
Algorithmica (2019) 81:3217–3244
https://doi.org/10.1007/s00453-019-00582-9

Flexible Resource Allocation to Interval Jobs

Dmitriy Katz1 · Baruch Schieber2 · Hadas Shachnai3

Received: 18 January 2018 / Accepted: 23 April 2019 / Published online: 7 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Motivated by the cloud computing paradigm, and by key optimization problems in all-
optical networks, we study two variants of the classic job interval scheduling problem,
where a reusable resource is allocated to competing job intervals in a flexiblemanner.
Each job, Ji , requires the use of up to rmax (i) units of the resource, with a profit of
pi ≥ 1 accrued for each allocated unit. The goal is to feasibly schedule a subset of
the jobs so as to maximize the total profit. The resource can be allocated either in con-
tiguous or non-contiguous blocks. These problems can be viewed as flexible variants
of the well known storage allocation and bandwidth allocation problems. We show
that the contiguous version is strongly NP-hard, already for instances where all jobs
have the same profit and the samemaximum resource requirement. For such instances,
we derive the best possible positive result, namely, a polynomial time approximation
scheme. We further show that the contiguous variant admits a (54 + ε)-approximation
algorithm, for any fixed ε > 0, on instances whose job intervals form a proper inter-
val graph. At the heart of the algorithm lies a non-standard parameterization of the
approximation ratio itself, which is of independent interest. For the non-contiguous
case, we uncover an interesting relation to the paging problem that leads to a simple
O(n log n) algorithm for uniform profit instances of n jobs. The algorithm is easy to
implement and is thus practical.

Keywords Elastic all-optical networks · Cloud computing · Scheduling · Paging
problem · Flexible storage allocation · Bandwidth allocation · Approximation
algorithms

A preliminary version of this paper appeared in Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), Asilomar State Beach, July 2016.

This work was partly carried out during visits to DIMACS supported by the National Science Foundation
under Grants Number CCF-1144502 and CCF-1445755. Work partially supported also by the Technion
V.P.R. Fund, and by the Smoler Research Fund.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00582-9&domain=pdf

3218 Algorithmica (2019) 81:3217–3244

1 Introduction

1.1 Background andMotivation

Interval scheduling is one of the basic problems in the study of algorithms, with a
wide range of applications in computer science and in operations research (see, e.g.,
[21]). We focus on scheduling intervals with resource requirements. In this model, we
have a set of intervals (or, activities) competing for a reusable resource. Each activity
utilizes a certain amount of the resource for the duration of its execution and frees
it upon completion. The problem is to find a feasible schedule of the activities that
satisfies certain constraints, including the requirement that the total amount of resource
allocated simultaneously to activities never exceeds the amount of resource available.

In this classic model, two well-studied variants are the storage allocation (see,
e.g., [5,22]) and the bandwidth allocation problems (see, e.g., [3,11]). In the storage
allocation problem (sap), each activity requires the allocation of a contiguous block
of the resource for the duration of its execution. Thus, the input is often viewed as a set
of axis-parallel rectangles; the goal is to pack a maximum profit subset of rectangles
into a horizontal strip of a given height, by sliding the rectangles vertically but not
horizontally.When the resource can be allocated in non-contiguous blocks,we have the
bandwidth allocation problem (bap), where we only need to allocate to each activity
the required amount of the resource.

Modern technologies used in scheduling jobs that require cloud services (see, e.g.,
[17,24]), or in spectrum assignment in elastic all-optical networks [14,33], allow
flexible allocation of the available resources. These technologies are attracting wide
interest, due to their higher efficiency and better utilization of compute and network
resources. However, allocating the resources becomes even more challenging, com-
pared to previous rigid technologies. This motivates our study of the flexible variants
of the above problems.

1.2 Problem Statement

We consider a variant of sap where each interval can be allocated any amount of the
resource up to its maximum requirement, with a profit accrued from each resource
unit allocated to it. The goal is to allocate to the intervals contiguous blocks of the
resource so as to maximize the total profit. We refer to this variant below as the flexible
storage allocation problem (fsap).

We also consider the flexible bandwidth allocation problem (fbap), where each
interval specifies an upper bound on the amount of the resource it can be allocated,
as well as the profit accrued from each allocated unit of the resource. The goal is to
determine the amount of resource which can be feasibly allocated to each interval, so
as to maximize the total profit.

In our general framework, the input consists of a set J of n intervals. Each interval
Ji ∈ J requires the utilization of a given, limited, resource. The amount of resource
available, denoted by W > 0, is fixed over time. Each interval Ji is defined by the
following parameters.

123

Algorithmica (2019) 81:3217–3244 3219

(1) A left endpoint, si ≥ 0, and a right endpoint, ei ≥ 0. In this case Ji is associated
with the half-open interval [si , ei) on the real line.

(2) The amount of resource allocated to each interval, Ji , which can take any value
up to the maximum possible value for Ji , given by rmax (i).

(3) The profit pi ≥ 1 gained for each unit of the resource allocated to Ji .

A feasible solution has to satisfy the following conditions. (i) Each interval Ji ∈ J
is allotted an amount of the resource in its given range, which does not change over
time. (ii) The total amount of the resource allocated at any time does not exceed the
available amount,W . In fbap, we seek a feasible allocation which maximizes the total
profit accrued by the intervals. In fsap, we add the requirement that the allocation to
each interval is a contiguous block of the resource.1

1.3 Applications

We mention below two primary applications of our problems.

Scheduling time-sensitive jobs on large computing clusters. In the cloud computing
paradigm, jobs that require cloud services are often time-critical (see, e.g. [16,24]).
Thus, each job is associated with arrival time, a due date, a maximum resource require-
ment, and the cost paid per allocated unit of the resource. Given a large computing
cluster with a total available resource W (e.g. bandwidth, or storage capacity), con-
sider job instances with strict timing constraints, where each job has to start processing
upon arrival. The scheduler needs to schedule a feasible subset of the jobs, and assign
to each some amount of the resource, so as to maximize the total profit. When jobs
require a contiguous allocation of the resource, we have an instance of fsap. When
allocation may be non-contiguous, we have an instance of fbap.

Spectrum allocation in elastic optical networks. In all-optical networks, several high-
speed signals connecting different source-destination pairs may share a link, provided
they are transmitted on carriers having different wavelengths of light (see, e.g., [26]).
Traditionally, the spectrum of light that can be transmitted through the fiber has been
divided into frequency intervals of fixed width with a gap of unused frequencies
between them. In the emerging flexgrid technology (see, e.g., [14,18]), the usable
frequency intervals are of variable width. As in the traditional model, two different
signals using the same link have to be assigned disjoint sub-spectra. Thus, given a set
of connection requests in a path network, each associated with a profit per allocated
spectrumunit, in fsapweneed to feasibly allocate to the requests contiguous frequency
intervals, with the goal of maximizing the total profit. fbap corresponds to the model
where the sub-spectra allocated to each request need not be contiguous.

1.4 Our Contribution

Given an algorithm A, let A(J), OPT (J) denote the profit of A and an optimal
solution for a problem instance J , respectively. For ρ ≥ 1, we say that A is a ρ-
approximation algorithm if, for any instance J , OPT (J)

A(J)
≤ ρ.

1 This is made precise in Sect. 2.

123

3220 Algorithmica (2019) 81:3217–3244

We derive both positive and negative results. On the positive side, we uncover
an interesting relation of fbap to the classic paging problem that leads to a simple
O(n log n) algorithm for uniform profit instances (see Sect. 3). Thus, we substantially
improve the running time of the best known algorithm for fbap (due to [31]) which
uses flow techniques. Our algorithm is easy to implement and is thus practical.

On the negative side, we show (in Sect. 5) that fsap is strongly NP-hard, already
for instances where all jobs have the same profit and the same maximum resource
requirement, Max. For such instances, we derive (in Sect. 6.2) the best possible posi-
tive result, namely, a polynomial time approximation scheme (PTAS). We also present
(in Sect. 6.1) a 2k

2k−1 -approximation algorithm, where k = � W
Max�, which is of practi-

cal interest. We further show (in Sect. 4) that fsap admits a (54 + ε)-approximation
algorithm, for any fixed ε > 0, on instances whose job intervals form a proper interval
graph.2

Techniques. Our Algorithm, Paging_fba, for the non-contiguous version of the prob-
lem, uses an interesting relation to the offline paging problem.3 The key idea is to view
the available resource as slots in fast memory, and each job (interval) Ji as rmax (i)
pairs of requests for pages in themainmemory. Each pair of requests is associated with
a distinct page: one request at si and one at ei − 1. We apply Belady’s offline paging
algorithm [7], that handles a page fault by evicting the page whose next request is fur-
thest in the future (see Sect. 3). If a page remains in the fast memory between the two
times it was requested, the resource associated with its fast memory slot is allocated
to the corresponding job. In fact, Paging_fba solves the flexible bandwidth allocation
problem optimally for more general instances, where each interval Ji has also a lower
bound, rmin(i) > 0 on the amount of resource Ji is allocated (see Sect. 3).4

At the heart of our (54 +ε)-approximation algorithm for proper instances lies a non-
standard parameterization of the approximation ratio itself. Specifically, the algorithm
uses a parameter β ∈ (0, 1) to guess the fraction of total profit obtained by wide
intervals, i.e., intervals with high maximum resource requirement, in some optimal
solution. If the profit from these intervals is at least this fraction β of the optimum for
the given instance, such a high profit subset of wide intervals is found by the algorithm;
else, the algorithm proceeds to find a high profit subset of narrow and wide intervals,
by solving an LP relaxation of a modified problem instance. In solving this instance,
we require that the profit from extra units of the resource assigned to wide intervals
(i.e., above certain threshold value) is bounded by a β fraction of the optimum (see
Sect. 4). This tighter constraint guarantees a small loss in profit when rounding the
(fractional) solution for the LP. The approximation ratio of (54 + ε) is attained by
optimizing on the value of β.

2 We formally define proper instances in Sect. 2.
3 This relation was used before, also for solving unsplittable flow on paths and weighted interval scheduling
(see, e.g., [26]). To the best of our knowledge, for fbap it is used here for the first time.
4 In obtaining all other results, we assume that rmin(i) = 0 for 1 ≤ i ≤ n.

