
Algorithmica (2019) 81:1881–1900
https://doi.org/10.1007/s00453-018-0516-4

Edge-Orders

Lena Schlipf1 · Jens M. Schmidt2

Received: 16 November 2017 / Accepted: 5 September 2018 / Published online: 24 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Canonical orderings and their relatives such as st-numberings have been used as a key
tool in algorithmic graph theory for the last decades.Recently, a unifying link behind all
these orders has been shown that links them to well-known graph decompositions into
parts that have a prescribed vertex-connectivity. Despite extensive interest in canoni-
cal orderings, no analogue of this unifying concept is known for edge-connectivity. In
this paper, we establish such a concept named edge-orders and show how to com-
pute (1, 1)-edge-orders of 2-edge-connected graphs as well as (2, 1)-edge-orders
of 3-edge-connected graphs in linear time, respectively. While the former can be
seen as the edge-variants of st-numberings, the latter are the edge-variants of Mond-
shein sequences and non-separating ear decompositions. The methods that we use for
obtaining such edge-orders differ considerably in almost all details from the ones used
for their vertex-counterparts, as different graph-theoretic constructions are used in the
inductive proof and standard reductions from edge- to vertex-connectivity are bound
to fail. As a first application, we consider the famous Edge-Independent Spanning
Tree Conjecture, which asserts that every k-edge-connected graph contains k rooted
spanning trees that are pairwise edge-independent. We illustrate the impact of the
above edge-orders by deducing algorithms that construct 2- and 3-edge independent
spanning trees of 2- and 3-edge-connected graphs, the latter of which improves the
best known running time from O(n2) to linear time.

Keywords Edge-order · St-edge-order · Canonical ordering · Edge-independent
spanning tree · Mondshein sequence · Non-separating ear decomposition ·
3-Edge-connected graphs · Linear time

J. M. Schmidt: This research is supported by the Grant SCHM 3186/1-1 (270450205) from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation).

An extended abstract of this paper appeared at ICALP’17.

B Lena Schlipf
lena.schlipf@fernuni-hagen.de

1 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany

2 Institute of Mathematics, TU Ilmenau, Ilmenau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0516-4&domain=pdf
http://orcid.org/0000-0001-7043-1867
http://orcid.org/0000-0003-3032-4834

1882 Algorithmica (2019) 81:1881–1900

1 Introduction

Canonical orderings serve as a fundamental tool in various fields of algorithmic graph
theory, see [2,30] for a wealth of applications. Under this name, canonical orderings
were published in 1988 for maximal planar graphs [8] and soon after generalized to
3-connected planar graphs [18]. Interestingly, it turned out only recently [30] that the
well-known non-separating ear decompositions [6] are in fact strict generalizations of
canonical orderings to arbitrary 3-connected graphs, and that this generalization was,
independently, already known as (2, 1)-sequences [23] in 1971 long before canonical
orderings were even proposed (anticipating many of their later planar features).

Mondshein [23] characterized (2,1)-sequences, or (2, 1)-orders, as we will call
them, by decomposing a graph into 2-connected and connected parts. Indeed, the
unifying link above allows to describe any canonical ordering of a graph G = (V , E)

as a total order on V such that for certain i , the first i vertices induce a 2-connected
graph and the remaining vertices induce a connected graph inG [30] (note that this does
not use any reference to planarity). The general concept behind canonical orderings is
thus connectivity, with all of its implications for planarity, instead of planarity itself.

Several publications [4,7,24] extended this approach by proving a (k, �)-order for
specific pairs (k, �) �= (2, 1). Such (k, �)-orders may be described canonically as total
orders on V such that for certain i , the first i vertices induce a k-connected graph
and the remaining vertices induce an �-connected graph (a related description for
planar triangulations is given in [4]). In order to make this precise, “certain i” has
to be quantified for every particular pair (k, �). For such (k, �), this is usually done
in dependence of a graph decomposition: e.g. for (2, 1)-orders, i ranges over every
vertex that completes an ear (with the predecessors of that vertex) in a fixed open ear
decomposition of G. Clearly, such decompositions tends to become more complex for
higher k or �.

Several other well-known structures than canonical orderings fit into the context
of (k, �)-orders: st-numberings and st-orientations are actually (1,1)-orders of 2-
connected graphs (where i ranges over all vertices), the chain decompositions of [7]
are (2,2)-orders of 4-connected graphs, and more orders on restricted graph classes
such as planar graphs and triangulations are known (see Table 1 left).

The purpose of this paper is to extend this unifying view further to (k, �)-edge-
orders, each of which can be described as a total order on E such that for certain i ,
the first i edges induce a k-edge-connected graph and the remaining edges induce a
�-edge-connected graph. Despite the many known vertex-orders above, these natural
edge-variants do not seem to bewell-studied. In fact,we are only aware of one technical
report by Annexstein et al. [1], which deals with (1,1)-edge-orders (under the name
st-edge-orderings), but lacks proof details of their existence. For the (1, 1)-edge-order
that we present, i ranges over all edges except st ; for the (2, 1)-edge-order that we
present, i ranges over all edges that, in a fixed ear decomposition of G, complete an
ear with the predecessors of i .

We showa simple algorithm that computes a (1,1)-edge-order of a 2-edge-connected
graph and prove that it has running time O(m). Our main contribution is then an
algorithm that computes a (2,1)-edge-order of a 3-edge-connected graph in time O(m)

123

Algorithmica (2019) 81:1881–1900 1883

Table 1 Left (k, �)-orders of (k + �)-connected graphs known so far and the best-known running times for
constructing them. Right (k, �)-edge-orders of (k + �)-edge-connected graphs (this paper)

(see Table 1 right), of which the corresponding result for the vertex-counterpart took
over 40 years.

