraja, in: Automata, languages and programming: 38th international
colloquium, ICALP2011, Zurich, Switzerland, proceedings, part I, pp. 379–390, 2011.
https://doi.org/10.1007/978-3-642-22006-7_32). Epstein et al. (in: 30th international
symposium on theoretical aspects of computer science, STACS 2013, Kiel, Germany,
pp. 389–399, 2013. https://doi.org/10.4230/LIPIcs.STACS.2013.389) gave a 5.356-
competitive randomized algorithm for MWM, and also proved a lower bound on the
competitive ratio of (1 + ln 2) ≈ 1.693 for MCM. The same lower bound applies for
MWM. In the Incremental Graphmodel, at each step an edge is added to the graph, and
the algorithm is supposed to quickly update its current matching. Gupta (in: 34th inter-
national conference on foundation of software technology and theoretical computer
science, FSTTCS2014, 15–17Dec 2014,NewDelhi, India, pp. 227–239, 2014. https://
doi.org/10.4230/LIPIcs.FSTTCS.2014.227) proved that for any ε ≤ 1/2, there exists
an algorithm that maintains a (1+ ε)-approximate MCM for an incremental bipartite

graph in an amortized update time of O
(
log2 n

ε4

)
. No (2−ε)-approximation algorithm

with a worst case update time of O(1) is known in this model, even for special classes
of graphs. In this paper we show that some of the results can be improved for trees, and
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for some special classes of graphs. In the online preemptivemodel, we present a 64/33-
competitive randomized algorithm (which uses only two bits of randomness) forMCM
on trees. Inspired by the above mentioned algorithm for MCM, we present the main
result of the paper, a randomized algorithm for MCMwith a worst case update time of
O(1), in the incremental graph model, which is 3/2-approximate (in expectation) on
trees, and 1.8-approximate (in expectation) on general graphs with maximum degree
3. Note that this algorithmworks only against an oblivious adversary.We derandomize
this algorithm, and give a (3/2 + ε)-approximate deterministic algorithm for MCM
on trees, with an amortized update time of O(1/ε). We also present a minor result for
MWM in the online preemptive model, a 3-competitive randomized algorithm (that
uses only O(1) bits of randomness) on growing trees (where the input revealed upto
any stage is always a tree, i.e. a new edge never connects two disconnected trees).

Keywords Online preemptive model · Incremental dynamic graph model ·
Primal-dual analysis

1 Introduction

TheMaximum (Cardinality/Weight) Matching problem is one of the most extensively
studied problems in Combinatorial Optimization. See Schrijver’s book [13] and refer-
ences therein for a comprehensive overview of classic work. A matching M ⊆ E is a
set of disjoint edges. Traditionally the problemwas studied in the offline setting where
the entire input is available to the algorithm beforehand. But over the last few decades
it has been extensively studied in various other models where the input is revealed in
pieces, like the vertex arrival model (adversarial and random), the edge arrival model
(adversarial and random), streaming and semi-streaming models, the online preemp-
tivemodel, etc. [4–6,9–11]. In this paper,we study theMaximumCardinalityMatching
(MCM) and the MaximumWeight Matching (MWM) problems, on trees and on some
special classes of graphs, in the Online Preemptive model, and in the Incremental
Graph model. (Refer to Sect. 1.2 for a comparison between the two models.)

In the online preemptive model, the edges arrive online in an arbitrary order, and the
algorithm is supposed to accept or reject an edge on arrival. If accepted, the algorithm
can reject it later, and all rejections are permanent. The algorithm is supposed to always
maintain a valid matching. There is a 5.828-competitive deterministic algorithm due
toMcGregor [11] for MWM, and a tight lower bound for deterministic algorithms due
to Varadaraja [15]. Epstein et al. [5] gave a 5.356-competitive randomized algorithm
for MWM, and also proved a 1.693 lower bound on the competitive ratio achievable
by any randomized algorithm for MCM. No better lower bound is known for MWM.

In [3], the authors gave the first randomized algorithm with competitive ratio
(28/15) less than 2 forMCM in the online preemptivemodel on growing trees (defined
in Sect. 1.1). In Sect. 2, we extend their algorithm to give a 64/33-competitive ran-
domized (which uses only two bits of randomness) algorithm for MCM on trees.
Although the algorithm is an extension of the one for growing trees in [3], it motivates
the algorithm (described in Sect. 3) for MCM in the incremental graph model.

123



Algorithmica (2019) 81:4275–4292 4277

Note that the adversary presenting the edges in the online preemptive model is
oblivious, and does not have access to the random choices made by the algorithm.

In recent years, algorithms for approximate MCM in dynamic graphs have been the
focus of many studies due to their wide range of applications. Here [1,2,8,14] is a non-
exhaustive list some of the studies. The objective of these dynamic graph algorithms is
to efficiently process an online sequence of update operations, such as edge insertions
and deletions. The algorithmhas to quicklymaintain an approximatemaximummatch-
ing despite an adversarial order of edge insertions and deletions. Dynamic graph prob-
lems are usually classified according to the types of updates allowed: incrementalmod-
els allow only insertions, decremental models allow only deletions, and fully dynamic
models allow both.We studyMCM in the incrementalmodel. Gupta [7] proved that for
any ε ≤ 1/2, there exists an algorithm that maintains a (1+ ε)-approximate MCM on

bipartite graphs in the incremental model in an amortized update time of O
(
log2 n

ε4

)
.

