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Abstract
We study two variants of the well-known orthogonal graph drawing model: (1) the
smooth orthogonal, and (2) the octilinear. Bothmodels are extensions of the orthogonal
one, by supporting one additional type of edge segments (circular arcs and diagonal
segments, respectively). For planar graphs of maximum vertex degree 4, we analyze
relationships between the graph classes that can be drawn bendless in the two models
and we also prove NP-hardness for a restricted version of the bendless drawing
problem for both models. For planar graphs of higher vertex degree, we present an
algorithm that produces bi-monotone smooth orthogonal drawings with at most two
segments per edge, which also guarantees a linear number of edges with exactly one
segment.

Keywords Graph drawing · Smooth orthogonal · Octilinear

1 Introduction

Orthogonal graph drawing is an intensively studied and well established model for
drawing graphs [15,31]. As a result, several efficient algorithms providing good aes-
thetics and good readability have been proposed over the years, see e.g., [8,23,33,39].
In such drawings, each vertex corresponds to a point on the Euclidean plane and each
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Fig. 1 Different drawings of a planar graph of maximum vertex degree 4: a straight-line, b orthogonal
3-drawing, c smooth orthogonal 2-drawing, and d octilinear 2-drawing

edge is drawn as an alternating sequence of axis-aligned line segments; refer to Fig. 1b
for an example.

Several research directions build upon this successful model. In this work, we
focus on two models that have recently received attention. The first one is the smooth
orthogonal [5], inwhich every edge is a sequence of axis-aligned segments and circular
arc segments with common axis-aligned tangents (i.e., quarter, half or three-quarter
circular arc segments); refer to Fig. 1c for an example. The second model is the
octilinear [3], in which every edge is a sequence of axis-aligned and diagonal (at
± 45◦) segments; refer to Fig. 1d for an example. In the orthogonal and in the smooth
orthogonal models, each edge may enter a vertex using one out of four available
(axis-aligned) directions, called ports. Thus both models support graphs of maximum
vertex degree 4. In the octilinear model, each vertex has eight available ports that are
equispaced around each vertex and therefore one can draw graphs of maximum vertex
degree 8.

Observe that bothmodels extend the orthogonal by allowing onemore type of edge-
segments (circular arcs and diagonal segments, respectively). The smooth orthogonal
drawing model was introduced with the aim of combining the artistic appeal of Lom-
bardi drawings [18,21] with the clarity and rigidity of the orthogonal drawings. The
octilinear drawing model, on the other hand, is primarily motivated by metro-map and
map schematization applications (see, e.g., [28,35,36,38]).

For readability purposes, usually in such drawings one seeks to minimize the edge
complexity [15,31], that is, the maximum number of segments used for representing
any edge in the drawing. Also, when the input is a planar graph, one naturally seeks
for a corresponding planar drawing. Note that drawings with edge complexity 1 are
also called bendless. For simplicity, we refer to drawings with edge complexity k
as k-drawings; thus, by definition, orthogonal and octilinear k-drawings have at most
k − 1 bends per edge.

Known Results There exists a plethora of results for each of the aforementioned
models; here we overview existing results for drawings with low edge complexity. For
a more detailed overview, we point the reader to [40].

– All planar graphs of maximum vertex degree 4, except for the octahedron, admit
orthogonal 3-drawings; the octahedron is orthogonal 4-drawable [8,33]. All planar
graphs ofmaximumvertex degree 3 admit orthogonal 2-drawings [30].Minimizing
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the number of bends over all embeddings of a planar graph of maximum vertex
degree 4 isNP-hard [26]. For a given planar embedding, however, finding a planar
orthogonal drawing with minimum number of bends can be done in polynomial
time by an approach, called topology-shape-metrics [39]. The core of this approach
is based onmin-cost flowcomputations andworks in three phases. Initially, a planar
embedding is computed unless specified by the input (topology phase). In the next
phase, called shape phase, the angles and the bends of the drawing are computed,
yielding an orthogonal representation. In the last phase, called metrics phase, the
actual coordinates for the vertices and bends are computed. For more details, we
point the reader to [19].

– All planar graphs of maximum vertex degree 4 (including the octahedron) admit
smooth orthogonal 2-drawings. Note that not all planar graphs of maximum ver-
tex degree 4 allow for bendless smooth orthogonal drawings [5], and that such
drawings may require exponential area [1]. Bendless smooth orthogonal draw-
ings are possible only for subclasses, e.g., for planar graphs of maximum vertex
degree 3 [4] and for outerplanar graphs of maximum vertex degree 4 [1]. It is worth
mentioning that the complexity of the recognition problem, whether a planar graph
of maximum vertex degree 4 admits a bendless smooth orthogonal drawing, has
not been settled (it is conjectured to be NP-hard [1]).

– All planar graphs of maximum vertex degree 8 admit octilinear 3-drawings [32],
while planar graphs of maximum vertex degree 4 and 5 allow for octilinear 2-
drawings in cubic and super-polynomial area, respectively [3]. Bendless octilinear
drawings are always possible for planar graphs of maximum vertex degree 3 [17,
29]. Note that deciding whether an embedded planar graph of maximum vertex
degree 8 admits a bendless octilinear drawing isNP-hard [35]. It is not, however,
known whether this negative result applies for planar graphs of maximum vertex
degree 4 or whether these graphs allow for a decision algorithm; in fact, there exist
planar graphs of maximum vertex degree 4 that do not admit bendless octilinear
drawings [6].

Our Contribution We study smooth orthogonal and octilinear drawings of planar
graphs with small edge complexity. Our results are summarized as follows:

– Motivated by the fact that usually one can “easily” convert a smooth orthogonal
drawing of a planar graph of maximum vertex degree 4 to a corresponding octi-
linear one (e.g., by replacing quarter circular arc segments with diagonal edge
segments; see Fig. 1c–d for an example), and vice versa, we study in Sect. 3
inclusion-relationships between the graph-classes that admit such drawings. Our
findings are also summarized in Fig. 3.

– In Sect. 4, we show that it is NP-hard to decide whether an embedded planar
graph of maximum vertex degree 4 admits a bendless smooth orthogonal or a
bendless octilinear drawing, in the case where the angles between any two edges
incident to a common vertex and the shapes of all edges are specified as part of the
input (e.g., as in the last step of the topology-shape-metrics approach [39]). Our
proof is a step towards settling the complexities of both decision problems in their
general form. Note that, our NP-hardness result shows that the last step of the
topology-shape-metrics approach is hard, if considered in isolation in the smooth
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orthogonal model or in the octilinear model, while in the classic orthogonal model
it can be solved efficiently using network flows. This observation suggests that the
topology-shape-metrics approach is suitable for neither of the two models.