123

Algorithmica (2019) 81:3217–3244 3221

1.5 RelatedWork

The classic interval schedulingproblem,where each interval requires all of the resource
for its execution, is solvable in O(n log n) time [3]. Storage allocation problems have
been studied since the 1960’s (see, e.g., [20]). The traditional goal is to contiguously
store a set of objects in minimum size memory. This is the well-known dynamic
storage allocation (dsa) problem (see, e.g., [8] and the references therein). The storage
allocation problem (sap), the throughput version of dsa, is NP-hard since it includes
Knapsack as a special case. sapwas first studied in [3,22]. Bar-Noy et al. [3] presented
an approximation algorithm that yields a ratio of 7. Chen et al. [12] presented a
polynomial time exact algorithm for the special case where all resource requirements
are multiples ofW/K , for some fixed integer K ≥ 1. They developed an O(n(nK)K)

time dynamic programming algorithm to solve this special case of sap, and also gave an
approximation algorithmwith ratio e

e−1+ε, for any ε > 0, assuming that themaximum
resource requirement of any interval is O(W/K). Bar-Yehuda et al. [4] presented a
randomized algorithm for sapwith ratio 2+ε, and a deterministic algorithmwith ratio
2e−1
e−1 + ε < 2.582. The best known result is a deterministic (2 + ε)-approximation
algorithm due to [29].

The bandwidth allocation problem (bap) is known to be strongly NP-hard, already
for uniform profits [13]. The results of Albers et al. [1] imply a constant factor approx-
imation (where the constant is about 22). The ratio was improved to 3 by Bar-Noy et
al. [3]. Calinescu et al. [9] developed a randomized approximation algorithm for bap
with expected performance ratio of 2 + ε, for every ε > 0. The best known result is
an LP-based deterministic (2+ ε)-approximation algorithm for bap due to Chekuri et
al. [11].

Both bap and sap have been widely studied also in the non-uniform resource case,
where the amount of available resource may change over time. In this setting, bap
can be viewed as the unsplittable flow problem (UFP) on a path. The best known
polynomial time result is a (53 +ε)-approximation due toGrandoni et al. [15]. Bansal et
al. [2] developed a quasi-polynomial time approximation scheme for the problem.
Batra et al. [6] obtained approximation schemes for some special cases.5 For sap
with non-uniform resource, the best known ratio is 2 + ε, obtained by a randomized
algorithm of Mömke and Wiese [25].

The flexible variants of sap and bap were introduced by Shalom et al. [31]. The
authors study instances where each interval i has a minimum and amaximum resource
requirement, satisfying 0 ≤ rmin(i) < rmax (i) ≤ W , and the goal is to find amaximum
profit schedule, such that the amount of resource allocated to each interval i is in
[rmin(i), rmax (i)]. The authors show that fbap can be optimally solved using flow
techniques. The paper also presents a 4

3 -approximation algorithm for fsap instances

in which the input graph is proper, and rmin(i) ≤ � rmax (i)
2 �, for all 1 ≤ i ≤ n. The

paper [30] showsNP-hardness of fsap instanceswhere each interval has positive lower
and upper bounds on the amount of resource it can be allocated. The problem remains
intractable even if the bounds are identical for all intervals, i.e., rmin(i) = Min and
rmax (i) = Max, for all i , where 0 < Min < Max ≤ W . The authors also show

5 See also the results on UFP with Bag constraints (BagUFP) [10].

123

3222 Algorithmica (2019) 81:3217–3244

that fsap is NP-hard for the subclass of instances where rmin(i) = 0 and rmax (i) is
arbitrary, for all i , and present a (2 + ε)-approximation algorithm for such instances,
for any fixed ε > 0. We strengthen the hardness result of [30], by showing that fsap
is strongly NP-hard even if rmin(i) = 0 and rmax (i) = Max, for all i .

Finally, the paper [29] considers variants of fsap and fbap where 0 ≤ rmin(i) <

rmax (i) ≤ W , and the goal is to feasibly schedule a subset S of the intervals of
maximum total profit (namely, the amount of resource allocated to each interval i ∈ S is
in [rmin(i), rmax (i)]). The paper presents a 3-approximation algorithm for this version
of fbap, and a (3 + ε)-approximation for the corresponding version of fsap, for any
fixed ε > 0.

2 Preliminaries

We represent the inputJ as an interval graph,G = (V , E), inwhich the set of vertices,
V , represents the n jobs, and there is an edge (vi , v j) ∈ E if the intervals representing
the jobs Ji , J j intersect. For simplicity, we interchangeably use Ji to denote the i-th
job, and the interval corresponding to the i-th job on the real-line. We say that an input
J is proper, if in the corresponding interval graph, G = (V , E), no interval Ji is
completely contained in another interval J j , for all 1 ≤ i, j ≤ n.6

Throughout the paper, we use coloring terminology when referring to the assign-
ment of resource to the jobs. Specifically, the amount of available resource, W , can
be viewed as the amount of available distinct colors. Thus, the demand of a job Ji for
(contiguous) allocation from the resource, where the allocated amount is an integer in
the range [0, rmax (i)], can be satisfied by coloring Ji with a (contiguous) set of colors
of size in the range [0, rmax (i)].

Let C = {1, 2, . . . ,W } denote the set of available colors. Given a coloring of
the intervals, c : J → 2C , let |c(Ji)| be the number of colors assigned to Ji . The
total profit accrued from c is then Pc(J) = ∑n

i=1 pi |c(Ji)|. Similarly, the total profit
accrued for a subset of intervals J ′ ⊆ J is Pc(J ′) = ∑

i∈J ′ pi |c(Ji)|. Recall that
in a contiguous coloring, c, each interval Ji is assigned a block of |c(Ji)| consecutive
colors in {1, . . . ,W }. In a circular contiguous coloring, c, we have the set of colors
{0, 1, . . . ,W − 1} positioned consecutively on a circle. Each interval Ji ∈ J is
assigned ablockof |c(Ji)| consecutive colors on the circle. Formally, Ji canbe assigned
any consecutive sequence of |c(Ji)| indices, {�, (� + 1) mod W , . . . , (� + |c(Ji)| −
1) mod W }, where 0 ≤ � ≤ W − 1.

Let S ⊆ J be the subset of jobs Ji for which |c(Ji)| ≥ 1 in a (contiguous) coloring
C for the input graph G. We call the subgraph of G induced by S, GS = (S, ES), the
support graph of S.

3 The Flexible Bandwidth Allocation Problem

In this section we study fbap, the non-contiguous version of our problem.We consider
a generalized version of fbap, where each job Ji has also a lower bound rmin(i) on
the amount of resource it is allocated.

6 In the context of scheduling, we say that the (interval) jobs are ‘agreeable’, or ‘similarly ordered’.

123

Algorithmica (2019) 81:3217–3244 3223

Shalom et al. [31] showed that this generalized fbap can be solved optimally by
using flow techniques. We show that in the special case where all jobs have the same
(unit) profit per allocated color (i.e., resource unit), the problem can be solved by an
efficient algorithm based on Belady’s well known algorithm for offline paging [7].
Recall that in Belady’s algorithm (also called MIN) whenever there is a need to evict a
page from the fast memory to make room for a page that is being requested, the evicted
page should be the one whose next request occurs furthest in the future. (Pages that
will never again be requested are treated as pages whose next request is in infinity.)
While Belady’s algorithm is easy to state its correctness proof is rather involved. A
short correctness proof appears in [27].

From now on, assume that we have a feasible instance, that is, there are enough
colors to allocate at least rmin(i) colors to each job Ji .

To gain some intuition, assume first that rmin(i) = 0 for all i ∈ [1..n]. We view
the available colors as slots in fast memory, and each job (interval) Ji as rmax (i) pairs
of requests for pages in the main memory. Each pair of requests is associated with
a distinct page: one request at si and one at ei − 1. We now apply Belady’s offline
paging algorithm: if a page remains in the fast memory between the two times it was
requested, then the color that corresponds to its fast memory slot is allocated to the
corresponding job.

When rmin(i) > 0, we follow the same intuition while allocating at least rmin(i)
colors to each Ji , to ensure feasibility.We show below that the optimality of the paging
algorithm implies the optimality of the solution for our fbap instance.

The algorithm is implemented iteratively, by reassigning colors as follows. The
algorithm scans the left endpoints of the intervals, from left to right. When the algo-
rithm scans si , it first assigns rmin(i) colors to Ji to ensure feasibility. The algorithm
starts by assigning the available colors. If there are less than rmin(i) colors available at
si , the algorithm examines the intervals intersecting Ji at si in decreasing order of right
endpoints, and feasibly decreases the number of colors assigned to these intervals and
reassigns them to Ji , until Ji is allocated rmin(i) colors. The feasibility of the instance
implies that so many colors can be reassigned.

Next, the algorithm allocates up to rmax (i) − rmin(i) additional colors to interval
Ji , to maximize profit. If rmax (i) − rmin(i) colors are available at si , then they are
assigned to Ji . If only less colors are available, and thus Ji is assigned less than rmax (i)
colors, then the algorithm follows Belady’s algorithm to potentially assign additional
colors to Ji . The algorithm examines the intervals intersecting Ji at si , and in case
there are such intervals with larger right endpoint than ei , it feasibly decreases the
number of colors assigned to such intervals with the largest right endpoints (furthest
in the future), and increases the number of colors assigned to Ji , up to rmax (i).

When the algorithm scans ei , the right endpoint of an interval Ji , the colors assigned
to Ji are released and become available. The pseudocode for Paging_fba is given in
Algorithm 3.1.

Theorem 1 Paging_fba is an optimal O(n log n) time algorithm, for any fbap
instance where pi = 1 for all 1 ≤ i ≤ n.