We present a randomized algorithm for MCM in the incremental model with a worst
case update time of O(1), which is 3/2-approximate (in expectation) on trees, and
1.8-approximate (in expectation) on general graphs with maximum degree 3. This
algorithm works only against an oblivious adversary. We derandomize this algorithm,
and give a (3/2+ ε)-approximate deterministic algorithm for MCM on trees, with an
amortized update time of O(1/ε). Note that the algorithm of Gupta [7] is based on
multiplicative weights update method (the method assigns initial weights to the dual
variables, and updates these weights multiplicatively and iteratively), and it seems
unlikely that a better running time analysis for special classes of graphs is possible.

We present a minor result in Sect. 4, a 3-competitive randomized algorithm (which
uses only O(1) bits of randomness) for MWM on growing trees in the online pre-
emptive model. Although growing trees are a very restricted class of graphs, there are
a couple of reasons to study the performance of the algorithm on this class of input.
Firstly, almost all lower bounds, including the one due to Varadaraja [15] for MWM
are on growing trees. Secondly, even for this restricted class, the analysis is involved.
We use the primal-dual technique for analyzing the performance of this algorithm, and
show that this analysis is indeed tight by giving an example, for which the algorithm
achieves the competitive ratio 3. We describe the algorithm for general graphs, but are
only able to analyze it for growing trees, and new ideas are needed to prove a better
bound for general graphs.

1.1 Preliminaries

We use primal-dual techniques to analyze the performance of all the randomized algo-
rithms described in this paper. Here are the well known Primal and Dual formulations
of the matching problem.

Primal LP Dual LP
max

∑
e wexe min

∑
v yv∀v : ∑

v∈e xe ≤ 1 ∀e ≡ (u, v) : yu + yv ≥ we

xe ≥ 0 yv ≥ 0
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For MCM, we = 1 for any edge. Any matching M implicitly defines a feasible primal
solution. If an edge e ∈ M , then xe = 1, otherwise xe = 0.

Suppose an algorithm outputs amatchingM , then let P be the corresponding primal
feasible solution. Let D denote some feasible dual solution. The following claim can
be easily proven using weak duality.

Claim 1 If D ≤ α · P, then the algorithm is α-competitive.

If M is any matching, then for an edge e, X(M, e) denote the set of edges in M that
conflict with e. We will say that a vertex (resp. an edge) is covered by a matching
M if there is an edge in M which is incident with (resp. adjacent to) the vertex (resp.
edge). We also say that an edge is covered by a matching M if it belongs to M .

In the online preemptive model, growing trees are trees where a new edge has
exactly one vertex common with already revealed edges.

1.2 Online Preemptive Model Versus Incremental GraphModel

There are twomain differences between thesemodels. Firstly, in the online preemptive
model, once an edge is rejected/removed from the matching maintained by the algo-
rithm, it cannot be added into its matching, whereas in the incremental graph model,
rejected/removed edges can be added to the matching later on. Secondly, there is no
restriction on how much time an algorithm in the online preemptive model can use
to process a revealed edge, whereas in the incremental graph model, the algorithm
is supposed to process the revealed edge fast. The term “fast” is used loosely, and is
specific to any problem. For example, anMCMon general graphs can be found in time
O(m

√
n) when the entire input is available [12]. But for dynamic graphs, every time

an edge is inserted, the algorithm is expected to maintain a matching, approximate if
not exact, in time smaller than the time required by the optimal offline algorithm for
MCM (say, for instance, in O(polylog n) amortized time).

2 MCM in the Online Preemptive Model

In this section,we present a randomized algorithm (that uses only 2 bits of randomness)
for MCM on trees in the online preemptive model.

The algorithm maintains four matchings M1, M2, M3, M4, and it tries to ensure
that a large number of input edges are covered by some or other matchings. (Here,
the term “large number” is used vaguely. Suppose more than four edges are incident
with a vertex, then at most four of them will belong to matchings, one to each.) One
of the four matchings is output uniformly at random. A more formal description of
the algorithm follows.
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Algorithm 1 Randomized Algorithm for MCM on Trees
1. Pick l ∈ {1, 2, 3, 4} uniformly at random.
2. The algorithm maintains four matchings: M1, M2, M3, and M4.
3. On arrival of an edge e, the processing happens in two phases.

(a) The Augment phase. The new edge e is added to each Mi in which there are no edges adjacent
to e.

(b) TheSwitching phase.For i = 2, 3, 4, in order,Mi ← Mi\X(Mi , e)∪{e}, provided this decreases
the quantity

∑
j∈[4],i �= j ,X(Mi ,e)⊆X(Mj ,e)

|Mi ∩ Mj |.
4. Output Ml .

Although l is picked randomly at the beginning of the algorithm, this concrete value
is not known to the adversary (as we assume that the adversary is oblivious, and cannot
look at the random choices made by the algorithm).

Note that in the Switching phase, the expected size of the matching stored by the
algorithm might decrease. For example, consider two disjoint edges e1 and e2 that
have been revealed. Each of them will belong to all four matchings. So the expected
size of the matching stored by the algorithm is 2. Now, if an edge e is revealed that
intersects both e1 and e2, then e will be added to M2 and M3. The expected size of the
matching is now 1.5. The important thing to notice here is that the decrease is not too
much, and we are able to prove that the competitive ratio of the algorithm still remains
below 2.

We begin with the following observations.

1. After an edge is revealed, its endpoints are covered by all four matchings.
2. If an edge e does not belong to any matching, then there exists four edges

e1, e2, e3, e4 that intersect with e, such that ∀i ∈ [4], ei is contained in Mi . And
also, there does not exist a pair of edges among these edges, which belong to the
same matching. Otherwise, in the Switching phase, the edge e would be added to
some matching.