– Inspired by the Kandinsky model (see, e.g., [7,14,23]) for drawing planar graphs
of arbitrary vertex degree in an orthogonal style, we present in Sect. 5 two drawing
algorithms that yield smooth orthogonal drawings of good quality, that are also bi-
monotone, i.e., each edge is drawn xy-monotone. More precisely, the first yields
drawings of quadratic area, which can also be transformed into octilinear with
bends at 135◦, while maintaining the area consumption asymptotically unchanged.
The second algorithmyields drawings of cubic area but at the same time guarantees
that at most 2n − 5 edges are drawn with two segments.

Before we proceed with the detailed description of our algorithms, we introduce in
Sect. 2 preliminary notions and definitions; for a list of open problems raised by our
work refer to Sect. 7.

2 Preliminary Notions and Definitions

Unless otherwise specified, we consider simple undirected graphs. Let G = (V , E)

be such a graph. We denote by n and m the number of vertices and edges of G,
respectively. We denote by d(v) the vertex degree of a vertex v ∈ V , that is, the
number of its incident edges. We say that G has maximum vertex degree Δ, if G has
no vertex with degree larger than Δ, that is, d(v) ≤ Δ for each v ∈ V .

A drawing Γ of G is a function that maps each vertex v ∈ V to a distinct point
pv in R2, and each edge (u, v) ∈ E to a simple open Jordan curve connecting pu and
pv . Drawing Γ is planar if no two edges cross. A graph is planar if it admits a planar
drawing. A planar drawing Γ of G partitions the plane into topologically connected
regions, called faces; the unbounded face is called outerface. A (topological) planar
embedding E of G is an equivalence class of planar drawings that define the same set
of faces. Embedding E can also be defined by the cyclic orders of the edges incident
to each vertex (also called combinatorial embedding). For a deeper introduction to
graph theoretic basics and to planar graphs, we point the reader to [15,27].

We assume familiarity with standard graph drawing techniques, such as the canon-
ical ordering [13,30] and the shift-method by de Fraysseix, Pach and Pollack [13],
which we also outline in the following.

The canonical ordering for maximal planar graphs [13] is defined as follows. Let
G = (V , E) be a maximal planar graph and let π = (v1, . . . , vn) be a permutation
of V . Assume that edges (v1, v2), (v2, vn) and (v1, vn) form a face of G, which we
assume w.l.o.g. to be its outerface. For k = 1, . . . , n, let Gk be the subgraph induced
by ∪k

i=1{vi } and denote by Ck the outerface of Gk . Then, π is a canonical ordering
of G if for each k = 2, . . . , n the following hold:

(i) Gk is biconnected,
(ii) all neighbors of vk in Gk−1 are (consecutive) on Ck−1, and
(iii) if k �= n, then vk has at least one neighbor v j , with j > k.
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Fig. 2 Illustration of the shift-method by de Fraysseix, Pach and Pollack [13]. a Contour condition. b
Placement of vk in Γk−1

It is known that a canonical ordering of a maximal planar graph can be computed
in linear time [30].

The shift-method [13] is a well-known incremental algorithm, which constructs in
linear time a planar drawing Γ of a maximal planar graph G = (V , E). Drawing Γ

has integer grid coordinates and requires quadratic area. More precisely, based on a
canonical order π of G, drawing Γ is constructed as follows. Initially, vertices v1, v2
and v3 are placed at points (0, 0), (2, 0) and (1, 1). For k = 4, . . . , n, assume that a
planar drawingΓk−1 ofGk−1 has been constructed inwhich each edgeofCk−1 is drawn
as a straight-line segment with slope ± 1, except for the edge (v1, v2), which is drawn
as a horizontal line segment (contour condition; see Fig. 2a). Also, assume that each of
the vertices v1, . . . , vk−1 has been associated with a so-called shift-set, which for v1,
v2 and v3 are singletons containing only themselves. Let (w1, . . . , wp) be the vertices
of Ck−1 from left to right in Γk−1, where w1 = v1 and wp = v2. For i = 1, . . . , p,
denote by S(wi ) the shift-set of wi . Let (w�, . . . , wr ), with 1 ≤ � < r ≤ p be
the neighbors of vk from left to right along Ck−1 in Γk−1. To avoid edge-overlaps,
the algorithm first translates each vertex in ∪�

i=1S(wi ) one unit to the left and each
vertex in ∪p

i=r S(wi ) one unit to the right. Then, the algorithm places vertex vk at the
intersection of the line with slope +1 through w� with the line with slope −1 through
wr and sets the shift-set of vk to {vk} ∪r−1

i=�+1 S(wi ); see Fig. 2b.

3 Relationships Between Graph Classes

In this section, we consider relationships between the classes of graphs that admit
smooth orthogonal k-drawings and octilinear k-drawings, where k ≥ 1. For the sake
of simplicity, we denote these two classes by SCk and 8Ck , respectively. Our findings
are also summarized in Fig. 3.

By definition, SC1 ⊆ SC2 and 8C1 ⊆ 8C2 ⊆ 8C3 hold. Since each planar graph
of maximum vertex degree 8 admits an octilinear 3-drawing [32], class 8C3 coincides
with the class of planar graphs of maximum vertex degree 8. Similarly, class SC2 coin-
cideswith the class of planar graphs ofmaximumvertex degree 4, because these graphs
admit smooth orthogonal 2-drawings [1]. This also implies that SC2 ⊆ 8C2, since
each planar graph of maximum vertex degree 4 admits an octilinear 2-drawing [3].
The relationship 8C2 �= 8C3 follows from [3], where it was proven that there exist pla-
nar graphs of maximum vertex degree 6 that do not admit octilinear 2-drawings. The
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8C3 = max-degree 8 planar [2]

8C2

SC2 = max-degree 4 planar
8C1

caterpillarsSC1

Octahedron

Thm.1

[5]

Thm.2

Thm.3 degree8

[4,5]

Fig. 3 Different inclusion-relationships: for k ≥ 1, SCk and 8Ck correspond to the classes of graphs that
admit smooth orthogonal and octilinear k-drawings, respectively

relationship SC2 �= 8C2 follows from [6], where it was shown that there exist planar
graphs of maximum vertex degree 5 that admit octilinear 2-drawings and no octilinear
1-drawings, and the fact that planar graphs of maximum vertex degree 5 cannot be
drawn in the smooth orthogonal model. The octahedron graph admits neither a bend-
less smooth orthogonal drawing [5] nor a bendless octilinear drawing [6]. However,
since it is of maximum vertex degree 4, it admits 2-drawings in both models [1,3].
Hence, it belongs to 8C2 ∩ SC2 \ (8C1 ∪ SC1). To prove that 8C1 \ SC2 �= ∅, observe
that a caterpillar whose spine vertices are of degree 8 clearly admits an octilinear
1-drawing, however, due to its vertex degree it does not admit a smooth orthogonal
drawing.

