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Abstract
A tree σ -spanner of a positively real-weighted n-vertex and m-edge undirected graph
G is a spanning tree T ofG which approximately preserves (i.e., up to a multiplicative
stretch factor σ ) distances in G. Tree spanners with provably good stretch factors find
applications in communication networks, distributed systems, and network design.
However, finding an optimal or even a good tree spanner is a very hard computational
task. Thus, if one has to face a transient edge failure in T , the overall effort that has
to be afforded to rebuild a new tree spanner (i.e., computational costs, set-up of new
links, updating of the routing tables, etc.) can be rather prohibitive. To circumvent
this drawback, an effective alternative is that of associating with each tree edge a best
possible (in terms of resulting stretch) swap edge—a well-established approach in the
literature for several other tree topologies. Correspondingly, the problem of computing
all the best swap edges of a tree spanner is a challenging algorithmic problem, since
solving it efficiently means to exploit the structure of shortest paths not only in G, but
also in all the scenarios in which an edge of T has failed. For this problem we provide
a very efficient solution, running in O(n2 log4 n) time, which drastically improves
(almost by a quadratic factor in n in dense graphs) on the previous known best result.

Keywords Transient edge failure · Swap algorithm · Tree spanner

1 Introduction

The problem of computing all the best swap edges (ABSE) of a tree has a long and rich
algorithmic tradition. Basically, letG = (V (G), E(G), w) be an n-vertex andm-edge
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2-edge-connected undirected graph, with edge-weight functionw : E(G) → R
+, and

assume we are given a spanning tree T of G, which was computed by addressing1

some criterion (i.e., objective function) φ. Then, the problem is that of computing a
BSE for every edge e ∈ E(T ), namely an edge f ∈ E(G) \ E(T ) such that the swap
tree Te/ f obtained by swapping e with f in T optimizes some objective function φ′
out of all possible swap trees. Quite reasonably, the function φ′ must be related (if not
coinciding at all) with φ.

The first immediate motivation for studying an ABSE problem comes from the
edge fault-tolerance setting—a commonly accepted framework. Broadly speaking,
the algorithmic question here is to design sparse subgraphs that guarantee a proper
level of functionality even in the presence of an edge failure. In such a context, the
rationale of an ABSE-based solution is the following: operations are normally per-
formed on a (possibly optimal) spanning tree, and whenever an edge failure takes
place, a corresponding BSE is plugged in. This way, the connectivity is reestablished
in the most prompt and effective possible way (see also [14,20] for some additional
practical motivations).

Besides their practical relevance, ABSE problems have also an interesting theo-
retical motivation. Indeed, swapping can be reviewed as an exploration of the space
of the perturbed (w.r.t. an edge swap) solutions to a given spanning tree optimization
problem. Thus, the algorithmic challenge of solving efficiently an ABSE problem is
related with the understanding of the structure of this space of perturbed solutions.
And this is exactly why each ABSE problem has its own combinatorial richness, and
thus requires a specific approach to be solved efficiently. Then, different ABSE prob-
lems have required the use of completely different approaches and methods in order to
obtain efficient solutions. For instance, the most famous and studied ABSE problem
comes when T is a minimum spanning tree (MST) of G. In this case, a best swap is
of course a swap edge minimizing the cost (i.e., sum of the edge weights) of the swap
tree, i.e., a swap edge of minimum weight (and we know this produces a MST of the
perturbed graph). This problem is also known as the MST sensitivity analysis prob-
lem, and can be solved in O(m logα(m, n)) time [19], where α denotes the inverse of
the Ackermann function, by using an efficient data structure, namely the split-findmin
[12]. This was improving on another efficient solution given by Tarjan [22], running in
O(m α(m, n)) time and making use of the transmuter, namely a compact way of rep-
resenting the cycles of a graph. Other data structures which revealed their usefulness
to solve efficiently ABSE problems include kinetic heaps [6], top trees [3],mergeable
heaps [18], and many others.

In this paper, we focus on the ABSE problem on the elusive spanning tree structure,
namely the tree spanner (ABSE-TS problem in the following). A tree spanner is built
with the aim of preserving node-to-node distances in G. Indeed, the stretch factor σ

of a spanning tree T of G is defined as the maximum, over all the pairs u, v ∈ V (G),
of dT (u, v)/dG(u, v), where dT and dG denote distances in T and G, respectively.
Correspondingly, an optimal tree spanner has minimum stretch out of all the spanning
trees of G. Unfortunately, finding an optimal tree spanner is notoriously an APX-hard
problem, with no known o(n)-approximation. Hence, once a given solution under-

1 While it is natural to think that T optimizes φ, we actually allow T to be any spanning tree of G.
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goes a transient edge failure, the recomputation from scratch of a new (near) optimal
solution is computationally unfeasible. Thus, swapping in a tree spanner is even more
attractive than in general, and indeed theABSE-TS problemwas studied in [10], where
the authors devised two solutions for both the weighted and the unweighted case, run-
ning in O(m2 log n) and O(n3) time, respectively, and using O(m) and O(n2) space,
respectively. However, there the authors assume that a BSE is an edge minimizing
the stretch of the swap tree w.r.t. distances in the original graph G, and not in the
graph G deprived of e, say G − e. This contrasts with the general assumption (and the
intuition) that the quality of a swap tree should be evaluated in the surviving graph.
Hence, in [3] the authors resorted to such a standard setting, and provided two effi-
cient linear-space solutions for both the weighted and the unweighted case, running in
O(m2 logα(m, n)) and O(mn log n) time, respectively, and both using linear space.
Notice that from a computational point of view, as shown in [3], the two settings are
substantially equivalent, so our solutions can be used to improve the results given in
[10] as well.

1.1 Our Result

In this paper, we present a new algorithm that solves the ABSE-TS problem in
O(n2 log4 n) time and O(n2+m log2 n) space. Thus, our solution improves on the run-
ning time of both the algorithms provided in [3], for weighted and unweighted graphs,
respectively, whenever m = Ω(n log3 n). Most remarkably, for dense weighted
graphs, the improvement is almost quadratic in n.

To put into focus our result, it is worth noticing that, as observed in [10], the
estimation of the stretch of the swap tree induced by a single swap edge f for a given
failing edge e, would in principle ask for the evaluation of the stretch ofΩ(m) relevant
pairs of nodes in G, namely the endvertices of all the non-tree edges that may serve as
swap edge for e besides f . And in fact, for the sake of intuition, a critical edge for f
can be thought as one whose endvertices maximize such a stretch out of these non-tree
edges,2 and two swap edges will be essentially compared on the basis of their stretch
w.r.t. their critical edge. This is basically the reason why both previous approaches
take Ω(m2) time. Thus, to avoid such a bottleneck, we drastically reduce, on the one
hand, the number of candidate best swap edges, and on the other hand, the number of
potential critical edges that need to be checked. More precisely, for each of the n − 1
considered edges in T , we succeed in reducing to O(n log n) the number of best swap
edge candidates, and for each one of them we just need to check O(log2 n) possible
critical edges. The key ingredients to reach such a goal are the following:

– A centroid decomposition of T , which consists of a log-depth hierarchical decom-
position of the vertices in T ; a careful use of such a decomposition, combined
with a set of preprocessing steps that associate various information with the tree
nodes, allows us to reduce the number of candidate BSEs and of their correspond-
ing candidate critical edges. As far as we know, this is the first time that such a
decomposition is used to solve an ABSE problem, and we believe it will possibly
be useful in other contexts as well.