Just like (2,1)-orders, which immediately led to improvements on the best-known
running time for five applications [5,30], (2,1)-edge-orders seem to be an important
and useful tool for many graph algorithms. We give an application of them, which
is related to the edge-independent spanning tree conjecture [17]: by using a (2,1)-
edge-order, we show that three edge-independent spanning trees of 3-edge-connected
graphs can be computed in time O(m), improving the best-known running time O(n2)

by Gopalan et al. [14].
Using the approach presented in this paper, Hoyer and Thomas [15] could mean-

while show a (2,2)-edge-order of 4-edge-connected graphs, which implies that every
4-edge-connected graph has four edge-independent spanning trees.

After giving preliminary facts on ear decompositions, we explain the linear-time
algorithms for computing (1,1)- and (2,1)-edge-orders in Sects. 3, 4 and 5. Section 6
then shows algorithms for computing two and three edge-independent spanning trees.

1.1 Vertex-Connectivity Versus Edge-Connectivity

In many cases, the vertex-variant of a connectivity problem is more challenging than
its edge-variant, as the latter may be reduced to the former by taking its line-graph
or by using the reduction from k-edge- to k-vertex-connectivity of Galil and Italiano
[12]. From a top-level perspective, our (2,1)-edge-order algorithm follows the proof
outline of its vertex-counterpart in [30]. Thus, it needs to be motivated that there is no
obvious linear-time reduction to [30] that produces the results of this paper (of course
there is a non-obvious reduction that just takes the algorithm of this paper and does
not invoke [30] at all).

Clearly, a reduction to line-graphs is not possible, as this may involve a quadratic
blow-up in the graph size and thus in the running time. Another reduction is the one
of Galil and Italiano [12], which reduces a 3-edge-connected graph G to a 3-vertex-
connected graph G ′ in linear time. In short, the reduction works as follows. Every
vertex v of degree i in G is transformed to a wheel graph with i spokes in G ′, in
which the hub represents v. Figure 1 gives an example of such a reduction, and shows
a (2,1)-order of G ′, which can be computed in linear time using [30]. The figure
shows that there is no obvious way of transforming the (2,1)-order of G ′ back to a
(2,1)-edge-order of G.

Another hint that such a reduction might be elusive is given by our application to
edge-independent spanning trees. Despite extensive research, it is still not known how

123

1884 Algorithmica (2019) 81:1881–1900

r

t

u

v

3

2

6

5

7

4

1

P0 3

r 2

P1

P2
6

t

u

v5

7

4
P5

P4

P3

1 P6

(a) (b)

Fig. 1 Reduction attempt to (2, 1)-orders of 3-connected graphs. a A 3-edge-connected graph G. b The
3-connected graph G′ obtained from G by applying [12], and a (2, 1)-order D of G′ through r3 and avoiding
r1 (see [30] for notational details). Every short ear is depicted in gray and, in order to be able to distinguish
between individual ears, every ear is drawn with small gaps to its endpoints. Here, the open ears P1, . . . , P6
of D do not correspond to ears of G

to reduce these to vertex-independent spanning trees (which may in turn be computed
from a (2,1)-order [30]), not even for the corresponding existence results. In fact, an
attempt trying to prove this turned out to be false [13]. If there was a reduction to
(2,1)-orders, it would directly imply a reduction to vertex-independent spanning trees.

Hence, there is no obvious way of producing our results using old ones. Indeed,
the different parts of our proof require substantially new ideas and non-trivial for-
malizations in comparison to [30]: Mader-sequences differ from the (BG)-sequences
used in [30] (and, although they are not too far apart, it took a 27-page paper to show
that the former can be computed in linear time as well [22]), the notions of non-
separateness and Gi differ considerably, and, here, we need last-values in addition to
just birth-values.

2 Preliminaries

We use standard graph-theoretic terminology and consider only graphs that are finite
and undirected, butmay contain parallel edges and self-loops. In particular, cyclesmay
have length one or two. A separator of size one is called a cut-vertex. The 2-connected
components of a graph are its inclusion-wise maximal connected subgraphs having no
cut-vertex. For k ≥ 1, let a graph G be k-edge-connected if n := |V | ≥ 2 and G has
no edge-cut of size less than k.

Definition 1 ([19,31]) An ear decomposition of a graph G = (V , E) is a sequence
(P0, P1, . . . , Pk) of subgraphs of G that partition E such that (i) P0 is a cycle that is
no self-loop and (ii) every Pi , 1 ≤ i ≤ k, is either a path that intersects P0 ∪· · ·∪ Pi−1
in its endpoints or a cycle that intersects P0 ∪ · · · ∪ Pi−1 in a unique vertex qi (which
we call endpoint as well). Each Pi is called an ear. An ear is short if it is an edge and
long otherwise.

Theorem 2 ([26]) A graph is 2-edge-connected if and only if it has an ear decompo-
sition.

123

Algorithmica (2019) 81:1881–1900 1885

According to Whitney [31], every ear decomposition has exactly m − n + 1 ears
(m := |E |). For any i , let Gi = (Vi , Ei) := P0∪· · ·∪ Pi and Ei := E −Ei .We denote
the subgraph of G that is induced by Ei as Gi = (Vi , Ei). Clearly, G j ⊂ Gi for every
i < j . We note that this definition of Gi differs from the definition Gi := G − Vi that
was used for (2,1)-vertex-orders [30], due to theweaker edge-connectivity assumption.