To complete the discussion of the relationships of Fig. 3, we have to show that
SC1 and 8C1 are incomparable. This is the most interesting part of our proof, since
as already mentioned, usually one can “easily” convert a smooth orthogonal drawing
of a planar graph of maximum vertex degree 4 to a corresponding octilinear one (e.g.,
by replacing quarter circular arc segments with diagonal edge segments; see Fig. 1c–
d for an example), and vice versa. Since the endpoints of each edge of a bendless
smooth orthogonal or octilinear drawing are along a line with slope 0, 1, −1 or ∞,
such conversions are in principle possible. Two difficulties that might arise are to
preserve planarity and to guarantee that no two edges enter a vertex using the same
port. However, there exist infinitely many (even 4-regular) planar graphs that admit
drawings in both models, as we formally prove in the following theorem.

Theorem 1 There is an infinitely large family of 4-regular planar graphs that admit
both bendless smooth orthogonal and bendless octilinear drawings.

Proof For each k ∈ N+ we describe a 4-regular planar graph Gk = (Vk, Ek) with
20k vertices that admits both a bendless smooth orthogonal drawing and a bendless
octilinear drawing; refer to Fig. 4 for the case k = 2. Graph Gk has 4k subgraphs
Wi, j such that 1 ≤ i ≤ 2k and j ∈ {t, b}, where t and b stand for top and bottom,
respectively. Graph Wi, j consists of five vertices ci, j , ni, j , wi, j , ei, j , and si, j , such
that Wi, j is a wheel on five vertices, where ci, j is its center-vertex and cycle Ci, j =
(ni, j , wi, j , si, j , ei, j ) is its rim. Vertices ni, j , wi, j , si, j and ei, j are the north, west,
south and east vertices of Ci, j , respectively.
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W1,t W2,t

W1,b W2,b

W3,t

W3,b

W4,t

W4,b

W1,t W2,t

W1,b W2,b

W3,t

W3,b

W4,t

W4,b

(a) (b)

Fig. 4 Illustrations for the proof of Theorem 1 depicting drawings ofG2. aA smooth orthogonal 1-drawing.
b An octilinear 1-drawing

All vertices ci, j already have degree four, but every other vertex has degree three.
So, in the following, we only describe the edges that will make graph Gk 4-regular.
For 1 ≤ h ≤ 2k − 1 and j ∈ {t, b}, (eh, j , wh+1, j ) ∈ Ek ; dotted edges in Fig. 4.
Also, (w1,t , w1,b) ∈ Ek and (e2k,t , e2k,b) ∈ Ek ; gray edges in Fig. 4. For 1 ≤ h ≤ 2k,
(sh,t , nh,b) ∈ Ek ; dashed edges in Fig. 4. Finally, for 1 ≤ h ≤ k, (n2h−1,t , n2h,t ) ∈ Ek

and (s2h−1,b, s2h,b) ∈ Ek ; dashed dotted edges in Fig. 4. With those additional edges,
Gk becomes 4-regular. Figure 4 is a certificate that Gk = (Vk, Ek) indeed admits both
a bendless smooth orthogonal drawing and a bendless octilinear drawing. �
To complete the discussion of the inclusion relationships of Fig. 3, we show in the
next two theorems that SC1 and 8C1 are incomparable.

Theorem 2 There are infinitely many 4-regular planar graphs that admit bendless
smooth orthogonal drawings but no bendless octilinear drawing.

Proof Consider the planar graphC of Fig. 5a, which is drawn bendless smooth orthog-
onal. We claim that C admits no bendless octilinear drawing. If one substitutes its
degree-2 vertex (denoted by c in Fig. 5a) by an edge connecting its two neighbors,
then the resulting graph is triconnected, which implies that it admits a unique embed-
ding (up to the choice of its outerface; see Fig. 5a–b). Now, observe that the outerface
of any octilinear drawing of graph C (if any) has length at most 5 (Constraint 1). In
addition, each vertex of this outerface (except for c, which is of degree 2)must have two
ports pointing in the interior of this drawing, because every vertex of C is of degree 4,
except for c. This implies that the angle formed by any two consecutive edges of this
outerface is at most 225◦, except for the pair of edges incident to c (Constraint 2). But
if we want to satisfy both constraints, then at least one edge of this outerface must be
drawn with a bend; see Fig. 5c. Hence, graph C does not admit a bendless octilinear
drawing.

Based on graph C , for each k ∈ N0 we construct a 4-regular planar graph Gk

consisting of k + 2 biconnected components C1, . . . ,Ck+2 arranged in a chain; see
Fig. 5d for the case k = 1. Clearly, graph Gk admits a bendless smooth orthogonal
drawing for any k. Since components C1 and Ck+2 are isomorphic to graph C , graph
Gk does not admit a bendless octilinear drawing for any k. �
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Fig. 5 Illustrations for the proof of Theorem 2
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w2 w3

w4t1
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q1

(a) (b)

Fig. 6 Illustrations for the proof of Theorem 3

Theorem 3 There are infinitely many 4-regular planar graphs that admit bendless
octilinear drawings but no bendless smooth orthogonal drawing.

Proof Consider the planar graph B of Fig. 6a, which is drawn bendless in the octilinear
model. First, we discuss some structural properties of graph B. Observe that graph B
contains a wheel on five vertices as a subgraph, call it W5, which is induced by the
vertices drawn as circles in Fig. 6a. Its center is vertex c (gray colored in Fig. 6a) and
its rim consists of vertices w1, w2, w3, and w4. Vertices w1 and w2 form a triangular
face with vertex t1; analogously, vertices w3 and w4 form a triangular face with t2
(vertices t1 and t2 are drawn as triangles in Fig. 6a). Observe that t1 and t2 form a
separation pair and both are connected to vertices p1 and p2 (drawn as pentagons
in Fig. 6a) forming two pentagonal faces (p1, t1, w1, w4, t2) and (p2, t2, w3, w2, t1).
Observe that p1 and p2 also form a separation pair and are both connected to vertices
q1 and q2 (drawn as squares in Fig. 6a) forming two quadrilateral faces (q1, p2, t1, p1)
and (q2, p1, t2, p2). Hence, B has two separation pairs and two vertices of degree 2
(that is, q1 and q2). The remaining vertices of B have degree exactly 4.