2 A formal definition of critical edge will be given in Sect. 3.
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– The second ingredient is given by the dynamicmaintenance of the upper envelopes
of a set of linear functions. Each of these functions is associated with a non-tree
edge, and whenever the failure of a given tree edge is considered, it expresses
the stretch such a non-tree edge induces w.r.t. a variable candidate BSE. This
way, when we have to find a critical edge for a given candidate BSE f , we have
to select the maximum out of all the functions once they are evaluated in f . In
geometric terms, this translates into the maintenance of the upper envelope of a
set of functions, with the additional complication that, for consistency reasons,
this set of functions must be suitably partitioned into groups according to the
underlying centroid decomposition, andmoreover these groups are dynamic, since
they depend on the currently considered tree edge.

1.2 RelatedWork

The research on tree spanners is very active, also due to the strong relationship with the
huge literature on spanners, where distances inG are approximately preserved through
a sparse spanning subgraph. As mentioned before, finding an optimal tree spanner is
a quite hard problem. More precisely, on weighted graphs, if G does not admit a tree
1-spanner (i.e., a spanning tree with σ = 1, which can be established in polynomial
time [9]), then the problem is not approximable within any constant factor better than
2, unless P = NP [16]. In terms of approximability, no non-trivial upper bounds are
known, except for the O(n)-approximation factor returned by a minimum spanning
tree (MST) of G. If G is unweighted, things go slightly better. More precisely, in this
case the problem becomes O(log n)-approximable, while unless P = NP, the problem
is not approximable within an additive term of o(n) [11]. Moreover, the corresponding
decision problem of establishing whether G admits a tree spanner with stretch σ is
NP-complete for every fixed σ ≥ 4 (for σ = 2 it is polynomial-time solvable [9],
while for σ = 3 the problem is open). Finally, it is known that constant-stretch tree
spanners can be found for several special classes of (unweighted) graphs, like strongly
chordal, interval, and permutation graphs (see [7] and the references therein).

Concerning the problem of swapping in spanning trees, this has received a signif-
icant attention from the algorithmic community. There is indeed a line of papers that
address ABSE problems starting from different types of spanning trees. Just to men-
tion a few, besides the MST, we recall the minimum diameter spanning tree (MDST),
the minimum routing-cost spanning tree (MRCST), and the single-source shortest-
path tree (SPT). Concerning the MDST, a best swap is instead an edge minimizing the
diameter of the swap tree [13,17], and the best solution runs in O(m logα(m, n)) time
[6]. Regarding the MRCST, a best swap is clearly an edge minimizing the all-to-all
routing cost of the swap tree [23], and the fastest solution for solving this problem has
a running time of O

(
m2O(α(n,n)) log2 n

)
[5]. Concerning the SPT, the most promi-

nent swap criteria are those aiming to minimize either the maximum or the average
distance from the root, and the corresponding ABSE problems can be addressed in
O(m logα(m, n)) time [6] and O(m α(n, n) log2 n) time [21], respectively. Recently,
in [4], the authors proposed two new criteria for swapping in a SPT, which are in a
sense related with this paper, namely the minimization of the maximum and the aver-
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age stretch factor from the root, for which they proposed an efficient O(mn+n2 log n)

and O(mn logα(m, n)) time solution, respectively.
Finally, for the sake of completeness, we mention that for the related concept of

average tree σ -spanners, where the focus is on the average stretch w.r.t. all node-to-
node distances, it was shown that every graph admits an average tree O(1)-spanner [1].

1.3 Preliminary Definitions

Let G = (V (G), E(G), w) be a 2-edge-connected, edge-weighted, and undirected
graph with cost function w : E(G) → R

+. We denote by n and m the number of
vertices and edges of G, respectively. If X ⊆ V (G), let E(X) be the set of edges
incident to at least one vertex in X . When X = {v}, we may write E(v) instead
of E({v}). Given an edge e ∈ E(G), we will denote by G − e the graph obtained
from G by removing edge e. Similarly, given a vertex v ∈ V (G), we will denote by
G − v the graph obtained from G by removing vertex v and all its incident edges.
Given a spanning tree T of G, and an edge e ∈ E(T ), we let S(e) be the set of
all the swap edges for e, i.e., all edges in E(G) \ {e} whose endpoints lie in two
different connected components of T − e. We also define S(e, X) = S(e) ∩ E(X),
and S(e, X ,Y ) = S(e) ∩ E(X) ∩ E(Y ). When X = {v}, we will simply write S(e, v)

in lieu of S(e, {v}). For any e ∈ E(T ) and f ∈ S(e), let Te/ f denote the swap tree
obtained from T by replacing e with f .

Given two vertices x, y ∈ V (G), we denote by dG(x, y) the distance between x and
y in G. We define the stretch factor of the pair (x, y) w.r.t. G and T as σG(T , x, y) =
dT (x,y)
dG (x,y) . Accordingly, the stretch factor σG(T ) of T w.r.t. G is defined as σG(T ) =
maxx,y∈V (G) σG(T , x, y).

Definition 1 (Best swap edge) An edge f ∗ ∈ S(e) is a best swap edge (BSE) for e if
f ∗ ∈ argmin f ∈S(e) σG−e(Te/ f ).

In the sequel, in order to solve the ABSE-TS problem, we will show how to effi-
ciently find aBSE for every edge e of a tree spanner T ofG. After providing a high-level
description of our approach, we will explain in detail how it works, by organizing our
analysis as specified in the next section.

2 High-Level Description of the Algorithm

Let us consider the tree T spanning G as rooted at any fixed arbitrary vertex. W.l.o.g.,
and for the sake of simplifying the exposition of our algorithm, we can assume that
T is binary. Indeed, if this is not the case, then we can transform G and T into an
equivalent graph G ′ with weight function w′, and a corresponding binary spanning
tree T ′, with |V (G ′)| = Θ(n) and |E(G ′)| = Θ(m), and such that a BSE for any
edge of T is univocally associated with a BSE for a corresponding edge of T ′. This
transformation requires linear time and works as follows.

Initially, G ′, w′, and T ′ coincide with G, w, and T , respectively. We iteratively
search for a vertex u in T ′ that has 3 or more children, and we lower its degree. Let
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Fig. 1 Reducing the degree of
vertices in G: on the left side,
the tree T (solid edges)
embedded in G, on the right side
the superimposition of the
binary tree to T in order to get a
maximum degree of 3. Solid
edges in the gray area have
weight 0, while the weight of
(xi , vi ) is w(u, vi )

(a) (b)

v1, . . . , vh , with h ≥ 3, be the children of u. We remove all the edges {(u, vi ) : 1 ≤
i ≤ h} from both G ′ and T ′, then we add to both G ′ and T ′ a binary tree whose root
coincides with u, and that has exactly h leaves x1, . . . , xh .We assignweightw′(e) = 0
to all the edges e of this tree. Finally, we add to G ′ and T ′ an edge (xi , vi ) for each
1 ≤ i ≤ h, and we set w′(xi , vi ) = w(u, vi ). An example of such a transformation is
shown in Fig. 1.