For any ear Pi , let inner(Pi) := V (Pi) − V (Gi−1) be the set of inner vertices of
Pi (for P0, every vertex is an inner vertex). Hence, for a cycle Pi �= P0, inner(Pi) =
V (Pi)−qi . Every vertex of G is an inner vertex of exactly one long ear, which implies
that, in an ear decomposition, the inner vertex sets of the long ears partition V .

Definition 3 Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge
e, let birthD(e) be the index i such that Pi contains e. For a vertex v, let birthD(v)

be the index i such that Pi contains v as inner vertex and let lastD(v) be the maximal
index birthD(vw) over all neighbors w of v. Whenever D is clear from the context,
we will omit the subscript D.

Thus, Plast(v) is the last ear that contains v and, seen from another perspective, the
first ear Pi such that Gi does not contain v. Clearly, a vertex v is contained in Gi if
and only if last(v) > i .

3 The (1,1)-Edge-Order

Although (1,1)-edge-orders can be seen as edge-counterparts of st-numberings, they
do not seem to be well-known. Let two edges be neighbors if they share a common
vertex. Annexstein et al. gave essentially the following definition.

Definition 4 ([1]) Let G = (V , E) be a graph with an edge st that is not a self-loop.
A (1, 1)-edge-order through st of G is a total order < on the edge set E − st such
that m ≥ 2,

– every edge e, except for one incident to s, has a neighbor e′ with e′ < e and
– every edge e, except for one incident to t , has a neighbor e′ with e < e′.
Hence< is a total order on E−st such that for all i , thefirst i edges and the remaining

edges induce a connected graph. The two exceptional edges incident to s and t must
therefore be the minimal and maximal edge of E − st with respect to <. Clearly, if G
has a (1,1)-edge-order through st , G is 2-edge-connected, as neither st nor any other
edge can be a bridge of G (note that this requires m ≥ 2). The converse statement
was shown in [1, Proposition 4] using a special type of ear decompositions based
on breadth-first-search (however, without giving details of the linear-time algorithm).
Here, we aim for a simple, constructive and direct (unlike, e.g., reducing to (1,1)-orders
via line-graphs) exposition of the underlying idea and show that any ear decomposition
can be transformed to a (1,1)-edge-order in linear time.

We will use the incremental list order-maintenance problem, which maintains a
total order subject to the operations of (i) inserting an element after a given element
and (ii) comparing two distinct given elements by returning the one that is smaller in
the order. Bender et al. [3] show a simple solution for an even more general problem
with amortized constant time per operation; we will call this the order data structure.

123

1886 Algorithmica (2019) 81:1881–1900

Lemma 5 Let G be a 2-edge-connected graph with an edge st that is not a self-loop.
Then a (1,1)-edge-order through st can be computed in time O(m).

Proof We compute an ear decomposition D of G such that st ∈ P0. This can be done
in linear time by any text-book algorithm; see [28] for a simple one. Let<0 be the total
order that orders the edges in P0 − st consecutively from s to t . Thus, every edge has
a smaller and a larger neighbor, except for st and the two exceptional edges incident
to s and t . Clearly, <0 is a (1,1)-edge-order through st of the 2-edge-connected graph
G0. We extend <i−1 iteratively to a (1,1)-edge-order <i of Gi by adding the next ear
Pi of D; then <m−n gives the claim.

The order itself is stored in the order data structure. For every vertex x in Gi−1, let
min(x) be the smaller of its two incident edges in Pbirth(x) with respect to <i−1 (for
later arguments, define max(x) analogously as the larger such edge); clearly, min(x)

and max(x) can be computed in constant time while adding Pbirth(x). When adding the
ear Pi with (not necessarily distinct) endpoints x and y, let e be the smallest edge in
{min(x), min(y)} with respect to <i−1 (this needs amortized constant time by using
at most one comparison of the data structure). Consider all edges of Pi in consecutive
order startingwith a neighbor of e.We obtain<i from<i−1 by inserting these edges as
one consecutive block immediately after the edge e (if Pi is a cycle with endpoint s, the
edges are inserted in front of the other edges); this takes amortized time proportional
to the length of Pi . Then the first edge of Pi has a smaller neighbor in <i while the
last has a larger neighbor in <i (for cycles Pi �= P0, this exploits that qi has another
incident edge in Gi−1 or the exceptional edge incident to s (or t) might change), which
implies that <i is a (1,1)-edge-order. 	

This (special) (1,1)-edge-order will allow for a very easy computation of two edge-
independent spanning trees in Sect. 6 and serve as a building block for the computation
of three such trees. If one wants to keep the root-paths in two edge-independent
spanning trees short, a different (1,1)-edge-order [1] may be computed by maintaining
min(x) as the incident edge of x that is minimal in Gi in the above algorithm (this can
be done efficiently by updating min(x) whenever an ear with endpoint x is added).
However, the latter order cannot be used for three edge-independent spanning trees.

4 The (2,1)-Edge-Order

We define (2,1)-orders as special ear decompositions.