3. Every edge is covered by at least three matchings.

At any stage, after a revealed edge has been processed, all the edges that have been
revealed until then, can be classified in to one of the following three types. (Note that
this classification can change over the course of input.) An edge is called internal if
there are edges incident with both its endpoints which belong to some matching (not
necessarily the same). An edge is called a leaf edge either if one of its endpoints is a
leaf or if all the edges incident with one of its endpoints do not belong to anymatching.
An edge is called bad if its endpoints are covered by only three matchings (counting
multiplicities).

We begin by proving some properties about the algorithm. The key structural lemma
that keeps “influences” of bad edges local is given below.

Lemma 2 At most five consecutive vertices on a path can have bad edges incident with
them.

According to Lemma 2, there can be at most four consecutive internal bad edges or at
most five bad leaf edges incident with five consecutive vertices of a path. Lemma 2 is
proved in “Appendix”.
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Once all edges have been seen, we distribute the primal charge among the dual
variables, and use the primal-dual framework to infer the competitive ratio. If the
endpoints of every edge are covered with four matchings, then the distribution of dual
charge is easy. However we do have bad edges, and would like the edges in matchings
to contribute more to the endpoints of these edges. Then, the charge on the other
endpoint would be less and we need to balance this through other edges. We present
the details as follows.

Lemma 3 There exists an assignment of the primal charge to the dual variables such
that the dual constraint for each edge e ≡ (u, v) is satisfied at least 33

64 in expectation,
i.e. E[yu + yv] ≥ 33

64 .

Proof Root the tree at an arbitrary vertex. For any edge e ≡ (u, v), let v be the parent
vertex, and u be the child vertex. The dual variable assignment is done after the entire
input is seen, as follows.

Dual variable management An edge e will distribute its primal charge between its
endpoints. The exact values are discussed below. In general, we look to transfer all
of the primal charge to the parent vertex. But this does not work and we need a finer
strategy. This is detailed below.

• If e does not belong to any matching, then it does not contribute to the values of
dual variables.

• If e belongs to a single matching then, depending on the situation, one of 0, ε, 2ε,
3ε, 4ε, or 5ε of its primal charge will be assigned to u and the rest will be assigned
to v.

• If e belongs to two matchings, then at most 6ε of its primal charge will be assigned
to u as required. The rest is assigned to v.

• If e belongs to three or four matchings, then its entire primal charge is assigned to
v.

We will show that yu + yv ≥ 2 + ε for such an edge, when summed over all four
matchings. The value of ε is chosen later.

For the sake of analysis, if there are bad leaf edges incident with both the endpoints
of an internal edge, then we treat it like a bad internal edge. We need to do this because
a bad leaf edge might need to transfer its entire primal charge to the vertex on which
there are edges which do not belong to any matching (refer to Case 3 below). Note
that the endpoints of the internal edge would still be covered by three matchings, even
if we assume that the bad leaf edges do not exist on its endpoints. The analysis breaks
up into eight cases.

Case 1 Suppose e does not belong to any matching. There must be a total of at least 4
edges incident with u and v besides e, each belonging to a distinct matching. Of these
4, at least a total of 3, say e1, e2, and e3, must be from children of u and v, to u and
v respectively. The edges e1, e2, and e3, each assign a charge of at least 1 − 5ε to yu
and yv , respectively. Therefore, yu + yv ≥ 3 − 15ε ≥ 2 + ε.

Case 2Suppose e is a bad leaf edge that belongs to a singlematching, and internal edges
are incident with v. By Observation 3, there must exist an edge e1 from a child vertex
of v to v, which belongs to a single matching, and another edge e2, also belonging to
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a single matching from v to its parent vertex. The edge e assigns a charge of 1 to yv .
If e1 assigns a charge of 1 or 1− ε or 1− 2ε or 1− 3ε or 1− 4ε to yv , then e2 assigns
ε or 2ε or 3ε or 4ε or 5ε respectively to yv . In either case, yu + yv = 2 + ε. The key
fact is that e1 could not have assigned 5ε to its child vertex, as that would imply that
there are more than five consecutive vertices on a path having bad edges incident with
them, which is a contradiction to Lemma 2.

Case 3 Suppose e is a bad leaf edge that belongs to a single matching, and internal
edges are incident with u. This implies that there are two edges e1 and e2 from children
of u to u, each belonging to a single distinct matching. The edge e assigns a charge
of 1 to yv . Both e1 and e2 assign a charge of at least 1 − 4ε to yu . In either case,
yu + yv ≥ 3 − 8ε ≥ 2 + ε. The key fact is that neither e1 nor e2 could have assigned
more than 4ε to their corresponding child vertices. Since, then by Lemma 2 (as in
Case 2), e cannot be a bad edge.

Case 4 Suppose e is an internal bad edge. This implies (by Lemma 2) that there is an
edge e1 from a child vertex of u to u, which belongs to a single matching. Also, there
is an edge e2, from v to its parent vertex (or from a child vertex v to v), which also
belongs to a single matching. The edge e assigns its remaining charge (1 or 1 − ε or
1 − 2ε or 1 − 3ε or 1 − 4ε) to yv . If e1 assigns a charge of 1 or 1 − ε or 1 − 2ε or
1− 3ε or 1− 4ε to yu , then e2 assigns ε or 2ε or 3ε or 4ε or 5ε respectively to yv . In
either case, yu + yv = 2 + ε. The key fact is that e1 could not have assigned 5ε to its
child vertex. Since, then by Lemma 2 (as in Case 2), e cannot be a bad edge.