Clearly, |V (G ′)| = O(|V (G)|), |E(G ′)| = O(|E(G)|), and, moreover, the com-
putation of G ′ and T ′ requires linear time. Now, observe that, for every a, b ∈ V (G),
it holds that dTe/ f (a, b) = dT ′

e/ f
(a, b). Furthermore, for every edge e = (u, vi ) of T ,

f is a swap edge for e in T iff f is a swap edge for the edge (z, vi ) in T ′, where z is the
parent of vi in T ′. As a consequence, we can conclude that, for every edge e = (u, vi )

of T , f ∈ S(e) is a BSE for e w.r.t. T iff f is a BSE for the edge (z, vi ) w.r.t. T ′,
where z is the parent of vi in T ′.

Thus, let us assume T is binary. As a preprocessing step we compute a centroid
decomposition of T . A centroid of an n-vertex tree is a vertex whose removal splits
T into subtrees of size at most n/2 [15]. A centroid decomposition can be defined as
a tree T whose nodes are subtrees of T and whose structure is recursively defined as
follows: The root of T is T ; Then, let τ be a node of T (i.e., a subtree of T ) such that
τ contains more than one vertex, and let c be a centroid of τ . Since T is binary, the
forest τ − c contains at most 3 trees, that we call τ 1c , τ

2
c , and τ 3c (if τ − c generates

less than 3 subtrees, we allow some τ ic to be the empty tree). Moreover, let τ 0c be the
subtree of T containing the sole vertex c. Then, τ will have in T a child for each of
the subtrees τ ic , i = 0, . . . , 3 (see Fig. 2a). Since a centroid on a n-vertex tree can be
found in linear time, the whole procedure requires O(n log n) time, and it is easy to
see that the height of T is O(log n). In the following we will often speak about a tree
of the centroid decomposition of T to refer to the corresponding vertex of T (i.e., to
a subtree of T ).

Our solution (see Algorithm ABSE-TS) works in n − 1 phases, one for each tree
edge as considered in preorder w.r.t. T , and at the end of each phase returns a BSE
for that edge. Let e ∈ E(T ) be the currently considered edge, and let Ue (resp.
De) be the set of vertices that belong to the connected component of T − e that
contains (resp. does not contain) the root of T . We break down each of these phases
into O(n) additional sub-phases: when edge e is failing, we consider all the vertices
in Ue and, for each such vertex v, we solve a restricted version of the ABSE-TS
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Algorithm: ABSE-TS(G, T )
1 T ← Centroid decomposition of T ;
2 foreach e ∈ E(T ) in postorder do // n − 1 phases
3 Ue ← vertices of the component of T − e that contains the root of T ;
4 f ∗ ← ⊥; // Current BSE for e
5 foreach v ∈ Ue do // O(n) sub-phases
6 compute a v-BSE fv for e and σG−e(Te/ fv ); // This takes O(log4 n) time

7 if σG−e(Te/ fv ) < σG−e(Te/ f ∗ ) then f ∗ ← fv
8 return f ∗ as BSE for e and continue with the next phase.

problem where we compute: (i) a v-restricted best swap edge (v-BSE for short) for
e, i.e., an edge fv ∈ argmin f ∈S(e,v) σG−e(Te/ f ), and (ii) the corresponding stretch
factor σG−e(Te/ fv ). To simplify handling of special cases, whenever S(e, v) = ∅, we
assume that fv = ⊥ and that σG−e(Te/ fv ) = +∞. Once all the v-BSEs for e are
computed, a BSE f ∗ for e can be found as the one minimizing the associated stretch
factor.

The core of our algorithm is exactly the efficient computation of a v-BSE and of its
stretch factor. As we will discuss in more detail in Sect. 3, this is done through a clever
selection of a set of O(log n) candidate v-BSEs, each of which is evaluated against
O(log2 n) candidate critical edges (see Sect. 4). As we will show in Sect. 5, each of
these latter candidates can be efficiently selected in O(log n) time, by dynamically
maintaining the upper envelopes of a set of linear functions expressing the criticality
of an edge w.r.t. a given candidate swap edge. In this way, a total of O(log3 n) pairs
swap-critical edge are evaluated, at a cost of O(log n) time each, and thus in O(log4 n)

we are able to retrieve a v-BSE for the currently considered tree edge e.

3 Selecting a Candidate Best Swap Edge

To show how a v-BSE for e can be computed efficiently, we need some preliminary
definitions:

Definition 2 (Critical edge) Given e ∈ E(T ) and a swap edge f = (v, u) ∈ S(e, v),
a critical edge for f (w.r.t. e) is an edge g = (x, y) ∈ S(e) maximizing φ( f , g) :=
dT (x,v)+w( f )+dT (u,y)

w(g) .

Notice that, for technical reasons,3 we have that (i) the denominator of φ( f , g)
is the weight of edge g = (x, y) instead of the post-failure distance dG−e(x, y) (as
the definition of v-BSE would naturally suggest); and (ii) the set of possible edges g
is restricted to S(e). Nevertheless, as long as v-BSEs are concerned, we can safely
compare different swap-edges through their respective critical edges, as shown in [3]
and summarized in the following:

Definition 3 (Best cut edge) A v-best cut edge for e (v-BCE) is an edge f ∈ S(e, v)

minimizing ϕe( f ) = maxg∈S(e) φ( f , g).

3 More precisely, the above definition allows us to relate critical edges to the upper envelopes of suitable
sets of linear functions, as we will discuss in Sect. 4.
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(a) (b) (c)

Fig. 2 a An example of centroid decomposition of the tree T (which corresponds to the first vertex of T ).
b and c: Two of the four possible cases situation illustrated in Lemma 1. The subtree T̂ is represented by
the three gray triangles along with the vertex c. f is a swap edge for e that minimizes w( f ) + dT (u, c),
and g is its corresponding critical edge. The (c, y)-tree of T̂ is drawn in bold. Notice that f and g do not
need to be incident to T̂

Proposition 1 [3] Every v-BCE for e is a v-BSE for e.

Let us first provide a high-level description of how we compute a v-BCE (i.e., a
v-BSE) for e. The algorithm will compute O(log n) v-BCE candidates, the best of
which will be a v-BCE for e. Informally speaking, each candidate f will be a swap
edge close to the centroid of a certain subtree Λ of T . Depending on the position of
a critical edge for f , the algorithm will recurse on a subtree of Λ and it will look
for the next candidate. Thanks to the centroid decomposition of T , the number of
recursions/candidates will then be O(log n).