Definition 6 Let G be a graph with distinct edges r t and ru (t = u is possible). A
(2, 1)-edge-order through r t and avoiding ru (see Fig. 2) is an ear decomposition D
of G such that

1. r t ∈ P0,
2. Pm−n = ru, and � i.e., the last ear is the short ear ru
3. for every 0 ≤ i < m − n, Gi contains inner(Pi) and, if Pi is short, at least one

endpoint of Pi .

We will denote the Properties 1, 2, and 3 of Definition 6 as Properties 6.1, 6.2,
and 6.3. Property 6.2 implies that Gi contains the vertices r and u for every 0 ≤ i <

123

Algorithmica (2019) 81:1881–1900 1887

P0

P1

P2

P4

P3

P7

P9

P5
P6

P8

r

t

u

a

b

c

d

e

f

g

h

Fig. 2 A (2,1)-edge-order of a 3-edge connected graph

m − n. We call Property 6.3 the non-separateness of D. The non-separateness of D
states that every inner vertex of a long ear Pi has an incident edge in G that is in Gi ,
and that every short ear Pi (seen as edge) has a neighbor in Gi . The name refers to the
following helpful property.

Lemma 7 Let D be a (2,1)-edge-order. Then, for every 0 ≤ i < m−n, Gi is connected.

Proof Consider any i < m − n and let e be any edge in Gi . By Property 6.2, r ∈ Gi .
We show that Gi contains a path from one of the endpoints of e to r . This gives the
claim, as Gi is an edge-induced graph and therefore does not contain isolated vertices.

Let Pj be the unique ear that contains e. If Pj is short, Pj = e and e has a neighbor
in G j due to the non-separateness of D. If Pj is long, at least one endpoint of e must
be an inner vertex of Pj and e has a neighbor in G j for the same reason. Hence, in
both cases we find a neighbor that is contained in an ear Pk with k > j . By applying
induction on the indices of these ears, we find a path that starts with an endpoint of e
and ends with the only edge left in Gm−n−1, namely ru. 	

As described in the introduction, a (2, 1)-edge-order is thus a total order on E
such that for each i that completes an ear with the predecessors of i in a fixed ear
decomposition, the first i edges induce a 2-edge-connected graph and the remaining
edges induce a connected graph. Next, we show that the existence of a (2,1)-edge-order
proves the graph to be 3-edge-connected.

Lemma 8 If G has a (2,1)-edge-order, G is 3-edge-connected.

Proof Let D be a (2,1)-edge-order through r t and avoiding ru. Consider any vertex
v of G. By transitivity of edge-connectivity, it suffices to show that G contains three
edge-disjoint paths between v and r . Let Pi be the ear that contains v as inner vertex.
In particular i < m − n, as Pi is long. Then Gi has an ear decomposition and, due to
Theorem 2, contains two edge-disjoint paths between v and r .

As Pm−n = ru and Gi contains inner(Pi) (Properties 6.2+3), Gi contains v and
r . According to Lemma 7, Gi is connected. Thus, Gi contains a third path between v

and r , which is edge-disjoint from the first two, as Gi and Gi are edge-disjoint. 	

Let G have a (2,1)-edge-order. Then Lemma 8 implies δ(G) ≥ 3. This in turn gives

that, for every vertex v, Plast(v) is not the first ear that contains v, which implies that
Plast(v) must have v as endpoint. In particular, if vw is an edge and last(v) = last(w) =
birth(vw), Pbirth(vw) is the short ear vw and, according to the non-separateness of D,
we have i = m − n, which implies vw = ru.

123

1888 Algorithmica (2019) 81:1881–1900

Lemma 9 For any vertex v, Plast(v) has v as an endpoint. For any edge vw satisfying
last(v) = last(w) = birth(vw), vw = ru.

The converse of Lemma 8 is also true: if G is 3-edge-connected, G has a (2,1)-
edge-order. This gives a full characterization of 3-edge-connected graphs; however,
proving the latter direction is more involved than Lemma 8. In the next section, we
will prove the stronger statement that such a (2,1)-edge-order does not only exist but
can actually be computed efficiently.

5 Computing a (2,1)-Edge-Order

At the heart of our algorithm is the following classical construction of 3-edge-
connected graphs due to Mader.

Definition 10 The following operations on graphs are called Mader-operations (see
Fig. 3).

(a) vertex–vertex-addition Add an edge between the not necessarily distinct vertices
v and w (possibly a parallel edge or, if v = w, a self-loop).

(b) edge–vertex-addition Subdivide an edge ab with a vertex v and add the edge vw

for a vertex w.
(c) edge–edge-addition Subdivide two distinct edges ab and cd with vertices v and

w, respectively, and add the edge vw.

The edge vw is called the added edge of the Mader-operation. Let K 3
2 be the graph

that consists of exactly two vertices and three parallel edges.

Theorem 11 ([20]) A graph G is 3-edge-connected if and only if G can be constructed
from K 3

2 using Mader-operations.

According to Theorem 11, applyingMader-operations on 3-edge-connected graphs
preserves 3-edge-connectivity. We will call a sequence of Mader-operations that
constructs a 3-edge-connected graph a Mader-sequence. It has been shown that a
Mader-sequence can be computed efficiently.

Theorem 12 ([22, Theorem 4]) A Mader-sequence of a 3-edge-connected graph can
be computed in time O(n + m).