Proof The proof is by reduction to themultipaging problem. Themultipaging problem
is a variant of the paging problem, where more than one page is requested at the same

123

3224 Algorithmica (2019) 81:3217–3244

Algorithm 3.1 Paging_fba(J , r̄min, r̄max ,W)

1: AVAIL = [1..W].
2: W.l.o.g. assume that all endpoints are distinct. Sort the endpoints of the intervals in J in increasing

order. Let L denote the sorted list.
3: while not end-of-list do
4: Consider the next endpoint L .
5: if the endpoint is si , the left endpoint of Ji , then
6: Ai = ∅.
7: if |AVAIL| > rmin(i) then
8: Move rmin(i) colors from AVAIL to Ai .
9: else
10: Ai = AVAIL
11: AVAIL = ∅.
12: while |Ai | < rmin(i) do
13: Among all intervals such that sk < si and |Ak | > rmin(k), let Jk be the interval with

maximum right endpoint ek .
14: Move min{|Ak | − rmin(k), rmin(i) − |Ai |} colors from Ak to Ai .
15: Move min{|AVAIL|, rmax (i) − rmin(i)} colors from AVAIL to Ai .
16: Let Ji = {Jk ∈ J |sk < si ∧ ek > ei ∧ |Ak | > rmin(k)}.
17: while |Ai | < rmax (i) ∧ |Ji | > 0 do
18: Let Jk be the interval with the maximum right endpoint in Ji .
19: Move min{|Ak | − rmin(k), rmax (i) − |Ai |} colors from Ak to Ai
20: else
21: {The endpoint is ei , the right endpoint of Ji }
22: AVAIL = AVAIL ∪ Ai
23: Return the coloring c given by the sets A1, . . . , An of colors assigned to the jobs in J .

time. Liberatore [23] proved that the multipaging version of Belady’s algorithm is
optimal. In this version whenever there is a need to evict k ≥ 1 pages from the fast
memory to make room for k pages that are being requested, the evicted pages should
be the k pages in fast memory whose next request occur furthest in the future. (Pages
that will never again be requested are treated as pages whose next request is in infinity.)

Given an instance of fbap, where pi = 1 for all 1 ≤ i ≤ n, define a
respective multipaging problem instance as follows. The size of the fast memory
is M = ∑

Ji∈J rmax (i). For each job Ji ∈ J we associate M − W + rmax (i) new
pages, and define three types of page requests: feasibility requests, profit requests, and
filler requests. At each 3si ≤ t < 3ei there are rmin(i) feasibility requests for the same
rmin(i) of the associated pages. There are rmax (i)− rmin(i) pairs of profit requests for
rmax (i) − rmin(i) of the associated pages. The first request of each pair is at 3si and
the second at 3ei − 1. In addition, at 3si + 1 there are M − W filler requests for the
remaining M − W of the associated pages.

Belady’s algorithm for the multipaging instance yields an eviction policy that min-
imizes the number of page faults. Whenever a page that has not been requested before
is requested we have an unavoidable page fault. Thus, we must have (M − W)n + M
page faults, (M−W)n for the filler request pages, andM for the rmax (i) feasibility and
profit requests at 3si , for each job Ji ∈ J . The filler request pages cannot generate any
additional page faults since each such page is requested only once. For any job Ji ∈ J ,
the feasibility request pages are requested continuously from time 3si to time 3ei − 1.
Thus, they cannot be evicted in this time interval, and cannot generate any additional
page faults. It follows that additional page faults may occur only when profit request

123

Algorithmica (2019) 81:3217–3244 3225

pages are evicted at some point between the time they were requested first to the time
of their second request. Minimizing the number of such page faults is equivalent to
maximizing the number of pairs of profit requests whose corresponding pages stay in
memory from the time of their first request to the time of their second request, that
is, maximizing the sum over all jobs Ji ∈ J of the number of profit request pages
associated to job Ji that stay in memory throughout the interval [3si , 3ei − 1).

Note that Paging_fba simulates Belady’s algorithm in the following sense. After a
left endpoint si is scanned, the colors assigned to the jobs correspond to the memory
slots in the fast memory allocated at time 3si + 1 to feasibility and profit requests
associated with jobs whose right endpoint is greater than si . The construction (and
our assumption that the instance is feasible) guarantees that at least rmin(i) colors are
assigned to each job Ji ∈ J . The optimality of Belady’s algorithm guarantees that the
total number of additional colors allocated to all jobs is maximized, thus, maximizing
the profit of allocated resources in the fbap instance.

Paging_fba can be implemented in O(n log n) time as follows. Clearly, sorting
the intervals by left endpoints can be done in O(n log n) time. To implement the
color reassignments we store the intervals in a priority queue by right endpoints. An
interval is inserted to the priority queue exactly once when its left endpoint is scanned.
Each time the priority queue is queried for the interval Jk with the maximum right
endpoint either Jk is removed from the priority queue, or we assign either rmin(i) or
rmax (i) colors to interval Ji whose left endpoint is scanned. Additionally, an interval
is removed from the priority queue when its right endpoint is scanned (if it has not
been removed already). Thus, the total number of priority queue operations is linear
in n. Since each priority queue operation can be implemented in O(log n) time, the
total running time is O(n log n). �

4 Approximating Flexible Storage Allocation

In this section we consider the flexible storage allocation problem. We focus below
on fsap instances in which the jobs form a proper interval graph, and give an approx-
imation algorithm that yields a ratio of (54 + ε) to optimal.

Our Algorithm, Proper_fsap, uses the parameters ε > 0 and β ∈ (0, 1) (to be deter-
mined). Initially, Proper_fsap guesses the value of an optimal solution OPT fsap(J).
The guessing is done by binary search. As will be evident from the analysis of
Proper_fsap, if it fails to output a solution that is at least the value of the guess
divided by (54 + ε), then the guess is an overestimate of the optimal value. We start the
binary search with two guesses, one is zero which is guaranteed to be a lower bound
on OPT fsap(J), and one is the sum of the maximum profits of all jobs, which is
guaranteed to be an upper bound on OPT fsap(J). At each binary search iteration we
run Proper_fsap with a guess value that is equal to the median of the current lower
and upper bounds. If this guess is proven to be an overestimate we set the upper bound
to be the value of the guess, otherwise we update the lower bound to be the value of
the guess. After a polynomial (in the input length) number of iterations we can find a
lower and an upper bound whose difference is no more than the value of mini∈[1..n] pi .
At this point we are guaranteed that the lower bound is at least OPT fsap(J).

123

3226 Algorithmica (2019) 81:3217–3244

Let Jwide denote the set of wide intervals Ji for which rmax (i) ≥ εW . Let Jnarrow

denote the complement set of narrow intervals. Algorithm Proper_fsap handles sep-
arately two cases. (i) The profit from the wide intervals that are actually assigned at
least εW colors is large, namely, at least β · OPT fsap(J). Then such a solution is
found and returned by the algorithm. We show (in the proof of Lemma 3) that this
can be done in polynomial time using dynamic programming. (ii) Any solution that
achieves a profit of at least β · OPT fsap(J) must either include a narrow interval or
assign less than εW colors to a wide interval. In this case Proper_fsap calls Algo-
rithm ANarrow_Color that finds a solution of profit at least (

4−β
4 − ε) · OPT fsap(J)

accrued from both narrow and wide intervals, for any fixed ε > 0. The pseudocode
for Proper_fsap follows.

Algorithm 4.1 Proper_fsap(J , r̄max , p̄,W , ε, β)

1: Guess OPT fsap(J), the value of an optimal solution of fsap on J .
2: Find in Jwide a solution S of fsap with maximum total profit among all solutions in which intervals

that are assigned colors are assigned at least �εW� colors.
3: if P(S) < βOPTfsap(J) then
4: Let S be the solution output by
5: ANarrow_Color (J , r̄max , p̄,W , ε, βOPT fsap(J))

6: Return S and the respective contiguous coloring

We now describe Algorithm ANarrow_Color that finds an approximate solution for
fsap in case the extra profit of the wide intervals − above the profit of their first �εW�
assigned colors − is bounded by β fraction of the optimal solution.

First, ANarrow_Color solves a linear program LPfba that finds a (fractional) maxi-
mum profit solution for fbap on the set J , in which the number of colors used is no
more thanW ′ = �(1− ε)W�. Note that, from our guess, the value of the solution is at
least (1− ε)OPTfsap(J). This holds since the value of an optimal solution for LPfba
when all W colors are used is at least OPTfsap(J). The solution needs to satisfy an
upper bound on the extra profit accrued from wide intervals that are assigned more
than εW colors.

Next, this solution is rounded to an integral solution of the fbap instance, of value at
least (1−2ε)OPT fsap(J).ANarrow_Color proceeds by converting the resulting (non-
contiguous) coloring c to a contiguous circular coloring c′ of the same profit. Such
a coloring can be obtained, e.g., by the greedy algorithm ProperToCircular proposed
in [31]. Initially, the intervals are ordered in increasing order by their left endpoints.
Renumber the intervals such that Ji , 1 ≤ i ≤ n, is the i-th in this ordering. Then
the colors {0, . . . ,W ′ − 1} are positioned on a circle clockwise, starting from 0. J1
is assigned the colors {0, 1, . . . , |c(J1)| − 1}. For i > 1, the interval Ji is assigned a
contiguous set of colors { fi , (fi +1) mod W ′, . . . , (fi +|c(Ji)|−1) mod W ′}, where
(fi − 1) mod W ′ is the last color assigned to Ji−1.

Finally, the coloring c′ is converted to a valid (non-circular) coloring, c′′. Consider
the assignment of colors to the intervals and the W ′ points representing the colors on
the circle. Now, each point � ∈ {0, . . . ,W ′ −1} has a profit accrued from the intervals
that are assigned the corresponding color. To obtain a contiguous non-circular coloring

123

Algorithmica (2019) 81:3217–3244 3227

c′′ ANarrow_Color searches for the best index � for ‘cutting’ the circular coloring. This
is done by examining a polynomial number of integral points � ∈ {0, . . . ,W ′ − 1}
and calculating in each the loss in profit due to eliminating at most half of the colors
for each wide interval whose (contiguous) color set includes color �. The algorithm
‘cuts the circle’ in the point � which causes the smallest harm to the total profit.
For each wide interval Ji ‘crossing’ the point �, we assign the largest among its first
block of colors (whose last color is �), and the second block of colors (which starts at
(�+1) mod W ′). For each narrow interval that included �, we assign the same number
of new colors in the range {W ′+1, . . . ,W }.We give the pseudocode ofANarrow_Color

in Algorithm 4.2.

Algorithm 4.2 ANarrow_Color (J , r̄max , p̄,W , ε, P)

1: Solve the linear program LPfba
2: Round the solution to obtain a (non-contiguous) coloring c.
3: Find a circular contiguous coloring c′ of the same total profit as c.
4: Let S′ be the set of colored intervals in c′.
5: Let S′

w ⊆ S′ be the subset of intervals Ji ∈ S′ for which |c′(Ji)| ≥ εW , and let S′
n = S′ \ S′

w .
6: for any Ji ∈ S′

w round down |c′(Ji)| to the nearest integral multiple of ε2W , and eliminate the corre-
sponding amount of colors in c′(Ji), such the first color assigned to Ji is fi = �r · ε2W�, for some
integer r ≥ 0.