The key ingredient for the correctness of our algorithm is the next lemma. Given a
subtree T̂ of T , a vertex c ∈ V (T̂ ), and a vertex y ∈ V (T ), consider the first vertex z
of the unique path from y to c in T that also belongs to V (T̂ ). The (c, y)−tree of T̂
is defined as follows: (1) if z = c, then it is the empty tree; otherwise (2) it is the tree
of the forest T̂ − c that contains z. Then, the following holds (see also Fig. 2b, c):

Lemma 1 Let T̂ be a subtree of T such that V (T̂ ) ⊆ De, and let c ∈ V (T̂ ). Moreover,
let f = (v, u) ∈ S(e, v) be a swap edge for e that minimizes w( f ) + dT (u, c), and
let g = (x, y) be a critical edge for f . Assume that S(e, v, V (T̂ )) contains a v-BCE
for e. If f is not a v-BCE for e, then S(e, v, V (T ′)) contains a v-BCE for e, where T ′
is the (c, y)-tree of T̂ .

Proof Suppose that f is not a v-BCE for e, we will show that no swap edge f ′ =
(v, u′) ∈ S(e, v) with u′ /∈ V (T ′) can be a v-BCE for e. Indeed:

ϕ( f ′) ≥ φ( f ′, g) = dT (x, v) + w( f ′) + dT (u′, y)
w(g)

= dT (x, v) + w( f ′) + dT (u′, c) + dT (c, y)

w(g)

≥ dT (x, v) + w( f ) + dT (u, c) + dT (c, y)

w(g)
≥ φ( f , g) = ϕ( f ),
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Procedure FindBCE(Λ)
1 if |V (Λ)| = 0 then return (⊥, ⊥)

2 c ← Centroid of Λ;
3 if c ∈ Ue then
4 τ ← unique child of Λ in T that contains all the vertices in V (Λ) ∩ De;
5 return FindBCE (τ );
6 else // c ∈ De
7 Compute an edge f = (v, u) ∈ argmin(v,u)∈S(e,v){w(v, u) + dT (u, c)};

// Compute a critical edge for f (see Sect. 4)
8 g1 = (x, y) ← FindCritical( f , T );
9 τ ← (c, y)-tree of Λ; // Either τ is empty or it is a child of Λ in T

10 ( f ′, g2) ← FindBCE (τ );
11 if φ( f , g1) ≤ φ( f ′, g2) then
12 return ( f , g1);
13 else
14 return ( f ′, g2);

where we used the fact that dT (u′, y) = dT (u′, c) + dT (c, y) as either u′ = c or u′
and y are in two different connected components of T − c. ��

Lemma 1 allows us to design a recursive algorithm for computing a v-BCE for e,
whose key steps are highlighted in Procedure FindBCE (notice that v and e are fixed).
More precisely, the algorithm takes a tree Λ of the centroid decomposition T such
that V (Λ) ∩ De �= ∅, and it computes a pair ( f ∗, g∗) such that if S(e, v, V (Λ) ∩ De)

contains a v-BCE for e, then f ∗ is a v-BCE for e, and g∗ is its critical edge. Pro-
cedure FindBCE makes use of an additional function FindCritical ( f , T ) that
returns a critical edge for f w.r.t. the failure of e. The initial call will be FindBCE(T ).
In order to handle base cases, we assume φ(⊥,⊥) = +∞.

We now prove the correctness of the procedure:

Lemma 2 Procedure FindBCE(T ) computes a v-BCE for e.

Proof Consider an invocation of the procedure and letΛ and ( f ∗, g∗) be its parameter
and the edges it returns, respectively. We prove the following claim by induction on
the cardinality of V (Λ): if S(e, v, V (Λ) ∩ De) contains a v-BCE for e, then f ∗ is a
v-BCE for e and g∗ is a critical edge for f ∗.

If |V (Λ)| = 0, then the claim trivially holds. Otherwise, |V (Λ)| > 0, and we
distinguish two cases depending on the position of the centroid c of Λ. If c ∈ Ue, then
there is only one child τ

j
c of Λ in T that contains all the vertices in V (Λ) ∩ De, as

otherwise the vertices in De would be disconnected inΛ. Hence, if S(e, v, V (Λ)∩De)

contains a v-BCE for e, then S(e, v, V (τ
j
c ) ∩ De) also contains a v-BCE for e, and

the claim follows by the inductive hypothesis (as |V (τ
j
c )| < |V (Λ)|). The remaining

case is the one in which c ∈ De, here the claim follows from Lemma 1 (where now T̂
is the subtree of T induced by V (Λ) ∩ De) together with the inductive hypothesis. ��

Next lemma provides an upper bound to the running time of the procedure:

Lemma 3 Procedure FindBCE(T ) requires O((Γcand + ΓFC) log n) time, where
Γcand and ΓFC is the time required by Lines 7 and 8, i.e., the time needed to find
a candidate v-BCE f , and to execute Procedure FindCritical, respectively.
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Fig. 3 a The subtree of T
induced by De along with swap
edges in S(e, v), and b the
corresponding top-tree Υv . The
black vertices of Υv are the same
of the tree T . For each u ∈ V (T )

such that f = (v, u) ∈ S(e, v),
Υv contains an additional vertex
u (shown as a white square), and
a corresponding edge (u, u) with
weight w( f )

(a) (b)

Proof First of all, notice that Step 4 can be performed in O(1) time, after a O(log n)

preprocessing time in which we mark all the nodes of T on the path between the leaf
of T containing the lower vertex of e (which clearly belongs to De) and the root of
T . Then, we only need to bound the depth of the recursion of the call FindBCE (T ).
Observe that each time Procedure FindBCE (Λ) recursively invokes itself on a tree
Λ′, we have that Λ′ is a child of Λ in T . The claim follows since the height of T is
O(log n). ��

Actually, Procedure FindCritical will require O(log3 n) overall time and
O(m log2 n) space, as we will show in the rest of the paper. We now argue that
Γcand = O(log n), after a preprocessing time and space of O(n2), by making use of
top-trees [2]. A top-tree is a dynamic data structure that maintains a (weighted) forest
F of trees under link (i.e., edge-insertion) and cut (i.e., edge-deletion) operations.
Moreover, some of the vertices of F can bemarked and the top-tree is able to perform
closest marked vertex (CMV, for short) queries, i.e., it can report the marked vertex
that is closest to a given vertex z. A top-tree on n vertices can be built in linear time
and each of all the aforementioned operations requires O(log n) time.

We maintain a top-tree Υv of size O(n) for each vertex v ∈ V (T ), and so we use
a total of O(n2) space. Each of these top-trees is the tree T augmented with some
additional marked vertices. More precisely, for each v ∈ V (T ) and for each edge
f = (v, u) ∈ E(G) \ E(T ) we add to Υv a marked vertex u and the edge (u, u) with
a weight of w( f ) (see Fig. 3).

Whenever we are finding a v-BSE for e and we need to find the edge f minimizing
w( f ) + dT (u, c) we do the following: (i) we cut the edge e from Υv , (ii) we perform
a CMV query on Υv to find the closest marked vertex u to c, if any, (iii) we undo the
cut operation by linking the endpoints of e in Υv , and finally (iv) we return the edge
(v, u) (or ⊥ if no u has been found).