Our algorithm for computing a (2,1)-edge-order works as follows. Assume we
want a (2,1)-edge-order of G through r t and avoiding ru. We first compute a suitable

v

w
⇒

v

w

a bv

w
⇒

a b

w

⇒
a b

c d

v

w

a b

c d

(a) (b) (c)

Fig. 3 Mader-operations. a vertex–vertex-addition: v = w is allowed. b edge–vertex-addition: w ∈ {a, b}
is allowed. c edge–edge-addition: a, b ∈ {c, d} is allowed

123

Algorithmica (2019) 81:1881–1900 1889

Fig. 4 A (2,1)-edge-order of K 3
2

through r t and avoiding ru

rt ru

P0

r

t/u

P1

Mader-sequence of G using Theorem 12 and start with a (2,1)-edge-order of its first
graph K 3

2 . This (2,1)-edge-order is easy to find (see Fig. 4). The crucial part of the
algorithm is then to iteratively modify the given (2,1)-edge-order to a (2,1)-edge-order
of the next graph in the sequence efficiently.

There are several technical difficulties to master. First, the edges r t and ru may
be contained in different 2-connected components A′ and B ′ (implying that r is a
cut-vertex). As this would raise problems in the computation of the initial K 3

2 later,
we perform in such a case the following reduction in advance. Let A be the connected
component of G\{r} containing t , A := G[V (A) ∪ {r}] and B := G\V (A) (note
that r may still be a cut-vertex of B). Since r is a cut-vertex of G, A and B are still
3-edge-connected. We compute a (2,1)-edge-order DA of A through r t avoiding an
arbitrary edge ru A ∈ A′\{r t}, and a (2,1)-edge-order DB of B through an arbitrary
edge r tB ∈ B ′\{ru} avoiding ru. Then concatenating DA with DB gives a (2,1)-edge-
order of G. Hence, we assume from now on that r t and ru are in the same 2-connected
component of the input graph G.

Second, the edge r t (and analogously ru) of G is not necessarily contained in
the previous graph of the Mader-sequence, as it may have been created by a Mader-
operation that subdivided a previous edge r t with the new vertex t (a more general
view on this dynamics follows from the bijection between the graphs H of the
Mader-sequence and H -subdivisions that are contained in G as subgraphs [22, Theo-
rem+Corollary 1]; we refer to [27, Sections 2.3 and 4] for details of this bijection). In
such cases, we take t as replacement vertex for t (and likewise u for u) in the previous
graph, and iterate this procedure to obtain replacement vertices for t and u in the graph
before that previous graph, and so forth. This way, the replacement vertices t and u in
any graph of the Mader-sequence containing r are neighbors of r .

Now a special Mader-sequence is used to harness the dynamics of the vertices r ,
t and u: choose a DFS-tree of G with root r such that r t and ru are backedges (this
is possible, since r has degree at least three) and compute a Mader-sequence of this
DFS-tree that contains these two edges in its initial K 3

2 (this is possible, since r t and
ru are in the same 2-connected component of G). This way the K 3

2 consists of the
two vertices r and t = u by the construction of [22, p. 6], and thus all graphs in the
Mader-sequence contain r (and t and u are always neighbors of r). The vertices t
and u are not present in this initial K 3

2 unless they are identical to t = u (they are
however contained in the two paths from r to t = u of the K 3

2 -subdivision the bijection
maps to). For every graph in the Mader-sequence, we will compute a (2,1)-edge-order
through r t and avoiding ru using the previous (2,1)-edge-order (which depends on

123

1890 Algorithmica (2019) 81:1881–1900

the previous and possibly different replacement vertices); then the choice of t and u
ensures that the final (2,1)-edge-order of G is indeed through r t and avoids ru, as
desired.

Thus, consider a graph G of the above Mader-sequence for which we know a (2,1)-
edge-order D and let G ′ be the next graph in that sequence. Then G ′ is only one
Mader-operation away and we aim for an efficient modification of D into a (2,1)-
edge-order D′ of G ′. We will prove that there is always a modification that is local
in the sense that the only ears that are modified are “near” the added edge of the
Mader-operation.

Lemma 13 Let D = (P0, P1, . . . , Pm−n) be a (2,1)-edge-order of a 3-edge-connected
graph G through rt and avoiding ru for replacement vertices t and u. Let G ′ be
obtained from G by applying one Mader-operation � and let t ′ and u′ be the replace-
ment vertices of G ′. Then a (2,1)-edge-order D′ of G ′ through rt ′ avoiding ru′ can be
computed from D using only constantly many amortized constant-time modifications.

Lemma13 is ourmain technical contribution andwe split its proof into the following
three sections. First,we introduce the operations leg,belly andhead in order to combine
several cases that can be handled similarly for the different types of �. Second, we
show how to modify D to D′ and, third, we discuss computational issues.

For all three sections, let vw be the added edge of � such that v subdivides the edge
ab ∈ E(G) and w subdivides cd ∈ E(G) (if applicable). Thus, the vertex t ′ in G ′ is
either t , v or w, and the vertex u′ in G ′ is either u, v or w (hence, t ′r and ru′ will
never be self-loops). In all three sections, birth and last will always refer to D, unless
stated otherwise.

Let Pi �= P0 be an ear with a given orientation and let x be a vertex in Pi (the
assumed orientation will fix the start- and/or endvertex of ears in the following two
definitions). If Pi is a path, we define Pi [, x] and Pi [x,] as the maximal subpaths of
Pi that end and start at x , respectively; if Pi is a cycle, we take the same definition with
the additional restriction that Pi [, x] starts at qi and Pi [x,] ends at qi . Occasionally,
the orientation of Pi will not matter; if none is given, an arbitrary orientation can be
taken. For paths A and B, let A + B be the concatenation of A and B.

