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Abstract
Span programs are a model of computation that have been used to design quantum
algorithms, mainly in the query model. It is known that for any decision problem,
there exists a span program that leads to an algorithm with optimal quantum query
complexity, however finding such an algorithm is generally challenging. We consider
new ways of designing quantum algorithms using span programs. We show how any
span program that decides a function f can also be used to decide “threshold” versions
of the function f , or more generally, approximate a quantity called the span program
witness size, which is some property of the input related to f . We achieve these
results by relaxing the requirement that 1-inputs hit some target exactly in the span
program, which could potentially make design of span programs significantly easier.
In addition, we give an exposition of span program structure, which increases the
general understanding of this important model. One implication of this is alternative
algorithms for estimating the witness size when the phase gap of a certain unitary
can be lower bounded. We show how to lower bound this phase gap in certain cases.
As an application, we give the first upper bounds in the adjacency query model on
the quantum time complexity of estimating the effective resistance between s and t ,
Rs,t (G). For this problem we obtain ˜O( 1

ε3/2
n
√

Rs,t (G)), using O(log n) space. In
addition, when μ is a lower bound on λ2(G), by our phase gap lower bound, we can
obtain an upper bound of ˜O

( 1
ε
n
√

Rs,t (G)/μ
)

for estimating effective resistance, also
using O(log n) space.
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1 Introduction

Spanprograms are amodel of computationfirst used to study logspace complexity [15],
and more recently, introduced to the study of quantum algorithms in [21]. They are of
immense theoretical importance, having been used to show that the general adversary
bound gives a tight lower bound on the quantum query complexity of any decision
problem [19,20]. As ameans of designing quantum algorithms, it is known that for any
decision problem, there exists a span-program-based algorithm with asymptotically
optimal quantum query complexity, but this fact alone gives no indication of how to
find such an algorithm. Despite the relative difficulty in designing quantum algorithms
this way, there are many applications, including formula evaluation [20,21], a number
of algorithms based on the learning graph framework [5], st-connectivity [7] and k-
distinctness [4]. Although generally quantum algorithms designed via span programs
can only be analyzed in terms of their query complexity, in some cases their time
complexity can also be analyzed, as is the case with the quantum algorithm for st-
connectivity. In the case of the quantum algorithm for k-distinctness, the ideas used in
designing the spanprogramcould be turned into a quantumalgorithm for 3-distinctness
with time complexity matching its query complexity up to logarithmic factors [3].

In this work, we consider new ways of designing quantum algorithms via span
programs. Consider Grover’s quantum search algorithm, which, on input x ∈ {0, 1}n ,
decides if there is some i ∈ [n] such that xi = 1 using only O(

√
n) quantumoperations

[11]. The ideas behind this algorithm have been used in innumerable contexts, but in
particular, a careful analysis of the ideas behind Grover’s algorithm led to algorithms
for similar problems, including a class of threshold functions: given x ∈ {0, 1}n , decide
if |x | ≥ t or |x | < εt , where |x | denotes the Hamming weight; and approximate
counting: given x ∈ {0, 1}n , output an estimate of |x | to some desired accuracy. The
results in this paper offer the possibility of obtaining analogous results for any span
program. That is, given a span program for some problem f , our results show that one
can obtain, not only an algorithm for f , but algorithms for a related class of threshold
functions, as well as an algorithm for estimating a quantity called the span program
witness size, which is analogous to |x | in the above example (and is in fact exactly
1/|x | in the span program for the OR function — see Sect. 3.3).

New Algorithms from Span Programs We give several new means of constructing
quantum algorithms from span programs. Roughly speaking, a span program can be
turned into a quantum algorithm that decides between two types of inputs: those that
“hit” a certain “target vector”, and those that don’t. We show how to turn a span
program into an algorithm that decides between inputs that get “close to” the target
vector, and those that don’t. Whereas traditionally a span program has been associated
with some decision problem, we can now associate, with one span program, a whole
class of threshold problems.

In addition, for any span program P , we can construct a quantum algorithm that

estimates the positive witness size, w+(x), to accuracy ε in 1
ε3/2

√

w+(x) ˜W− queries,

where ˜W− is the approximate negative witness complexity of P . This construction is
useful whenever we can construct a span program for which w+(x) corresponds to
some functionwe care to estimate, as is the casewith the span program forOR, inwhich
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w+(x) = 1
|x | , or the span from for st-connectivity, in which w+(G) = 1

2 Rs,t (G),
where G is a graph, and Rs,t (G) is the effective resistance between s and t in G. We
show similar results for estimating the negative witness size.

Structural Results Our analysis of the structure of span programs increases the the-
oretical understanding of this important model. One implication of this is alternative
algorithms for estimating the witness size when the phase gap (or spectral gap) of a
certain unitary associated with the span program can be lower bounded. This is in con-
trast to previous span program algorithms, including those mentioned in the previous
paragraph, which have all relied on effective spectral gap analysis. We show how the
phase gap can be lower bounded by σmax(A)

σmin(A(x)) , where A and A(x) are linear operators
associated with the span program and some input x , and σmin and σmax are the smallest
and largest nonzero singular values.

In addition, our exposition highlights the relationship between span programs and
estimating the size of the smallest solution to a linear system,which is a problem solved
by Harrow et al. [12]. It is not yet clear if this relationship can lead to new algorithms,
but it is an interesting direction for future work, which we discuss in Sect. 6.

Application to Effective Resistance An immediate application of our results is a quan-
tum algorithm for estimating the effective resistance between two vertices in a graph,
Rs,t (G). This example is immediate, because in [7], a span program for st-connectivity
was presented, inwhich the positivewitness size corresponds to Rs,t (G). The results of
Belovs and Reichardt [7], combined with our new span program algorithms, immedi-
ately yield an upper bound of ˜O( 1

ε3/2
n
√

Rs,t (G)) for estimating the effective resistance
to relative accuracy ε. This upper bound also holds for time complexity, due to the
time complexity analysis of Belovs and Reichardt [7]. Using our new spectral analysis
techniques, we are also able to get an often better upper bound of ˜O

( 1
ε
n
√

Rs,t (G)/μ
)

,
on the time complexity of estimating effective resistance, where μ is a lower bound
on λ2(G), the second smallest eigenvalue of the Laplacian of G. These upper bounds
are incomparable. The second is preferable if it is promised that λ2(G) ≥ μ for some
μ that is larger than the desired error bound ε, and otherwise the first upper bound is
better. Both algorithms use O(log n) space. We also show that a linear dependence on
n is necessary, so our results cannot be significantly improved.

These are the first quantum algorithms for this problem in the adjacency query
model. Previous results have studied the problem in the edge-list model [23]. At the
end of Sect. 5, we compare our results to Wang [23]. Classically, this quantity can be
computed exactly by inverting the Laplacian, which costs O(m) = O(n2), where m
is the number of edges in the input graph.

Outline In Sect. 2, we describe the algorithmic subroutines and standard linear algebra
that will form the basis of our algorithms. In Sect. 3.1, we review the use of span
programs in the context of quantum query algorithms, followed in Sect. 3.2 by our
new paradigm of approximate span programs. At this point we will be able to formally
state our results about how to use span programs to construct quantum algorithms. In
Sect. 3.4, we describe the structure of span programs, giving several results that will
help us develop algorithms. The new algorithms from span programs are developed
in Sect. 4, and finally, in Sect. 5, we present our applications to estimating effective
resistance. In Sect. 6, we discuss open problems.
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2 Preliminaries

To begin, we fix notation. For vector spaces V and W , we let L(V ,W ) denote the set
of linear operators from V to W . For any operator A ∈ L(V ,W ), we denote by colA
the columnspace, rowA the rowspace, and ker A the kernel of A. σmin(A) and σmax(A)

denote the smallest and largest non-zero singular values, respectively. A+ denotes the
Moore-Penrose pseudo-inverse.

The algorithms in this paper solve either decision problems, or estimation problems.
For f : X ⊆ [q]n → {0, 1}, we say that an algorithm decides f with bounded error
if for any x ∈ X , with probability at least 2/3, the algorithm outputs f (x) on input x .
For f : X ⊆ [q]n → R≥0, we say that an algorithm estimates f to relative accuracy
ε with bounded error if for any x ∈ X , with probability at least 2/3, on input x
the algorithm outputs f̃ such that | f (x) − f̃ | ≤ ε f (x). In both cases, using 2/3 is
without loss of generality: any algorithm with success probability bounded above 1/2
by a constant can be amplified to success probability arbitrarily close to 1 by taking
the median of the outputs of a constant number of repetitions of the algorithm. We
generally omit the description “with bounded error”, as all of our algorithms have
bounded error.

All algorithms presented in this paper are based on the following structure. We
have some initial state |φ0〉, and some unitary operator U , and we want to estimate
‖Π0|φ0〉‖, where Π0 is the orthogonal projector onto the 1-eigenspace ofU . The first
step in this process is a quantum algorithm that estimates, in a new register, the phase
of U applied to the input state.

Theorem 1 (Phase Estimation [8,14]) Let U be a unitary with spectral decomposition
U = ∑m

j=1 e
iθ j |ψ j 〉〈ψ j |, for θ1, . . . , θm ∈ (−π, π ]. For any Θ ∈ (0, π) and ε ∈

(0, 1), there exists a quantum algorithm that makes O
( 1

Θ
log 1

ε

)

controlled calls to U
and, on input |ψ j 〉, outputs a state |ψ j 〉|ω〉 such that if θ j = 0, then |ω〉 = |0〉, and if
|θ j | ≥ Θ , |〈0|ω〉|2 ≤ ε. If U acts on s qubits, the algorithm uses O(s + log 1

Θ
) space.

The precision needed to isolate Π0|φ0〉 depends on the smallest nonzero phase of U ,
the phase gap.

Definition 1 (Phase Gap) Let {eiθ j } j∈S be the eigenvalues of a unitary operator U ,
with {θ j } j∈S ⊂ (−π, π ]. Then the phase gap of U is Δ(U ) := min{|θ j | : θ j �= 0}.
In order to estimate ‖Π0|φ0〉‖2, given a state |0〉Π0|φ0〉 + |1〉(I − Π0)|φ0〉, we use
the following.

Theorem 2 (Amplitude Estimation [6]) Let A be a quantum algorithm that outputs√
p(x)|0〉|Ψx (0)〉 + √

1 − p(x)|1〉|Ψx (1)〉 on input x. Then there exists a quantum

algorithm that estimates p(x) to precision ε using O
(

1
ε

1√
p(x)

)

calls to A.

If we know that the amplitude is either ≤ p1 or ≥ p0 for some p1 < p0, then we
can use amplitude estimation to distinguish between these two cases.

Corollary 1 (Amplitude Gap) Let A be a quantum algorithm that outputs
√
p(x)

|0〉|Ψx (0)〉 + √
1 − p(x)|1〉|Ψx (1)〉 on input x. For any 0 ≤ p1 < p0 ≤ 1, we
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can distinguish between the cases p(x) ≥ p0 and p(x) ≤ p1 with bounded error

using O
( √

p0
p0−p1

)

calls to A.

Proof By [6, Thm. 12], using M calls toA, we can obtain an estimate p̃ of p(x) such
that

| p̃ − p(x)| ≤ 2π
√
p(x)(1 − p(x))

M
+ π2

M2

with probability 3/4. Let M = 4π
√
p0+p1
p0−p1

. Then note that for any x1 and x0 such that

p(x1) ≤ p1 and p(x0) ≥ p0, using
√
p0 + p1 ≥ (

√
p0 + √

p1)/
√
2,

M ≥ 2
√
2π

√
p0 + √

p1
p0 − p1

= 2
√
2π

1√
p0 − √

p1
≥ 2

√
2π

1√
p(x0) − √

p(x1)

= 2
√
2π

√
p(x0) + √

p(x1)

p(x0) − p(x1)
.

If p̃1 is the estimate obtained on input x1, then we have, with probability 3/4:

p̃1 ≤ p(x1) + 2π
√
p(x1)(1 − p(x1))

M
+ π2

M2

≤ p(x1) +
√
p(x1)(p(x0) − p(x1))√
2(

√
p(x0) + √

p(x1))
+ (p0 − p1)2

16(p0 + p1)
.

On the other hand, if p̃0 is an estimate of p(x0), then with probability 3/4:

p̃0 ≥ p(x0) − 2π
√
p(x0)(1 − p(x0))

M
− π2

M2

≥ p(x0) −
√
p(x0)(p(x0) − p(x1))√
2(

√
p(x0) + √

p(x1))
− (p0 − p1)2

16(p0 + p1)
.

We complete the proof by showing that p̃1 < p̃0, so we can distinguish these two
events. We have:

p̃0 − p̃1 ≥ p(x0) − p(x1) − (p(x0) − p(x1))(
√
p(x0) + √

p(x1))√
2(

√
p(x0) + √

p(x1))
− (p0 − p1)2

8(p0 + p1)

≥
(

1 − 1√
2

)

(p0 − p1) − 1

8
(p0 − p1) ≥ 1

6
(p0 − p1) > 0.

Thus, using 4π
√
p0+p1
p0−p1

= O
( √

p0
p0−p1

)

calls toA, we can distinguish between p(x) ≤
p1 and p(x) ≥ p0 with success probability 3/4. �

In order to make use of phase estimation, we will need to analyze the spectrum of
a particular unitary, which, in our case, consists of a pair of reflections. The following
was first used in the context of quantum algorithms in [22]:
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Theorem 3 Let U = (2ΠA − I )(2ΠB − I ) be a product of two reflections on a
space H containing A = span{|ψ1〉, . . . , |ψa〉} and B = span{|φ1〉, . . . , |φb〉}, with
ΠA = ∑a

i=1 |ψi 〉〈ψi | and ΠB = ∑b
i=1 |φi 〉〈φi |. Let D = ΠAΠB be the discriminant

of U with singular value decomposition
∑r

j=1 cos θ j |α j 〉〈β j |, with θ j ∈ [0, π
2 ]. Then

the spectrum of U is {e±2iθ j } j . The 1-eigenspace of U is (A ∩ B) ⊕ (A⊥ ∩ B⊥) and
the (−1)-eigenspace is (A ∩ B⊥) ⊕ (A⊥ ∩ B).