7: for � = �r · ε2W�, r = 0, 1, . . . , � 1
ε2

� do
8: Let S′

w(�) = {Ji ∈ S′
w |{�, (� + 1) mod W ′} ⊆ c′(Ji)}

9: Let P(S′
w(�)) = 0

10: for Ji ∈ S′
w(�) do

11: Suppose that c′(Ji) = { fi , (fi + 1) mod W ′, . . . , ti }
for some 0 ≤ fi , ti ≤ W ′ − 1.

12: Partition the set of |c′(Ji)| colors assigned to Ji into two contiguous blocks: Block1(i) =
{ fi , . . . , �},

and Block2(i) = {(� + 1) mod W ′, . . . , ti }.
13: P(S′

w(�)) = P(S′
w(�)) + pi · min{|Block1(i)|, |Block2(i)|}

14: Let �good = argmin�P(S′
w(�)).

15: for Ji ∈ S′
w(�good) do

16: Assign to Ji the larger of Block1(i) and Block2(i).
17: Renumber the color {(�good + s) mod W ′ by s + 1

for all s ∈ {0, . . . ,W ′ − 1}
18: Let S′

n(�good) = {Ji ∈ S′
n |{�good , (�good + 1) mod W ′} ⊆ c′(Ji)}

19: for Ji ∈ S′
n(�good) do

20: Assign to Ji |c′(Ji)| contiguous colors in the set {W ′ + 1, . . . ,W }.
21: Return c′′, the resulting coloring of S′.

4.1 Analysis of Proper _fsap_fsap_fsap

We note that if W ≤ 1/ε2 then at any time t > 0, the number of active intervals
is bounded by �1/ε2�, which is a constant. For such instances fsap can be solved
optimally, using dynamic programming (see Lemma 5 in [31]). Thus, we assume
below that W > 1/ε2. Our main result is the following.

123

3228 Algorithmica (2019) 81:3217–3244

(LP fba) : max
Ji∈Jnarrow

pixi +
Ji∈Jwide

pi(xi + yi)

s.t.
Ji∈Jwide

piyi ≤ β(1 − ε)OPTfsap(J) (1)

{Ji∈J :t∈Ji}
xi +

{Ji∈Jwide:t∈Ji}
yi ≤ (1 − ε)W ∀t > 0 (2)

0 ≤ xi ≤ min{rmax(i), εW for 1 ≤ i ≤ n

0 ≤ yi ≤ rmax(i) εW for Ji ∈ Jwide

.

Fig. 1 The linear program LPfba

Theorem 2 Proper_fsap is a polynomial-time (54 + ε)-approximation algorithm for
any instance of fsap in which the input graph is proper.

We prove the theorem using the following results. First, consider the case in which
a β fraction of the optimal profit comes from intervals in Jwide.

Lemma 3 If there exists a solution of fsap for J in which the profit from the intervals
inJwide that are assigned at least εW colors is at least βOPT fsap(J), then a solution
of profit at least βOPT fsap(J) can be found in polynomial time.

Proof We consider only the intervals in Jwide and the set of feasible solutions S with
the property that each interval in S is assigned at least εW colors. We can now add the
requirement that the minimum number of colors assigned to any wide interval i is at
least r ′

min(i) = �εW� + 1. For such instances, an optimal subset of (wide) intervals
can be found in polynomial time using dynamic programming (see Lemma 4.3.1. in
[34]).7 By our assumption, the value of this solution is at least βOPT fsap(J). �

Next, we consider the complement case. In Fig. 1 we give the linear program used
by AlgorithmANarrow_Color . For each Ji ∈ Jnarrow the linear program has a variable
xi indicating the number of colors assigned to Ji . For each Ji ∈ Jwide, the linear
program has two variables: xi and yi , where xi + yi is the number of colors assigned
to Ji ; yi gives the number of assigned colors “over” the first �εW� colors.

Constraint (1) bounds the total profit from the extra allocation for each interval
Ji ∈ Jwide. The constraints (2) bound the total number of colors used at any time
t > 0 by (1 − ε)W . We note that the number of constraints in (2) is polynomial in
|J |, since we only need to consider the “interesting” points of time t , when t = si for
some interval Ji ∈ J , i.e., we have at most n constraints.

Lemma 4 For any ε > 0, there is an integral solution of L Pfba of total profit at least
(1 − 2ε)OPT fsap(J), which can be found in polynomial time.

7 See also Lemma 5 in [31].

123

Algorithmica (2019) 81:3217–3244 3229

Proof Let x̄∗, ȳ∗ be an optimal (fractional) solution of LPfba. Note that, by possibly
moving value from y∗

i to x∗
i , we can always find such a solution in which for any

Ji ∈ Jwide, if y∗
i > 0 then x∗

i = �εW�.
Let Sw be the set of intervals in Jwide for which y∗

i > 0. Consider now the solution
x̄∗, z̄, where zi = �y∗

i �, for all Ji ∈ Sw. We bound the loss due to the rounding down.

∑
Ji∈Sw

pi (x∗
i + �y∗

i �) ≥ ∑
Ji∈Sw

pi (x∗
i + y∗

i − 1)
≥ ∑

Ji∈Sw
pi (x∗

i + y∗
i)(1 − 1

x∗
i
)

≥ ∑
Ji∈Sw

pi (x∗
i + y∗

i)(1 − 1
�εW�)

The last inequality follows from the fact that x∗
i = �εW�, for any Ji ∈ Sw. We

also note that an optimal solution for LPfba is at least (1 − ε)OPT fba(J) ≥ (1 −
ε)OPT fsap(J), as LPfba uses at most (1 − ε)W colors. Thus, for W > 1/ε2, we
have that the total profit after rounding the y∗

i values is at least (1− 2ε)OPT fba(J).
Now, consider the linear program LPround , in which we fix bi = �y∗

i �, for Ji ∈ Sw.
We have that x̄∗ is a feasible (fractional) solution of LPround with profit at least

(LPround) : max
n∑

i=1

pi xi

s.t.
∑

{Ji∈J :t∈Ji }
xi +

∑

{Ji∈Sw :t∈Ji }
bi ≤ �(1 − ε)W� ∀t > 0

0 ≤ xi ≤ min{rmax (i), �εW�} for 1 ≤ i ≤ n

(3)

(1 − 2ε)OPT fba(J) − ∑
Ji∈Sw

pibi . The rows of the coefficient matrix of LPround

can be permuted so that the time points associated with the rows form an increasing
sequence. In the permuted matrix each column has consecutive 1’s, thus this matrix is
totally unimodular (TU) (see, e.g., [28,32]). It follows that we can find in polynomial
time an integral solution, x̄∗

I , of the same total profit. Thus, the integral solution x̄∗
I , z̄

satisfies the lemma. �
The next result is shown in [31].

Lemma 5 Given the subset S′ of intervals colored by c in Step 2 of ANarrow_Color ,
AlgorithmProperToCircular finds in polynomial timeavalid coloring c′ of S′ satisfying
Pc′(S′) = Pc(S′).

Lemma 6 Consider the sets S′
w and S′

n defined in Step 5 of ANarrow_Color and the
coloring c′ after Step 6. Then the following hold. (i) Pc′′(S′

w) ≥ 3
4 Pc′(S′

w), and (ii)
Pc′′(S′

n) = Pc′(S′
n).

Proof We first show property (i). Given the contiguous circular coloring c′ after Step 6
of ANarrow_Color , consider first a randomized algorithm which selects uniformly at
random an index � ∈ {0, . . . ,W ′ − 1} for “cutting” the circle. Let Ji ∈ S′

w be a wide

123

3230 Algorithmica (2019) 81:3217–3244

interval colored by c′, and let d = |c′(Ji)| be the number of colors assigned to Ji
after Step 6. We assume that d is even (for odd d the bound can only improve). We
distinguish between three cases.

(a) If � /∈ c(Ji) then |c′′(Ji)| = d, since the coloring c′ of Ji remains contiguous
after cutting the circle.

(b) � = fi + m and 0 ≤ m ≤ d
2 . Then |c′′(Ji)| = d − m.

(c) � = fi + m and d
2 < m < d. Then |c′′(Ji)| = m.

Now, the probability that m takes any value in {0, . . . ,W ′} is 1
W ′ . It suffices to show

that E[|c′′(Ji)|] ≥ 3d
4 . By the above discussion,

E[|c′′(Ji)|] = 1

W ′

⎛

⎝
d/2∑

m=1

(d − m) +
d−1∑

m=d/2+1

m + (W ′ − d + 1)d

⎞

⎠

= 1

W ′ (W
′d − d2

4
)

= d − d2

4W ′ ≥ 3d

4

Using linearity of expectation we have that E[Pc′′(S′
w)] ≥ 3

4 Pc′(S′
w). Therefore

there exists an index � ∈ {0, . . . ,W ′} for which property (i) is satisfied. Such an index
will be found in Step 14 of ANarrow_Color .

To show that property (ii) holds, we note that (in Steps 19–20) Algorithm
ANarrow_Color assigns |c′(Ji)| colors to any Ji ∈ S′

n . Thus, in the resulting non-
circular contiguous coloring, c′′, we have |c′′(Ji)| = |c′(Ji)|, ∀ Ji ∈ S′

n . Observe that
c′′ is a valid coloring, since at most one interval (in particular, an interval Ji ∈ S′

n)
can be assigned the color �good at any time t > 0. It follows, that the intervals Ji
in S′

n that contain �good in c′(Ji) form an independent set. Since for any Ji ∈ S′
n

rmax (i) ≤ �εW�, we can assign to all of these intervals the same set of new colors in
the range {W ′ + 1, . . . ,W }. �

Proof of Theorem 2: Let 0 < β < 1 be the parameter used by Proper_fsap. For a
correct guess of OPT fsap(J) and a fixed value of ε > 0, let ε̂ = ε/3.

(i) If there is an optimal solution in which the profit from the intervals in Jwide

that are assigned at least εW colors is at least βOPT fsap(J) then, by Lemma3,
Proper_fsap finds in Step 2 a solution of profit at least βOPTfsap(J) in polyno-
mial time.