For each k ∈ N0 we construct a 4-regular planar graph Gk consisting of 2k + 4
copies of B arranged in a cycle; refer to Fig. 6b where each copy of B is drawn as
a gray-shaded parallelogram. By construction, graph Gk admits a bendless octilinear
drawing, for any k. By planarity, at least one copy of graph B must be embedded
with the outerface (p1, q1, p2, q2) such that each of q1 and q2 has two unoccupied
ports incident to this outerface. However, under this restriction the embedding of this
particular copy of B must be isomorphic to the one of Fig. 6a. We now proof that, for
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(a) (b) (c) (d)

Fig. 7 All smooth orthogonal drawings a–b of a triangular face, and c, d of a wheel on five vertices, such
that all unoccupied ports are on the outerface of the drawing

(a) (b) (c) (d) (e)

Fig. 8 All smooth orthogonal drawings of the subgraph of graph B induced by wheel W5, and vertices t1
and t2, such that all unoccupied ports are on the outerface of the drawing

any k, graphGk does not admit a bendless smooth orthogonal drawing by showing that
graph B does not admit a bendless smooth orthogonal drawing, when its outerface
is (p1, q1, p2, q2) and each of q1 and q2 has two unoccupied ports incident to this
outerface.

First, we observe the following: If we want to draw wheel W5, such that all of its
unoccupied ports are on its outerface, then none of its four triangular faces must have
an unoccupied port pointing in its interior. In the bendless smooth orthogonal model,
there are only two possible drawings for a triangular face fulfilling this property (as
shown in [1]), which are illustrated in Fig. 7a, b. This implies thatW5 admits only two
bendless smooth orthogonal drawings such that all of its unoccupied ports are on its
outerface, which are illustrated in Fig. 7c, d.

Next, we consider vertices t1 and t2. Since each of them defines a triangular face
in the subgraph induced by wheel W5, and vertices t1 and t2, we can conclude similar
as above, that there are five different drawings of this graph, which are illustrated in
Fig. 8. Note that in Fig. 8d, e both t1 and t2 can independently move along the gray
colored diagonal rays.

In the following, we consider all candidate positions for p1 and p2, which we can
identify adopting the following simple rule. In a bendless smooth orthogonal drawing,
both endpoints of an edge are located along a horizontal, vertical or diagonal line.
Both p1 and p2 are neighbors of both t1 and t2, for which we already defined their
locations. If we consider all rays emanating from t1 and t2 with slopes {0, 1,−1,∞},
then p1 and p2 must be located at an intersection of a ray emanating from t1 and a ray
emanating from t2. Following this rule, we enumerate in Figs. 9 and 10 all possible
candidate positions for p1 and p2; refer to the gray-colored pentagons. Note that
the case illustrated in Fig. 8e has several subcases to be considered depending on the
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Fig. 9 An enumeration of the candidate positions for p1 and p2 that occur for the cases of: a Fig. 8a,
b Fig. 8b, c Fig. 8c, and d Fig. 8d

relative positioning of t1 and t2.We illustrate them in Fig. 10a, where we have assumed
that the position of one of t1 and t2 is fixed, and then we enumerate how the second
one is positioned with respect to the first. Observe that some cases are symmetric with
respect to the diagonal line through the center of the wheel (in Fig. 10a, symmetric
cases have the same number). In Fig. 10b–e, we illustrate the non-symmetric ones
(that are marked with an asterisk in Fig. 10a). More precisely, Fig. 10b illustrates the
case where t1 and t2 are diagonally aligned; Fig. 10c illustrates the case where t1 and
t2 are vertically aligned (which is symmetric to the case where they are horizontally
aligned); Figs 10d, e illustrate the remaining two cases of Fig. 10a.

For each candidate position, we then try to draw the edges from t1 and t2 to p1
and p2 using one of the edge segments supported by the smooth orthogonal model.
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Fig. 10 An enumeration of the candidate positions for p1 and p2 that occur for the cases of Fig. 8e
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Table 1 An overview of the forbidden patterns (FP) occurring when placing p1 and p2 at each of the
candidate positions as they are enumerated in Figs. 9 and 10; the gray-colored cell of this table illustrates
the forbidden patterns occurring when placing q1 and q2 at each of the candidate positions of Fig. 11, which
illustrates the only valid drawing derived by placing p1 and p2 at positions 2 and 6 of Fig. 9a

The resulting drawing is valid if and only if none of the following forbidden patterns
appears:

FP.I. an edge is involved in crossings (as planarity is deviated),
FP.II. a port of a vertex is used twice (as this is not permitted by our model),
FP.III. a vertex has an unoccupied port not incident to the outerface (as this will not

allow adding q1 or q2).

Otherwise, the resulting drawing is invalid. Note that in Figs. 9d and 10 we have
appropriately chosen the radii of the arcs incident to t1 and t2, so to avoid a position
for p1 and p2 to become invalid due to Forbidden Pattern I.

For each candidate position as it is enumerated in each subfigure of Figs. 9 and 10,
we demonstrate in Table 1 whether it leads to some forbidden pattern. It is immediate
to see from Table 1 that all candidate positions for placing p1 and p2 that are obtained
from the cases illustrated in Figs. 9c–d and b–e yield Forbidden Pattern I, II or III,
except for Position 4 of Fig. 9c, Position 5 of Fig. 10b and Position 4 of Fig. 10c.
These particular positions do not yield any forbidden pattern. However, since we have
to place two vertices (namely, p1 and p2), only one of them can be placed without
introducing a forbidden pattern; the other will inevitably introduce one.

It remains to discuss the candidate positions for placing p1 and p2 that are obtained
from the cases illustrated in Fig. 9a, b. As demonstrated in Table 1, the former has
two candidate positions (namely, Positions 2 and 6), which do not yield any forbidden
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1

2

3
4

5

6 7

8

9

Fig. 11 An enumeration of the candidate positions for placing q1 and q2, when p1 and p2 have been placed
at positions 2 and 6 of Fig. 9a, respectively

pattern; the latter case has three such candidate positions (namely, Positions 3, 7
and 8). We consider the latter case first. By combining the three candidate positions
for both p1 and p2, we can conclude that there exist in total three different placement
combinations for p1 and p2. However, it is not difficult to see that all three of them
yield Forbidden Pattern II. Regarding the former case, we observe that by placing
p1 and p2 at Positions 2 and 6 of Fig. 9a, respectively (which are the only ones
not introducing any forbidden pattern), we obtain a valid drawing. This drawing is
illustrated in Fig. 11.