Case 5 Suppose e is not a bad edge, and it belongs to a single matching. Then either
one of the follwing subcases is possible.

• There are at least two edges e1 and e2 from child vertices of u or v to u or v

respectively.
• There is e1 on u and e2 on v, each belonging to a single matching.
• There is one edge e3 from a child vertex of u or v to u or v, respectively, which
belongs to two matchings.

• There is one edge e4 from a child vertex of u or v to u or v, respectively, which
belongs to single matching, and one edge e5 from v to its parent vertex which
belongs to two matchings.

In either case, yu + yv ≥ 3 − 10ε ≥ 2 + ε.

Case 6 Suppose e is a bad edge that belongs to two matchings, and an internal edge is
incident with u or v. This implies that there is an edge e1, from a child vertex of u to u
or from v to its parent vertex, which belongs to a single matching. The edge e assigns
a charge of 2 to yv , and the edge e1 assigns a charge of ε to yu or yv respectively. Thus,
yu + yv = 2 + ε.

Case 7 Suppose e is not a bad edge and it belongs to two matchings. This means
that either there is an edge e1 from a child vertex of u to u, which belongs to at least
one matching, or there is an edge from child vertex of v to v that belongs to at least
one matching, or there is an edge from v to its parent vertex which belongs to two
matchings. The edge e assigns a charge of 2 among yu and yv . The neighboring edges
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assign a charge of ε to yu or yv (depending onwhich vertex it is incident with), yielding
yu + yv ≥ 2 + ε.

Case 8 Suppose, e belongs to 3 or 4 matchings, then trivially yu + yv ≥ 2 + ε.
From the above cases, yv + yv ≥ 3− 15ε and yu + yv ≥ 2+ ε. The best value for

the competitive ratio is obtained when ε = 1
16 , yielding E[yu + yv] ≥ 33

64 . ��

Lemma 3 immediately implies Theorem 4 using Claim 1.

Theorem 4 Algorithm1 is a 64
33 -competitive randomized algorithm for finding anMCM

on trees.

3 MCM in the Incremental GraphModel

In this section, we present our main result, a randomized algorithm (that uses only
O(1) bits of randomness) for MCM in the incremental graph model, which is 3/2-
approximate (in expectation) on trees, and is 1.8-approximate (in expectation) on
general graphs with maximum degree 3, with O(1) worst case update time per edge.
It is inspired by the randomized algorithm for MCM on trees described in Sect. 2.
In the online preemptive model, we cannot add edges to the matching which were
discarded earlier, which results in the existence of bad edges. But in the incremental
graph model, there is no such restriction. For some i ∈ [3], let e ≡ (u, v) ∈ Mi be
switched with some edge e′ ≡ (u, u′), i.e. Mi ← Mi\{e} ∪ {e′}. If there is an edge
e′′ ≡ (v, v′) ∈ Mj for i �= j , then we can add e′′ to Mi if possible. Using this simple
trick, we get a better approximation ratio in this model, and also the analysis becomes
significantly simpler. Details follow.

Algorithm 2 Randomized Algorithm for MCM
1. Pick l ∈ {1, 2, 3} uniformly at random..
2. The algorithm maintains three matchings: M1, M2, and M3.
3. When an edge e is inserted, the processing happens in two phases.

(a) The Augment phase. The new edge e is added to each Mi in which there are no edges adjacent
to e.

(b) The Switching phase. For i = 2, 3, in order,Mi ← Mi\X(Mi , e)∪{e}, provided that it decreases
the quantity

∑
j∈[3],i �= j ,X(Mi ,e)⊆X(Mj ,e)

|Mi ∩ Mj |.
For every edge e′ discarded from Mi , add edges on the other endpoint of e

′ in Mj (∀ j �= i) to Mi
if possible.

4. Output the matching Ml on query.

Note that the endpoints of every edge will be covered by all three matchings, and
hence all three matchings are maximal.

We again use the primal-dual technique to analyze the performance of this algorithm
on trees.
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Lemma 5 There exists an assignment of the primal charge amongst the dual vari-
ables such that the dual constraint for each edge e ≡ (u, v) is satisfied at least 2

3 in
expectation.

Proof Root the tree at an arbitrary vertex. For any edge e ≡ (u, v), let v be the parent
vertex, and u be the child vertex. The dual variable assignment is done at the end of
the input/on query, as follows.

• If e does not belong to any matching, then it does not contribute to the values of
dual variables.

• If e belongs to a single matching, then its entire primal charge is assigned to v as
yv = 1.

• If e belongs to two matchings, then its entire primal charge is assigned equally
amongst u and v, as yu = 1 and yv = 1.

• If e belongs to three matchings, then its entire primal charge is assigned to v as
yv = 3.

The analysis breaks up into three cases.

Case 1 Suppose e does not belong to any matching. There must be a total of at least
2 edges incident amongst u and v besides e, each belonging to a distinct matching,
from their respective children. Therefore, yu + yv ≥ 2.

Case 2 Suppose e belongs to a single matching. Then either there is an edge e′ incident
with u or v which belongs to a single matching, from their respective children, or there
is an edge e′′ incident with u or v which belongs to two matchings. In either case,
yu + yv ≥ 2.

Case 3 Suppose e belongs to two or three matchings, then yu + yv ≥ 2 trivially. ��
Lemma 5 immediately implies Theorem 6 using Claim 1.