We can then give the following:

Lemma 4 Let e ∈ E(T )bea failing edge and let c ∈ De.An edge f = (v, u) ∈ S(e, v)

minimizingw( f )+dT (u, c) can be found in O(log n) time. Moreover, all the top-trees
Υv can be initialized in O(n2) time, and their space usage is O(n2).
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Proof Each of the n top-trees Υv can be built in time O(n) by explicitly considering
all the edges in E(v) (notice that Υv contains at most 2n vertices as there can be at
most one marked vertex per vertex in V (T )).

As for the time complexity of finding edge f , it immediately follows from the fact
that we perform a constant number of link, cut, and CMV query operations, hence we
only need to argue about correctness.

Notice that after we cut edge e fromΥv in step (i), the tree T ′ ofΥv containing c has
exactly one (distinct)markedvertexu for each edge (u, v) ∈ S(e, v). The claim follows
as, by construction, the distance from c to u in T ′ is dT ′(c, u) = dT ′(c, u)+dT ′(u, u) =
dT (c, u) + w( f ). ��

4 Selecting a Candidate Critical Edge

To implement Procedure FindCritical in the promised O(log3 n) time, we will
compute O(log2 n) candidate critical edges for f , by paying O(log n) time to select
each one of them, and as anticipated one out of them will be a critical edge for f .

More precisely, we look at O(log n) subtrees of the centroid decomposition T and,
for each such subtree Λ, we will consider O(log n) subtrees Ψ to find a critical edge
candidate having one endpoint in Ψ and the other in Λ. The choice of the O(log2 n)

pairs of trees is guided by the position of f , while the computation of a candidate for a
given pair (Ψ ,Λ) is the core of the procedure, and is performed efficiently through the
dynamic maintenance of the upper envelope of a set of linear functions, as described
in the next section.

Definition 4 ((Ψ ,Λ)-Critical edge) Given a failing edge e and a swap edge f =
(v, u) ∈ S(e, v), and given two treesΨ , Λ of the centroid decomposition T , a (Ψ ,Λ)-
critical edge for f is an edge

g = (x, y) ∈ arg max
g′∈S(e,V (Ψ )∩Ue,V (Λ)∩De)

φ( f , g′).

When Ψ = T we will refer to a (Ψ ,Λ)-critical edge as a Λ-critical edge.

Let f = (v, u) ∈ S(e, v) and let Λ be a tree of the centroid decomposition T such
that u ∈ V (Λ). Procedure FindCritical returns a Λ-critical edge for f , when
edge e fails (such an edge always exists as f has one endpoint in Ue and the other in
V (Λ) ∩ De). Notice that the call FindCritical( f , T ) in Procedure FindBCE
computes a critical edge for f , since a T -critical edge for f is actually a critical edge
for f .

Procedure FindCritical uses Procedure FindCriticalCandidate( f ,
Ψ , Λ) as a subroutine, which for the sake of clarity will be described in the next
subsection. For the moment, it suffices to know that FindCriticalCandidate
receives three inputs, i.e., edge f = (v, u) and two subtrees Ψ , Λ of the centroid
decomposition T such that v ∈ Ψ and, either u /∈ V (Λ) or Λ is the tree containing
the sole vertex u, and it returns a (Ψ ,Λ)-critical edge for f . If no such edge exists,
then FindCriticalCandidate returns ⊥ and we assume that φ( f ,⊥) = −∞.
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Procedure FindCritical( f = (v, u),Λ)
1 if V (Λ) = {u} then return FindCriticalCandidate( f , T , Λ)
2 c ← Centroid of Λ;

3 Let j be the unique index in {0, 1, 2, 3} such that u ∈ V (τ
j
c );

4 if c ∈ Ue then return FindCritical( f , τ j
c )

5 G ← {FindCriticalCandidate( f , T , τ ic ) : i = 0, 1, 2, 3 ∧ i �= j}; // Here c ∈ De
6 g1 ← argmaxg∈G φ( f , g);

7 g2 ← FindCritical( f , τ j
c );

8 return argmaxg∈{g1,g2}{φ( f , g)};

Lemma 5 Let f = (v, u) ∈ S(e, v), and let Λ be a tree of the centroid decomposition
T such that u ∈ V (Λ). Procedure FindCritical( f ,Λ) returns a Λ-critical edge
for f .

Proof The proof is by induction on the cardinality of V (Λ).
If |V (Λ)| = 1, then u is the only vertex in Λ and Procedure FindCritical

invokes Procedure FindCriticalCandidate ( f , T ,Λ). Hence, assuming such
a procedure is correct, it returns a (T ,Λ)-critical edge, i.e., a Λ-critical edge. If
|V (Λ)| > 1 then we distinguish two cases, depending on the position of the centroid
c of Λ.

If c ∈ De it is sufficient to notice that a Λ-critical edge for f must be incident
to a tree τ ic for some i = 0, 1, 2, 3. Let j be the unique index in {0, 1, 2, 3} such

that u ∈ V (τ
j
c ). If j �= i then, assuming Procedure FindCriticalCandidate

is correct, it returns a (T ,Λ)-critical edge g1 (and hence a Λ-critical edge) for
f . Procedure FindCritical then returns either g1 or another edge g such that
φ( f , g) = φ( f , g1). If j = i , the algorithm is recursively invoked and, since
|V (τ ic )| < |V (Λ)| we know, by the induction hypothesis, that it correctly returns
a τ ic -critical edge for f , which is also Λ-critical edge for f .

If c ∈ Ue, then we know that there is at most one τ ic containing one or more
vertices in De (as otherwise the vertices in V (Λ) ∩ De would be disconnected in
Λ, a contradiction). Moreover, since u ∈ V (Λ) ∩ De, there is exactly one such tree
τ ic , namely τ

j
c . The algorithm recursively invokes itself on τ

j
c and, since |V (τ

j
c )| <

|V (Λ)|, we know, by induction hypothesis, that it returns a τ
j
c -critical edge for f ,

which is also Λ-critical edge for f . ��

Lemma 6 Procedure FindCritical ( f ,Λ) requires O(ΓFCC log n) time, where
ΓFCC is the time requiredbyan invocationofProcedureFindCriticalCandidate.

Proof Notice that Procedure FindCritical performs exactly one recursive invo-
cation for each vertex of the tree T on the unique path between the root of T and u in
T . The claim follows since the height of T is O(log n). ��

In the next subsection, we show that ΓFCC = O(log2 n).
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4.1 Procedure FindCriticalCandidate

In this subsection, we describe the core of the procedure that computes a critical edge
for f . Let us first describe informally the main idea of this part. Let b ∈ Ue and
c ∈ De, and consider any two edges f = (v, u), g = (x, y) ∈ S(e) such that b (resp.
c) is on the unique path from x to v (resp. from y to u) in T (see Fig. 4). It turns
out that the stretch factor of any f w.r.t. a given g can be though as a linear function
Φb,c,g(t) = αb,c(g) · t + βb,c(g), where αb,c(g) and βb,c(g) only depend on g. More
precisely, we will have that φ( f , g) = Φb,c,g(tb,c( f )), for a suitable value tb,c( f )
which only depends on f . Hence, whenever we look for a critical edge for f , we can
ask for a corresponding function Φb,c,g(t) with maximum value on tb,c( f ). Since we
do not know a priori the edge f for which we need to compute a critical edge, we will
maintain this information as the upper envelope of a suitable set of functions. Let us
make this idea more precise.