We proceed by considering all possible candidate positions for placing q1 and q2,
as we did for p1 and p2; refer to the gray-colored squares in Fig. 11 for an enumeration
of all cases. Note that in Fig. 11 we have appropriately chosen the radii of the arcs
incident to p1 and p2, so to avoid a position for q1 and q2 to become invalid due to
Forbidden Pattern I. In the last (shaded in gray) row of Table 1, we demonstrate that
each candidate position for placing q1 and q2 yields either Forbidden Pattern I or III.
As a result, we can conclude that neither q1 nor q2 can be added to the only valid
drawing for p1 and p2 of Fig. 11, which completes the proof of this theorem. �

4 NP-Hardness Results

In this section, we study the complexity of the bendless smooth orthogonal and octi-
linear drawing problems. As a first step towards addressing the complexity of both
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problems for planar graphs of maximum vertex degree 4 in general, here we make
an additional assumption. We assume that the input, apart from an embedding, also
specifies a smooth orthogonal or an octilinear representation, which are defined anal-
ogously to the orthogonal ones: (i) the angles between consecutive edges incident to
a common vertex in the cyclic order around it (given by the planar embedding) are
specified, and (ii) the shape of each edge (e.g., straight-line, or quarter circular arc)
is also specified. In other words, we assume that our input is analogous to the one of
the last step of the topology-shape-metrics approach. We first present our reduction
for the smooth orthogonal drawing model and afterwards we describe the required
modifications for the corresponding reduction for the octilinear model.

Theorem 4 Given a planar graph G of maximum vertex degree 4 and a smooth orthog-
onal representationR, it isNP-hard to decide whether G admits a bendless smooth
orthogonal drawing preservingR. This holds even ifR requires all edges to be drawn
as straight-line segments or quarter circular arcs.

Proof Our reduction is from the well-known 3-SAT problem [25]. Given a 3-SAT for-
mula ϕ in conjunctive normal form, we construct a graph Gϕ and a smooth orthogonal
representation Rϕ , such that Gϕ admits a bendless smooth orthogonal drawing Γϕ

preserving Rϕ if and only if formula ϕ is satisfiable; see also Fig. 12.
Themain ideas of our construction are: (i) specific straight-line edges inΓϕ transport

information encoded in their length, (ii) rectangular faces of Γϕ propagate the edge
length of one side to its opposite side, and (iii) for a face composed of two straight-
line edges and a quarter circular arc, the straight-line edges are of same length, which
allows us to change the direction in which the information “flows”.

VariableGadget For each variable x ofϕ, we introduce a gadget, which is illustrated
in Fig. 13. The bold-drawn quarter circular arc ensures that the sum of the edge lengths
to its left is the same as the sum of the edge lengths to its bottom (refer to the edges
with gray endvertices). As “input” the gadget gets three edges of unit length �(u). This
ensures that �(x) + �(x) = 3 · �(u) holds for the “output literals” x and x , where �(x)
and �(x) denote the lengths of two edges representing x and x .

To introduce our concept, assume that the lengths of all straight-line edges are
integral and at least 1. If we could require �(u) = 1, then �(x), �(x) ∈ {1, 2}. This
would allow us to encode the assignment x = true with �(x) = 2 and �(x) = 1,
and the assignment x = false with �(x) = 1 and �(x) = 2 (i.e., a length of 2
implies that the literal is true). However, if we cannot avoid, e.g., that �(u) = 2, then
the variable gadget would not prevent us from setting �(x) = �(x) = 3, which means
that x and x are “half-true”. We solve this issue by introducing the so-called parity
gadget, that allows us to relax the integer constraint and to ensure that �(x), �(x) ∈
{�(u) + ε, 2�(u) − ε}, for ε << �(u).

Parity Gadget For each variable x of ϕ, graph Gϕ has a gadget, which results
in overlaps in Γϕ , if the values of �(x) and �(x) do not differ significantly. For an
illustration, refer to Fig. 14. The central part of this gadget is a “vertical gap” of width
3 · �(u) (shaded in gray in Fig. 14a–c) with two blocks of vertices (triangular- and
square-shaped in Fig. 14b–c) pointing inside the gap; a more detailed illustration of
the vertical gap is given in Fig. 14c. Each block defines two square-shaped faces and
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(x)(u)(u) (u)
(a) (b)

Fig. 13 The variable gadget; gray-colored arrows show the information “flow”. a True state: �(x) = 2,
�(x) = 1. b False state: �(x) = 1, �(x) = 2

x xx x x x x x

u u u u u u u u u u u u u u u u u u

x x x x

u u u u u u u u u

(u)
2 (x)

2 (x)

(u)

(u)

(a) (b)

(c) (d)

Fig. 14 The parity gadget; gray-colored arrows show the information “flow”. a x = true. b x = false.
c �(x) ≈ �(x). d Detail

three triangular faces, each formed by two straight-line edges and a quarter circular
arc. Depending on the choice of �(x) and �(x), one of the blocks may be located above
the other. If �(x) ≈ �(x), however, the two blocks are not far enough apart from each
other leading to overlaps; see Fig. 14c.

Consider the case where x = false. The case where x = true is symmetric. If
x = false, we have to ensure that the two quarter circular arcs that are intersected by
the dashed diagonal line-segment of Fig. 14d do not introduce crossings, i.e., in other
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Fig. 15 Different gadgets; gray-colored arrows show the information “flow”. a Clause gadget. b Crossing
gadget. c Copy gadget

words the top one should be located on top of the bottomone inFig. 14d. Sinceweknow
that both of these arcs have radius �(u), their centers (gray-colored in Fig. 14d) should
be at a distance greater than 2 ·�(u) apart from each other, i.e., the length of the dashed
diagonal line segment is at least 2 · �(u). However, the length of this segment can be
easily expressed in dependence of λ = �(x)− �(x) as follows:

√
4λ2 + �(u)2. Hence,

in order to avoid crossings it is not difficult to see that λ >
√
3/2 ·�(u) ≈ 0.866 ·�(u).