Let ΛA = ∑a
j=1 |ψ j 〉〈 j | and ΛB = ∑b

j=1 |φ j 〉〈 j |. We note that in the original

statement of Theorem 3, the discriminant is defined D′ = Λ
†
AΛB . However it is

easy to see that D′ and D have the same singular values: if D′ = ∑

i σi |vi 〉〈ui | is
a singular value decomposition of D′, then D = ∑

i σiΛA|vi 〉〈ui |Λ†
B is a singular

value decomposition of D.
The following corollary to Theorem 3 will be useful in the analysis of several

algorithms.

Corollary 2 (Phase gap and discriminant) Let D be the discriminant of a unitary U =
(2ΠA − I )(2ΠB − I ). Then Δ(−U ) ≥ 2σmin(D).

Proof By Theorem 3, if {σ0 = cos θ0 < σ1 = cos θ1 < · · · σm = cos θm} are the
non-zero singular values of D, for θ j ∈ [0, π

2 ), then the phases of U in (−π, π) are
{±2θ j }mj=0 (U might also have (−1) = eiπ as an eigenvalue), and so−U has non-zero
phases {±2θ j ∓ π}mj=0 = {±(2θ j − π)}mj=0. Thus

Δ(−U ) = min{|π − 2θ j | : θ j �= π/2} = |π − 2 cos−1 min{σ j : σ j �= 0}|
= |π − 2 cos−1 σmin(D)|.

We have θ ≥ sin θ = cos(π/2 − θ), so σmin(D) ≥ cos(π/2 − σmin(D)). Then since
cos is decreasing on the interval [0, π/2], we have cos−1(σmin(D)) ≤ π/2−σmin(D),
and thus

Δ(−U ) ≥ |π − 2 (π/2 − σmin(D))| = 2σmin(D).

�
Finally, we will make use of the following lemma, which first appeared in this form

in [16]:

Lemma 1 (Effective Spectral Gap Lemma) Let U = (2ΠA − I )(2ΠB − I ) be the
product of two reflections, and let ΠΘ be the orthogonal projector onto span{|u〉 :
U |u〉 = eiθ |u〉, |θ | ≤ Θ}. Then if ΠA|u〉 = 0, ‖ΠΘΠB |u〉‖ ≤ Θ

2 ‖|u〉‖.

3 Approximate Span Programs

3.1 Span Programs and Decision Problems

In this section, we review the concept of span programs, and their use in quantum
algorithms.
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Definition 2 (Span Program) A span program P = (H , V , τ, A) on [q]n consists of
1. finite-dimensional inner product spaces H = H1 ⊕· · ·⊕ Hn ⊕ Htrue ⊕ Hfalse, and

{Hj,a ⊆ Hj } j∈[n],a∈[q] such that Hj,1 + · · · + Hj,q = Hj ,
2. a vector space V ,
3. a target vector τ ∈ V , and
4. a linear operator A ∈ L(H , V ).

To each x ∈ [q]n , we associate a subspace H(x) := H1,x1 ⊕ · · · ⊕ Hn,xn ⊕ Htrue.

Although our notation in Definition 2 deviates from previous span program defini-
tions, the only difference in the substance of the definition is that the spaces Hj,a and
Hj,b for a �= b need not be orthogonal in our definition. This has the effect of removing
log q factors in the equivalence between span programs and the dual adversary bound
(for details see [13, Sec. 7.1]). The spaces Htrue and Hfalse can be useful for designing
a span program, but are never required, since we can always add an (n+1)th variable,
set xn+1 = 1, and let Hn+1,0 = Hfalse and Hn+1,1 = Htrue.

A span program on [q]n partitions [q]n into two sets: positive inputs, which we
call P1, and negative inputs, which we call P0. The importance of this partition stems
from the fact that a span program may be converted into a quantum algorithm for
deciding this partition in the quantum query model [19,20]. Thus, if one can construct
a span program whose partition of [q]n corresponds to a problem one wants to solve,
an algorithm follows. In order to describe how a span program partitions [q]n and
the query complexity of the resulting algorithm, we need the concept of positive and
negative witnesses and witness size.

Definition 3 (Positive and Negative Witness) Fix a span program P on [q]n , and a
string x ∈ [q]n . We say that |w〉 is a positive witness for x in P if |w〉 ∈ H(x), and
A|w〉 = τ . We define the positive witness size of x as:

w+(x, P) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x) : A|w〉 = τ },

if there exists a positive witness for x , andw+(x) = ∞ else. We say thatω ∈ L(V ,R)

is a negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative
witness size of x as:

w−(x, P) = w−(x) = min{‖ωA‖2 : ω ∈ L(V ,R) : ωAΠH(x) = 0, ωτ = 1},

if there exists a negative witness, and w−(x) = ∞ otherwise. If w+(x) is finite, we
say that x is positive (wrt. P), and if w−(x) is finite, we say that x is negative. We
let P1 denote the set of positive inputs, and P0 the set of negative inputs for P . Note
that for every x ∈ [q]n , exactly one of w−(x) and w+(x) is finite; that is, (P0, P1)
partitions [q]n .

For a decision problem f : X ⊆ [q]n → {0, 1}, we say that P decides f if
f −1(0) ⊆ P0 and f −1(1) ⊆ P1. In that case, we can use P to construct a quantum
algorithm that decides f .
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Theorem 4 [19] Fix f : X ⊆ [q]n → {0, 1}, and let P be a span program on
[q]n that decides f . Let W+( f , P) = maxx∈ f −1(1) w+(x, P) and W−( f , P) =
maxx∈ f −1(0) w−(x, P). Then there exists a quantum algorithm that decides f using

O(
√

W+( f , P)W−( f , P)) queries.

Wecall
√

W+( f , P)W−( f , P) the complexity of P . It is known that for anydecision
problem, there exists a span program whose complexity is equal, up to constants, to
its query complexity [19,20] ([13, Sec. 7.1] removes log factors in this statement),
however, it is generally a difficult task to find such an optimal span program.

3.2 Span Programs and Approximate Decision Problems

Consider a span program P and x ∈ P0. Suppose there exists |w〉 ∈ H(x) such that
A|w〉 is very close to τ . We might say that x is very close to being in P1. If all vectors
in H(y) for y ∈ P0 \ {x} are mapped far from τ , it might be more natural to consider
the partition (P0 \ {x}, P1 ∪ {x}) rather than (P0, P1).

As further motivation, we mention a construction of Reichardt [19, Sec. 3 of full
version] that takes any quantum query algorithm with one-sided error, and converts it
into a span programwhose complexity matches the query complexity of the algorithm.
The target of the span program is the vector |1, 0̄〉, which corresponds to a quantum
state with a 1 in the answer register and 0s elsewhere. If an algorithm has no error on
1-inputs, it can be modified so that it always ends in exactly this state, by uncomputing
all but the answer register. An algorithm with two-sided error cannot be turned into
a span program using this construction, because there is error in the final state. This
is in intuitive opposition to the evidence that span programs characterize bounded
(two-sided) error quantum query complexity.

This motivates us to consider the positive error of an input, or how close it comes
to being positive. Since there is no meaningful notion of distance in V , we consider
closeness in H .

Definition 4 (Positive Error) For any span program P on [q]n , and x ∈ [q]n , we define
the positive error of x in P as:

e+(x) = e+(x, P) := min
{

∥

∥ΠH(x)⊥|w〉∥∥2 : A|w〉 = τ
}

.

Note that e+(x, P) = 0 if and only if x ∈ P1. Any |w〉 such that
∥

∥ΠH(x)⊥|w〉∥∥2 =
e+(x) is called a min-error positive witness for x in P . We define

w̃+(x) = w̃+(x, P) := min
{

‖|w〉‖2 : A|w〉 = τ,
∥

∥ΠH(x)⊥|w〉∥∥2 = e+(x)
}

.

Amin-error positive witness that alsominimizes ‖|w〉‖2 is called an optimal min-error
positive witness for x .

Note that if x ∈ P1, then e+(x) = 0. In that case, a min-error positive witness for
x is just a positive witness, and w̃+(x) = w+(x).
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We define a similar notion for positive inputs, to measure their closeness to being
negative.

Definition 5 (Negative Error) For any span program P on [q]n and x ∈ [q]n , we
define the negative error of x in P as:

e−(x) = e−(x, P) := min
{

∥

∥ωAΠH(x)
∥

∥

2 : ω(τ) = 1
}

.

Again, e−(x, P) = 0 if and only if x ∈ P0. Anyω such that
∥

∥ωAΠH(x)
∥

∥

2 = e−(x, P)

is called a min-error negative witness for x in P . We define

w̃−(x) = w̃−(x, P) := min
{

‖ωA‖2 : ω(τ) = 1,
∥

∥ωAΠH(x)
∥

∥

2 = e−(x, P)
}

.

Amin-error negativewitness that alsominimizes ‖ωA‖2 is called an optimalmin-error
negative witness for x .

It turns out that the notion of span program error has a very nice characterization
as exactly the reciprocal of the witness size:

∀x ∈ P0, w−(x) = 1

e+(x)
, and ∀x ∈ P1, w+(x) = 1

e−(x)
,

which we prove shortly in Theorems 8 and 9. This is a very nice state of affairs,
for a number of reasons. It allows us two ways of thinking about approximate span
programs: in terms of how small the error is, or how large thewitness size is. That is, we
can say that an input x ∈ P0 is almost positive either because its positive error is small,
or equivalently, because its negative witness size is large. In general, we can think of
P as not only partitioning P into (P0, P1), but inducing an ordering on [q]n from
most negative—smallest negative witness, or equivalently, largest positive error—
to most positive—smallest positive witness, or equivalently, largest negative error.
For example, on the domain {x (1), . . . , x (6)} ⊂ [q]n , P might induce the following
ordering:

x (1) x (2) x (3) x (4) x (5) x (6)

increasing positive error/
decreasing negative witness size

increasing negative error/
decreasing positive witness size

The inputs {x (1), x (2), x (3)} are in P0, and w−(x (1)) < w−(x (2)) < w−(x (3))

(although it is generally possible for two inputs to have the same witness size). The
inputs {x (4), x (5), x (6)} are in P1, and w+(x (4)) > w+(x (5)) > w+(x (6)). The span
program exactly decides partition ({x (1), x (2), x (3)}, {x (4), x (5), x (6)}), but we say it
approximates any partition that respects the ordering. If we obtain a partition by draw-
ing a line somewhere on the left side, for example ({x (1), x (2)}, {x (3), x (4), x (5), x (6)}),
we say P negatively approximates the function corresponding to that partition,
whereas if we obtain a partition by drawing a line on the right side, for example
({x (1), x (2), x (3), x (4), x (5)}, {x (6)}), we say P positively approximates the function.
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Definition 6 (Functions Approximately Associated with P) Let P be a span program
on [q]n , and f : X ⊆ [q]n → {0, 1} a decision problem. For any λ ∈ (0, 1), we say
that P positively λ-approximates f if f −1(1) ⊆ P1, and for all x ∈ f −1(0), either
x ∈ P0, or w+(x, P) ≥ 1

λ
W+( f , P) (note that since f −1(1) ⊆ P1, W+( f , P) =

maxx∈ f −1(1) w+(x, P) is finite). We say that P negatively λ-approximates f if

f −1(0) ⊆ P0, and for all x ∈ f −1(1), either x ∈ P1, or w−(x, P) ≥ 1
λ
W−( f , P)

(note that since f −1(0) ⊆ P0, W−( f , P) is finite). If P decides f exactly, then both
conditions hold for any value of λ, and so we can say that P 0-approximates f .

This allows us to consider a much broader class of functions associated with a
particular span program. This association is useful, because aswith the standard notion
of association between a function f and a span program, if a function is approximated
by a span program, we can convert the span program into a quantum algorithm that
decides f using a number of queries related to the witness sizes. Specifically, we get
the following, proven in Sect. 4.

Theorem 5 (Approximate Span Program Decision Algorithms) Fix f : X ⊆ [q]n →
{0, 1}, and let P be a span program that positively λ-approximates f . Define

W+ = W+( f , P) := max
x∈ f −1(1)

w+(x, P)

and ˜W− = ˜W−( f , P) := max
x∈ f −1(0)

w̃−(x, P).

There is a quantum algorithm that decides f with bounded error in query com-

plexity O

(√

W+ ˜W−
(1−λ)3/2

log 1
1−λ

)

. Similarly, let P be a span program that negatively

λ-approximates f . Define

W− = W−( f , P) := max
x∈ f −1(0)

w−(x, P)

and ˜W+ = ˜W+( f , P) := max
x∈ f −1(1)

w̃+(x, P).

There is a quantum algorithm that decides f with bounded error in query complexity

O

(√

W− ˜W+
(1−λ)3/2

log 1
1−λ

)

.

With the ability to distinguish between different witness sizes, we can obtain algo-
rithms for estimating the witness size.

Theorem 6 (Witness Size Estimation Algorithm) Fix f : X ⊆ [q]n → R≥0. Let
P be a span program such that for all x ∈ X, f (x) = w+(x, P) and define
˜W− = ˜W−( f , P) = maxx∈X w̃−(x, P). There exists a quantum algorithm that esti-

mates f to accuracy ε in ˜O
(

1
ε3/2

√

w+(x) ˜W−
)

queries. Similarly, let P be a span

program such that for all x ∈ X, f (x) = w−(x, P) and define ˜W+ = ˜W+( f , P) =
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maxx∈X w̃+(x, P). Then there exists a quantum algorithm that estimates f to accu-

racy ε in ˜O
(

1
ε3/2

√

w−(x) ˜W+
)

queries.