Definition 5 (Upper Envelope) LetF = {Φ1, Φ2, . . . , Φ�} be a finite set of functions,
where Φi : R → R for every i = 1, 2, . . . , �. The upper envelope of F is defined as
UEF : t ∈ R �→ arg max

Φ∈F Φ(t) ∈ 2F .

Let b ∈ Ue and c ∈ De. Given an edge f = (v, u), define tb,c( f ) as the quantity
dT (b, v) + w( f ) + dT (u, c). Given an edge g = (x, y), define αb,c(g) = 1

w(g) and

βb,c(g) = dT (x,b)+dT (c,y)
w(g) . Notice how, once b and c are fixed, tb,c( f ) only depends on

f while αb,c(g) and βb,c(g) only depend on g. Let Φb,c,g(t) = αb,c(g) · t + βb,c(g).

Lemma 7 Let f = (v, u) ∈ S(e, v). Let b ∈ Ue and c ∈ De. Let X (resp. Y )
be a set of vertices x ∈ Ue (resp. y ∈ De) such that vertex b (resp. c) is on the
unique path from x to v (resp. from y to u) in T . For every g ∈ S(e, X ,Y ) we have
φ( f , g) = Φb,c,g(tb,c( f )).

Proof Let g = (x, y). We have:

φ( f , g) = dT (x, v) + w( f ) + dT (u, y)

w(g)

= dT (x, b) + dT (b, v) + w( f ) + dT (u, c) + dT (c, y)

w(g)

= dT (b, v) + w( f ) + dT (u, c)

w(g)
+ dT (x, b) + dT (c, y)

w(g)

= αb,c(g)tb,c( f ) + βb,c(g)

= Φb,c,g(tb,c( f )). ��

Definition 6 (Parent centroid) Let τ be a tree of the centroid decomposition T . The
parent centroid of τ is the centroid of the parent of τ in T .

Lemma 7 is instrumental to proving the following (see Fig. 4):
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Fig. 4 Illustration of Lemma 8.
f is a swap edge for e, Ψ and Λ

are two trees of the centroid
decomposition, and b and c are
their corresponding parent
centroids. g is a potential
(Ψ , Λ)-critical edge for f .
Notice that the unique path from
x to v (resp. from y to u) passes
through b (resp. c)

Lemma 8 Let f = (v, u) ∈ S(e, v), and let Ψ , Λ be two trees of the centroid
decomposition of T such that the following conditions hold: (i) v /∈ V (Ψ ) or
V (Ψ ) = {v}, and (ii) u /∈ V (Λ) or V (Λ) = {u}. Let b (resp. c) be the par-
ent centroid of Ψ (resp. Λ), and assume that b ∈ Ue (resp. c ∈ De). Then, an
edge g is a (Ψ ,Λ)-critical edge for f if and only if Φb,c,g ∈ UEF (tb,c( f )) where
F = {Φb,c,g′ : g′ ∈ S(e, V (Ψ ) ∩Ue, V (Λ) ∩ De)}.
Proof First of all we show the following property of the centroid decomposition T : let
p, q ∈ V (T ), and suppose that the unique path in T between the leaf nodes associated
with p and q contains a node whose corresponding centroid is z. Then, the unique
path between p and q in T contains z. Indeed, if z is either p or q, the property is
trivially true. On the other hand, suppose that z /∈ {p, q}, and let τ be the subtree of
T associated with z in T . Then, let τ iz be the child subtree of τ containing p. Observe
that q is not in τ iz . Moreover, by construction, each path from a node of τ iz , and in
particular from p, to any node outside τ iz , and in particular to q, must pass through z.

We now prove the claim. If V (Ψ ) = {v} (resp. V (Λ) = {u}) then it follows from
Lemma 7 by choosing X = {v} and Y = V (Λ) ∩ De (resp. X = V (Ψ ) ∩ Ue and
Y = {u}). The complementary case is the one in which v /∈ V (Ψ ) and u /∈ V (Λ).
Consider the vertices v and b (resp. u and c) in T and notice that v (resp. u) cannot be
an ancestor of b (resp. c). Indeed, if that were the case, then the subtree of T induced
by the vertices in V (Ψ ) (resp. V (Λ)) would contain b (resp. c) contradicting the
hypothesis. Hence, the path from any vertex in V (Ψ ) to v (resp. V (Λ) to u) traverses
b (resp. c) in T and therefore the same holds in T . The claim follows by invoking
Lemma 7 with X = V (Ψ ) ∩Ue and Y = V (Λ) ∩ De. ��

Lemma 8 allows us to design a recursive procedure to compute a (Ψ ,Λ)-critical
edge for f (see Procedure FindCriticalCandidate). To this aim we will make
use of a data structure Qe that, for each edge f ∈ S(e), and for each pair of trees
Ψ , Λ of the centroid decomposition, can perform a query operation that we name
Qe( f , Ψ , Λ). This query reports an edge whose function Φb,c,g is in UEF (tb,c( f ))
where b and c are the parent centroids of Ψ and Λ, respectively, and F = {Φb,c,g′ :
g′ ∈ S(e, V (Ψ ) ∩Ue, V (Λ) ∩ De)}.

Next two lemmas show the correctness and the running time of the procedure:
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Procedure FindCriticalCandidate( f = (v, u), Ψ ,Λ)
1 if V (Λ) ∩ De = ∅ then return ⊥ if V (Ψ ) = {v} then return Qe( f , Ψ , Λ)

2 b ← Centroid of Ψ ;

3 Let j be the unique index in {0, 1, 2, 3} such that v ∈ V (τ
j
b );

4 if b ∈ De then return FindCriticalCandidate( f , τ j
b ,Λ)

5 G ← {Qe( f , τ ib,Λ) : i = 0, 1, 2, 3 ∧ i �= j}; // Here b ∈ Ue

6 g1 ← argmaxg∈G φ( f , g);

7 g2 ← FindCriticalCandidate( f , τ j
b , Λ);

8 return argmaxg∈{g1,g2}{φ( f , g)};

Lemma 9 Let be given an edge f = (v, u) ∈ S(e, v)and two treesΨ ,Λof the centroid
decomposition such that: (i) v ∈ V (Ψ ), and (ii) u /∈ V (Λ) or V (Λ) = {u}. Then,
ProcedureFindCriticalCandidate( f , Ψ , Λ) computes a (Ψ ,Λ)-critical edge
for f .