Theorem 6 Algorithm 2 is a 3
2 -approximate (in expectation) randomized algorithm

for MCM on trees, with a worst case update time of O(1).

We also analyze Algorithm 2 for general graphs with maximum degree 3, and prove
the following Theorem.

Theorem 7 Algorithm 2 is a 1.8-approximate (in expectation) randomized algorithm
for MCM on general graphs with maximum degree 3, with a worst case update time
of O(1).

We use the following lemma to prove Theorem 7.

Lemma 8 There exists an assignment of the primal charge amongst the dual vari-
ables such that the dual constraint for each edge e ≡ (u, v) is satisfied at least 5

9 in
expectation.

Proof The dual variable assignment is done at the end of the input/or query, as follows.

• If e does not belong to any matching, then it does not contribute to the value of
dual variables.
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• If e belongs to a single matching, then there are two subcases.

1. W.l.o.g., if u is covered by a single matching, then the primal charge xe = 1
is divided as follows. yu is assigned 1/2 + ε, and yv is assigned 1/2 − ε.

2. If both u and v are covered by at least two matchings, then the primal charge
xe = 1 is divided equally among the dual variables yu and yv .

• If e belongs to two or three matchings, then its entire primal charge is divided
equally amongst u and v.

The analysis breaks up into three cases.

Case 1Suppose e belongs to a singlematching. Then, yu+yv ≥ 1+1/2−ε+1/2−ε =
2 − 2ε ≥ 3/2 + ε.

Case 2 Suppose e does not belong to any matching. Then u and v must be covered
by a total of at least 3 matchings (counting multiplicities). W.l.o.g., if u is covered
by a single matching, then v has to be covered by at least two matchings. Hence,
yu = 1/2 + ε, and yv ≥ 1. Otherwise, both u and v are covered by at least two
matchings, then yu ≥ 1 and yv ≥ 1. Therefore, yu + yv ≥ 3/2 + ε.

Case 3 Suppose e belongs to two or three matchings, then yu + yv ≥ 3/2+ ε trivially.
The proof of the lemma is complete with ε = 1/6. ��

Lemma 8 immediately implies Theorem 7 using Claim 1.

3.1 A Deterministic Algorithm

Note that Algorithm 2 only works against an oblivious adversary. In this section, we
derandomize Algorithm 2 to give a (3/2+ ε)-approximation deterministic algorithm,
for MCM on trees, with an amortized update time of O(1/ε), for any ε ≤ 1/2.

Algorithm 3 Deterministic Algorithm for MCM
1. Let ε ∈ (0, 1/2] be some input parameter, and c = 1.
2. The algorithm maintains four matchings: M1, M2, M3 and a support matching M4.
3. When an edge e is inserted, the processing happens in four phases.

(a) The Augment phase. The new edge e is added to each Mi in which there are no edges adjacent
to e.

(b) The Switching phase. For i = 2, 3, in order,Mi ← Mi\X(Mi , e)∪{e}, provided |X(Mi , e)| = 1
and it decreases the quantity

∑
j∈[3],i �= j |Mi ∩ Mj |.

For the edge e′ that is discarded from Mi , add edges on the other endpoint of e′ in Mj (∀ j ∈
[4], j �= i) to Mi if possible.

(c) The Support phase. If the edge ewas not added to any Mi , ∀i ∈ [3], in the Augment or Switching
phase, then add it to the support matching M4 if there are no edges adjacent to it in M4.

(d) The ChangeCurr phase. If |Mc| <
(|Mi | + |Mj |

)
/(2(1 + ε)) such that i, j, c ∈ [3] and

i �= j �= c, then set c = k if Mk is the matching of maximum size among M1, M2, M3.

4. On query, output matching Mc .

Note that there are twomore phases in this algorithm than in Algorithm 2, and there
is also a minor modification in the description of the Switching phase. These changes
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are done to ensure that the size of any matching maintained by the algorithm never
decreases (which helps with the analysis as pointed out later). An edge can be added to
Mi in the Switching phase only if it has one conflicting edge in Mi . But this can result
in M2 and M3 not being maximal matchings (which is again required in the analysis as
pointed out later). The only way this can happen is if some edge e is not added to any
matching in the Augment phase, and later on, after the Switching phase, its endpoints
are not covered by M2 and M3. We add such an edge to the support matching M4, and
this edge is later added to M2 and M3 in the Switching phase, thereby ensuring their
maximality. With these modifications, the approximation ratio claimed by Theorem 6
still holds on average size of the matchings M1, M2, M3 stored by this algorithm.

We prove the following theorem for Algorithm 3.

Theorem 9 Algorithm 3 is
( 3
2 + ε

)
-approximate for MCM on trees, with an amortized

update time of O(1/ε).

Proof We first prove the approximation ratio, and then argue about the update time
per edge.

Step (3c) in Algorithm 3 ensures that at each stage |Mc| ≥ (|Mi | + |Mj |
)
/(2(1 +

ε)), such that i, j, c ∈ [3] (where i �= j �= c), and Mc is the current matching which
will be output by the algorithm on query. Let M be the optimummatching at any stage.
Theorem 6 implies that

|Mc| + |Mi | + |Mj |
3

≥ 2

3
|M |

�⇒ |Mc| + 2(1 + ε)|Mc| ≥ 2|M |
�⇒

(
3

2
+ ε

)
|Mc| ≥ |M |.