The algorithms of Theorems 5 and 6 involve phase estimation of a particular unitary
U , as with previous span program algorithms, in order to distinguish the 1-eigenspace
ofU from its other eigenspaces. In general, it may not be feasible to calculate the phase
gap of U , so for the algorithms of Theorems 5 and 6, as with previous algorithms,
we use the effective spectral gap lemma to bound the overlap of a particular initial
state with eigenspaces of U corresponding to small phases. However, by relating the
phase gap of U to the spectrum of A and A(x) := AΠH(x), we show how to lower
bound the phase gap in some cases, which may give better results. In particular, in our
application to effective resistance, it is not difficult to bound the phase gap in this way,
which leads to an improved upper bound. In general we have the following theorem.

Theorem 7 (Witness Size Estimation Algorithm Using Real Phase Gap) Fix f : X ⊆
[q]n → R≥0 and let P = (H , V , τ, A) be a normalized span program (see Defi-
nition 7) on [q]n such that ∀x ∈ X, f (x) = w+(x, P) (resp. f (x) = w−(x)). If
κ ≥ σmax(A)

σmin(AΠH(x))
, ∀x ∈ X, then the quantum query complexity of estimating f (x) to

relative accuracy ε is at most ˜O
(√

f (x)κ
ε

)

.

Theorem 5 is proven in Sect. 4.2, Theorem 6 is proven in Sect. 4.3, and Theorem 7
is proven in Sect. 4.4.

3.3 Example

To illustrate how these ideas might be useful, we give a brief example of how a span
program that leads to an algorithm for theOR function canbe combinedwith our results
to additionally give algorithms for threshold functions and approximate counting. We
define a span program P on {0, 1}n as follows:

V = R, τ = 1, Hi = Hi,1 = span{|i〉}, Hi,0 = {0}, A =
n

∑

i=1

〈i |.

So H = span{|i〉 : i ∈ [n]} and H(x) = span{|i〉 : xi = 1}. It is not difficult to see
that P decides OR. In particular, we can see that the optimal positive witness for any x
such that |x | > 0 is |wx 〉 = ∑

i :xi=1
1
|x | |i〉. The only linear map ω : R → R such that

ωτ = 1 is the identity, and indeed, this is a negative witness for the all-zeros string 0̄,
since H(0̄) = {0}, and so ωAΠH(0̄) = 0.

Let λ ∈ (0, 1), t ∈ [n], and let f be a threshold function defined by f (x) = 1
if |x | ≥ t and f (x) = 0 if |x | ≤ λt , with the promise that one of these conditions
holds. If f (x) = 1, then w+(x) = ‖|wx 〉‖2 = 1

|x | ≤ 1
t , so W+( f , P) = 1

t . On the

other hand, if f (x) = 0, then w+(x) = 1
|x | ≥ 1

λt = 1
λ
W+( f , P), so P positively

λ-approximates f . The only approximate negative witness is ω the identity, so we
have ˜W− = ‖ωA‖2 = ‖A‖2 = n. By Theorem 5, there is a quantum algorithm for f

with query complexity 1
(1−λ)3/2

√

W+ ˜W− = 1
(1−λ)3/2

√
n/t .
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Furthermore, since w+(x) = 1
|x | , by Theorem 6, we can estimate 1

|x | to relative
accuracy ε, and therefore we can estimate |x | to relative accuracy 2ε, in quantum
query complexity 1

ε3/2

√
n/|x |.

These upper bounds do not have optimal scaling in ε, as the actual quantum query
complexities of these problems are 1

1−λ

√
n/t and 1

ε

√
n/|x | [1,2,6], however, using

Theorem 7, the optimal query complexities can be recovered.

3.4 Span Program Structure and Scaling

In this section, we present some observations about the structure of span programs that
will be useful in the design and analysis of our algorithms, and for general intuition.
We begin by formally stating and proving Theorems 8 and 9, relating error to witness
size.

Theorem 8 Let P be a span program on [q]n and x ∈ P0. If |w̃〉 is a min-error positive
witness for x, and ω is an optimal negative witness for x,

(ωA)† = ΠH(x)⊥|w̃〉
∥

∥ΠH(x)⊥|w̃〉∥∥2
, and so w−(x) = 1

e+(x)
.

Proof Let |w̃〉 be a min-error positive witness for x , and ω an optimal negative
witness for x . We have (ωA)|w̃〉 = ωτ = 1 and, since ωAΠH(x) = 0, we

have (ωA)ΠH(x)⊥|w̃〉 = 1. Thus, write (ωA)† = ΠH(x)⊥|w̃〉
∥

∥

∥ΠH(x)⊥|w̃〉
∥

∥

∥

2 + |u〉 such that

〈u|ΠH(x)⊥|w̃〉 = 0. Define |werr〉 = ΠH(x)⊥|w̃〉. We have A(|w̃〉 − Πker A|werr〉) =
A|w̃〉 = τ, so by assumption that |w̃〉 has minimal error,

∥

∥ΠH(x)⊥|w̃〉∥∥ ≤ ∥

∥ΠH(x)⊥(|w̃〉 − Πker A|werr〉)
∥

∥ ≤ ∥

∥ΠH(x)⊥|w̃〉 − Πker A|werr〉
∥

∥

= ∥

∥Π(ker A)⊥|werr〉
∥

∥ ,

so ‖|werr〉‖ ≤ ∥

∥Π(ker A)⊥|werr〉
∥

∥, and so we must have |werr〉 ∈ (ker A)⊥. Thus,
ker 〈werr| ⊆ ker A, so by the fundamental homomorphism theorem, there exists a
linear function ω̄ : colA → R such that ω̄A = 〈werr|. Furthermore, we have ω̄τ =
ω̄A|w̃〉 = 〈w̃|ΠH(x)⊥|w̃〉 = ∥

∥ΠH(x)⊥|w̃〉∥∥2 = e+(x), so ω′ = ω̄
e+(x) has ω′τ = 1. By

the optimality of ω, we must have ‖ωA‖2 ≤ ∥

∥ω′A
∥

∥

2, so

∥

∥

∥

∥

ΠH(x)⊥|w̃〉
e+(x)

+ |u〉
∥

∥

∥

∥

2

≤
∥

∥

∥

∥

ΠH(x)⊥|w̃〉
e+(x)

∥

∥

∥

∥

2

and so |u〉 = 0. Thus (ωA)† = ΠH(x)⊥|w̃〉
e+(x) and
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w−(x) = ‖ωA‖2 =
∥

∥ΠH(x)⊥|w̃〉∥∥2
e+(x)2

= 1

e+(x)
.

�
Theorem 9 Let P be a span program on [q]n and x ∈ P1. If |w〉 is an optimal positive
witness for x, and ω̃ is a min-error negative witness for x,

|w〉 = ΠH(x)(ω̃A)†

∥

∥ω̃AΠH(x)
∥

∥

2 and so w+(x) = 1

e−(x)
.

Proof Let ω̃ be a min-error negative witness for x , and define |w′〉 = ΠH(x)(ω̃A)†

‖ω̃AΠH(x)‖2 .

First note that |w′〉 ∈ H(x). We will show that |w′〉 is a positive witness for x by
showing A|w′〉 = τ . Suppose τ and A|w′〉 are linearly independent, and let α ∈
L(V ,R) be such that α(A|w′〉) = 0 and α(τ) = 1. Then for any ε ∈ [0, 1], we have
(εω̃ + (1 − ε)α)τ = 1, so by optimality of ω̃,

∥

∥ω̃AΠH(x)
∥

∥

2 ≤ ∥

∥(εω̃ + (1 − ε)α)AΠH(x)
∥

∥

2

= ε2
∥

∥ω̃AΠH(x)
∥

∥

2 + (1 − ε)2
∥

∥αAΠH(x)
∥

∥

2

(1 − ε2)
∥

∥ω̃AΠH(x)
∥

∥

2 ≤ (1 − ε)2
∥

∥αAΠH(x)
∥

∥

2
,

where the equality follows from the fact that α(AΠH(x)(ω̃A)†) = 0. This implies
∥

∥ω̃AΠH(x)
∥

∥ ≤ 0, a contradiction, since
∥

∥ω̃AΠH(x)
∥

∥ > 0. Thus, we must have
A|w′〉 = rτ for some scalar r , so ω̃(A|w′〉) = r ω̃(τ ). We then have ω̃(A|w′〉) =
ω̃A

ΠH(x)(ω̃A)†

‖ω̃AΠH(x)‖2 = 1, and so we have r = 1, and thus A|w′〉 = τ . So |w′〉 is a

positive witness for x . Let |w〉 ∈ H(x) be an optimal positive witness for x , so
‖|w〉‖2 = w+(x). We have

〈w′|w〉 = ω̃AΠH(x)|w〉
∥

∥ω̃AΠH(x)
∥

∥

2 = ω̃τ
∥

∥ω̃AΠH(x)
∥

∥

2 = 1
∥

∥ω̃AΠH(x)
∥

∥

2 = ∥

∥|w′〉∥∥2 .

Thus
∥

∥|w′〉∥∥2 ≤ ∥

∥|w′〉∥∥ ‖|w〉‖ by the Cauchy–Schwarz inequality, so since |w〉
is optimal, we must have ‖|w〉‖ = ∥

∥|w′〉∥∥. Since the the smallest |w〉 such that
AΠH(x)|w〉 = τ is uniquely defined as (AΠH(x))

+τ , we have |w〉 = |w′〉. Thus
w+(x) = ‖|w〉‖2 = ∥

∥|w′〉∥∥2 = 1
‖ω̃AΠH(x)‖2 = 1

e−(x) . �

PositiveWitnessesFix a span program P = (H , V , τ, A) on [q]n . In general, a positive
witness is any |w〉 ∈ H such that A|w〉 = τ . Assume the set of all such vectors is
non-empty, and let |w〉 be any vector in H such that A|w〉 = τ . Then the set of positive
witnesses is exactly

W := |w〉 + ker A = {|w〉 + |h〉 : |h〉 ∈ ker A}.
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It is well known, and a simple exercise to prove, that the unique shortest vector in W
is A+τ , and it is the unique vector in W ∩ (ker A)⊥. We can therefore talk about the
unique smallest positive witness, whenever W is non-empty.

Definition 7 Fix a span program P , and suppose W = {|h〉 ∈ H : A|h〉 = τ } is
non-empty. We define theminimal positive witness of P to be |w0〉 ∈ W with smallest
norm—that is, |w0〉 = A+τ . We define N+(P) := ‖|w0〉‖2.
Since |w0〉 ∈ (ker A)⊥, we can write any positive witness |w〉 as |w0〉+|w⊥

0 〉 for some
|w⊥

0 〉 ∈ ker A. If we let T = A−1(span{τ }), we can write T = span{|w0〉} ⊕ ker A.

Negative Witnesses Just as we can talk about a minimal positive witness, we can also
talk about a minimal negative witness of P: anyω0 ∈ L(V ,R) such thatω0τ = 1, that
minimizes ‖ω0A‖. Define N−(P) = minω0:ω0(τ )=1 ‖ω0A‖2. Note that unlike |w0〉,
ω0 might not be unique. There may be distinct ω0, ω

′
0 ∈ L(V ,R) that map τ to 1 and

haveminimal complexity, however, one can easily show that in that case,ω0A = ω′
0A,

and that the unique minimal negative witness in colA is 〈τ |
‖τ‖2 .

For anyminimal negativewitness,ω0,ω0A is related to theminimal positivewitness
|w0〉 by (ω0A)† = |w0〉

N+(P)
, and N+(P) = 1

N−(P)
. This can be proven, for example, by

replacing H(x) with {0} in the proof of Theorem 8.

Span Program Scaling and Normalization By scaling τ to get a new target τ ′ = Bτ ,
we can scale a span program by an arbitrary positive real number B, so that all positive
witnesses are scaled by B, and all negative witnesses are scaled by 1

B . Note that this
leavesW+W− unchanged, sowe can in some sense consider the span program invariant
under this scaling.

Definition 8 A span program P is normalized if N+(P) = N−(P) = 1.

Any span program can be converted to a normalized span program by replacing
the target with τ ′ = τ

N+ . However, it will turn out to be desirable to normalize a span
program, and also scale it, independently. We can accomplish this to some degree, as
shown by the following theorem.

Theorem 10 (Span program scaling) Let P = (H , V , τ, A) be any span program on
[q]n, and let N = ‖|w0〉‖2 for |w0〉 the minimal positive witness of P. For β ∈ R>0,
define Pβ = (Hβ, V β, τβ, Aβ) as follows, for |0̂〉 and |1̂〉 two vectors orthogonal to
H and V :

∀ j ∈ [n], a ∈ [q], Hβ
j,a := Hj,a,

Hβ
true = Htrue ⊕ span{|1̂〉}, Hβ

false = Hfalse ⊕ span{|0̂〉}

V β = V ⊕ span{|1̂〉}, Aβ = βA + |τ 〉〈0̂| +
√

β2 + N

β
|1̂〉〈1̂|, τβ = |τ 〉 + |1̂〉

Then we have the following:

– ∀x ∈ P1, w+(x, Pβ) = w+(x,P)

β2 + β2

N+β2 and w̃−(x, Pβ) ≤ β2w̃−(x, P) + 2;
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– ∀x ∈ P0, w−(x, Pβ) = β2w−(x, P) + 1 and w̃+(x, Pβ) ≤ 1
β2 w̃+(x, P) + 2;

– the minimal witness of Pβ is |wβ
0 〉 = β

β2+N
|w0〉 + N

β2+N
|0̂〉 + β√

β2+N
|1̂〉, and

∥

∥

∥|wβ
0 〉

∥

∥

∥

2 = 1.