Proof First of all notice that if V (Λ) ∩ De = ∅, then the algorithm correctly returns
⊥. We now prove the claim by induction on |V (Ψ )|. If |V (Ψ )| = 1, then the only
vertex in Ψ must be v and Procedure FindCriticalCandidate queries Qe for
Qe( f , Ψ , Λ). By Lemma 8, the returned edge is a (Ψ ,Λ)-critical edge for f . If
|V (Ψ )| > 1 then we distinguish two cases, depending on the position of the centroid b
ofΨ . Ifb ∈ Ue it is sufficient to notice that a (Ψ ,Λ)-critical edge for f must be incident
to a tree τ ib for some i = 0, 1, 2, 3. Let j be the unique index in {0, 1, 2, 3} such that v ∈
V (τ

j
b ). If j �= i then, by Lemma 8, the query Qe( f , τ ib,Λ) returns a (τ ib,Λ)-critical

edge g′ (and hence g′ is also a (Ψ ,Λ)-critical edge) for f . ProcedureFindCritical
then returns either g′ or another edge g such that φ( f , g) = φ( f , g′). If j = i ,
the algorithm is recursively invoked and, since |V (|τ ib|)| < |V (Ψ )| we know, by the
induction hypothesis, that it returns a (τ ib,Λ)-critical edge for f , which is also (Ψ ,Λ)-
critical edge for f . If b ∈ De, then there is at most one τ ib containing at least one vertex
inUe (as the converse would imply that the vertices in V (Ψ )∩Ue are disconnected in
Ψ , a contradiction). Moreover, since v ∈ V (Ψ )∩Ue, there is exactly one such tree τ ib,

namely τ
j
b . The algorithm recursively invokes itself on τ

j
b and we know, by induction

hypothesis, that it returns a τ
j
b -critical edge for f , which is also (Ψ ,Λ)-critical edge

for f . ��

Lemma 10 Procedure FindCriticalCandidate( f , Ψ ,Λ) requires O(ΓQe

log n) time, where ΓQe is the time required by a query on Qe.

Proof Notice that Procedure FindCriticalCandidate performs exactly one
recursive invocation for each vertex of the tree T on the unique path between the
root of T and u in T . The claim follows since the height of T is O(log n). ��

Thus, to get the promised running time of O(log2 n) for ΓFCC, we are left to prove
thatΓQe = O(log n).Actually, such abound canbeobtainedby suitably implementing
Qe in such a way that all the underlying upper envelope functions are efficiently
maintained, as we explain in details in the next section.
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5 Dynamic Maintenance of the Upper Envelopes

Procedure FindCriticalCandidate needs the auxiliary structureQe. Explicitly
building such a structure for each edge e would be too expensive. Here we show how
all the structuresQe can be built in O(m log4 n) time and O(m log2 n) space. The idea
is to exploit the order in which failing edges are considered, so as to reuse previously
computed information to build Qe.

Our data structure Qe consists of any dictionary that allows to insert, delete, and
search for an element in O(log n) time per operation (e.g., AVL trees). Each of the
elements contained in the dictionary is a (reference to a) data structure that can store a
set F of linear functions and is able (i) to dynamically add/remove a function to/from
F in O(log |F |) time, (ii) given t ∈ R, to report a function in UEF (t) in O(log |F |)
amortized time. This is exactly what it is achieved by the data-structure in [8].4 Each
element (data structure) of the dictionary is associated with a pair (Ψ ,Λ) of trees of T
and its setF consists of all the functions Φb,c,g where b and c are the parent centroids
of Ψ and Λ, respectively, and g ∈ S(e, V (Ψ ) ∩ Ue, V (Λ) ∩ De). We name such a
structureHe

(Ψ ,Λ). The pair (Ψ ,Λ) is also the key ofHe
(Ψ ,Λ) in the dictionary.

5 Then,
we have the following:

Lemma 11 The query Qe( f , Ψ , Λ) (used in FindCriticalCandidate) can be
executed in O(log n) amortized time.

Proof First, we obtain a reference to He
(Ψ ,Λ) in O(log n) time by searching for the

key (Ψ ,Λ) in the dictionary of Qe. Then, we perform a query operation on He
(Ψ ,Λ)

with t = tb,c( f ) where b and c are the parent centroids of Ψ and Λ, respectively (see
Lemma 7). This latter query requires O(log |F |) = O(log n) amortized time, where
F is the set of functions Φb,c,g stored in He

(Ψ ,Λ). ��

We now show how to build and maintain the Qe’s. Remember that we process the
edges e ∈ E(T ) in a bottom-up fashion. Let Te be the subtree of T induced by De.
Whenever Te consists of a single vertex, we build Qe from scratch. If Te contains 2
or more vertices then there are at most two edges e1, e2 ∈ E(Te) that are incident to
e. We buildQe by mergingQe1 andQe2 . This merge operation consists of a join step
followed by an update step.

Whenever we add a function Φb,c,g to a structure He
(Ψ ,Λ) of Qe and we are either

performing the update step or we are buildingQe from scratch, we say that we insert
Φb,c,g into Qe. We associate a non-negative integer νe to Qe that we call virtual size
ofQe. The virtual size ofQe is the overall number of inserts that have been performed
either on Qe itself or on any other He′

(Ψ ,Λ) such that e′ is an edge of Te.

4 The authors of [8] design a dynamic data structure to maintain the convex hull of a set of points in the
plane. Then, they explain how point-line duality can be used to convert such a structure into one maintaining
the upper envelope of a set of linear functions.
5 Notice that each key (Ψ , Λ) can be uniquely represented by a pair of integers. This follows from the fact
that the subtree Ψ (resp. Λ) of T is one of the O(n) vertices of T .
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5.1 BuildingQe from Scratch

We start by creating an empty dictionary Qe (initially νe = 0). Since we are building
Qe from scratch, Te contains only one vertex, say y. For each edge g = (x, y) ∈
S(e,Ue, y), we explicitly consider all the pairs of trees (Ψ ,Λ), such that Ψ contains
x andΛ contains y, and we let b and c be the parent centroids ofΨ andΛ, respectively.
We look for He

(Ψ ,Λ) in the dictionary of Qe, if He
(Ψ ,Λ) already exists, we add Φb,c,g

to He
(Ψ ,Λ). If He

(Ψ ,Λ) is not found, we create a new empty structure He
(Ψ ,Λ), we add

Φb,c,g into He
(Ψ ,Λ), and we add He

(Ψ ,Λ) to Qe. In both cases we have that Φb,c,g is
inserted into Qe and hence we increase νe by 1.

5.2 BuildingQe byMerging

Let e = (p, q) and remember that Te contains more than 1 vertex. Since q has degree
at most 3 in T , there are either 1 or 2 edges in Te that are incident to q. Here we will
discuss the case in which those edges are exactly 2 (as the case in which q is incident
to only one edge is simpler).

Let e1, e2 be the two edges incident to q in Te. We will mergeQe1 andQe2 in order
to obtainQe. This operation is destructive, i.e.,Qe1 andQe2 will no longer exist at the
end of the merge operation. Notice, however, that since we are processing the edges
of T in a bottom-up fashion, Qe1 and Qe2 will no longer be needed by the algorithm.

The merge operation consists of two steps: the join step and the update step.