5.1 Legs, Bellies and Heads

While the operations leg and belly are inspired by the ones in [30], the operation head
is new. All three operations will show for some special cases how D can be modified
to a (2,1)-edge-order D′. A complete description for all cases (using these operations)
will be given in the next section.

5.1.1 Legs

Let � be either an edge–vertex-addition such that ab �= ru and last(w) < birth(ab)

or an edge–edge-addition such that ab �= ru and birth(cd) < birth(ab). If Pbirth(ab) is
long, at least one of a and b is an inner vertex, sayw.l.o.g. b. Otherwise, Pbirth(ab) = ab
is short and, as D is non-separating, at least one ofa andb, sayw.l.o.g.b, has an incident

123

Algorithmica (2019) 81:1881–1900 1891

Fig. 5 The result of operation
leg (dashed lines), black vertices
are in Gbirth(ab)−1

a b

w

v

edge in Gbirth(ab) (note that this requires ab �= ru). In both cases, orient Pbirth(ab) from
a to b. The operation leg constructs D′ from D by replacing the ear Pbirth(ab) of D by
the two consecutive ears Pbirth(ab)[, a]+av + vw and vb + Pbirth(ab)[b,] in that order
and, if � is an edge–edge-addition, additionally subdividing the edge cd in Pbirth(cd)

with w (see Fig. 5). Note that this definition is well-defined also for cycles Pbirth(ab),
including self-loops.

We claim that D′ is a (2,1)-edge-order through r t ′ avoiding ru′. Assume first that �
is an edge–vertex-addition. Since last(w) < birth(ab), we conclude thatw /∈ Pbirth(ab)

(w has no incident edge “left” in Gbirth(ab)−1). For the same reason, birth(ab) > 0.
Hence, no matter whether Pbirth(ab) is a path or a cycle,w and the one or two endpoints
of Pbirth(ab) are contained in Gbirth(ab)−1. Since D′ partitions E(G ′), this implies that
D′ is an ear decomposition. If � is an edge–edge-addition, birth(cd) ≤ birth(ab)

gives a very similar argument.
It remains to prove that D′ satisfies Properties 6.1–3. The first is true, as r t ∈ P0

is only affected when birth(cd) = 0 and when r t is subdivided by w; then w = t ′
in G ′ and r t ′ ∈ P ′

0, as claimed. The second is true, as cd �= ru and, by assumption,
ab �= ru; hence, the last ear ru does not change. For the non-separateness of D′, it
suffices to consider the two modified ears Pbirth(cd) and Pbirth(ab), as all other ears still
satisfy non-separateness. Since the only new inner vertex w in P ′

birth(cd) is incident

to the edge wv ∈ G ′
birth(cd), P ′

birth(cd) is also non-separating. It remains to consider
the two new ears P ′

birth(ab) = Pbirth(ab)[, a] + av + vw and P ′
birth(ab)+1 = vb +

Pbirth(ab)[b,]. All inner vertices of these ears except for the new vertex v inherit
their non-separateness directly from Pbirth(ab). Since v is incident to vb, the long ear
P ′

birth(ab) is non-separating and, if P ′
birth(ab)+1 is long, P ′

birth(ab)+1 is non-separating
as well. Otherwise P ′

birth(ab)+1 = vb is short and Pbirth(ab) cannot be long due to our
assumed orientation. Hence, Pbirth(ab) = ab and the assumed orientation implies that
b has an incident edge in Gbirth(ab), which gives that P ′

birth(ab)+1 is non-separating as
well.

5.1.2 Bellies

Let � be either an edge–vertex-addition such that last(w) = birth(ab) and w /∈ {a, b}
or an edge–edge-addition such that birth(cd) = birth(ab) (note that c, d ∈ {a, b} is
allowed.) Consider the shortest path in Pbirth(ab) from an endpoint to one of the vertices
{a, b}, say w.l.o.g. b, such that w is contained in this path. We orient Pbirth(ab) from a
to b. Pbirth(ab) is a long ear with b as inner vertex. If � is an edge–edge-addition, one
of the vertices {c, d}, say w.l.o.g. c, is contained in Pbirth(ab)[, w].

If birth(ab) > 0, the operation belly constructs D′ from D by replacing the ear
Pbirth(ab) of D by the two consecutive ears Pbirth(ab)[, a]+av+vw+Pbirth(ab)[w,] and

123

1892 Algorithmica (2019) 81:1881–1900

a v b

c
w

a v b

c
w

r
P0,1 P0,2

Fig. 6 The result of the operation belly (dashed lines)

vb+ Pbirth(ab)[b, w] in that order (if edge–vertex-addition) and by the two consecutive
ears Pbirth(ab)[, a] + av + vw + wd + Pbirth(ab)[d,] and vb + Pbirth(ab)[b, c] + cw
(if edge–edge-addition), see Fig. 6. Note that this definition is well-defined also if
Pbirth(ab) is a cycle. If birth(ab) = 0, the vertices v and w cut P0 in two distinct paths
P0,1 and P0,2 having endpoints v and w. Let P0,1 be the path containing r . Then the
operation belly constructs D′ from D by replacing the ear Pbirth(ab) of D by the two
consecutive ears P0,1 + vw and P0,2 in this order. If r t ∈ {ab, cd}, then either v = t ′
or w = t ′, respectively.

We claim that D′ is a (2,1)-edge-order through r t ′ avoiding ru′. No matter whether
Pbirth(ab) is a path or a cycle, the one or two endpoints of it are contained in Gbirth(ab)−1
and D′ partitions E(G ′), so clearly D′ is an ear decomposition.