This implies that �(x), �(x) ∈ (0, 1.067·�(u))∪(1.933·�(u), 3), i.e., ε < 0.067·�(u)

to avoid crossings.

Clause Gadget For each clause of ϕ with literals a, b and c, we introduce a gad-
get, which is illustrated in Fig. 15a. The bold-drawn quarter circular arc of Fig. 15a
compares two sums of information. From the righthand side, four edges of unit length
“enter” the arc. Observe that there is also a free edge (marked with an asterisk in
Fig. 15a), which also contributes to the sum. Hence, the sum of edge lengths on the
righthand side of this arc is greater than 4 ·�(u), since the free edgemust have non-zero
length. The three literals “enter” at the bottom; the sumhere is �(a)+�(b)+�(c). Com-
bining both, we obtain that �(a) + �(b) + �(c) > 4 · �(u) must hold. The bold-drawn
quarter circular arc of Fig. 15a implies that the length of the free edge must be equal to
the difference between the two sides of this inequality. Also, note that not all a, b and c
can be false, since in this case �(a)+�(b)+�(c) = 3 ·(�(u)+ε) < 4 ·�(u), because
ε << �(u). However, if at least one literal istrue, then �(a)+�(b)+�(c) ≥ 4·�(u)+ε

and our inequality holds.

Auxiliary Gadgets The crossing gadget just consists of a rectangle and is used to
allow two flows of information to cross each other; see Fig. 15b. The copy gadget
takes an information and creates three copies of this information; see Fig. 15c. This
is because the vertices of each gray colored quadrilateral face in Fig. 15c must be
located at the corners of a rectangle whose sides have slopes ± 1, which implies that
its opposite sides must be of the same length. Finally, the unit length gadget is a single
edge, whichwe assume to have length �(u). In Fig. 12, the unit length gadget is marked
with an asterisk.

Description of the Construction We now describe our construction; see Fig. 12.
Graph Gϕ contains one unit length gadget, which is copied O(ν + μ) times using
the copy gadget, where ν and μ denote the number of variables and clauses of ϕ,
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respectively (since each variable and each clause introduces six and two copies of the
copy gadget, respectively). For each variable of ϕ, graph Gϕ has a variable gadget and
a parity gadget, each of which is connected to different copies of the unit length gadget.
For each clause of ϕ, graph Gϕ has a clause gadget, which has four connections to
different copies of the unit length gadget. We compute Rϕ as follows. We place the
variable gadget of each variable x above and to the left of its parity gadget and we
connect the output literals of the variable gadget of x with its parity gadget through a
copy gadget. We place the variable and the parity gadgets of the i-th variable below
and to the right of the corresponding ones of the (i − 1)-th variable. We place each
clause gadget to the right of the sketch constructed so far, so that the gadget of the
i-th clause is to the right of the (i − 1)-th clause. This allows us to connect copies of
the output literals of the variable gadget of each variable with the clause gadgets that
contain it, so that all possible crossings (which are resolved using the crossing gadget)
appear above the clause gadgets. More precisely, if a clause contains a literal of the
i-th variable, we have a crossing with the literals of all variables with indices (i + 1)
to ν. Hence, for each clause we add O(ν) crossing and three copy gadgets. Note that
all copy gadgets of the unit length gadget lie below all variable, parity, and clause
gadgets. The obtained representationRϕ conforms with the one of Fig. 12. Since the
order of the variable and clause gadgets can be arbitrarily chosen in advance, we can
assume that their connections are fixed, which implies that we know in advance the
number and the positions of the required copy and crossing gadgets. Since, as already
mentioned, for each clause we add O(ν) crossing gadgets, the construction can be
done in O(νμ) time.

To complete the proof, assume that graph Gϕ admits a bendless smooth orthogonal
drawing Γϕ preservingRϕ . We compute a truth assignment for ϕ as follows. For each
variable x of ϕ, we set x to true if and only if �(x) ≥ 1.933 · �(u). Since for each
clause (a ∨ b ∨ c) of ϕ we have that �(a) + �(b) + �(c) > 4 · �(u), it follows that
at least one of a, b and c must be true. Hence, ϕ admits a truth assignment. For the
opposite direction, based on a truth assignment of ϕ, we can set, e.g., �(x) = 1.95
and �(x) = 1.05 for each variable x , assuming that �(u) = 1. Then, arranging the
variable and the clause gadgets ofGϕ as in Fig. 12 yields a bendless smooth orthogonal
drawing Γϕ preserving Rϕ . �
Remark 1 The special case of our problem, in which circular arcs are not present, is
closely related to the so-called HV-rectilinear planarity testing [34]. In this problem,
each edge has either an H- or a V-label and the goal is to determine whether there
exist a rectilinear drawing in which all edges with an H-label are drawn as horizontal
segments, while all edges with an V-label are drawn as vertical segments. As opposed
to our problem, HV-rectilinear planarity testing is polynomial-time solvable in the
fixed embedding setting [20] (note that the angles around each vertex are not specified
as part of the input of the problem) and becomesNP-hard in the variable embedding
setting [16].

We now proceed to prove the analogous of Theorem 4 for the octilinear model.

Theorem 5 Given a planar graph G of maximum vertex degree 4 and an octilinear
representation R, it is NP-hard to decide whether G admits a bendless octilinear
drawing preserving R.
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6 (x)
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3 (u)

3 (u)d

Fig. 16 The parity gadget for the octilinear model

Proof In principle, our proof follows the same reduction scheme as the one of The-
orem 4. More precisely, we can adjust to the octilinear model by replacing quarter
circular arcs with diagonal segments. By doing so, we maintain planarity (by con-
struction). However, the parity gadget has to be adjusted properly, so to maintain its
functionality. To this end, we only change the vertical gap of parity gadget as in Fig. 16,
which shows the case where x = false; the case where x = true is symmetric.

It is not difficult to see that the smallest vertical distance d between the blocks in the
vertical gap (illustrated as a dotted line-segment in Fig. 16) equals to 6�(x)− 6�(x)−
5�(u), which implies �(x) − �(x) > 5/6 · �(u), since d must be strictly greater than
zero. Thus, ε < 0.084 · �(u) << �(u). �

5 Bi-Monotone Drawings

In this section, we study variants of the Kandinsky drawing model [7,14,23], which
forms an extension of the orthogonal model to graphs of vertex degree greater than
4. In this model, the vertices are represented as squares, placed on a coarse grid with
multiple edges attached to each side of them aligned on a finer grid. Since Kandinsky
drawings find applications in diverse areas, such as VLSI design, UML diagrams and
business process modeling, this drawing model has been extensively studied over the
years; see, e.g., [9,10].