5.2.1 The Join Step

W.l.o.g., let νe1 ≥ νe2 . We start by renaming Qe1 to Qe (so that all the structures that
belong to the dictionary of Qe1 that were named He1

(Ψ ,Λ) are now named He
(Ψ ,Λ)).

Now, for each structure He2
(Ψ ,Λ) in Qe2 , we first search for the structure He

(Ψ ,Λ)

in Qe and, if such a structure is not found, we add new empty structure He
(Ψ ,Λ) to

Qe. Then, we move each function Φb,c,g inHe2
(Ψ ,Λ) toHe

(Ψ ,Λ), i.e., we remove Φb,c,g

from He2
(Ψ ,Λ) and, if Φb,c,g is not in He

(Ψ ,Λ), we add it to He
(Ψ ,Λ). Finally, after all

the structures He2
(Ψ ,Λ) in Qe2 have been considered, we destroy Qe2 and we set νe to

νe1 + νe2 .

5.2.2 The Update Step

After the merge step is completed,Qe contains all the functions corresponding to the
edges g in S(e1) ∪ S(e2).

Notice, however, that all the edges (x, y) such that the lowest common ancestor
(LCA) of x and y in T is q are both in S(e1) and S(e2) but they do not belong to S(e),
and hence they should not appear in Qe. On the converse, the edges in S(e,Ue, q)

are neither in S(e1) nor in S(e2) but they belong to S(e), hence their corresponding
functions should be added to Qe. This is exactly the goal of the update step.
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We start by deleting the extra functions from Qe. We iterate over each edge g =
(x, y) such that the LCA of x and y is q and, for each pair of trees (Ψ ,Λ) such that
Ψ contains x and Λ contains y, we delete Φb,c,g from He

(Ψ ,Λ) where b and c are the
parent centroids of Ψ and Λ respectively. If He

(Ψ ,Λ) becomes empty, we also delete
He

(Ψ ,Λ) from Qe.
We now add the missing functions to Qe. For each g = (x, q) ∈ S(e,Ue, q), and

for each pair of trees (Ψ ,Λ), such that Ψ contains x and Λ contains q, we first search
forHe

(Ψ ,Λ) inQe and, if it does not exist, we add new empty structureHe
(Ψ ,Λ) to Qe.

Then, we add Φb,c,g to He
(Ψ ,Λ), where b and c are the parent centroids of Ψ and Λ

respectively. We increase νe by 1 to account for this insertion.

5.3 Analysis

Here we bound the time required to dynamically maintain all the upper envelope
structures.

Lemma 12 The overall number of distinct functions Φb,c,g ever inserted into at least
one of the structures Qe is O(m log2 n).

Proof Let us consider any edge g = (x, y) ∈ E(G) \ E(T ). If a function Φb,c,g

associated with g is inserted into any Qe, this means that it added to some He
(Ψ ,Λ)

such that x ∈ V (Ψ ), y ∈ V (Λ), and b (resp. c) is the parent centroids of Ψ (resp. Λ).
Notice that there are O(log n) trees τ of the centroid decomposition T that contain x
(resp. y), meaning that there are O(log2 n) functionsΦb,c,g associated to g. The claim
follows by summing over all the edges in E(G) \ E(T ). ��
Lemma 13 Each function Φb,c,g contributes at most 2 to the virtual size νe of anyQe.

Proof It suffices to bound the overall number of insertions of Φb,c,g (regardless of the
structure Qe into which Φb,c,g is inserted). To this aim, consider the edge g = (x, y)
associated with Φb,c,g and, w.l.o.g., let x be the vertex that is closest to the root of T .
Let also ex (resp. ey) be the edge from the parent of x to x (resp. from the parent of
y to y) in T . We distinguish two cases depending on the relative positions of x and y
in T . If x is an ancestor of y, then Φb,c,g is only inserted inQey . Indeed, g belongs to
S(ey) but it does not belong to any S(e′) where e′ ∈ E(Tey ) is incident to ey in Tey .
For any other pair of edges e′′, e′′′ ∈ E(T ) such that e′′′ is incident to e′′ in Te′′ we
have that either g does not belong to S(e′′), or it belongs to both S(e′′) and S(e′′′), and
hence Φb,c,g is not added toQe′′ . If x is not an ancestor of y, then a similar argument
shows that Φb,c,g can only be inserted in Qex and in Qey . The claim follows. ��
Lemma 14 Each function Φb,c,g is moved O(log n) times.

Proof When a function is moved from any Qe2 to Qe it is because we are merging
Qe1 with Qe2 , where e1 and e2 are edges incident to e in Te. Notice that, before the
merge operation takes place, we must have νe1 ≥ νe2 and hence, at the end of the
merge operation, νe ≥ νe1 + νe2 ≥ 2νe2 . In other words, each time a function Φb,c,g

is moved, we have that the virtual size of the structure to which Φb,c,g belongs at least
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doubles. Therefore, after a function has been moved r times, the structure containing
Φb,c,g must have a virtual size of at least 2r .

Notice now that Lemma 12 and Lemma 13 imply an upper bound of O(m log2 n)

to the virtual size of any Qe. We can conclude that a function can be moved
O(log(m log2 n)) = O(log n) times. ��

From the above lemmas, we can now prove the following:

Proposition 2 The total time spent building and merging all the data structuresQe is
O(m log4 n).

Proof From Lemma 12 and Lemma 13 we have that the total number of insertions of
functions Φb,c,g into the structures He

(Ψ ,Λ) is O(m log2 n) and, since each insertion

requires time O(log n), the total time spent due to insertions is O(m log3 n).Moreover,
since each function is deleted at most once, and a deletion takes O(log n) time, we
have that the total time spent for deleting functions is O(m log3 n).

Concerning moving of functions, by Lemma 14 we have that every function is
moved O(log n) times. Since there are O(m log2 n) functions, as shown by Lemma 12,
and a function can bemoved in O(log n) time, we have that the total time spent moving
functions is O(m log4 n). ��

By combining Lemmas 3, 4, 6, 10, 11 and Proposition 2, we can finally give our
main result:

Theorem 1 The ABSE-TS problem can be solved in O(n2 log4 n) time and O(n2 +
m log2 n) space.

6 Conclusion

In this paper we have provided a new time-efficient algorithm for finding all the best
swap edges of a tree spanner. This has been obtained by suitably combining a centroid
decomposition of the tree spanner along with an efficient dynamic maintenance of
the upper envelopes of a set of linear functions. We believe that our approach may be
useful to solve other related swap problems.

Although our improvement was substantial as compared to the state of the art, the
problem of designing an o(n2) time algorithm remains a challenging open problem,
even for the unweighted case. Another interesting research direction is that of studying
the swap problem on the minimum average-stretch tree spanner, for which a solution
whose average stretch is O(1) away from the distances in the underlying graph can
be computed in polynomial time [1]. Finally, we mention the related problem of
computing good swap edges for a tree spanner, namely sub-optimal swap edges that
can be computed fast (ideally, in linear time), and whose induced stretch factor is
provably close to that provided by a corresponding best swap edge.
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