(ii) Otherwise, consider the coloring c′′ output by ANarrow_Color . Using Lemma 6,
we have that

Pc′(J)

Pc′′(J)
= Pc′(S′

w) + Pc′(S′
n)

3Pc′ (S′
w)

4 + Pc′(S′
n)

≤ max
0<x≤β

1
3x
4 + 1 − x

= 4

4 − β

123

Algorithmica (2019) 81:3217–3244 3231

Now, by Lemma 4, taking ε = ε̂, the (non-contiguous) coloring obtained in Step 2
of ANarrow_Color has a profit at least (1 − 2ε̂)OPT fsap(J). Using Lemma 5,
after applying the rounding in Step 6 of ANarrow_Color with ε̂ we have that
Pc′(J) ≥ (1 − 3ε̂)OPT fsap(J) = (1 − ε)OPT fsap(J).

The theorem follows by taking β = 4
5 .

For the running time of Proper_fsap, we first note that, by Lemma 3, a solution
consisting of wide intervals (only) of profit at least βOPT fsap(J) can be found in
polynomial time. For the complementary case, we now show that the running time
of ANarrow_Color is polynomial as well. Indeed, LPfba has a polynomial number
of constraints. Also, by Lemma 5, the contiguous circular coloring c′ is found in
O(n log n) steps. Then, converting c′ to the contiguous (non-circular) coloring c′′
requires to find the best way to cut the circle. Since the possible number of such
cutting points is O(1), the index �good is found in polynomial time. We conclude that
Proper_fsap has a polynomial running time. �

5 Complexity of fsapfsapfsap on Uniform Instances

We now consider uniform instances of fsap, in which rmax (i) = Max, for some
1 ≤ Max ≤ W , and pi = 1, for all 1 ≤ i ≤ n. Let k = �W/Max�.

We first prove that if k = W/Max (i.e., W is an integral multiple of Max) then
fsap can be solved optimally by finding a maximum k-colorable subgraph in G,
and assigning to each interval in this subgraph Max contiguous colors. Recall that a
maximum k-colorable subgraph of an interval graph can be found in polynomial time
using dynamic programming as follows. We sort the intervals by their left endpoints.
Then, we scan the intervals one by one while maintaining a maximum k-colorable
subgraph of the scanned intervals. When an interval is scanned it is added to the
maintained subgraph. If the resulting subgraph is not k-colorable then the interval
with the maximum right endpoint is removed from the subgraph. It is easy to see that
the removal of this interval makes the subgraph k-colorable.

In contrast to this case if k > W/Max ≥ 1, then we show that fsap is NP-Hard,
and give a polynomial approximation scheme to solve such instances.

Lemma 7 An fsap instance where W is a multiple of Max, and for all 1 ≤ i ≤ n,
pi = 1 and rmax (i) = Max, can be solved exactly in polynomial time.

Proof Consider an fbap instance where for all 1 ≤ i ≤ n, rmax (i) = Max, and W is
multiple of Max. We claim that there exists an optimal solution to this fbap instance
in which each job gets either 0 or Max colors. To see that consider the behavior
of the algorithm Paging_fba on such an instance, i.e., in which rmin(i) = 0 and
rmax (i) = Max. Note that when we start the algorithm |AVAIL| is a multiple of
Max and thus when the first (left) endpoint s1 is considered the job J1 is allocated
Max colors and |AVAIL| remains a multiple of Max. Assume inductively that as the
endpoints are scanned all the jobs that were allocated colors up to this endpoint were
allocated Max colors and that |AVAIL| is a multiple of Max. If the current scanned
endpoint is a right endpoint ei then by the induction hypothesis either 0 or Max colors

123

3232 Algorithmica (2019) 81:3217–3244

are added to AVAIL and nothing else is changed. Suppose that the scanned endpoint
is a left endpoint si . If |AVAIL| > 0 then Max colors from AVAIL are allocated to Ji .
Otherwise, Ji may be allocated colors that were previously allocated to another job
J�, for � < i . However, in this case because rmin(�) = 0 all the Max colors allocated
to J� will be moved to Ji , and the hypothesis still holds.

The optimal way to assign either 0 or Max colors to each job is given by computing
the maximum k = (W/Max)-colorable subgraph of G and assigning Max colors to
each interval in the maximum k-colorable subgraph. Since the assignment of these
colors can be done contiguously it follows that this is also the optimal solution to the
respective fsap instance. �

In the Appendix, we give a proof of hardness in case k > W/Max.

Theorem 8 fsap is strongly NP-hard even if for all 1 ≤ i ≤ n rmax (i) = 3, and W is
not divisible by 3.

6 Approximation Algorithms for Uniform fsapfsapfsap

6.1 A 2k
2k−1 -approximation Algorithm

Suppose that k > W/Max. (Note that since W > Max, we have k ≥ 2.) We describe
below Algorithm AMaxSmall for uniform fsap instances. It yields solutions that are
close to the optimal as k = � W

Max� gets large. Initially, AMaxSmall solves optimally
fbap on the input graph G. Let G ′ be the support graph for this solution (i.e., G ′ is the
subgraph of G induced by the intervals that are colored in this solution). AMaxSmall

proceeds by generating a feasible solution for fsap as follows. Consider the set of
intervals Ji ∈ G ′ for which |c(Ji)| = Max. Let G2 be the subgraph of G ′ induced
by this set of intervals. Observe that the graph G2 is (k − 1)-colorable, since there
is no clique of size k in G2 (as it would require kMax > W colors). Consequently,
each interval in G2 can be assigned a set of Max contiguous colors, using a total of
(k − 1)Max colors. AMaxSmall then finds a maximum independent set of intervals in
the remaining subgraph G1 = G ′ \ G2, and colors contiguously each interval in this
set using the remaining W mod Max colors (see the pseudocode in Algorithm 6.1).
Recall that an independent set is a maximum 1-colorable graph and thus it can be
computed using the algorithm given above.

Theorem 9 For any uniform instance of fsap, AMaxSmall yields an optimal solution
for fsap if k = 2, and a 2k

2k−1 -approximation for any k ≥ 3.

The proof of Theorem 9 uses the next lemma. Recall that G1 ⊆ G ′ is the subgraph
induced by the intervals Ji for which |c(Ji)| < Max.

Lemma 10 The subgraph G1 ⊆ G ′ is proper and 2-colorable, and for each Ji ∈ G1
we have |c(Ji)| = W mod Max.

Proof We first note that if G1 is not proper, then there exist two intervals, Ji and J j ,
such that J j is completely contained in Ji . By the way Paging_fba proceeds, when it

123

Algorithmica (2019) 81:3217–3244 3233

Algorithm 6.1 AMaxSmall(J ,Max,W)

1: Find an optimal solution for fbap on G, the interval graph of J , using Algorithm Paging_fba.
2: Let S ⊆ J be the solution set of intervals, and G′ ⊆ G the support graph of S.
3: Let G2 ⊆ G′ be the subgraph induced by the intervals Ji for which |c(Ji)| = Max.
4: Let G1 ⊆ G′ be the subgraph induced by the rest of the intervals, i.e., intervals Ji for which |c(Ji)| <

Max.
5: Scan the intervals Ji in G2 from left to right and color contiguously each interval with the lowest

available Max colors.
6: Let r = W mod Max.
7: Let I be a maximum independent set in G1.
8: Color each interval in I contiguously in the r colors (k − 1)Max + 1, . . . ,W .
9: Return the coloring of the intervals in G1 ∪ G2.

colors J j , some colors that were assigned to Ji should be assigned to J j , until either
|c(J j)| = Max, or |c(Ji)| = 0. Since none of the two occurs - a contradiction.

We now show that G1 is 2-colorable, and that for each Ji ∈ G1 we have |c(Ji)| =
W mod Max. Throughout the proof, we assume that there are n1 intervals inG1 sorted
by their starting points, and numbered 1, 2, . . . , n1, i.e., s1 < s2,< · · · < sn1 . For any
t ∈ [s1, en1), say that t is tight if

∑

{J�∈J :t∈J�}
|c(J�)| = W .

Let T denote the set of tight time points. To keep a discrete set of such points, we
consider only tight points t which are also the start-times of intervals, i.e., t = si for
some 1 ≤ i ≤ n. We note that every interval Ji ∈ G1 must contain at least one tight
time point (otherwise, Paging_fba would assign more colors to Ji). We complete the
proof using the next claim. �
Claim 1 Every time point t ∈ T is contained in exactly one interval Ji ∈ G1.

We show that Claim 1 implies thatG1 is 2-colorable. Assume that there exists inG1
a clique of at least 3 intervals. Let Ja, Jb, Jc be three ordered intervals in this clique.
We note that there is no t ∈ Jb that is not contained in either Ja or Jc. However, Jb
must contain a tight time point. Contradiction to Claim1.

Claim 1 also implies that for each Ji ∈ G1 we have |c(Ji)| = W mod Max.
Consider such an interval Ji . It must contain a tight time point. Since this tight time
point is not contained in any other interval inG1, wemust have |c(Ji)| = W mod Max.

Proof of Claim 1: First, note that since W is not a multiple of Max every tight time
point has to be contained in at least one interval Ji ∈ G1. We prove that it cannot be
contained in more than one such interval by induction. Let t1 be the earliest time point
in T . Since each Ji ∈ G1 contains a tight time point, t1 ∈ J1. If t1 < s2 then clearly
the claim holds for t1. Suppose that t1 ≥ s2. In this case, since there is at least one
available color in [s1, s2), and since e2 > e1, Algorithm Paging_fba would assign at
least one additional color to J1 rather than to J2. A contradiction.

For the inductive step, let i > 1, and consider ti ∈ T . Assume that the claim holds
for ti−1 ∈ T , and let ti−1 ∈ J�. Since ti−1 is not contained in any other interval in G1,

123

3234 Algorithmica (2019) 81:3217–3244

and since it is tight, we must have |c(J�)| = W mod Max. To obtain a contradiction
assume that ti is contained in more than one interval in G1. At least one of these
intervals must be J�+1 (since ti > e�−1). If ti is not contained in J� then clearly,
by our assumption, ti must also be contained in J�+2. However, even if ti ∈ J�,
since |c(J�)| = W mod Max, in order for ti to be tight, it must be contained also in
J�+2. In this case, since there is at least one available color in [s�+1, s�+2), and since
e�+2 > e�+1, Algorithm Paging_fba would assign at least one additional color to
J�+1, rather than to J�+2. A contradiction. �

We are ready to show the performance ratio of Algorithm AMaxSmall .