Note that the approximation ratio trivially holds after the first edge is inserted as we
set c = 1 (and will hold even if we set c = 2 or 3, because the first edge is added to
all three matchings M1, M2, M3).

In the Augment or the Switching phase, O(1) time is spent per edge. Let
M ′′, M ′′

c , M ′′
i , M ′′

j represent the matchings M, Mc, Mi , Mj immediately after c was
updated, and letM ′, M ′

c, M
′
i , M

′
j represent the respectivematchings immediately after

the previous time cwas updated. In theChangeCurr phase, atmost 2|M ′′| time is poten-
tially spent (because the size of any matching stored by the algorithm is at most |M ′′|)
while changing the current matching output by the algorithm. But we show that this
happens very rarely. If |M ′′| ≥ 2|M ′|, then at least |M ′′|/2 edges have been inserted
between the two most recent updates of c. This implies an amortized update time of
O(1) per edge.

Now suppose |M ′′| < 2|M ′|. Immediately after the previous update of c, |M ′
c| ≥

(|M ′
i |+|M ′

j |)/2 (becauseMc is themaximum sizematching amongM1, M2, andM3).
Just before c is updated in the ChangeCurr phase, |M ′′

c | < (|M ′′
i | + |M ′′

j |)/(2(1+ ε)).
So, the change in the value of |Mc| is at most

|M ′′
i | + |M ′′

j |
2(1 + ε)

− |M ′
i | + |M ′

j |
2

.
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But this value is at least zero, as the size of any matching can never decrease by the
description of the algorithm. Hence,

|M ′′
i | + |M ′′

j |
2(1 + ε)

− |M ′
i | + |M ′

j |
2

≥ 0

�⇒ |M ′′
i | + |M ′′

j | − (1 + ε)(|M ′
i | + |M ′

j |) ≥ 0

�⇒ (|M ′′
i | − |M ′

i |) + (|M ′′
j | − |M ′

j |) ≥ ε(|M ′
i | + |M ′

j |)
�⇒ (|M ′′

i | − |M ′
i |) + (|M ′′

j | − |M ′
j |) ≥ ε|M ′| . . . M ′

i , M
′
j are maximal.

Thus, along with the fact that |M ′′| < 2|M ′|, �(ε|M ′′|) edges have been inserted
between the two most recent updates of the value of c. This implies an amortized
update time of O(1/ε) per edge, and finishes the proof. ��

4 MWM in the Online Preemptive Model

In this section, we present a randomized algorithm (that uses only O(1) bits of ran-
domness) for MWM in the online preemptive model, and analyze its performance for
growing trees. The algorithm is motivated by the deterministic algorithm for MWM
due to McGregor [11]. McGregor’s algorithm is easy to describe—if the weight of the
new edge is more than (1+ γ ) times the weight of the conflicting edges in the current
matching, then evict them and add the new edge. The algorithm is (1+ γ )(2+ 1/γ )-
competitive, and attains the best competitive ratio of 3+2

√
2 ≈ 5.828 for γ = 1√

2
. It

achieves this competitive ratio for the following example. Start by presenting an edge
of weight x0 = 1 to the algorithm. This edge will be added to the matching. Assume
inductively that after iteration i , the algorithm’s matching has only the edge of weight
xi . In iteration i + 1, present an edge of weight yi+1 = (1 + γ )xi on one endpoint of
xi (we slightly abuse the notation here, and say that xi is also the name of the edge of
weight xi ). This edge will not be accepted in the algorithm’s matching. Give an edge
of weight xi+1 = (1+γ )xi +ε on the other endpoint of xi . This edge will be accepted
in the algorithm’s matching, and xi will be evicted. This process terminates for some
large n, letting xn+1 = (1+γ )xn . The edge of weight xn+1 will not be accepted in the
algorithm’s matching. The algorithm will hold only the edge of weight xn , whereas
the optimum matching would include the edges of weights y1, . . . , yn+1, xn+1. It can
be easily inferred that this gives the required lower bound on the competitive ratio.

Notice that the edges presented in the example depended on γ . To beat this, we
maintain two matchings, with γ values γ1 and γ2 respectively, and choose one at
random. We describe the algorithm next.

Algorithm 4 Randomized Algorithm for MWM
1. Maintain two matchings M1 and M2. Let j = 1 with probability p, and j = 2 otherwise.
2. On receipt of an edge e:

For i = 1, 2, if w(e) > (1 + γi )w(X(Mi , e)), then Mi = Mi\X(Mi , e) ∪ {e}.
3. Output Mj .
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Note that we cannot just output the best of twomatchings because that could violate
the constraints of the online preemptive model.

4.1 Analysis

We use the primal-dual technique to analyze the performance of this algorithm. The
primal-dual technique used to analyze McGregor’s deterministic algorithm for MWM
described in [3] is fairly straightforward. However the management becomes com-
plicated with the introduction of randomness, and we are only able to analyze the
algorithm in a very restricted class of graphs, which are growing trees.

Theorem 10 The expected competitive ratio of Algorithm 4 on growing trees is

max

{
1 + γ1

p
,
1 + γ2

1 − p
,
(1 + γ1)(1 + γ2)(1 + 2γ1)

p · γ1 + (1 − p)γ2 + γ1γ2

}
,

where p is the probability to output M1.

We maintain both primal and dual variables along with the run of the algorithm.
Consider a round in which an edge e ≡ (u, v) is revealed, where v is the new vertex.
Before e is revealed, let e1 and e2 be the edges incident with u which belong to M1
and M2 respectively. If such an ei does not exist, then we may assume w(ei ) = 0. The
primal and dual variables are updated as follows.