Proof of Theorem 10 appears in “Appendix A”.

4 Span Program Algorithms

In this section we describe several ways in which a span program can be turned into
a quantum algorithm. As in the case of algorithms previously constructed from span
programs, our algorithmswill consist ofmany applications of a unitary on H , applied to
some initial state. Unlike previous applications, we will use |w0〉, the minimal positive
witness of P , as the initial state, assuming P is normalized so that ‖|w0〉‖ = 1. This
state is independent of the input, and so can be generated with 0 queries. For negative
span programalgorithms, wherewewant to decide a function negatively approximated
by P , we will use a unitary U (P, x), defined as follows:

U (P, x) := (2Πker A − I )(2ΠH(x) − I ) = (2Π(ker A)⊥ − I )(2ΠH(x)⊥ − I ).

This is similar to the unitary used in previous span program algorithms. Note that
(2Πker A − I ) is input-independent, and so can be implemented in 0 queries. However,
in order to analyze the time complexity of a span program algorithm, this reflection
must be implemented (as we are able to do for our applications, following [7]). The
reflection (2ΠH(x)− I ) depends on the input, but it is not difficult to see that it requires
two queries to implement. Since our definition of span programs varies slightly from
previous definitions, we provide a proof of this fact.

Lemma 2 The reflection 2ΠH(x) − I can be implemented using 2 queries to x.

Proof For every i ∈ [n] and a ∈ [q], let Ri,a = (I − 2ΠH⊥
i,a∩Hi

), the oper-

ator that reflects every vector in Hi that is orthogonal to Hi,a . This operation is
input independent, and so, can be implemented in 0 queries. For every i ∈ [n], let
{|ψi,1〉, . . . , |ψi,mi 〉} be an orthonormal basis for Hi . Recall that the spaces Hi are
orthogonal, so we can map |ψi, j 〉 �→ |i〉|ψi, j 〉. Then using one query, we can map
|i〉|ψi, j 〉 �→ |i〉|xi 〉|ψi, j 〉. We then perform Ri,xi on the last register, conditioned on
the first two registers, and then uncompute the first two registers, using one additional
query. �

Forpositive spanprogramalgorithms,wherewewant to decide a functionpositively
approximated by P , or estimate the positivewitness size,wewill use a slightly different
unitary:

U ′(P, x) = (2ΠH(x) − I )(2ΠT − I ),
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where T = ker A⊕span{|w0〉}, the span of positive witnesses. We haveU ′ = U †(I −
2|w0〉〈w0|).

We begin by analyzing the overlap of the initial state, |w0〉, with the phase spaces of
the unitariesU andU ′ in Sect. 4.1. In particular, we show that the projections of |w0〉
onto the 0-phase spaces of U and U ′ are exactly related to the witness size. Using the
effective spectral gap lemma (Lemma 1), we show that the overlap of |w0〉 with small
nonzero phase spaces is not too large. Using this analysis, in Sect. 4.2, we describe
how to convert a span program into an algorithm for any decision problem that is
approximated by the span program, proving Theorem 5, and in Sect. 4.3, we describe
how to convert a span program into an algorithm that estimates the span program
witness size, proving Theorem 6.

Finally, in Sect. 4.4, we give a lower bound on the phase gap of U in terms of the
spectra of A and A(x) = AΠH(x), giving an alternative analysis to the effective spectral
gap analysis of Sect. 4.1 that may be better in some cases, and proving Theorem 7.

4.1 Analysis

Negative Span Programs In this section we analyze the overlap of |w0〉 with the
eigenspaces of U (P, x). For any angle Θ ∈ [0, π), we define Π x

Θ as the orthogonal
projector onto the eiθ -eigenspaces of U (P, x) for which |θ | ≤ Θ .

Lemma 3 Let P be a normalized span program on [q]n. For any x ∈ [q]n,
∥

∥Π x
Θ |w0〉

∥

∥

2 ≤ Θ2

4
w̃+(x) + 1

w−(x)
.

In particular, for any x ∈ P1,
∥

∥Π x
Θ |w0〉

∥

∥

2 ≤ Θ2

4 w+(x).

Proof Suppose x ∈ P1, and let |wx 〉 be an optimal positive witness for x , so
Π(ker A)⊥|wx 〉 = |w0〉. Then since ΠH(x)⊥|wx 〉 = 0, by the effective spectral gap
lemma (Lemma 1):

∥

∥Π x
Θ |w0〉

∥

∥

2 = ∥

∥Π x
ΘΠ(ker A)⊥|wx 〉

∥

∥

2 ≤ Θ2

4
‖|wx 〉‖2 = Θ2

4
w+(x).

Suppose x ∈ P0 and letωx be an optimal zero-error negative witness for x and |w̃x 〉
an optimal min-error positive witness for x . First note that Π(ker A)⊥|w̃x 〉 = |w0〉, so
Π(ker A)⊥ΠH(x)|w̃x 〉+Π(ker A)⊥ΠH(x)⊥|w̃x 〉 = |w0〉. SinceΠH(x)⊥

(

ΠH(x)|w̃x 〉
) = 0,

we have, by Lemma 1,

∥

∥ΠΘΠ(ker A)⊥ΠH(x)|w̃x 〉
∥

∥

2 ≤ Θ2

4

∥

∥ΠH(x)|w̃x 〉
∥

∥

2

∥

∥ΠΘ

(|w0〉 − Π(ker A)⊥ΠH(x)⊥|w̃x 〉
)∥

∥

2 ≤ Θ2

4
‖|w̃x 〉‖2

∥

∥

∥

∥

ΠΘ

(

|w0〉 − Π(ker A)⊥
(ωx A)†

w−(x)

)∥

∥

∥

∥

2

≤ Θ2

4
‖|w̃x 〉‖2 .
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In the last step, we used the fact that (ωx A)†

w−(x) = ΠH(x)⊥|w̃x 〉, by Theorem 8. Next

note that Π(ker A)⊥(ωx A)† = (ωx A)† and ΠH(x)⊥(ωx A)† = (ωx A)†, so U (ωx A)† =
(ωx A)†, and therefore, ΠΘ(ωx A)† = (ωx A)†. Thus:

∥

∥

∥

∥

ΠΘ |w0〉 − (ωx A)†

w−(x)

∥

∥

∥

∥

2

≤ Θ2

4
‖|w̃x 〉‖2

‖ΠΘ |w0〉‖2 + 1

w−(x)
− 2

1

w−(x)
〈w0|ΠΘ(ωx A)† ≤ Θ2

4
w̃+(x)

‖ΠΘ |w0〉‖2 + 1

w−(x)
− 2

1

w−(x)
(ωx A|w0〉)† ≤ Θ2

4
w̃+(x)

‖ΠΘ |w0〉‖2 + 1

w−(x)
− 2

1

w−(x)
(ωxτ)† ≤ Θ2

4
w̃+(x)

‖ΠΘ |w0〉‖2 ≤ Θ2

4
w̃+(x) + 1

w−(x)
,

where in the last line we used the fact that ωxτ = 1. �

Lemma 4 Let P be a normalized span program on [q]n. For any x ∈ [q]n,
∥

∥Π x
0 |w0〉

∥

∥

2 = 1

w−(x)
.

In particular, for any x ∈ P1,
∥

∥Π x
0 |w0〉

∥

∥ = 0.

Proof By Lemma 3, we have
∥

∥Π x
0 |w0〉

∥

∥

2 ≤ 1
w−(x) . To see the other direction, let ωx

be an optimal zero-error negative witness for x (if none exists, then w−(x) = ∞ and
the statement is vacuously true). Define |u〉 = (ωx A)†. By the proof of Lemma 3,
U |u〉 = |u〉. We have 〈u|w0〉 = ωx A|w0〉 = ωxτ = 1 and ‖|u〉‖2 = ‖ωx A‖2 =
w−(x), so we have:

∥

∥Π x
0 |w0〉

∥

∥

2 ≥
∥

∥

∥

|u〉〈u|
‖|u〉‖2 |w0〉

∥

∥

∥

2 = 1
w−(x) .

Positive Span Programs We now prove results analogous to Lemmas 3 and 4 for the
unitary U ′(P, x). For any angle Θ ∈ [0, π), we define Π

x
Θ as the projector onto the

θ -phase spaces of U ′(P, x) for which |θ | ≤ Θ .

Lemma 5 Let P be a normalized span program on [q]n. For any x ∈ [q]n,
∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 ≤ Θ2

4
w̃−(x) + 1

w+(x)
.

In particular, if x ∈ P0, then
∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 ≤ Θ2

4 w−(x).

123



Algorithmica (2019) 81:2158–2195 2175

Proof If x ∈ P0, then letωx be anoptimal exact negativewitness for x , soωx AΠH(x) =
0, and thus, by the effective spectral gap lemma (Lemma 1),

∥

∥

∥Π
x
ΘΠT (ωx A)†

∥

∥

∥

2 ≤ Θ2

4
‖ωx A‖2 = Θ2

4
w−(x).

We have ωx AΠT = ωx A(Πker A + |w0〉〈w0|) = ωx A|w0〉〈w0| = ωxτ 〈w0| = 〈w0|,
so

∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 ≤ Θ2

4 w−(x).

Suppose x ∈ P1, and let |wx 〉 be an optimal zero-error positive witness for x , and
ω̃x an optimal min-error negative witness for x . By Theorem 9, we have |wx 〉

w+(x) =
ΠH(x)(ω̃x A)†. Since ΠH(x)(ω̃x AΠH(x)⊥)† = 0, we have, by Lemma 1,

∥

∥

∥Π
x
ΘΠT (ω̃x AΠH(x)⊥)†

∥

∥

∥

2 ≤ Θ2

4

∥

∥ω̃x AΠH(x)⊥
∥

∥

2

∥

∥

∥

∥

Π
x
ΘΠT

(

(ω̃x A)† − |wx 〉
w+(x)

)∥

∥

∥

∥

2

≤ Θ2

4
‖ω̃x A‖2

∥

∥

∥

∥

Π
x
ΘΠT (ω̃x A)† − |wx 〉

w+(x)

∥

∥

∥

∥

2

≤ Θ2

4
w̃−(x).

In the last line we used the fact thatΠT |wx 〉 = ΠH(x)|wx 〉 = |wx 〉, soU ′|wx 〉 = |wx 〉,
and thus Π

x
Θ |wx 〉 = |wx 〉.

Note that ω̃x AΠT = ω̃x A(Πker A + |w0〉〈w0|) = ω̃x A|w0〉〈w0| = ω̃xτ 〈w0| =
〈w0|. Thus, we can continue from above as:

∥

∥

∥

∥

Π
x
Θ |w0〉 − |wx 〉

w+(x)

∥

∥

∥

∥

2

≤ Θ2

4
w̃−(x)

∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 +
∥

∥

∥

∥

|wx 〉
w+(x)

∥

∥

∥

∥

2

− 2

w+(x)
〈w0|Π x

Θ |wx 〉 ≤ Θ2

4
w̃−(x)

∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 + 1

w+(x)
− 2

w+(x)
〈w0|wx 〉 ≤ Θ2

4
w̃−(x)

∥

∥

∥Π
x
Θ |w0〉

∥

∥

∥

2 ≤ Θ2

4
w̃−(x) + 1

w+(x)
,

where in the last line we used the fact that 〈w0|wx 〉 = 1. �
Lemma 6 Let P be a normalized span program on [q]n. For any x ∈ [q]n,

∥

∥

∥Π
x
0 |w0〉

∥

∥

∥

2 = 1

w+(x)
.

In particular, if x ∈ P0, then
∥

∥

∥Π
x
0 |w0〉

∥

∥

∥ = 0.
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Proof ByLemma5,
∥

∥

∥Π
x
0 |w0〉

∥

∥

∥

2 ≤ 1
w+(x) . Let |wx 〉 = |w0〉+|w⊥

0 〉 be an optimal zero-

error positivewitness for x . Since |wx 〉 ∈ H(x)∩T ,U ′|wx 〉 = |wx 〉, so
∥

∥

∥Π
x
0 |w0〉

∥

∥

∥

2 ≥
〈wx |w0〉
‖|wx 〉‖2 ≥ 1

w+(x) .

4.2 Algorithms for Approximate Span Programs

Using the spectral analysis from Sect. 4.1, we can design an algorithm that decides a
function that is approximated by a span program. We will give details for the nega-
tive case, using Lemmas 3 and 4. A nearly identical argument proves the analogous
statement for the positive case, using Lemmas 5 and 6 instead.

Throughout this section, fix a decision problem f on [q]n , and let P be a normalized
span program that negatively λ-approximates f . By Lemmas 4 and 3, it is possible
to distinguish between the cases f (x) = 0, in which 1

w−(x) ≥ 1
W− , and f (x) = 1,

in which 1
w−(x) ≤ λ

W− using phase estimation to sufficient precision, and amplitude
estimation on a 0 in the phase register. We give details in the following theorem.

Lemma 7 Let P be a normalized λ-negative approximate span program for f . Then

the quantum query complexity of f is O
(

1
(1−λ)3/2

W−
√

˜W+ log W−
1−λ

)

.