The Kandinsky model allows for natural extensions to both smooth orthogonal and
octilinear models. We are aware of only one preliminary result in this direction for the
formermodel: A linear time drawing algorithm is presented in [5] for the production of
smooth orthogonal 2-drawings for planar graphs of arbitrary vertex degree in quadratic
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Fig. 17 Illustration of the modified shift-method for the smooth orthogonal model. a Contour condition. b
Placement of vk in Γk−1

area, in which all vertices are on a line � and the edges are drawn either as half circles
(above or below �), or as two consecutive half circles one above and one below � (that
is, the latter ones are of complexity 2, but they are at most �(n − 3)/2� [11]).

For an input maximal planar graph G (of arbitrary vertex degree), our goal is
to construct a smooth orthogonal (or an octilinear) 2-drawing forG with the following
aesthetic benefits over the aforementioned drawing algorithm:

(i) the vertices are not restricted along a line, and
(ii) each edge is bi-monotone [24], i.e., xy-monotone.

We achieve our goal at the cost of slightly more edges drawn with complexity 2 or at
the cost of increased drawing area (but still polynomial).

Our first approach is amodification of the shift-method [13] (see also Sect. 2). Based
on a canonical order π = (v1, . . . , vn) of G, we construct a planar smooth orthogonal
2-drawing Γ of G in the Kandinsky model, as follows. We place v1, v2 and v3 at
points (0, 0), (2, 0) and (1, 1), respectively. Hence, we can draw edge (v1, v2) as a
horizontal line-segment, and each of edges (v1, v3) and (v2, v3) as a quarter circular
arc. We also color edge (v1, v3) blue and edge (v2, v3) green; edges of the same color
will eventually be drawn in the same manner. For k = 4, . . . , n, assume that a smooth
orthogonal 2-drawing Γk−1 of the subgraph Gk−1 of G induced by v1, . . . , vk−1 has
been constructed, in which each edge of the outerface Ck−1 of Γk−1 is drawn as
a quarter circular arc, whose endvertices are on a line with slope ± 1, except for
edge (v1, v2), which is drawn as a horizontal segment (called contour condition in
the shift-method). For an illustration, refer to Fig. 17a. Each of v1, . . . , vk−1 is also
associated with a so-called shift-set, which for v1, v2 and v3 are singletons containing
only themselves (as in the shift-method).

Let (w1, . . . , wp) be the vertices ofCk−1 from left to right in Γk−1, wherew1 = v1
and wp = v2. Let (w�, . . . , wr ), 1 ≤ � < r ≤ p, be the neighbors of vk from left
to right along Ck−1 in Γk−1. As in the shift-method, our algorithm first translates
each vertex in ∪�

i=1S(wi ) one unit to the left and each vertex in ∪p
i=r S(wi ) one unit

to the right, where S(v) is the shift-set of v ∈ V . During this translation, each of
edges (w�,w�+1) and (wr−1, wr ) acquires a horizontal segment (see the bold edges
of Fig. 17b). We place vertex vk at the intersection of line λ� with slope +1 through
w� with line λr with slope −1 through wr (which are drawn dotted in Fig. 17b) and
we set the shift-set of vk to {vk} ∪r−1

i=�+1 S(wi ), as in the shift-method. We draw each
of edges (w�, vk) and (vk, wr ) as a quarter circular arc. The remaining edges incident
to vk are drawn with complexity 2. More precisely, for i = � + 1, . . . , r − 1, edge
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Fig. 18 Illustration of the modified shift-method for the octilinear model. a Contour condition. b Placement
of vk in Γk−1

(wi , vk) has a vertical line-segment that starts from wi and ends either at λ� or λr and
a quarter circular arc from the end of the previous segment to vk . Hence, the contour
condition is satisfied.

We color edge (w�, vk) blue, edge (vk, wr ) green and the remaining edges incident
to vk in Gk red (this type of coloring is also known as Schnyder coloring [22,37]).
Observe that each blue and green edge consists of a quarter circular arc and a horizontal
segment (that may have zero length), while a red edge consists of a vertical segment
and a quarter circular arc (that may have zero radius). We are now ready to state the
following theorem.

Theorem 6 A maximal planar n-vertex graph admits a bi-monotone planar smooth
orthogonal 2-drawing in the Kandinsky model, which requires O(n2) area and can
be computed in O(n) time.

Proof Bi-monotonicity and the fact that the computed drawing is a 2-drawing follows
by construction. The time complexity follows from [12]. Planarity is proven by induc-
tion. Drawing Γ3 is planar by construction. Assuming that Γk−1 is planar, we observe
that no two edges incident to vk cross in Γk . Also, these edges do not cross edges
of Γk−1. Since the radii of the arcs of the edges incident to vertices that are shifted
remain unchanged and since edges incident to vertices in the shift-sets retain their
shape, drawing Γk is planar. This completes our proof. �
For the octilinear model, we can analogously state the following theorem.

Theorem 7 A maximal planar n-vertex graph admits a bi-monotone planar octilinear
2-drawing in the Kandinsky model, which requires O(n2) area and can be computed
in O(n) time. Additionally, each bend is at 135◦.

Proof We can convert the layout computed for the smooth orthogonal model to octi-
linear by redrawing all its quarter circular arcs to diagonal segments; see also Fig. 18b.
This results in bends at 135◦. Planarity follows from the fact that blue and green edges
do not pass through vertices by construction. �

We reduce the number of edges drawn with complexity 2, by computing new y-
coordinates for the vertices, while keeping their x-coordinates unchanged. To achieve
this, we process the vertices of G in the same canonical ordering π = (v1, . . . , vn)

maintaining the following invariant (which is a modification of the contour condition):
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Fig. 19 Illustration of the contour condition and placement of vk in Γk−1. a Invariant 1. b Placement of vk
in Γk−1

(I.1) Each edge of the outerface has a quarter circular arc segment of non-zero radius,
except for the edge (v1, v2); see Fig. 19a.