Proof of Theorem 9: We handle separately two cases.

(i) k ≥ 3. Consider the graphs G ′ and G1,G2, as defined in Steps 4, and 3 of
AMaxSmall , respectively. Let OPT fsap(G) and A(G) be the value of an optimal
solution and the solution output by AMaxSmall , respectively, for an input graph
G.
Since G1 is 2-colorable, A(G) ≥ OPT fba(G) − 1

2 (W mod Max) · |G1|. To
get the approximation ratio 2k

2k−1 , we need to show that (W mod Max) · |G1| ≤
1
k OPT fba(G). Let λMax = W mod Max. Note that 0 < λ < 1. In fact, we prove
a slightly better bound, as we show that

λMax|G1|
OPT fba(G)

≤ λ

k − 1 + λ
<

1

k
. (4)

Before we prove the inequality we show how it implies the approximation ratio.
Clearly, OPT fsap(G) ≤ OPT fba(G). By inequality (4)

A(G) ≥ OPT fba(G) − 1

2
(W mod Max) · |G1|

≥ OPT fba(G)(1 − 1

2
· λ

k − 1 + λ
)

= OPT fba(G)
(2k − 2 + λ)

2(k − 1 + λ)
> OPT fba(G)

2k − 1

2k
.

Thus, OPT fsap(G)

A(G)
< 2k

2k−1 .
We now prove inequality (4). To obtain a contradiction, assume that inequality (4)
does not hold. By Lemma 10 we have

OPT fba(G) = (W mod Max) · |G1| + Max · |G2|,

where |G2| = |G ′| − |G1|. We get

(W mod Max) · |G1|
OPT fba(G)

= λMax|G1|
Max|G ′| − Max(1 − λ)|G1| = λ|G1|

|G ′| − (1 − λ)|G1|
>

λ

k − 1 + λ
.

123

Algorithmica (2019) 81:3217–3244 3235

This implies k|G1| > |G ′|, and thus

OPT fba(G) = λMax|G1| + Max(|G ′| − |G1|) = Max|G ′| − (1 − λ)Max|G1|
< (1 − 1

k
(1 − λ))Max|G ′| = k − 1 + λ

k
· Max|G ′|.

Note than G ′, the support graph of the solution obtained by Paging_fba, is k-
colorable, since it cannot contain any clique of size k + 1. Indeed, such a clique
can have at most 2 intervals fromG1, and at least k−1 intervals fromG2, and thus
requires more than W colors (since Algorithm Paging_fba assigns W mod Max
colors to each interval in G1). We can use the k coloring to obtain a solution of
the fbap instance, by assigning Max colors to intervals in the k − 1 largest color
classes, and W mod Max to the remaining color class. Thus, OPT fba(G) ≥
1
k · λMax|G ′| + k−1

k · Max|G ′| = k−1+λ
k · Max|G ′|. A contradiction.

(ii) k = 2. Then a polynomial time algorithmA is obtained by modifying Algorithm
AMaxSmall . We first compute the graphs G ′ and G1,G2, as defined in Steps 4,
and 3 ofAMaxSmall , respectively. Note that no two intervals in G2 intersect, since
coloring two intersecting intervals in G2 would require 2Max > W colors. It
follows that G2 is an independent set. We claim that G ′ is 2-colorable. Suppose
that this is not the case, then G ′ must have a clique of size at least 3. Since G1 is
2-colorable and G2 is an independent set, the only way to have such a clique is
if an interval from G2 intersects an intersection point of two intervals of G1, say
Ji−1 and Ji . However, in this case a tight time point is contained in two intervals
in G1 contradicting Claim 1.
We color G ′ in two “shades” a and b. (We call it shades rather than colors to
distinguish from the colors that are used for allocation.) Let r = W mod Max.
We now assign the colors as follows: if an interval from G1 has shade a color it in
the colors 1, . . . , r , otherwise color it in the colors Max+ 1, . . .W . If an interval
from G2 has shade a color it in the colors 1, . . . ,Max, otherwise color it in the
colors r + 1, . . .W . The shades for the intervals can be determined by any 2-
coloring of G ′. It is easy to verify that no two intersecting intervals are colored in
the same color. It follows that in this caseA(G) = OPT fba(G) = OPT fsap(G).

�

6.2 An Approximation Scheme

We now describe a PTAS for uniform instances of fsap. Denote by OPTfsap(J) the
value of an optimal solution for an instance J of fsap. Fix ε ∈ (0, 1

2). W.l.o.g., we
may assume that W > 4/ε2, else W is a constant, and in this case fsap can be solved
optimally in polynomial time (see [31]).

Let J be a uniform input for fsap. The scheme handles separately two subclasses
of inputs, depending on the value of Max. First, we consider the case where Max
is large relative to W , or more precisely k = �W/Max� ≤ 1/ε. In this case we
partition the colors into O(1/ε2) strips of contiguous colors, each of size at most
�ε2W/4� ≥ 1. Note that by our assumption �ε2W/4� ≤ �εMax/4�. We consider only

123

3236 Algorithmica (2019) 81:3217–3244

feasible solutions that for each strip assign either all the colors in the strip or none of
the colors in the strip to any job, and find an optimal solution among these solutions.
Since the number of strips is O(1/ε2), this can be done in polynomial time using
dynamic programming, as shown in [31]. In the next lemma we prove that the profit
of this solution is at least (1 − ε)OPTfsap(J).

Lemma 11 For any uniform instance J of fsap where �W/Max� ≤ 1/ε, there exists
a feasible solution of total profit is at least (1 − ε)OPTfsap(J), where each job is
assigned complete strips of colors (possibly zero).

Proof Given an optimal solution for a uniform input J , let S be the subset of intervals
Ji for which |c(Ji)| > 0, and let GS be the support graph for S (i.e., the subgraph of
the original interval graph induced by the intervals in S). We show how to convert this
solution to a solution whose total profit is at least (1 − ε)OPTfsap(J) in which each
interval Ji ∈ S is assigned complete strips of colors (possibly zero), and each interval
J /∈ S is not assigned any color.

Using the above partition of the colors to strips, we have 1 ≤ N ≤ � 8
ε2

� strips.
Denote by C j the subset of colors of strip j . We obtain the strip structure for the
solution as follows. Let S j ⊆ S be the subset of intervals with colors in strip j , i.e.,
S j = {Ji |c(Ji) ∩ C j �= ∅}.

We now define the coloring c′ of the converted solution. Initialize for all Ji ∈ S,
c′(Ji) = ∅.
(i) For all 1 ≤ j ≤ N , find in GS a maximum independent set, I j of intervals

Ji ∈ S j . For any Ji ∈ I j , assign to Ji all colors in C j , i.e., c′(Ji) = c′(Ji) ∪ C j .
(ii) For any Ji ∈ S, if |c′(Ji)| > Max then omit from the coloring of Ji a consecutive

subset of strips, starting from the highest 1 ≤ j ≤ N , such that C j ⊆ c′(Ji), until
for the first time |c′(Ji)| ≤ Max.

We show below that the above strip coloring for S is feasible, and that the total
profit from the strip coloring is at least (1− ε)OPT fsap(J). To show feasibility, note
that if Ji ∈ S j and Ji ∈ S j+2 then, because the coloring is contiguous Ji is allocated
all the colors in S j+1; thus, any maximum independent set I j+1 will contain Ji , since
it has no conflicts with other jobs in S j+1. It follows that if a job Ji is allocated colors
in more than two consecutive strips, i.e., Ji ∈ S j ∩ S j+1 ∩ · · · ∩ S j+�, for � > 1, then
Ji ∈ I j+1 ∩ · · · ∩ I j+�−1. Thus, each interval Ji ∈ S will be assigned in step (i) a
consecutive set of strips. Hence, c′ is a contiguous coloring. In addition, after step (ii),
for all Ji ∈ S we have that |c′(Ji)| ≤ Max.

Now, consider the profit of the strip coloring. We note that after step (i), the total
profit of c′ is at least OPT fsap(J). This is because for each strip j , |C j | · |I j | is an
upper bound on the profit that can be obtained from this strip. (This is true since, by
Lemma 7, this is the optimal profit even when all the colors C j can be assigned to
every interval in S j .) We show that the impact of reducing the number of colors in
step (ii) is small. We distinguish between two type of intervals in S.

(a) Intervals Ji for which |c(Ji)| ≥ (1−ε/2)Max. Since coloring c is valid, it follows
that |c′(Ji)| is reduced in step (ii) only if before this step |c′(Ji)| > |c(Ji)|.
Consider all the strips that contain colors assigned to Ji in the original coloring

123

Algorithmica (2019) 81:3217–3244 3237

c. Note that in all such strips, except at most two, no colors are assigned to
any interval that intersects Ji . Thus, |c′(Ji)| is reduced in step (ii) by at most
2� εMax

4 � ≤ (ε/2)Max. Since |c(Ji)| ≥ (1− ε/2)Max, we have that after step (ii),
|c′(Ji)| ≥ |c(Ji)| − (ε/2)Max ≥ (1 − ε)Max.

(b) For any interval Ji for which |c(Ji)| < (1−ε/2)Max, since after step (i) |c′(Ji)| ≤
|c(Ji)|+2� εMax

4 �, we have that |c′(Ji)| ≤ Max. Thus, no colors are omitted from
Ji in step (ii).

From (a) and (b), we have that the total profit from the strip coloring satisfies
OPT ′

fsap(J) ≥ (1 − ε)OPT fsap(J). �
Now, consider the case where Max is small, i.e., k = �W/Max� > 1/ε. In this case

we consider just (k − 1)Max consecutive colors and ignore the remainder up to εW
colors. Let OPTfsap(W)(J) denote the value of an optimal solution for instance J of
fsap withW colors, and recall that k = �W/Max�. Since (k − 1)Max < W < kMax,
OPTfsap((k−1)Max)(J) < OPTfsap(W)(J) < OPTfsap(kMax)(J).