Proof LetU (P, x) = ∑m
j=1 e

iθ j |ψ j 〉〈ψ j |, and let |w0〉 = ∑m
j=1 α j |ψ j 〉. Then apply-

ing phase estimation (Theorem 1) to precision Θ =
√

4(1−λ)

3W− ˜W+
and error ε = 1

6
1−λ
W−

produces a state |w′
0〉 = ∑m

j=1 α j |ψ j 〉|ω j 〉 such that if θ j = 0, then |ω j 〉 = |0〉, and
if |θ j | > Θ then |〈ω j |0〉|2 ≤ ε. Let Λ0 be the projector onto states with 0 in the

phase register. We have:
∥

∥Λ0|w′
0〉

∥

∥

2 = ∑m
j=1 |α j |2|〈0|ω j 〉|2. By Lemma 4, we have

∥

∥Π x
0 |w0〉

∥

∥

2 = 1
w−(x) , so if x ∈ f −1(0), we have:

∥

∥Λ0|w′
0〉

∥

∥

2 ≥
∑

j :θ j=0

|α j |2|〈0|0〉|2 = ∥

∥Π x
0 |w0〉

∥

∥

2 = 1

w−(x)
≥ 1

W−
=: p0.

On the other hand, suppose x ∈ f −1(1). Since P negatively λ-approximates f and
x ∈ f −1(1), w−(x, P) ≥ 1

λ
W−(x, P). By Lemma 3, we have

∥

∥Π x
Θ |w0〉

∥

∥

2 ≤ 1

w−(x, P)
+ Θ2

4
w̃+(x, P) ≤ λ

W−
+ 1 − λ

3W− ˜W+
˜W+ = 1

3

1 + 2λ

W−

and thus

∥

∥Λ0|w′
0〉

∥

∥

2 ≤
∑

j :|θ j |≤Θ

|α j |2 +
∑

j :|θ j |>Θ

|α j |2|〈ω j |0〉|2

= ∥

∥Π x
Θ |w0〉

∥

∥

2 + ε
∑

j :|θ j |>Θ

|α j |2 ≤ 1 + 2λ

3W−
+ 1 − λ

6W−
=: p1.

123



Algorithmica (2019) 81:2158–2195 2177

By Corollary 1, we can distinguish between these cases using O
( √

p0
p0−p1

)

calls to

phase estimation, which costs 1
Θ
log 1

ε
calls to U . In this case, we have

p0 − p1 = 1 − 1
3 − 2

3λ − 1
6 + 1

6λ

W−
= 1

2

1 − λ

W−
.

The total number of calls to U is:

√
p0

p0 − p1

1

Θ
log

1

ε
= W−√

W−(1 − λ)

√

W− ˜W+
1 − λ

log
W−
1 − λ

=
W−

√

˜W+
(1 − λ)3/2

log
W−
1 − λ

.

�
In addition to wanting to extend this to non-normalized span programs, we note that

this expression is not symmetric in the positive and negative error. Using Theorem 10,
we can normalize any span program, while also scaling the positive and negative
witnesses. This gives us the following.

Corollary 3 Let P be any span program that negatively λ-approximates f . Then the
quantum query complexity of f is at most

O

(

1

(1 − λ)3/2

√

W−( f , P) ˜W+( f , P) log
1

1 − λ

)

.

Proof We will use the scaled span program described in Theorem 10. Let β =
1√

W−( f ,P)
. Then Pβ is a normalized span program with

W−( f , Pβ) = max
x∈ f −1(0)

w−(x, Pβ) = β2 max
x∈ f −1(0)

w−(x, P) + 1 = 1

W−
W− + 1 = 2,

and

˜W+( f , Pβ) = max
x∈ f −1(1)

w̃+(x, Pβ) ≤ 1

β2 max
x∈ f −1(1)

w̃+(x, P) + 2

= W−( f , P) ˜W+( f , P) + 2.

If we define λ(β) := maxx∈ f −1(0) w−(x,Pβ)

minx∈ f −1(1) w−(x,Pβ)
= β2W−( f ,P)+1

β2 1
λ
W−( f ,P)+1

= 2
1
λ
+1

, then clearly

Pβ negatively λ(β)-approximates f , so we can apply Lemma 7. We have 1
1−λ(β) =

1
1− 2λ

1+λ

= 1+λ
1−λ

so we can decide f in query complexity (neglecting constants):

(

1 + λ

1 − λ

) 3
2√

2
(

W−( f , P) ˜W+( f , P) + 2
)

log 2
1 + λ

1 − λ
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= 1

(1 − λ)
3
2

√

W−( f , P) ˜W+( f , P) log
1

1 − λ
.

�

By computations analogous to Lemma 7 and Corollary 3 (using β = √
W+), we

can show that if P positively λ-approximates f , then f has quantum query complexity

O
(

1
(1−λ)3/2

√

W+ ˜W− log 1
1−λ

)

. This and Corollary 3 imply Theorem 5.

4.3 Estimating theWitness Size

Using the algorithms for deciding approximate span programs (Theorem 5) as a black
box, we can construct a quantum algorithm that estimates the positive or negative
witness size of an input using standard algorithmic techniques. We give the full proof
for the case of positive witness size, as negative witness size is virtually identical. This
proves Theorem 6.

Theorem 11 (Estimating the Witness Size) Fix f : X ⊆ [q]n → R>0. Let P be a
span program on [q]n such that for all x ∈ X, f (x) = w+(x, P). The quantum query

complexity of estimating f to accuracy ε is ˜O

(√
w+(x) ˜W−(P)

ε3/2

)

.

Proof We will estimate e(x) = 1
w+(x) . The basic idea is to use the algorithm from

Theorem 5 to narrow down the interval in which the value of e(x) may lie. Assum-
ing that the span program is normalized (which is without loss of generality, since
normalizing by scaling τ does not impact relative accuracy) we can begin with the
interval [0, 1]. We stop when we reach an interval [emin, emax] such that the midpoint
ẽ = emax+emin

2 satisfies (1 − ε)emax ≤ ẽ ≤ (1 + ε)emin.
Let Decide(P, w, λ) be the quantum algorithm from Theorem 5 that decides the

(partial) function g : P1 → {0, 1} defined by g(x) = 1 if w+(x) ≤ w and g(x) = 0
if w+(x) ≥ w

λ
. We will amplify the success probability so that with high probability,

Decide returns g(x) correctly every time it is called by the algorithm, and we will
assume that this is the case. The full witness estimation algorithm consists of repeated
calls to Decide as follows:

WitnessEstimate(P, ε):

1. e(1)
max = 1, e(1)

min = 0, e(1)
1 = 2

3 , e
(1)
0 = 1

3
2. For i = 1, 2, . . . repeat:

(a) Run Decide(P, w, λ) with w = 1/e(i)
1 and λ = e(i)

0 /e(i)
1 .

(b) If Decide outputs 1, indicating w+(x) ≤ w, set e(i+1)
max = e(i)

max and e(i+1)
min =

e(i)
0 .

(c) Else, set e(i+1)
min = e(i)

min and e(i+1)
max = e(i)

1 .

(d) If e(i+1)
max ≤ (1 + ε)e(i+1)

min , return ẽ = e(i+1)
max +e(i+1)

min
2 .

(e) Else, set e(i+1)
1 = 2

3e
(i+1)
max + 1

3e
(i+1)
min and e(i+1)

0 = 1
3e

(i+1)
max + 2

3e
(i+1)
min .
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We can see by induction that for every i , e(i)
min ≤ 1

w+(x) ≤ e(i)
max. This is certainly

true for i = 1, since w+(x) ≥ ‖|w0〉‖2 = 1. Suppose it is true at step i . At step i
we run Decide(P, wi , λi ) with wi = 1/e(i)

1 and wi
λi

= 1/e(i)
0 . If 1

w+(x) ≥ e(1)
1 , then

Decide returns 1, so we have 1
w+(x) ∈ [e(i)

0 , e(i)
max] = [e(i+1)

min , e(i+1)
max ]. If 1

w+(x) ≤ e(i)
0 ,

then Decide returns 0, so we have 1
w+(x) ∈ [e(i)

min, e
(i)
1 ] = [e(i+1)

min , e(i+1)
max ]. Otherwise,

1
w+(x) ∈ [e(i)

0 , e(i)
1 ], which is a subset of both [e(i)

0 , e(i)
max] and [e(i)

min, e
(i)
1 ], so in any

case, 1
w+(x) ∈ [e(i+1)

min , e(i+1)
max ].

To see that the algorithm terminates, let Δi = e(i)
max − e(i)

min denote the length of

the remaining interval at round i . We either have Δi+1 = e(i)
max − e(i)

0 = e(i)
max −

1
3e

(i)
max − 2

3e
(i)
min = 2

3Δi , or Δi+1 = e(i)
1 − e(i)

min = 2
3e

(i)
max + 1

3e
(i)
min − e(i)

min = 2
3Δi , so

Δi = (2/3)i−1. We terminate at the smallest T such that (2/3)T−1 = ΔT = e(T )
max −

e(T )
min ≤ (1+ ε − 1)e(T )

min ≤ ε
w+(x) . Thus we terminate before T = � log3/2 w+(x)

ε
+ 1�.

Next, we show that, assumingDecide does not err, the estimate is correct to within
ε. Let ẽ = 1

2 (e
(T )
max+e(T )

min) be the returned estimate. Recall that we only terminate when

e(T )
max ≤ (1 + ε)e(T )

min. We have

1

ẽ
= 2

e(T )
max + e(T )

min

≤ 2

e(T )
max

(

1 + 1
1+ε

) ≤ 2
1

w+(x)

(

2+ε
1+ε

) ≤ (1 + ε) w+(x),

and

1

ẽ
≥ 2

emin(1 + 1 + ε)
≥ 1

1
w+(x) (1 + ε/2)

=
(

1 − ε/2

1 + ε/2

)

w+(x) ≥
(

1 − ε

2

)

w+(x).

Thus, |1/ẽ − w+(x)| ≤ εw+(x).

By Theorem 5, Decide(P, w, λ) runs in cost O

( √
w ˜W−

(1−λ)3/2
log 1

1−λ

)

. Let wi =
1/e(i)

1 and λi = e(i)
0 /e(i)

1 be the values used at the i th iteration. Since e(i)
1 ≤ e(i)

max ≤
1

w+(x) + Δi , we have

1

1 − λi
= e(i)

1

e(i)
1 − e(i)

0

≤
1

w+(x) + Δi

2
3e

(i)
max + 1

3e
(i)
min − 1

3e
(i)
max − 2

3e
(i)
min

= 3

w+(x)Δi
+ 3 = O

(

1

ε

)

,

since Δi = (2/3)i−1 ≥ (2/3)T−1 = Ω
(

ε
w+(x)

)

. Next, observe that
√

wi

(1−λi )
3/2 =

e(i)
1

(e(i)
1 −e(i)

0 )3/2
≤

(

1
w+(x) + Δi

)

33/2

Δ
3/2
i

, so, ignoring the log 1
1−λi

= O(log 1
ε
) factor, the
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cost of the i th iteration can be computed as:

Ci =
√

wi ˜W−
(1 − λi )3/2

≤
√

˜W−
(

1

w+(x)
+ Δi

)

33/2

Δ
3/2
i

= 33/2

√

˜W−
w+(x)

(

3

2

) 3
2 (i−1)

+ 33/2
√

˜W−
(

3

2

) 1
2 (i−1)

.

We can thus compute the total cost (neglecting logarithmic factors):

T
∑

i=1

Ci ≤
√

˜W−
w+(x)

T
∑

i=1

(

3

2

) 3
2 (i−1)

+
√

˜W−
T

∑

i=1

(

3

2

) 1
2 (i−1)

≤
√

˜W−
w+(x)

( 3
2

)
3
2 T − 1

( 3
2

)3/2 − 1
+

√

˜W−
( 3
2

)
1
2 T − 1

( 3
2

)1/2 − 1

≤O

⎛

⎝

√

˜W−
w+(x)

(

w+(x)

ε

)3/2

+
√

˜W−
(

w+(x)

ε

)1/2
⎞

⎠

= O

⎛

⎝

√

˜W−w+(x)

ε3/2

⎞

⎠ ,

using the fact that (2/3)T = Θ
(

ε
w+(x)

)

.

Finally, we have been assuming that Decide returns the correct bit on every call.
We now justify this assumption. At round i , we will amplify the success probability
of Decide to 1 − 1

9 (2/3)
i−1, incurring a factor of log(9(3/2)i−1) = O(log w+(x)

ε
)

in the complexity. Then the total error is at most:

T
∑

i=1

1

9
(2/3)i−1 = 1

9

1 − (2/3)T−1

1 − 2
3

= 1

3

(

1 − ε

w+(x)

)

≤ 1

3
.

Thus, with probability ≥ 2/3, Decide never errs, and the algorithm is correct. �

4.4 Span Program Phase Gap

The scaling in the error fromTheorem 11, 1/ε3/2, is not ideal. For instance, we showed
in Sect. 3.3 how to construct a quantum algorithm for approximate counting based on a
simple span program for the OR function with complexity that scales like 1/ε3/2 in the
error, whereas the best quantum algorithm for this task has complexity scaling as 1/ε
in the error. However, the following theorem, which is a corollary to Lemmas 4 and
6, gives an alternative analysis of the complexity of the algorithm in Theorem 11 that
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may be better in some cases, and in particular, has the more natural error dependence
1/ε.

Theorem 12 Fix f : X ⊆ [q]n → R>0. Let P be a normalized span pro-
gram on [q]n such that X ⊆ P0, and ∀x ∈ X, w−(x, P) = f (x). Define
Δ( f ) = minx∈X Δ(U (P, x)). Then there is a quantum algorithm that estimates f

to relative accuracy ε using ˜O

(

1
ε

√
w−(x,P)

Δ( f )

)

queries. Similarly, let P be a normal-

ized span program such that X ⊆ P1, and ∀x ∈ X, w+(x, P) = f (x). Define
Δ′( f ) = minx∈X Δ(U ′(P, x)). Then there is a quantum algorithm that estimates f

with relative accuracy ε using ˜O

(

1
ε

√
w+(x,P)

Δ′( f )

)

queries.