It remains to prove that D′ satisfies Properties 6.1–3. The first is true, as r t ∈ P0
is only affected when birth(ab) = 0. Then, if r t is subdivided by v or w, v = t ′
or w = t ′ in G ′, and r t ′ ∈ P ′

0, as claimed. The second is true, as ru /∈ {ab, cd}
(Pbirth(ab) �= {ru} as it is a long ear and birth(cd) = birth(ab)); hence, the last
ear ru does not change. For the non-separateness of D′, it again suffices to consider
the modified ear Pbirth(ab). First, assume birth(ab) > 0. Consider the two new ears
P ′

birth(ab) = Pbirth(ab)[, a] + av + vw + Pbirth(ab)[w,] (respectively, P ′
birth(ab) =

Pbirth(ab)[, a]+av+vw+wd+Pbirth(ab)[d,] if edge–edge-addition) and P ′
birth(ab)+1 =

vb + Pbirth(ab)[b, w] (respectively, P ′
birth(ab)+1 = vb + Pbirth(ab)[b, c] + cw if edge–

vertex-addition). All inner vertices of these ears except for the new vertex v (and w,
if edge–edge-addition) inherit their non-separateness directly from Pbirth(ab). Since
v is incident to vb (and w is incident to wc, if edge–edge-addition), the long ear
P ′

birth(ab) is non-separating and P ′
birth(ab)+1, which is long as it contains b as inner

vertex, is non-separating as well. If birth(ab) = 0, very similar arguments show the
non-separateness of the new ears.

5.1.3 Heads

Let � be an edge–vertex-addition such that w ∈ {a, b}, last(a) = birth(ab) and, if
ab = ru, then r �= a. W.l.o.g. let w = a. Then a is an endpoint of Pbirth(ab) (Pbirth(ab)

cannot be a self-loop, as last(a) = birth(ab)). We orient Pbirth(ab) from a to b. The
operation head constructs D′ from D by replacing the ear Pbirth(ab) of D by the two
consecutive ears av + va and vb + Pbirth(ab)[b,] in that order (see Fig. 7). Note that
this definition is well-defined also for cycles Pbirth(ab).

We claim that D′ is a (2,1)-edge-order through r t ′ avoiding ru′. Clearly, D′ is an
ear decomposition. Property 6.1 is true, as birth(ab) = last(a) > 0 and, hence, the

123

Algorithmica (2019) 81:1881–1900 1893

first ear does not change. Property 6.2 is true, as the last ear is only affected when
birth(ab) = ru and r �= a; then v = u′ in G ′ and the last ear in D′ is ru′, as claimed.
For the non-separateness of D′, we consider the two new ears P ′

birth(ab) = av+va and
P ′

birth(ab)+1 = vb + Pbirth(ab)[b,]. P ′
birth(ab) is a long ear with v as only inner vertex.

Since v is incident to vb, P ′
birth(ab) is non-separating. All inner vertices of P ′

birth(ab)+1
inherit their non-separateness directly from Pbirth(ab) and so, if P ′

birth(ab)+1 is long,
P ′

birth(ab)+1 is non-separating as well. Otherwise, if P ′
birth(ab)+1 = vb is short, then

either last(b) > last(a) and so b has an incident edge in Gbirth(ab), which gives that
P ′

birth(ab)+1 is non-separating as well. If last(b) = last(a) then ab = ru (Lemma 9)
and the ear P ′

birth(ab)+1 is the last ear of D′ and does not have to satisfy the non-
separateness.

5.2 Modifying D to D′

We will now show how to obtain a (2,1)-edge-order D′ through r t ′ avoiding ru′ from
D. By symmetry, assume w.l.o.g. that birth(ab) ≥ birth(cd). Note that applying the
operations belly, leg and head preserves all properties of a (2, 1)-edge-order. Recall
that, for every subdivision the Mader-sequences does on r t or ru, respectively, the
subdividing vertex is t ′ or u′, as explained after Fig. 4. We have the following case
distinctions:

1. � is a vertex–vertex-addition (see Fig. 3a)

(a) vw is a self-loop at v (v = w): obtain D′ from D by adding the new short ear vv

directly after the ear Plast(v)−1. This ensures that the new ear is non-separating.
(b) v �= w and vw �= {r t, ru}: if last(v) ≤ last(w), D′ is obtained from D by

adding the new short ear vw directly after the ear Plast(w)−1, ensuring that the
new ear is non-separating. If last(v) > last(w), the new short ear vw is added
directly after the ear Plast(v)−1.

(c) vw = r t (the added edge is a parallel edge): the Mader-sequence gives us the
information whether r t is r t ′ or the new added edge is r t ′. If r t = r t ′ then add
the new edge immediately after the ear Plast(t)−1. Otherwise obtain D′ from
D by replacing r t with r t ′ in P0 and adding the old edge r t as an short ear
immediately after the ear Plast(t)−1.

(d) vw = ru (the added edge is a parallel edge): the Mader-sequence gives us the
information whether ru is ru′ or the new added edge is ru′. Depending on this
information, obtain D′ from D by either adding the new edge directly before
or directly after the last ear of D.