Recall that by Lemma 7 when the number of colors W is a multiple of Max we
can find an optimal solution in polynomial time, and that by the proof of the lemma
the value of this optimal solution is Max times the size of the maximum W/Max-
colorable subgraph of G. Thus, the value of OPTfsap((k−1)Max) is Max times the size
of the maximum (k − 1)-colorable subgraph of G, and the value of OPTfsap(kMax) is
Max times the size of the maximum k-colorable subgraph of G. Clearly, the ratio of
the sizes of these subgraphs and thus the ratio of the two optimal values is bounded by
1−1/k > 1−ε. It follows that OPTfsap((k−1)Max)(J) > (1−ε)OPTfsap(kMax)(J) ≥
(1 − ε)OPTfsap(W)(J). Combining the results, we have

Theorem 12 The above algorithm is a PTAS for uniform fsap instances.

Acknowledgements We thank Magnús Halldórsson and Viswanath Nagarajan for valuable discussions.
We also thank two anonymous referees for many insightful comments on the paper.

A Hardness of fsapfsapfsap for Uniform Instances

Proof of Theorem 8: The reduction is from of the 3-Exact-Cover (3XC) problem
defined as follows. Given a universal set U = {e1, . . . , e3n} and a collection
S = {S1, . . . , Sm} of 3 element subsets of U , is there a sub-collection S′ ⊆ S such
that each element ofU occurs in exactly one member of S′. Note that |S′| = n, if such
exists. Recall that Karp showed in his seminal paper [19] that 3XC is NP-Complete.

To simplify the presentation, we first assume that the intervals have different profits
per allocated unit. For the reduction, we use several sets of intervals. One such set is
shown in Fig. 2. It consists of 16 intervals whose lengths and relative positions are
given in the figure. Assume that the profit of each of the intervals 9, . . . , 16 is higher
than the sum of the profits of intervals 1, . . . , 8, and that the profit of each of the
intervals 2 to 7 is higher than the profit of intervals 1 and 8.

Suppose that we are given two “banks” of contiguous colors to allocate to this set
of intervals: one bank consists of four contiguous colors and one consists of three
contiguous colors. Given that rmax (i) = 3, our first priority is to allocate three colors

123

3238 Algorithmica (2019) 81:3217–3244

Fig. 2 The “two-choice” set of intervals

Fig. 3 Two possibilities for allocating the two banks of colors

to each interval in [9..16]. Assuming that three colors are indeed allocated to each
interval in [9..16], note that any other interval can be allocated at most one color. This
is since any other interval intersects two intervals from [9..16] at a point.

We say that two intervals from [1..8] conflict if both cannot be allocated colors
simultaneously. Note that two such intervals conflict if both intersect two intervals
from [9..16] at the same time point because only 7 colors are available. Define the
conflict graph to be a graph over the vertices [1..8], where two vertices are connected
if the respective intervals conflict. It is easy to see that the conflict graph is the path
1–5–2–6–3–7–4–8. Since the profit of intervals [2..7] is higher than the profit of
intervals 1 and 8, the best strategy is to allocate one color to three of the intervals in
[2..7] and one color to either interval 1 or 8. The only two possibilities for allocating
the two banks of colors in such a way are illustrated in Fig. 3. Because of this property,
we call this set of intervals a “two-choice” gadget. Note that, in the first option, the
bank of 3 colors is unassigned at times: 5, 9 and 13, while in the second option, it is
unassigned at times 3, 7 and 11.

We need to define also a pair of intervals called an “overlapping” pair of intervals,
illustrated in Fig. 4. Note that to be able to allocate 3 colors to both intervals, we need
one bank of 3 contiguous colors at time interval [t1, t2+1) and another at time interval
[t2, t3); that is, we need both banks at time interval [t2, t2 + 1).

123

Algorithmica (2019) 81:3217–3244 3239

Fig. 4 Overlapping intervals

Wenowdescribe the reduction from the 3XCproblem. For each set Si ∈ S, associate
a “two-choice” gadget. The “two choices” correspond to the decision whether to
include Si in the cover or not. For each element e ∈ U , and for each set Si such that
e ∈ Si , we associate a pair of overlapping intervals, where the overlap is in one of
the times in which the “two choice” gadget corresponding to set Si has an unassigned
bank of 3 colors. In addition, we define some extra intervals as detailed below.

Given a 3XC problem instance, setW = 9m+7 and rmax = 3 for all intervals. Let
P = 8n + 45m. In the reduction, we have 5 groups of intervals defined as follows.

(i) Left border: 3m + 3 intervals L1, . . . , L3m+3 each of profit P2. For i ∈ [1..3n],
Li = [0, i), for i ∈ [3n + 1..3m], Li = [0, 4n), and for i ∈ [3m + 1..3m + 3],
Li = [0, 4n + 15m).

(ii) Right border: 3m + 3 intervals R1, . . . R3m+3 each of profit P2. For i ∈ [1..3n],
Ri = [5n+45m+ i, 8n+45m+1), for i ∈ [3n+1..3m], Ri = [4n+45m, 8n+
45m + 1), and for i ∈ [3m + 1..3m + 3], Ri = [4n + 30m, 8n + 45m + 1).

(iii) “two choice” gadgets: m copies of the “two choice” gadget, one for each set
Si ∈ S. The gadget associated with set Si starts at time 4n + 15m + 15(i − 1)
and its length is 15 time units. The profit of intervals 1 and 8 in each copy is 1,
the profit of intervals 2 to 7 is 2, and the profit of intervals 9 to 16 is P2.

(iv) element overlapping pairs: 3m overlapping pairs of intervals, one per occurrence
of an element in a set. For each Si ∈ S, let Si = {ea, eb, ec}, where {a, b, c} ⊆
[1..3n]. The respective three overlapping pairs are (1) [a, 4n+15m+15(i−1)+3)
and [4n+15m+15(i−1)+2, 5n+45m+a), (2) [b, 4n+15m+15(i−1)+7) and
[4n+15m+15(i −1)+6, 5n+45m+b), and (3) [c, 4n+15m+15(i −1)+11)
and [4n+15m+15(i−1)+10, 5n+45m+c). The profit of each such interval is
its length. Note that the profit of any pair of overlapping intervals is 5n+45m+1.

(v) “filler” overlapping pairs: 3m overlapping pairs, three per set. For each Si ∈ S,
the respective three overlapping pairs are (1) [4n, 4n+ 15m + 15(i − 1)+ 5) and
[4n + 15m + 15(i − 1) + 4, 4n + 45m), (2) [4n, 4n + 15m + 15(i − 1) + 9) and
[4n+ 15m + 15(i − 1)+ 8, 4n+ 45m), and (3) [4n, 4n+ 15m + 15(i − 1)+ 13)
and [4n + 15m + 15(i − 1) + 12, 4n + 45m). The profit of each such interval is
its length. Note that the profit of any pair of overlapping intervals is 45m + 1.

�
Lemma 13 The 3XC instance has an exact cover if and only if the associated fsap
instance has profit (18m+14+24m)P2+7m+9n(5n+45m+1)+(9m−9n)(45m+
1) = (42m + 14)P2 + 405m2 + 45n2 + 16m.

Proof Assume that the 3XC instance has an exact cover. We show an assignment of
the intervals in the fsap instance that achieves the desired profit. First, assign color

123

3240 Algorithmica (2019) 81:3217–3244

Fig. 5 Assigning intervals related to Si

1 to L3m+2 and R3m+2 and colors 2, 3, 4 to L3m+3 and R3m+3. Also assign colors
5, 6, 7 to L3m+1 and colors 9m + 5, 9m + 6, 9m + 7 to R3m+1. Now, consider Si , for
i ∈ [1..m]. Assume that 0 ≤ k < i sets S j , for j < i are in the cover. (See also Fig. 5.)

If Si is not in the cover choose the first option for the “two choice” gadget associated
with Si . Namely, assign colors [1..4] to intervals [1..4] and [9..12] in the gadget, and
for j ∈ [13..16] assign colors 9i + 3 j − 43, 9i + 3 j − 42, 9i + 3 j − 41 to interval
j . Also, assign colors 9i − 4, 9i − 3, 9i − 2 to R3(n+i−k)−2; for j ∈ {2, 3}, assign
colors 9i + 3 j − 7, 9i + 3 j − 6, 9i + 3 j − 5 to L3(n+i−k)+ j−4 and R3(n+i−k)+ j−3,
and assign colors 9i + 5, 9i + 6, 9i + 7 to L3(n+i−k). Finally, assign 3 colors to the 3
“filler” overlapping pairs corresponding to Si as follows: colors 9i − 4, 9i − 3, 9i − 2
to interval [4n + 15m + 15(i − 1) + 4, 4n + 45m), colors 9i − 1, 9i, 9i + 1 to
intervals [4n, 4n + 15m + 15(i − 1) + 5) and [4n + 15m + 15(i − 1) + 8, 4n +
45m), colors 9i + 2, 9i + 3, 9i + 4 to intervals [4n, 4n + 15m + 15(i − 1) + 9) and
[4n + 15m + 15(i − 1) + 12, 4n + 45m), and colors 9i + 5, 9i + 6, 9i + 7 to interval
[4n, 4n + 15m + 15(i − 1) + 13).

Suppose that Si is in the cover. Let Si = {ea, eb, ec}, where {a, b, c} ⊆ [1..3n].
Choose the second option for the “two choice” gadget associated with Si . Namely,
assign colors [1..4] to intervals [5..8] and [13..16] in the gadget, and for j ∈ [9..12]
assign colors 9i + 3 j − 31, 9i + 3 j − 30, 9i + 3 j − 29 to interval j . The respective
element overlapping pairs and the border intervals are assigned colors as follows:
colors 9i − 4, 9i − 3, 9i − 2 to [4n + 15m + 15(i − 1) + 2, 5n + 45m + a) and Ra ,
colors 9i −1, 9i, 9i +1 to La , [a, 4n+15m+15(i −1)+3), [4n+15m+15(i −1)+
6, 5n+45m+b) and Rb, colors 9i+2, 9i+3, 9i+4 to Lb, [b, 4n+15m+15(i−1)+7),
[4n + 15m + 15(i − 1)+ 10, 5n + 45m + c) and Rc, and colors 9i + 5, 9i + 6, 9i + 7
to Lc and [c, 4n + 15m + 15(i − 1) + 11).