Proof To estimate w−(x), we can use phase estimation of U (P, x) applied to |w0〉,
with precisionΔ = Δ( f ) and accuracy η = ε

8
1

W−(P, f ) , however, this results in logW−
factors, and W− may be significantly larger than w−(x). Instead, we will start with
η = 1

2 , and decrease it by 1/2 until η ≈ ε
w−(x,P)

.
Let |w′

0〉 be the result of applying phase estimation to precision Δ = Δ( f ) and
accuracy η, and let Λ0 be the projector onto states with 0 in the phase register. We
will then estimate

∥

∥Λ0|w′
0〉

∥

∥

2 to relative accuracy ε/4 using amplitude estimation.

Since Δ ≤ Δ(U (P, x)), we have
∥

∥Π x
0 |w0〉

∥

∥

2 ≤ ∥

∥Λ0|w′
0〉

∥

∥

2 ≤ ∥

∥Π x
Δ|w0〉

∥

∥

2 + η =
∥

∥Π x
0 |w0〉

∥

∥

2 + η. By Lemma 4, we have
∥

∥Π x
0 |w0〉

∥

∥

2 = 1
w−(x) , so we will obtain an

estimate p̃ of 1
w−(x) such that

(

1 − ε

4

) 1

w−(x)
≤ p̃ ≤

(

1 + ε

4

)

(

1

w−(x)
+ η

)

.

If p̃ > 2(1 + ε
4 )η, then we know that 1

w−(x) ≥ η, so we perform one more estimate

with accuracy η′ = ε
8η ≤ ε

8
1

w−(x) and return the resulting estimate. Otherwise, we let
η′ = η/2 and repeat.

To see that we will eventually terminate, suppose η ≤ 1
4w−(x) . Then

p̃ ≥ (1 − ε/4)
1

w−(x)
≥ (3/4)4η ≥ (3/4)(4/5)(1 + ε/4)4η ≥ 2(1 + ε/4)η,

so the algorithm terminates. Upon termination, we have

p̃ ≤
(

1 + ε

4

)

(

1

w−(x)
+ η

)

≤
(

1 + ε

4

)

(

1

w−(x)
+ ε

8

1

w−(x)

)

≤
(

1 + ε

2

) 1

w−(x)
,

so |1/ p̃ − w−(x)| ≤ εw−(x). By Theorem 1 and 2, the number of calls to U is:

log 4w−(x)
∑

i=0

1

Δ

√

w−(x)

ε
log 2i +

√

w−(x)

Δε
log

w−(x)

ε
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= 1

Δ

√

w−(x)

ε

⎛

⎝

log 6w−(x)
∑

i=0

i + log
w−(x)

ε

⎞

⎠ ,

which is at most
√

w−(x)
Δ

ε log2 w−(x)
ε

= ˜O

(√
w−(x)
Δε

)

. Similarly, we can estimate

w+(x) to relative accuracy ε using ˜O

(√
w+(x)
Δ′ε

)

calls to U ′.

Theorem 12 is only useful if a lower bound on the phase gap ofU (P, x) orU ′(P, x)
can be computed. This may not always be feasible, but the following two theorems
show it is sufficient to compute the spectral norm of A, and the spectral gap, or
specifically, smallest nonzero singular value, of the matrix A(x) = AΠH(x). This
may still not be an easy task, but in Sect. 5, we show that we can get a better algorithm
for estimating the effective resistance by this analysis, which, in the case of effective
resistance, is very simple.

Theorem 13 Let P be any span program on [q]n. For any x ∈ [q]n, we have
Δ(U (P, x)) ≥ 2 σmin(A(x))

σmax(A)
.

Proof Let U = U (P, x). Consider −U = (2Π(ker A)⊥ − I )(2ΠH(x) − I ). By Corol-
lary 2, if D is the discriminant of −U , then Δ(U ) ≥ 2σmin(D), so we will lower
bound σmin(D). Since the orthogonal projector onto (ker A)⊥ = rowA is A+A, we
have D = A+AΠH(x) = A+A(x).

We have σmin(D) = min|u〉∈rowD
‖D|u〉‖
‖|u〉‖ , so let |u〉 ∈ rowD be a unit vector that

minimizes‖D|u〉‖. Since |u〉 ∈ rowD ⊆ rowA(x), we have‖A(x)|u〉‖ ≥ σmin(A(x)).
Since A(x)|u〉 ∈ colA(x) ⊆ colA = rowA+, we have

σmin(D) = ∥

∥A+A(x)|u〉∥∥ ≥ σmin(A
+) ‖A(x)|u〉‖

≥ σmin(A
+)σmin(A(x)) = σmin(A(x))

σmax(A)
,

since σmin(A+) = 1
σmax(A)

. Thus Δ(U ) ≥ 2 σmin(A(x))
σmax(A)

. �

Theorem 14 Let P be any span program. ∀x ∈ P1, Δ(U ′(P, x)) ≥ 2 σmin(A(x))
σmax(A)

.

Proof We have

−U ′(P, x)† = (2(I − Πker A⊕span{|w0〉}) − I )(2ΠH(x) − I )

= (2(I − Πker A − Π|w0〉) − I )(2ΠH(x) − I ),

since |w0〉 ∈ (ker A)⊥, so −U ′(P, x)† has discriminant:

D′ = (Π(ker A)⊥ − Π|w0〉)ΠH(x) = Π(ker A)⊥ΠH(x) − Π|w0〉Π(ker A)⊥ΠH(x)

= Π|w0〉⊥ D.
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Since x ∈ P1, let |wx 〉 = A(x)+|τ 〉. Then D|wx 〉 = A+A(x)|wx 〉 = A+|τ 〉 =
|w0〉, so |w0〉 ∈ colD. Let {|φ0〉 = |w0〉, |φ1〉, . . . , |φr−1〉} be an orthogonal basis
for colD. Then we can write D = ∑r−1

i=0 |φi 〉〈vi | for |vi 〉 = D†|φi 〉 �= 0 (not
necessarily orthogonal). Then D′ = ∑r−1

i=0 Π|w0〉⊥ |φi 〉〈vi | = ∑r−1
i=1 |φi 〉〈vi |, so

colD′ = span{|φ1〉, . . . , |φr−1〉} = {|φ〉 ∈ colD : 〈φ|w0〉 = 0}. Thus:

σmin(D
′) = min

|u〉∈colD′

∥

∥〈u|D′∥
∥

‖|u〉‖ = min|u〉∈colD:〈w0|u〉=0

∥

∥〈u|Π|w0〉⊥ D
∥

∥

‖|u〉‖
= min|u〉∈colD:〈w0|u〉=0

‖〈u|D‖
‖|u〉‖ ≥ min|u〉∈colD

‖〈u|D‖
‖|u〉‖ = σmin(D).

By the proof of Theorem 13, we have σmin(D) ≥ σmin(A(x))
σmax(A)

and by Corollary 2, we

have Δ(U ′(P, x)†) = Δ(U ′(P, x)) ≥ 2σmin(D′) ≥ 2σmin(D) ≥ 2 σmin(A(x))
σmax(A)

. �
Combining the last three theorems, we get the following, which has Theorem 7 as a
special case:

Theorem 15 Fix f : X ⊆ [q]n → R>0, and define κ( f ) = maxx∈X
σmax(A)

σmin(A(x))
.

Let P be any span program on [q]n such that X ⊆ P0 (resp. X ⊆ P1), and for all
x ∈ X, f (x) = w−(x, P) (resp. f (x) = w+(x, P)). Let N = ‖|w0〉‖2. Then there is
a quantum algorithm that estimates f to relative accuracy ε using ˜O

(

κ( f )
ε

√
N f (x)

)

(resp. ˜O

(

κ( f )
ε

√

f (x)
N

)

) queries.

Proof Let P ′ be the span program that is the same as P , but with target τ ′ = τ√
N
.

Then it is clear that |w0〉√
N

is the minimal positive witness of P ′, and furthermore, it

has norm 1, so P ′ is normalized. We can similarly see that for any x ∈ P1, if |wx 〉 is
an optimal positive witness for x in P , then 1√

N
|wx 〉 is an optimal positive witness

for x in P ′, so w+(x, P ′) = w+(x,P)
N . Similarly, for any x ∈ P0, if ωx is an optimal

negative witness for x in P , then
√
Nωx is an optimal negative witness for x in P ′, so

w−(x, P ′) = Nw−(x, P). By Theorems 13 and 14, for all x ∈ X , 1
Δ(U (P ′,x)) ≤ κ( f )

(resp. 1
Δ(U ′(P ′,x)) ≤ κ( f )). The result then follows from Theorem 12. �

5 Applications

In this section, we will demonstrate how to apply the ideas from Sect. 4 to get new
quantum algorithms. Specifically, we will give upper bounds of ˜O(n

√

Rs,t/ε
3/2) and

˜O(n
√

Rs,t/λ2/ε) on the time complexity of estimating the effective resistance, Rs,t ,
between two vertices, s and t , in a graph. Unlike previous upper bounds, we study this
problem in the adjacency model, however, there are similarities between the ideas of
this upper bound and a previous quantum upper bound in the edge-list model due to
Wang [23], which we discuss further at the end of this section.
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A unit flow from s to t in G is a real-valued function θ on the directed edges
→
E (G) = {(u, v) : {u, v} ∈ E(G)} such that:

1. ∀(u, v) ∈ →
E , θ(u, v) = −θ(v, u);

2. ∀u ∈ [n] \ {s, t}, ∑v∈Γ (u) θ(u, v) = 0, where Γ (u) = {v ∈ [n] : {u, v} ∈ E};
3.

∑

u∈Γ (s) θ(s, u) = ∑

u∈Γ (t) θ(u, t) = 1.

Let F be the set of unit flows from s to t in G. The effective resistance from s to t in
G is defined:

Rs,t (G) = min
θ∈F

∑

{u,v}∈E(G)

θ(u, v)2.

This quantity gives the resistance of a network of unit resistors described by G, but
is also an interesting quantity for graph theoretic reasons. For instance, the commute
time between s and t , which is the expected number of steps in a random walk starting
from s to reach t , and then return to s, is exactly the product of the number of edges
in G, and Rs,t (G) [9].

In the adjacency model, we are given, as input, a string x ∈ {0, 1}n×n , representing
a graph Gx = ([n], {{i, j} : xi, j = 1}) (we assume that xi,i = 0 for all i , and
xi, j = x j,i for all i, j). The problem of st-connectivity is the following. Given as
input x ∈ {0, 1}n×n and s, t ∈ [n], decide if there exists a path from s to t in Gx ; that
is, whether or not s and t are in the same component of Gx . A span-program-based
algorithm for this problem was given in [7], with time complexity ˜O(n

√
p), under the

promise that, if s and t are connected in Gx , they are connected by a path of length
≤ p. They use the following span program, defined on {0, 1}n×n :

H(u,v),0 = {0}, H(u,v),1 = span{|u, v〉}, V = R
n,

A =
∑

u,v∈[n]
(|u〉 − |v〉)〈u, v|, |τ 〉 = |s〉 − |t〉.

We have H = span{|u, v〉 : u, v ∈ [n]}, and H(x) = span{|u, v〉 : {u, v} ∈ E(Gx )}.
Throughout this section, P will denote the above span program. We will use this span
program to define algorithms for estimating the effective resistance. Ref. [7] are even
able to show how to efficiently implement a unitary similar to U (P, x), giving a time
efficient algorithm. In “Appendix B”, we adapt their proof to our setting, showing
how to efficiently implement U ′(Pβ, x) for any n−O(1) ≤ β ≤ nO(1) and efficiently
construct the initial state |w0〉, making our algorithms time efficient as well.

The effective resistance between s and t is related to st-connectivity by the fact that
if s and t are not connected, then Rs,t is infinite (there is no flow from s to t) and if s
and t are connected then Rs,t is related to the number and length of paths from s to t .
In particular, if s and t are connected by a path of length p, then Rs,t (G) ≤ p (take
the unit flow that simply travels along this path). In general, if s and t are connected
in G, then 2

n ≤ Rs,t (G) ≤ n − 1. The span program for st-connectivity is amenable
to the task of estimating the effective resistance due to the following.
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Lemma 8 [7] For any graph Gx on [n], x ∈ P1 if and only if s and t are connected,
and in that case, w+(x, P) = 1

2 Rs,t (Gx ).

The following is a near immediate consequence of Lemma 8 and Theorem 6.

Theorem 16 There exists a quantum algorithm for estimating Rs,t (Gx ) to accuracy ε

with time complexity ˜O

(

n
√

Rs,t (Gx )

ε3/2

)

and space complexity O(log n).

Proof We merely observe that if G is a connected graph, an approximate negative
witness is ω : [n] → R that minimizes

∥

∥ωAΠH(x)
∥

∥

2 = ∑

{u,v}∈E (ω(u) − ω(v))2

and satisfies ω(s) − ω(t) = 1. That is, ω is the voltage induced by a unit potential
difference between s and t (see [10] for details). This is not unique, but if we fix
ω(s) = 1 and ω(t) = 0, then the ω that minimizes

∥

∥ωAΠH(x)
∥

∥

2 is unique, and
this is without loss of generality. In that case, for all u ∈ [n], 0 ≤ ω(u) ≤ 1, so
w̃−(x) = ‖ωA‖2 = ∑

u,v∈[n](ω(u) − ω(v)) ≤ 2n2 and thus ˜W− ≤ 2n2.