• If e is rejected by both matchings, we set the primal variable xe = 0, and the dual
variable yv = 0.

• e is added to M1 only, then we set the primal variable xe = p, and the dual variable
yu = max(yu,min((1 + γ1)w(e), (1 + γ2)w(e2))), and yv = 0.

• If e is added to M2 only, then we set the primal variable xe = 1− p, and the dual
variable yu = max(yu,min((1 + γ1)w(e1), (1 + γ2)w(e))), and yv = 0.

• If e is added to both matchings, then we set the primal variable xe = 1, and the
dual variables yu = max(yu, (1 + γ1)w(e)) and yv = (1 + γ1)w(e).

• If an edge e′ is evicted from M1 (or M2), we decrease its primal variable xe′ by p
(or (1 − p) respectively), and the corresponding dual variables are unchanged.

We begin with three simple observations.

1. The cost of the primal solution is equal to the expected weight of the matching
maintained by the algorithm.

2. The dual variables never decrease. Hence, if a dual constraint is feasible once, it
remains so.

3. yu ≥ min((1 + γ1)w(e1), (1 + γ2)w(e2)).

The idea behind the analysis is to prove a bound on the ratio of the dual cost and
the primal cost while maintaining dual feasibility. By Observation 2, to ensure dual
feasibility, it is sufficient to ensure feasibility of the dual constraint of the new edge.
If the new edge e is not accepted in any Mi , then w(e) ≤ min((1 + γ1)w(e1), (1 +
γ2)w(e2)). Hence, the dual constraint is satisfied by Observation 3. Otherwise, it can
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be seen that the dual constraint is satisfied by the updates performed on the dual
variables.

The following lemma implies Theorem 10 using Claim 1.

Lemma 11 �Dual
�Primal ≤ max

{
1+γ1
p ,

1+γ2
1−p ,

(1+γ1)(1+γ2)(1+2γ1)
p·γ1+(1−p)γ2+γ1γ2

}
after every round.

We will use the following simple technical lemma to prove Lemma 11.

Lemma 12 ax+b
cx+d increases with x iff ad − bc ≥ 0.

Proof of Lemma 11 There are four cases to be considered.

1. If edge e is accepted in M1, but not in M2, then (1 + γ1)w(e1) < w(e) ≤ (1 +
γ2)w(e2). By Observation 3, before e was revealed, yu ≥ (1 + γ1)w(e1). After e
is accepted in M1, �Primal = p(w(e) − w(e1)), and �Dual ≤ (1 + γ1)(w(e) −
w(e1)). Hence,

�Dual

�Primal
≤ (1 + γ1)

p
.

2. If edge e is accepted in M2, but not in M1, then (1 + γ2)w(e2) < w(e) ≤ (1 +
γ1)w(e1). By Observation 3, before e was revealed, yu ≥ (1 + γ2)w(e2). After
e is accepted in M2, �Primal = (1 − p)(w(e) − w(e2)), and �Dual ≤ (1 +
γ2)(w(e) − w(e2)). Hence,

�Dual

�Primal
≤ (1 + γ2)

1 − p
.

3. Suppose edge e is accepted in both the matchings, and (1 + γ1)w(e1) ≤ (1 +
γ2)w(e2) < w(e). By Observation 3, before e was revealed, yu ≥ (1+ γ1)w(e1).
After e is accepted in both the matchings, �Dual ≤ (1 + γ1)(2w(e) − w(e1)).
The change in the primal cost is

�Primal ≥ w(e) − p · w(e1) − (1 − p) · w(e2)

≥ w(e) − p · w(e1) − (1 − p) · w(e)

1 + γ2

= p + γ2

1 + γ2
w(e) − p · w(e1).

�Dual

�Primal
≤ (1 + γ1)

2w(e) − w(e1)
p+γ2
1+γ2

w(e) − p · w(e1)
.

By Lemma 12, this value increases, for a fixed w(e), with w(e1) if γ2 ≤ p
1−2p ,

and its worst case value is obtained when (1 + γ1)w(e1) = w(e). Thus,

�Dual

�Primal
≤ (1 + γ1)

2(1 + γ1)(1 + γ2) − (1 + γ2)

(p + γ2)(1 + γ1) − p(1 + γ2)

= (1 + γ1)(1 + γ2)
1 + 2γ1

p · γ1 + (1 − p)γ2 + γ1γ2
.
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4. Suppose e is accepted in both thematchings, and (1+γ2)w(e2) ≤ (1+γ1)w(e1) <

w(e). ByObservation 3, before ewas revealed, yu ≥ (1+γ2)w(e2). The following
bound can be proven similarly.

�Dual

�Primal
≤ (1 + γ1)(1 + γ2)

1 + 2γ1
p · γ1 + (1 − p)γ2 + γ1γ2

.

��
The following theorem is an immediate consequence of Theorem 10.

Theorem 13 Algorithm 4 is a 3-competitive randomized algorithm forMWMon grow-
ing trees, when p = 1/3, γ1 = 0, and γ2 = 1; and this bound is tight.