123

Algorithmica (2019) 81:3217–3244 3241

Note that the assignment is valid, that is, no two overlapping intervals are
assigned the same color. To calculate the total profit of the assignment note that
L3m+1, L3m+3, R3m+1 and R3m+3 are each assigned 3 colors and L3m+2, R3m+2 are
assigned a single color. This contributes 14P2 to the profit. Also, intervals [9..16] in all
the “two choice” gadgets are assigned 3 colors, and either intervals [1..4] or [5..8] are
assigned a single color. This contributes 24mP2+7m to the profit. Since we start from
a cover, all the element overlapping pairs aswell as the corresponding left and right bor-
der intervals are assigned 3 colors each. This contributes 3·6nP2+3·3n(5n+45m+1)
to the profit. Since the cover is exact, 3m − 3n “filler” overlapping pairs as well as
the corresponding left and right border intervals are assigned 3 colors each. This con-
tributes 3(6m − 6n)P2 + 3(3m − 3n)(45m + 1) to the profit. Overall, the profit is
(42m + 14)P2 + 405m2 + 45n2 + 16m.

We now prove the other direction. Suppose that we find an assignment of colors to
intervals with total profit (42m + 14)P2 + 405m2 + 45n2 + 16m. The only way to get
total profit of at least (42m + 14)P2 is by assigning 3 colors to all intervals with P2

profit per allocated unit in the “two choice” gadgets, and in addition, by assigning 3
colors to all but one left (and right) border intervals, and by assigning the 1 remaining
color to the remaining left (and right) border interval.

Consider the (element and “filler”) overlapping pairs. At most 3m left (and right)
intervals out of these overlapping pairs can be assigned 3 colors each, since any
additional assignment would conflict with the assignment of colors to the border
intervals. Out of these 3m left and right intervals, at most 3n left (and right) intervals
can be element overlapping intervals.

Since all intervals with P2 profit per allocated unit in the “two choice” gadgets
are assigned 3 colors, there are 3m remaining 3 color blocks throughout the interval
[4n + 15m, 4n + 30m) and at most one more block of 3 colors is available in each
of the 6m time units when some of the intervals with P2 profit per allocated unit in
the “two choice” gadgets are not assigned any color (see Fig. 3). The maximum profit
that can be attained by assigning these colors to the unassigned intervals in the “two
choice” gadgets is at most 3 · (2 · 6 + 2)m = 42m. Thus the only way to achieve the
405m2 term in the profit (for large enough m) is by actually assigning 3 colors to 3m
left and 3m right intervals out of the overlapping pairs.

Consider the 3m left intervals of the overlapping pairs that are assigned 3 colors in
increasing length order and the right intervals of the overlapping pairs that are assigned
3 colors in decreasing length order. Denote these two sequences by OL

1 , . . . , OL
3m and

OR
1 , . . . , OR

3m .

Claim 2 For i ∈ [1..3m], if OL
i and OR

i overlap, they cannot overlap by more than
one time unit.

Proof Suppose the claim does not hold, and let i be the minimum index for which OL
i

and OR
i overlap by more than one time unit. However, in this case OL

i and OR
i must

overlap in at least one time unit t when the intervals with P2 profit per allocated unit
in the “two choice” gadgets are assigned two blocks of 3 colors. Since OR

i contains
time t , t is contained also in OR

1 , . . . , OR
i−1. Similarly, since OL

i contains time t , t
is contained also in OL

i+1, . . . , O
L
3m . But this implies that 3m + 1 intervals out of the

123

3242 Algorithmica (2019) 81:3217–3244

overlapping pairs and 2 intervals from the “two choice” gadget are each assigned 3
colors. This is impossible, since there are only 9m + 7 colors. �

From the discussion above, it follows that if OL
i and OR

i overlap they must be an
overlapping pair. Themaximumprofit that can be attained from the intervals in the “two
choice” gadgets that do not have P2 profit per allocated unit is 14m. Thus, to achieve
the additional 405m2 + 45n2 terms in the profit, we must have that for all i ∈ [1..3m],
intervals OL

i and OR
i are an overlapping pair, and 3n out of these overlapping pairs

are element overlapping pairs. This will contribute 405m2 + 45n2 + 9m to the profit.
The extra 7m profit needs to be attained by assigning colors to the intervals in the
“two choice” gadgets that do not have P2 profit per allocated unit. It follows that each
“two choice” gadget needs to be colored using one of the two options described above
and exactly n of them have to be colored using the second option. These n gadgets
correspond to the exact cover. �

Finally, we note how the reduction can be modified to include only intervals of
identical profit per allocated unit. The idea is to “slice” each interval in the original
reduction to smaller intervals whose number is the profit per allocated unit of the
original interval. When doing so, we need to ensure that it is not beneficial to move
from a “slice” of one interval to a “slice” of another interval. This is done by assigning
different displacements to the slices in different intervals, so that whenever we attempt
to gain from a move from a “slice” of one interval to a “slice” of another interval, we
lose at least one slice due to the different displacements. Thus, the same set of colors
will be used for all slices associated with the original interval. This completes the
proof of the theorem. �

References

1. Albers, S., Arora, S., Khanna, S.: Page replacement for general caching problems. In: SODA, pp.
31–40 (1999)

2. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line
graphs. In: STOC, pp. 721–729 (2006)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating
resource allocation and scheduling. JACM 48(5), 735–744 (2000)

4. Bar-Yehuda, R., Beder, M., Cohen, Y., Rawitz, D.: Resource allocation in bounded degree trees.
Algorithmica 54(1), 89–106 (2009)

5. Bar-Yehuda, R., Beder, M., Rawitz, D.: A constant factor approximation algorithm for the storage
allocation problem. Algorithmica 77(4), 1105–1127 (2017)

6. Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable
flow on a path. In: SODA, pp. 47–58 (2015)

7. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2),
78–101 (1966)

8. Buchsbaum, A.L., Karloff, H.J., Kenyon, C., Reingold, N., Thorup,M.: OPT versus LOAD in dynamic
storage allocation. SIAM J. Comput. 33(3), 632–646 (2004)

9. Călinescu, G., Chakrabarti, A., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for
resource allocation. ACM Trans. Algorithms 7(4), 48 (2011)

10. Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.: Improved algorithms for
resource allocation under varying capacity. In: ESA, pp. 222–234 (2014)

11. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer
programs. ACM Trans. Algorithms 3(3), 27 (2007)

12. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans. 34(5), 501–507 (2002)

123

Algorithmica (2019) 81:3217–3244 3243

13. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching is hard—even in the fault model. Algo-
rithmica 63(4), 781–794 (2012)

14. Gerstel, O.: Flexible use of spectrum and photonic grooming. In: Photonics in Switching (2010)
15. Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+ε) approximation for unsplittable flow on a

path: placing small tasks into boxes. In: STOC, pp. 607–619 (2018)
16. Jain, N., Menache, I., Naor, J., Yaniv, J.: A truthful mechanism for value-based scheduling in cloud

computing. In: SAGT, pp. 178–189 (2011)
17. Jain, N., Menache, I., Naor, J., Yaniv, J.: A truthful mechanism for value-based scheduling in cloud

computing. Theory Comput. Syst. 54(3), 388–406 (2014)
18. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and

scalable elastic optical path network: architecture, benefits, and enabling technologies. Comm. Mag.
47, 66–73 (2009)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of Complexity of Computer
Computations, pp. 85–103 (1972)

20. Knuth, D.: The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd edn. Addison-
Wesley, Boston (1973)

21. Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval scheduling: a survey. Naval
Res. Logist. 54(5), 530–543 (2007)

22. Leonardi, S., Marchetti-Spaccamela, A., Vitaletti, A.: Approximation algorithms for bandwidth and
storage allocation problems under real time constraints. In: FSTTCS, pp. 409–420 (2000)

23. Liberatore, V.: Uniform multipaging reduces to paging. Inf. Process. Lett. 67(1), 9–12 (1998)
24. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application deadlines in cloud

workflows. In: SC (2011)
25. Mömke, T., Wiese, A.: A (2 + ε)-approximation algorithm for the storage allocation problem. In:

ICALP, pp. 973–984 (2015)
26. Ramaswami, R., Sivarajan, K.N., Sasaki, G.H.: Optical Networks: A Practical Perspective. Morgan

Kaufmann Publisher Inc., San Francisco (2009)
27. Roy, B.V.: A short proof of optimality for the MIN cache replacement algorithm. Inf. Process. Lett.

102(2–3), 72–73 (2007)
28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
29. Shachnai, H., Voloshin, A., Zaks, S.: Flexible bandwidth assignment with application to optical net-

works. J. Scheduling 21(3), 327–336 (2018)
30. Shachnai, H., Voloshin, A., Zaks, S.: Optimizing bandwidth allocation in elastic optical networks with

application to scheduling. J. Discrete Algorithms 45, 1–13 (2017)
31. Shalom, M., Wong, P., Zaks, S.: Profit maximization in flex-grid all-optical networks. In: SIROCCO

(2013)
32. Tutte, W.T.: Lectures on matroids. J. Res. Natl. Bur. Stand. (B) 69, 1–47 (1965)
33. Velasco, L., Klinkowski, M., Ruiz, M., Comellas, J.: Modeling the routing and spectrum allocation

problem for flexgrid optical networks. Photonic Netw. Commun. 24(3), 177–186 (2012)
34. Voloshin, A.: Flexible resource allocation for network problems. Ph.D. Thesis, Computer Science

Department, Technion (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Dmitriy Katz1 · Baruch Schieber2 · Hadas Shachnai3

B Hadas Shachnai
hadas@cs.technion.ac.il

Dmitriy Katz
katzrog@us.ibm.com

123

3244 Algorithmica (2019) 81:3217–3244

Baruch Schieber
sbar@njit.edu

1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

2 Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

3 Computer Science Department, Technion, 3200003 Haifa, Israel

123

	Flexible Resource Allocation to Interval Jobs
	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Applications
	1.4 Our Contribution
	1.5 Related Work

	2 Preliminaries
	3 The Flexible Bandwidth Allocation Problem
	4 Approximating Flexible Storage Allocation
	4.1 Analysis of Proper _fsap-.4

	5 Complexity of fsap-.4 on Uniform Instances
	6 Approximation Algorithms for Uniform fsap-.4
	6.1 A 2k2k-1-approximation Algorithm
	6.2 An Approximation Scheme

	Acknowledgements
	A Hardness of fsap-.4 for Uniform Instances
	References