By Theorem 6, we can estimate Rs,t to precision ε using ˜O

(√

˜W−w+(x)

ε3/2

)

=

˜O

(

n
√

Rs,t (Gx )

ε3/2

)

calls toU ′(Pβ, x) for some β, which, by Theorem 19, costs O(log n)

time and space. �
By analyzing the spectra of A and A(x), and applying Theorem 7, we can get an

often better algorithm (Theorem 17). The spectral gap of a graphG, denoted λ2(G), is
the second smallest eigenvalue (including multiplicity) of the Laplacian of G, which
is defined LG = ∑

u∈[n] du |u〉〈u|−∑

u∈[n]
∑

v∈Γ (u) |u〉〈v|, where du is the degree of
u, and Γ (u) is the set of neighbours of u. The smallest eigenvalue of LG is 0 for any
graph G. A graph G is connected if and only if λ2(G) > 0. A connected graph G has
2
n2

≤ λ2(G) ≤ n.
The following theorem is an improvement over Theorem 16 when λ2(G) > ε. In

particular, it is an improvement for all ε when we know that λ2(G) > 1.

Theorem 17 Let G be a family of graphs such that for all x ∈ G, λ2(Gx ) ≥ μ. Let
f : G × [n] × [n] → R>0 be defined by f (x, s, t) = Rs,t (Gx ). There exists a
quantum algorithm for estimating f to relative accuracy ε that has time complexity
˜O

( 1
ε
n
√

Rs,t (Gx )/μ
)

and space complexity O(log n).

Proof Before applying Theorem 7, we compute ‖|w0〉‖2, to normalize P .

Lemma 9 N = ‖|w0〉‖2 = 1
n .

Proof Since H(x) = H when Gx is the complete graph, by Lemma 8, we need only
compute Rs,t in the complete graph. It is simple to verify that the optimal unit st-flow
in the complete graph has 1

n units of flowon every path of the form (s, u, t) for u ∈ [n]\
{s, t}, and 2

n units of flow on the edge (s, t). Thus, Rs,t (Kn) = ∑

u∈[n]\{s,t} 2(1/n)2 +
(2/n)2 = 2/n. So ‖|w0〉‖2 = 1

2 Rs,t (Kn) = 1
n .

Next, we compute the following:
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Fig. 1 The graphs in G0 contain
only the solid edges. The graphs
in G1 contain the solid edges and
one of the dashed edges. We can
embed an instance of OR in the
dashed edges. If a dashed edge is
included, the number of st-paths
increases, decreasing the
effective resistance

s t

Lemma 10 For any x ∈ G, σmax(A)
σmin(A(x)) =

√

n
λ2(Gx )

≤
√

n
μ
, so κ( f ) ≤

√

n
μ
.

Proof Let Lx denote the Laplacian of Gx . We have:

A(x)A(x)T =
∑

u∈[n]

∑

v∈Γ (u)

(|u〉 − |v〉)(〈u| − 〈v|)

= 2
∑

u∈[n]
du |u〉〈u| − 2

∑

u∈[n]

∑

v∈Γ (u)

|u〉〈v| = 2Lx .

Thus, if L denotes the Laplacian of the complete graph, we also have AAT = 2L .
Letting J denote the all ones matrix, we have L = (n − 1)I − (J − I ) = nI − J , and
since J = n|u〉〈u| where |u〉 = 1√

n

∑n
i=1 |i〉, if |u1〉, . . . , |un−1〉, |u〉 is any orthonor-

mal basis of Rn , then L = n
∑n−1

i=1 |ui 〉〈ui | + n|u〉〈u| − n|u〉〈u| = ∑n−1
i=1 n|ui 〉〈ui |,

so the spectrum of L is 0, with multiplicity 1, and n with multiplicity n − 1.
Thus, the only nonzero singular value of A is

√
2n = σmax(A). Furthermore,

since λ2(Gx ) is the smallest nonzero eigenvalue of Lx , and A(x)A(x)T = 2Lx ,
σmin(A(x)) = √

2λ2(Gx ). The result follows. �
Finally, by Lemma 8, we have w+(x, P) = 1

2 Rs,t (Gx ), so, applying Theorem 15,

we get an algorithm that makes ˜O

(

κ( f )
ε

√

w+(x,P)
N

)

= ˜O
( 1

ε

√
n/μ

√

Rs,t n
)

calls to

U ′(P, x). By Theorem 19, the time complexity of this algorithm is ˜O
( 1

ε
n
√

Rs,t/μ
)

and the space complexity is O(log n). �
Both of our upper bounds have linear dependence on n, and the following theorem

shows that this is optimal.

Theorem 18 (Lower Bound) There exists a family of graphs G such that estimating
effective resistance on G costs at least Ω(n) queries.

Proof Let G0 be the set of graphs consisting of two stars K1,n/2−1, centered at s and
t , with an edge connecting s and t (see Fig. 1). Let G1 be the set of graphs consisting
of graphs from G0 with a single edge added between two degree one vertices from
different stars. Let G = G0 ∪ G1. We first note that we can distinguish between G0
and G1 by estimating effective resistance on G to accuracy 1

10 : If G ∈ G0, then there
is a single st-path, consisting of one edge, so the effective resistance is 1. If G ∈ G1,
then there are two st-paths, one of length 1 and one of length 3. We put a flow of
1
4 on the length-3 path and 3

4 on the length-1 path to get effective resistance at most
(3/4)2 + 3(1/4)2 = 3

4 .
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We now describe how to embed an instance y ∈ {0, 1}(n/2−1)2 of OR(n/2−1)2 in
a graph. We let s = 1 be connected to every vertex in {2, . . . , n/2}, and t = n be
connected to every vertex in {n/2 + 1, . . . , n − 1}. Let the values of {Gi, j : i ∈
{2, . . . , n/2}, j ∈ {n/2, . . . , n − 1}} be determined by y. Let all other values Gi, j

be 0. Then clearly Rs,t (G) ≥ 1 if and only if y = 0 . . . 0 (in that case G ∈ G0) and
otherwise, Rs,t (G) ≤ 3/4, since there is at least one extra path from s to t (in that
case G ∈ G1). The result follows from the lower bound of Ω(

√

(n/2 − 1)2) = Ω(n)

on OR(n/2−1)2 . �
Discussion The algorithms from Theorems 16 and 17 are the first quantum algorithms
for estimating the effective resistance in the adjacencymodel, however, the problemhas
been studied previously in the edge-list model [23], where Wang obtains a quantum

algorithm with complexity ˜O
(

d3/2 log n
Φ(G)2ε

)

, where Φ(G) ≤ 1 is the conductance (or

edge-expansion) of G. In the edge-list model, the input x ∈ [n][n]×[d] models a d-
regular graph (or d-bounded degree graph) Gx by xu,i = v for some i ∈ [d]whenever
{u, v} ∈ E(Gx ). Wang requires edge-list queries to simulate walking on the graph,
which requires constructing a superposition over all neighbours of a given vertex. This
type of edge-list query can be simulated by

√
n/d adjacency queries to a d-regular

graph, using quantum search, so Wang’s algorithm can be converted to an algorithm

in the adjacency query model with cost ˜O
(

d3/2

Φ(G)2ε

√

n
d

)

. We can compare our results

to this by noticing that Rs,t ≤ 1
λ2(G)

[9], implying that our algorithm always runs in

time at most ˜O
(

1
ε
n
μ

)

. If G is a connected d-regular graph, then λ2(G) = dδ(G),

where δ(G) is the spectral gap of a random walk on G. By Cheeger inequalities, we
have Φ2

2 ≤ δ [17], so the complexity of the algorithm from Theorem 17 is at most

˜O
( 1

ε
n
dδ

) = ˜O
(

1
ε

n
dΦ2

)

, which is an improvement over the bound of ˜O
(

1
ε
d3/2

Φ2

√

n
d

)

=
˜O

(

1
ε

d
Φ2

√
n
)

given by naively adapting Wang’s algorithm to the adjacency model

whenever d > 4
√
n. In general our upper bound may be much better than 1

ε
n

dΦ2 , since

the Cheeger inequality is not tight, and Rs,t can be much smaller than 1
λ2
.

It is worth further discussingWang’s algorithms for estimating effective resistance,
due to their relationship with the ideas presented here. In order to get a time-efficient
algorithm for st-connectivity, Belovs and Reichardt show how to efficiently reflect
about the kernel of A (see also “Appendix B”), A being related to the Laplacian of a
complete graph, L , by AAT = 2L . This implementation consists, in part, of a quantum
walk on the complete graph. Wang’s algorithm directly implements a reflection about
the kernel of A(x) by instead using a quantum walk on the graph G, which can be
done efficiently in the edge-list model. For general span programs, when a reflection
about the kernel of A(x) can be implemented efficiently in such a direct way, this can
lead to an efficient quantum algorithm for estimating the witness size.

We also remark on another quantum algorithm for estimating effective resistance,

also from Wang [23] with worse complexity ˜O
(

d8polylogn
Φ(G)10ε2

)

, obtained by using the

HHL algorithm [12] to estimate
∥

∥A(x)+|τ 〉∥∥2, which is the positive witness size of x ,
or in this case, the effective resistance.We remark that, for any span program,w+(x) =
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‖|wx 〉‖2 = ∥

∥A(x)+|τ 〉∥∥2, so HHL may be another means of estimating the positive
witness size. There are several caveats: A(x) must be efficiently row-computable,
and the complexity additionally depends on σmax(A(x))

σmin(A(x)) , the condition number of A(x)

(We remark that this is upper bounded by σmax(A)
σmin(A(x)) , upon which the complexity of

some of our algorithms depends as well). However, if this approach yields an efficient
algorithm, it is efficient in time complexity, not only query complexity. We leave
further exploration of this idea for future research.

6 Conclusion and Open Problems

Summary We have presented several new techniques for turning span programs into
quantum algorithms, which we hope will have future applications. Specifically, given
a span program P , in addition to algorithms for deciding any function f such that
f −1(0) ⊆ P0 and f −1(1) ⊆ P1, we also show how to get several different algorithms
for deciding a number of related threshold problems, as well as estimating the witness
size. In addition to algorithms based on the standard effective spectral gap lemma, we
also show how to get algorithms by analyzing the real phase gap.

We hope that the importance of this work lies not only in its potential for applica-
tions, but in the improved understanding of the structure and power of span programs.
A number of very important quantum algorithms rely on a similar structure, using
phase estimation of a unitary that depends on the input to distinguish between differ-
ent types of inputs. Span-program-based algorithms represent a very general class of
such algorithms, making them not only important to the study of the quantum query
model, but to quantum algorithms in general.

Further Applications The main avenue for future work is in applications of our tech-
niques to obtain new quantum algorithms. We stress that any span program for a
decision problem can now be turned into an algorithm for estimating the positive or
negative witness size, if these correspond to some meaningful function, or deciding
threshold functions related to the witness size. A natural source of potential future
applications is in the rich area of property testing problems (for a survey, see [18]).

Span Programs and HHL One final open problem, briefly discussed at the end of the
previous section, is the relationship between estimating the witness size and the HHL
algorithm [12]. The HHL algorithm can be used to estimate

∥

∥M+|u〉∥∥2, given the
state |u〉 and access to a row-computable linear operator M . When M = A(x), this
quantity is exactlyw+(x), so if A(x) is row-computable— that is, there is an efficient
procedure for computing the i th nonzero entry of the j th row of A(x), then HHL gives
us yet another means of estimating the witness size, whose time complexity is known,
rather than only its query complexity. It may be interesting to explore this connection
further.
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Appendix A: Span Program Scaling

In this section we prove Theorem 10. Let P = (H , V , τ, A) be any span program
on [q]n , and let N = ‖|w0〉‖2 for |w0〉 the optimal positive witness of P . We define
Pβ = (Hβ, Aβ, τβ, V β) as follows. Let |0̂〉 and |1̂〉 be two vectors orthogonal to H
and V . We define:

∀ j ∈ [n], a ∈ [q], Hβ
j,a=Hj,a, H

β
true=Htrue ⊕ span{|1̂〉}, Hβ

false=Hfalse ⊕ span{|0̂〉}

V β = V ⊕ span{|1̂〉}, Aβ = βA + τ |0̂〉 +
√

β2 + N

β
|1̂〉〈1̂|, τβ = τ + |1̂〉

We then have and Hβ = H ⊕ span{|0̂〉, |1̂〉} and Hβ(x) = H(x)⊕ span{|1̂〉}. In order
to prove Theorem 10, we show that:

– For all x ∈ P1, w+(x, Pβ) = 1
β2 w+(x, P) + β2

N+β2 and w̃−(x, Pβ) ≤
β2w̃−(x, P) + 2;

– for all x ∈ P0,w−(x, Pβ) = β2w−(x, P)+1 and w̃+(x, Pβ) ≤ 1
β2 w̃+(x, P)+2;

– Pβ has optimal positive witness |wβ
0 〉 = β

β2+N
|w0〉 + N

β2+N
|0̂〉 + β√

β2+N
|1̂〉, and

∥

∥

∥|wβ
0 〉

∥

∥

∥

2 = 1.

Lemma 11 The optimal positive witness in Pβ is |wβ
0 〉 = β

β2+N
|w0〉 + N

β2+N
|0̂〉 +

β√
β2+N

|1̂〉. It is easily verified that
∥

∥

∥|wβ
0 〉

∥

∥

∥

2 = 1.

Proof Let |w′
0〉 = |h〉 + b|0̂〉 + c|1̂〉 be the smallest witness in Pβ , for some |h〉 ∈ H .

Since Aβ |w′
0〉 = βA|h〉 + bτ + c

√
β2+N
β

|1̂〉 = τ + |1̂〉, we must have c = β√
β2+N

and A|h〉 = 1−b
β

τ , so |h〉 = 1−b
β

|w〉 for some positive witness |w〉 of P . We have:

∥

∥|w′
0〉

∥

∥

2 = (1 − b)2

β2
‖|w〉‖2 + b2 + β2

β2 + N
.

This is minimized by taking |w〉 = |w0〉, the smallest witness of P , and setting
b = N

β2+N
, giving:

|wβ
0 〉 = β

β2 + N
|w0〉 + N

β2 + N
|0̂〉 + β

√

β2 + N
|1̂〉.