Initially, we set y(v1) = y(v2) = 0. For k = 3, . . . , n, we assume as in the shift-
method that the neighbors of vertex vk inΓk−1 are (w�, . . . , wr ) from left to right along
Ck−1. Next, from each of the vertices w�, . . . , wr that are strictly to the left (right) of
vk , we draw a linewith slope+1 (−1, resp.); refer to the dashed drawn lines of Fig. 19b.
The intersections of these lines with the vertical line Lk : x = x(vk) are candidate
positions for the placement of vk . If there is a vertex wi , for some i = �, . . . , r , whose
x-coordinate is equal to the x-coordinate of vertex vk (that is, x(wi ) = x(vk)), then
there is one more candidate position, called trivial, for the placement of vk , which is
also along the line Lk at (x(wi ), y(wi ) + 1); refer to the candidate position marked
with an asterisk in Fig. 19b. We choose to place vk at the highest candidate position.
More precisely, letΔx (u, v) be the horizontal distance between vertices u and v. Then,
formally, the y-coordinate of vertex vk is computed as follows:

y(vk) = max
w∈{w�,...,wr }

{y(w) + max{Δx (vk, w), 1}} (1)

Let w∗ ∈ {w�, . . . , wr } be the vertex of Ck−1 defining the highest candidate posi-
tion. Note that, in general, more than one vertex may define the highest candidate
position. It is not difficult to see that edge (vk, w

∗) can be drawn as a quarter circular
arc, unless vk is placed in the trivial candidate position, in which case we draw it as
a vertical line-segment of unit length. This immediately implies that (at least) n − 1
edges are drawn with complexity 1, as desired. We draw the remaining edges incident
to vk with complexity 2. More precisely, each of these edges is composed of two
segments; one quarter circular arc segment incident to vk followed by a vertical line-
segment incident to the other endpoint. Since x(w�) < x(vk) < x(wr ), it follows that
Invariant 1 is maintained, by construction; in addition, note that the quarter circular arc
of Invariant 1 is always incident to vertex vk . We are now ready to state the following
theorem.
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Fig. 20 Illustration for the proof of Theorem 8

Theorem 8 A maximal planar n-vertex graph G admits a bi-monotone planar smooth
orthogonal 2-drawing Γ with at least n − 1 edges drawn with complexity 1 in the
Kandinsky model, which requires O(n3) area and can be computed in O(n) time.

Proof The time complexity follows from the shift-method. Since the fact that at least
n−1 edges are drawn with complexity 1 has already been discussed, in order to prove
this theorem, it remains to show that the computed drawing is planar and that its area
is cubic. The latter can be proven immediately. Since the horizontal distance between
any two vertices of G in Γ is O(n), it follows that the vertical distance between any
two consecutive (in the canonical ordering) vertices in Γ cannot be more than O(n),
which implies that the height of Γ is at most O(n2). Hence, the area occupied by Γ

is O(n3).
We prove planarity inductively. For the base of the induction, note that drawing Γ3

is planar. Assuming that Γk−1 is planar, we show in the following that Γk is planar,
as well. By construction, the edges that are incident to vk do not cross each other.
This is because of Invariant 1, which ensures that no two neighbors of vk in Gk have
the same x-coordinate. Since drawing Γk−1 remains unchanged after placing vk (and
hence planar as subdrawing of Γk), it remains to prove that the edges incident to vk
do not introduce crossings with edges of Γk−1; in particular with edges of Ck−1.

Let L� and Lr be the vertical lines through w� and wr in Γk , respectively; see
Fig. 20. By construction, there is no vertex in the region R� between L� and Lk that
lies above the line λ� with slope +1 through vk . Symmetrically, there is no vertex in
the region Rr between Lk and Lr that lies above the line λr with slope −1 through vk ;
both regions R� and Rr are highlighted in gray in Fig. 20. However, along the parts of
λ� and λr that lie in the interior of R� and Rr , respectively, there might exist several
vertices (one of them is w∗).

Since w� and wr are the leftmost and rightmost neighbors of vk in Γk−1, it follows
that the neighborsw�, . . . , wr of vk inGk lie between L� and Lr (and either completely
below or along λ� and λr ). Each edge incident to vk in Gk has a circular arc segment
that starts from vk and ends at a point along λ� or λr (followed by a vertical segment
of possibly zero length towards one of w�, . . . , wr ), such that no two such circular arc
segments overlap, as by Invariant 1 no two vertices among w�, . . . , wr have the same
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(a) (b) (c) (d) (e)

Fig. 21 The steps of drawing a planar graph with our modified shift-method

(a) (b) (c) (d) (e)

Fig. 22 Illustration of the reduction of the number of edges drawn with complexity 2

x-coordinate. Since in regions R� and Rr there are no vertices of Gk , it follows that
these circular arcs may only cross other circular arc segments that lie in R� and Rr ,
which must have both endpoints either along λ� or along λr . However, such crossings
are not possible because the radius of the circular arc segment of an edge (wi , wi+1)

of Ck−1 is smaller than the radius of the circular arc segments of both edges (vk, wi )

and (vk, wi+1) in such a scenario; refer to the dotted drawn edges of Fig. 20. Since
the vertical edge segments incident to each of w�, . . . , wr neither cross each other nor
cross edges of Ck−1, it follows that Γk is in fact planar. �

6 Example Run of our Drawing Algorithm

In this section, we describe an example run of our drawing algorithm from Sect. 5 on
a planar triangulation on seven vertices. Figure 21 shows the steps of constructing a
smooth orthogonal drawing of this graph using our modification of the shift-method.

Figure 22 illustrates how new y-coordinates are assigned to the vertices so to reduce
the number of edges drawn with complexity 2 (observe that the x-coordinates are the
ones of Fig. 21e). In particular, Fig. 22a shows how this is done for the first three
vertices. Figure 22b–e illustrate how the fourth, the fifth, the sixth and the seventh
vertex of the graph is added. The bold edges in each subfigure of Fig. 22 are the
ones defining the y-coordinate which are drawn with complexity 1 at each step of
the canonical order. The final drawing is the one of Fig. 22e. We emphasize on the
additional area consumption, which on the vertical dimension increases to quadratic.

7 Conclusions

In this paper, we continued the study of smooth orthogonal and octilinear drawings.
OurNP-hardness proofs are a first step towards settling the complexity of both draw-
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ing problems. It is interesting to study whether any of the two problems also belongs
to NP . We further conjecture that deciding whether a planar graph admits a bend-
less smooth orthogonal drawing is NP-hard, even in the case where only the planar
embedding is specified by the input. For the octilinear drawing problem, it is of interest
to know if it remains NP-hard even for planar graphs of maximum vertex degree 4
or if these graphs allow for a decision algorithm. Our drawing algorithms guarantee
bi-monotone 2-drawings with a certain number of complexity-1 edges for maximal
planar graphs. Improvements or generalizations to non-triangulated planar graphs are
of importance.
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