The input for which Algorithm 4 is 3-competitive is as follows. Start by presenting
an edge of weight x0 = 1. It will be added to both M1 and M2. Assume inductively
that currently both matchings only contain an edge of weight xi . Present an edge of
weight yi+1 = xi on one endpoint of xi . This edge will not be accepted in either of the
matchings. Present an edge of weight xi+1 = 2 ·xi +ε on the other endpoint of xi . This
edge will be accepted in both the matchings, and xi will be evicted. For a sufficiently
large value n, let xn+1 = xn . So the edge of weight xn+1 will not be accepted in either
of the matchings. Both the matchings will hold only the edge of weight xn , whereas
the optimum matching would include the edges of weights y1, . . . , yn+1, xn+1. The
weight of the matching stored by the algorithm is 2n , whereas the weight of the
optimum matching is ≈ 3 · 2n (we have ignored the ε terms here). This gives the
competitive ratio 3.

Note In the analysis of Algorithm 4 for growing trees, we crucially use the following
fact in the dual variable assignment. If an edge e /∈ Mi for some i , then a new edge
incident with its leaf vertex will definitely be added to Mi , and it suffices to assign a
zero charge to the corresponding dual variable. This is not necessarily true for more
general classes of graphs, and new ideas are needed to analyze the performance for
those classes.

Acknowledgements The first author would like to thank Ashish Chiplunkar for helpful suggestions to
improve the competitive ratio of Algorithm 4, and also to improve the presentation of Sect. 4.

Appendix: Proof of Lemma 2

We crucially use the following lemma to prove Lemma 2.

Lemma 14 (a) If an edge e belongs only to M4 at the end of input, then bad edges
cannot be incident with both its endpoints.

(b) Also, if an edge e was added to M4 only in the Switching phase, then e cannot be
a bad edge.

Proof There are two cases to consider.
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1. Suppose e was added to M4 only when it was revealed. Then on one of its end-
points either there should be two edges incident (other than e), such that each of
them belongs to a single matching, or there should be one edge which belongs to
two matchings. In either case, the edges incident with that endpoint of e should
have neighboring edges which belong to some matching (by the description of
algorithm). And hence, these edges cannot be bad.

2. Suppose ewas added toM4 aswell as to some othermatchingwhen it was revealed.
If e belonged to three matchings when it was revealed, then its neighboring edge
will have its endpoints covered by at least four matching edges, and this number
can never go below four. If e belonged to two matchings when it was revealed,
then it

– (a) either has one neighboring edge which belongs to two matchings,

– (b) or one neighboring edge on each of its endpoints, each belonging to distinct
matchings,

– (c) or two neighboring edges on one of its endpoints, such that both of them
belong to distinct matchings.

In Case (a), this neighboring edge should have a neighboring edge on its other
endpoint which belongs to some matching, and hence it cannot be a bad edge. In
Case (b), each of these edges should have at least two neighboring edges of their
own on their respective other endpoint, which belong to certain matching. Hence,
not both of these edges can be bad. In Case (c), both these edges should have
neighboring edges of their own on their respective other endpoint, which belong
to certain matchings. Hence, both these edges cannot be bad.

For the second part of the lemma, if edge e was added to M4 in the Switching phase,
then this means that e will have three neighboring edges e1,e2, and e3, belonging to
M1, M2, and M3, respectively. This is because e will be added to M4 in the Switching
phase only if it is not added to M2 or M3 in the Switching phase, which means there
are edges which belong only to M2 and M3 respectively. ��
Proof of Lemma 2 There are two cases to consider.

1. Suppose there is a bad leaf edge e which belongs to M4. If e is added to M4 in the
Switching phase, then e cannot be a bad edge (by part (b) of Lemma 14). So, e has
to be added to M4 in the Augment phase for it to be a bad leaf edge in the future.

• If e was added to M4 alone when revealed, then it must have neighbors e1
and e2 such that both of them do not belong to M4. Then, they must have
had neighboring edges e′

1 and e
′
2 respectively which belonged to M4 (at some

stage). If e′′
1 (and/or e′′

2) switches e
′
1 (and/or e′

2 respectively) out of M4, then
e′′
1 (and/or e′′

2 respectively) cannot be a bad edge (by part (b) of Lemma 14).
Otherwise, the lemma holds due to part (a) of Lemma 14.

• If e was added to two matchings (M4 being one of them) when it was revealed,
and finally has only one internal neighboring edge e1, then e1 will have a
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neighboring edge e2 on its other endpoint. Either e2 belongs to M4 or its
neighboring edge e′

2 on the other endpoint belongs to M4. The lemma holds if
finally e′

2 belongs to M4 (by part (a) of Lemma 14) or if finally the neighboring
edge e′′

2 of e
′
2 belongs to M4 (by part (b) of Lemma 14). (The proof for this case

will also work for the case when e was revealed first as a single disconnected
edge, and then e1 was revealed on one of its endpoints.)

• If e was added to two or three matchings (M4 being one of them) when it was
revealed, and finally has two internal neighboring edges e1 and e2, then e1
and e2 must have neighboring edges e′

1 and e
′
2 respectively which belonged to

M4 (at some stage). If e′′
1 (and/or e′′

2) switches e
′
1 (and/or e

′
2 respectively) out

of M4, then e′′
1 (and/or e′′

2 respectively) cannot be a bad edge (by part (b) of
Lemma 14). Otherwise, the lemma holds due to part (a) of Lemma 14.

2. Let e1 and e2 be two bad internal edges which do not belong to M4. Then, they
must have had neighboring edges e′

1 and e′
2 respectively which belonged to M4

(at some stage). If e′′
1 (and/or e′′

2) switches e
′
1 (and/or e

′
2 respectively) out of M4,

then e′′
1 (and/or e′′

2 respectively) cannot be a bad edge (by part (b) of Lemma 14).
Otherwise, the Lemma holds due to part (a) of Lemma 14. ��
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