Lemma 12 ∀x ∈ P1, w+(x, Pβ) = 1
β2 w+(x, P) + β2

N+β2 and w̃−(x, Pβ) ≤
β2w̃−(x, P) + 2.

Proof The proof is similar to that of Lemma 11, however, we have Hβ(x) = H(x) ⊕
span{|1̂〉}, so a positive witness for x has the form |w′

x 〉 = |h〉 + β√
β2+N

|1̂〉 with β|h〉
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somewitness for x in P . Clearly
∥

∥|w′
x 〉

∥

∥ is minimized by setting |h〉 = 1
β
|wx 〉 for |wx 〉

the minimal positive witness for x in P , so we have w+(x, Pβ) = 1
β2 w+(x, P) +

β2

β2+N
, as required.

Let ω̃ be an optimal min-error witness for x in P , and define

ω̃′ = (β2 + N )w+(x, P)

β4 + (β2 + N )w+(x, P)
ω̃ + β4

β4 + (β2 + N )w+(x, P)
〈1̂|.

Wehave ω̃′(τ +|1̂〉) = (β2 + N )w+(x, P)

β4 + (β2 + N )w+(x, P)
ω̃(τ )+ β4

β4 + (β2 + N )w+(x, P)
=

1, and:

∥

∥ω̃′AβΠHβ (x)

∥

∥

2

=
∥

∥

∥

∥

(β2 + N )w+(x, P)

β4 + (β2 + N )w+(x, P)
ω̃βAΠH(x)

∥

∥

∥

∥

2

+
∥

∥

∥

∥

∥

β4

β4 + (β2 + N )w+(x, P)

√

β2 + N

β
〈1̂|

∥

∥

∥

∥

∥

2

= (β2 + N )2w+(x, P)2β2

(β4 + (β2 + N )w+(x, P))2

1

w+(x, P)
+ β8

(β4 + (β2 + N )w+(x, P))2

β2 + N

β2

= (β2 + N )2w+(x, P)β2 + β6(β2 + N )

(β4 + (β2 + N )w+(x, P))2
= β2(β2 + N )

β4 + (β2 + N )w+(x, P)
= 1

w+(x, Pβ)

so ω̃′ is a min-error witness for x in Pβ . Thus, letting ε = (β2+N )w+(x,P)

β4+(β2+N )w+(x,P)
, we have

w̃−(x, Pβ) ≤ ∥

∥ω̃′Aβ
∥

∥

2 =
∥

∥

∥

∥

∥

εω̃βA + εω̃(τ )〈0̂| +
√

β2 + N

β
ω̃′(1̂)〈1̂|

∥

∥

∥

∥

∥

2

≤ β2 ‖ω̃A‖2 + 1 + β2 + N

β2

β8

(β4 + (β2 + N )w+(x, P))2

≤ β2w̃−(x, P) + 1 + β6(β2 + N )

(β4 + β2w+(x, P))2
≤ β2w̃+(x, P) + 2,

where in the last line, we use the fact that w+(x, P) ≥ N . �
Lemma 13 ∀x ∈ P0, w−(x, Pβ) = β2w−(x, P) + 1, and w̃+(x, Pβ) ≤
1
β2 w̃+(x, P) + 2.

Proof Let ω′
x be an optimal negative witness for x in Pβ . Since ω′

xΠHβ(x) = 0,

ω′
x |1̂〉 = 0, so ω′

x (τ
β) = ω′

x (τ )+ω′
x (|1̂〉) = ω′

x (τ ) = 1. Furthermore, ω′
x minimizes

∥

∥ω′
x A

β
∥

∥

2 =
∥

∥

∥βω′
x A + ω′

x (τ )|0̂〉
∥

∥

∥

2 = β2
∥

∥ω′
x A

∥

∥

2 + 1.

This is minimized by taking ω′
x |V to be the minimal negative witness of x in P , so

∥

∥ω′
x A

∥

∥

2 = w−(x, P), and thus w−(x, Pβ) = β2w−(x, P) + 1.
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Next, let |w̃〉 be an optimal min-error positive witness for x in P . Define:

|w̃′〉 := βw−(x, P)

1 + β2w−(x, P)
|w̃〉 + 1

1 + β2w−(x, P)
|0̂〉 + β

√

β2 + N
|1̂〉.

We have:

A|w̃′〉 = β2w−(x, P)

1 + β2w−(x, P)
τ + 1

1 + β2w−(x, P)
τ + |1̂〉 = τ + |1̂〉 = τβ,

and since Hβ(x)⊥ = H(x)⊥ ⊕ span{|0̂〉}:
∥

∥ΠHβ(x)⊥|w̃′〉∥∥2 = ∥

∥ΠH(x)⊥|w̃′〉∥∥2 +
∥

∥

∥Π|0̂〉|w̃′〉
∥

∥

∥

2

= β2w−(x, P)2

(1 + β2w−(x, P))2

∥

∥ΠH(x)⊥|w̃〉∥∥2 + 1

(1 + β2w−(x, P))2

= β2w−(x, P)2

(1 + β2w−(x, P))2

1

w−(x, P)
+ 1

(1 + β2w−(x, P))2

= 1

1 + β2w−(x, P)
= 1

w−(x, Pβ)
,

so |w̃′〉 has minimal error. Thus:

w̃+(x, Pβ) ≤ ∥

∥|w̃′〉∥∥2 = β2w−(x, P)2

(1 + β2w−(x, P))2
‖|w̃〉‖2 + 1

(1 + β2w−(x, P))2
+ β2

β2 + N

≤ β2w−(x, P)2w̃+(x, P)

(1 + β2w−(x, P))2
+ 2 ≤ β2w−(x, P)2w̃+(x, P)

β4w−(x, P)2
+ 2 = w̃+(x, P)

β2 + 2.

�

Appendix B: Time Complexity Analysis

In [7], the authors analyze the time complexity of the reflections needed to implement
their span program to give a time upper bound on st-connectivity. Since our algorithms
look superficially different from theirs, we reproduce their analysis here to show an
upper bound on the quantum time complexity of estimating effective resistance.

Theorem 19 Let P be the span program for st-connectivity given in Sect. 5. Then for
anyβ such that 1/nO(1) ≤ β ≤ nO(1), U ′(Pβ, x) can be implemented in quantum time
complexity O(log n) and space O(log n), and |wβ

0 〉 can be constructed in quantum
time complexity O(log n).

Proof In order to implement U ′(Pβ, x), we implement the reflections Rx (β) =
2ΠHβ(x) − I and R′

P (β) = 2Π
ker Aβ⊕span{|wβ

0 〉} − I . We remark that Rx (β) is eas-

ily implemented in a single query and constant overhead. This proof deals with the
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implementation of R′
P (β), which can be easily implemented given an implementation

of RP = 2Πker A − I .
In order to implement RP , we describe a unitaryW = (2ΠZ − I )(2ΠY − I ) that can

be efficiently implemented, and such that W can be used to implement RP . In order
to show that W implements RP , we need to show that some isometry MY : H → Y
maps ker A to the (−1)-eigenspace ofW , and (ker A)⊥ to the 1-eigenspace ofW . This
allows us to implement RP by first implementing the isometry MY , applying W , and
then uncomputing MY .

Define the spaces Z and Y as follows:

Z = span

⎧

⎨

⎩

|zu〉 := 1√
2(n − 1)

∑

v �=u

|0, u, u, v〉 + 1√
2(n − 1)

∑

v �=u

|1, u, v, u〉 : u ∈ [n]
⎫

⎬

⎭

; and

Y = span
{

|yu,v〉 := (|0, u, u, v〉 − |1, v, u, v〉) /
√
2 : u, v ∈ [n], u �= v

}

.

Define isometries

MZ =
∑

u∈[n]
|zu〉〈u| and MY =

∑

(u,v)∈[n]2:u �=v

|yu,v〉〈u, v|.

Lemma 14 Let S = {MY |ψ〉 : |ψ〉 ∈ ker A} and S′ = {MY |ψ〉 : |ψ〉 ∈ (ker A)⊥}
be the images of ker A and (ker A)⊥ respectively under the isometry MY . Then S =
Y ∩ Z⊥, which is exactly the intersection of Y and the (−1)-eigenspace of W, and
S′ = Y ∩ Z, which is exactly the intersection of Y and the 1-eigenspace of W.

Proof We have:

M†
Z MY = 1

2
√
n − 1

∑

u∈[n]

∑

v �=u

|u〉 (〈0, u, u, v| + 〈1, u, v, u|)
∑

a,b∈[n]:
a �=b

(|0, a, a, b〉 − |1, b, a, b〉)〈a, b|

= 1

2
√
n − 1

∑

u∈[n]

∑

v �=u

|u〉〈u, v| − 1

2
√
n − 1

∑

u∈[n]

∑

v �=u

|v〉〈u, v| = 1

2
√
n − 1

A.

Thus, for all |ψ〉 ∈ ker A, MY |ψ〉 ∈ Y ∩ ker M†
Z = Y ∩ Z⊥, so S ⊆ Y ∩ Z⊥. On the

other hand, if |ψ〉 ∈ (ker A)⊥, thenMY |ψ〉 ∈ Y ∩(ker M†
Z )⊥ = Y ∩Z . By Theorem 3,

the (−1)-eigenspace of W is exactly (Y ∩ Z⊥) ⊕ (Y⊥ ∩ Z) and the 1-eigenspace of
W is exactly (Y ∩ Z) ⊕ (Y⊥ ∩ Z⊥). �
Lemma 15 MY , RZ = 2ΠZ − I and RY = 2ΠY − I can be implemented in time
O(log n).

Proof To implement RZ and RY , we need only show how to implement the unitary
versions of MZ and MY . We begin with MZ . For any u ∈ [n], we can map |u〉 �→
|0, u, u, 0〉 by initializing three new registers and copying u into one of them. Then
we map:

|0, u, u, 0〉 �→ |0, u, u〉 1√
n − 1

∑

v �=u

|v〉
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H⊗I⊗3�→ 1√
2(n − 1)

⎛

⎝|0, u, u〉
∑

v �=u

|v〉 + |1, u, u〉
∑

v �=u

|v〉
⎞

⎠ �→ |xu〉,

where the last transformation is achievedby swapping the last two registers conditioned
on the first. This can be implemented in O(log n) elementary gates.

For MY , we start by mapping any edge |u, v〉 to |1, 0, u, v〉, followed by:

|1, 0, u, v〉 H⊗I⊗3�→ 1√
2

(|0, 0, u, v〉 − |1, 0, u, v〉) �→ 1√
2

(|0, u, u, v〉 − |1, v, u, v〉) = |yu,v〉,

where in the last step we copy either u or v into the second register depending on the
value of the first register. This can be implemented in O(1) elementary gates.

Then inorder to implement RZ ,we simply applyM†
Z , reflect about span{|0, u, u, 0〉 :

u ∈ [n]}, and then apply MZ again. To implement RY , we apply M†
Y , reflect about

span{|1, 0, u, v〉 : u, v ∈ [n], u �= v}, and then apply MY . �
We now show how to efficiently implement the span program Pβ when 1/nO(1) ≤

β ≤ nO(1). First, consider |w0〉, the minimal positive witness for P . Since |w0〉
corresponds to an optimal st-flow in the complete graph, it is easy to compute that

|w0〉 = 1

n
|s, t〉 + 1

2n

∑

u∈[n]\{s,t}
(|s, u〉 + |u, t〉) − 1

n
|t, s〉 − 1

2n

∑

u∈[n]
(|t, u〉 + |u, s〉),

and ‖|w0〉‖2 = 1
n (see also Lemma 9). We can construct this state by mapping |s, 0〉+

|0, t〉 �→ ∑

u �=s |s, u〉 + ∑

u �=t |u, t〉 and then performing a swap controlled on an

additional register in the state 1√
2
(|0〉 + |1〉). The initial state of the scaled span

program Pβ is (see Theorem 10):

|wβ
0 〉 = β

β2 + 1
n

|w0〉 +
1
n

β2 + 1
n

|0̂〉 + β
√

β2 + 1
n

|1̂〉,

which we can also construct efficiently, as follows:

|0̂〉 �→ β
√
n

β2 + 1
n

|2̂〉 + 1

nβ2 + 1
|0̂〉 + β

√

β2 + 1
n

|1̂〉 �→ β

β2 + 1
n

|w0〉 +
1
n

β2 + 1
n

|0̂〉 + β
√

β2 + 1
n

|1̂〉.

The first step is accomplished by a pair of rotations using O(log n
β
) elementary gates,

and the second is accomplished by mapping |2̂〉 to |w0〉‖|w0〉‖ = √
n|w0〉, which can be

accomplished in O(log n) elementary gates.

Next, we have Aβ = βA + (|s〉 − |t〉)〈0̂| +
√

β2+ n
2

β
|1̂〉〈1̂|, so

ker Aβ ⊕ span{|wβ
0 〉} = ker A ⊕ span{|0̂〉 − 1

β
|w0〉} ⊕ span{|wβ

0 〉}.
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We know how to reflect about ker A, and since we can efficiently construct |wβ
0 〉, we

can reflect about it, so we need only consider how to reflect about span{|0̂〉 − 1
β
|w0〉}.

Since we can compute |w0〉 efficiently, we can compute:

|0̂〉 �→ β
√

β2 + 1
|0̂〉 + 1

√

β2 + 1
|1̂〉 �→ β

√

β2 + 1
|0̂〉 + 1

√

β2 + 1
|w̄0〉.

The first step is a rotation, which can be performed in O(log 1
β
) elementary gates,

and the second step is some mapping that maps |1̂〉 to |w0〉, which we know can
be done in O(log n) elementary gates. Thus, the total cost to reflect about ker Aβ

is O(log n). �
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