2. � is an edge–vertex-addition (see Fig. 3b)

(a) birth(ab) < last(w): obtain D′ from D by adding the new short ear vw directly
after the ear Plast(w)−1 and subdivide the ear Pbirth(ab) with v. This operation

Fig. 7 The dashed lines show
the result of the operation head ba v

123

1894 Algorithmica (2019) 81:1881–1900

is also well-defined when Pbirth(ab) is a cycle or self-loop. Also, the new ear
is non-separating and, since v is incident to w, the ear Pbirth(ab) remains non-
separating.

(b) last(w) < birth(ab) and ab �= ru: apply leg
(c) birth(ab) = last(w) and w /∈ {a, b}: apply belly.
(d) birth(ab) = last(w) and w ∈ {a, b}; if ab = ru, then r �= w: apply head.
(e) ab = ru and if birth(ab) = last(w) and w ∈ {a, b} then r = w: obtain D′

from D by replacing the ear ru by the two consecutive ears wv + vu and rv.

3. � is an edge–edge-addition (see Fig. 3c)

(a) birth(ab) = birth(cd): apply belly.
(b) birth(ab) > birth(cd) and ab �= ru: apply leg.
(c) ab = ru: let w.l.o.g. r = a. Obtain D′ from D by replacing the last ear of D

by the two consecutive ears bv + vw and rv in this order.

In all cases, D′ is clearly an ear decomposition. Properties 6.1–3 are satisfied due
to the given case distinction and the mentioned properties. Hence, D′ is a (2, 1)-edge-
order through r t ′ avoiding ru′.

5.3 Computational Complexity

The reduction to a graph G that contains r t and ru in the same 2-connected component
can be computed in time O(m) by using the block-cut-tree (i.e., the tree of 2-connected
components) of the input graph. The desired Mader-sequence of G can be computed
by Theorem 12 in time O(m), when the initial DFS-tree is chosen as described above.

For proving Lemma 13, it remains to show that each of the constantly many modifi-
cations above can be computed in constant amortized time. Note that ears may become
arbitrarily long in the process and therefore may contain up to �(n) vertices. More-
over, we have to maintain the birth- and last-values in order to compute which subcase
of the last section applies. Thus, we cannot use the standard approach of storing the
ears of D explicitly by using doubly-linked lists, as then the birth-values of linearly
many vertices may change for every modification.

Instead, we will represent the ears as sets in a data structure for set splitting, which
maintains disjoint sets online under an intermixed sequence of find and split operations.
Gabow and Tarjan [11] discovered the first such data structure with linear space and
constant amortized time per operation. Their and our model of computation is the
standard unit-cost word-RAM. Imai and Asano [16] enhanced this data structure to
an incremental variant, which additionally supports adding single elements to certain
sets in constant amortized time. In both results, all sets are restricted to be intervals of
some total order. To represent the (2,1)-edge-order D in the path replacement process,
we will use the following more general data structure due to Djidjev [9, Section 3.2],
which is not limited to total orders and still supports the add-operation.

The data structure maintains a collection P of edge-disjoint paths under the fol-
lowing operations:

123

Algorithmica (2019) 81:1881–1900 1895

new_path(x,y): Creates a new path that consists of the edge xy. The edge xy
must not be in any other path of P .

find(e): Returns the integer-label of the path containing the edge e.
split(xy): Splits the path containing the edge xy into the two subpaths

from x to one endpoint and from x to the other endpoint of
that path.

sub(x,e): Modifies the path containing e by subdividing e with vertex
x .

replace(x,y,e): Neither x nor y may be an endpoint of the path Z containing
e. Cuts Z into the subpath from x to y and into the path that
consists of the two remaining subpaths of Z joined by the new
edge xy.

add(x,yz): The vertex y must be an endpoint of the path Z containing the
edge yz and x is either a new vertex or not in Z . Adds the new
edge xy to Z .

Note that all ears are not only edge-disjoint but also internally disjoint. Djidjev
proved that each of the above operations can be computed in constant amortized time
[9, Theorem 1]. We will only represent long ears in the data structure; the remaining
short ears can be simply maintained as edges. As the data structure can only store
paths, we store every cycle Pi as the union of two paths in Pi of which one is an
edge with endpoint qi (for P0, with endpoint r). For all paths of length at least two,
including all long paths Pi , we store its two endpoints at its find()-label. Thus, the
endpoints of all ears can be be accessed and updated in constant time.

This way, we store the ears of the initial (2,1)-edge-order of K 3
2 in constant total

time. Every modification of Sect. 5.2 can then be realized with a constant number of
operations of the data structure, and hence in amortized constant time.

Additionally, we need to maintain the order of the ears in D. Lemma 13 moves
and inserts in every step only a constant number of ears to specified locations of D.
Hence, we can maintain the order of ears in D by applying the order data structure
(as defined for (1,1)-edge-oders) to the find()-labels of ears; this costs amortized
constant time per step.

So far we could have maintained the order of ears also by using doubly-linked lists.
However, for deciding which of the subcases in Sect. 5.2 applies, we additionally need
to compare birth- and last-values of the vertices and edges involved in �. In fact, it
suffices to support the queries “birth(x) < birth(y)” and “birth(x) = birth(y)”, where
x and y may be edges or vertices, and analogous queries on the last-values of vertices.
If x and y are edges, both birth-queries can be computed in constant amortized time
by comparing the labels find(x) and find(y) in the order data structure. In order
to allow birth-queries on vertices, we will store pointers at every vertex x to the two
edges e1 and e2 that are incident to x in Pbirth(x). The desired query involving birth(x)

can then be computed by comparing find(e1) in the order data structure.
For any new vertex x that is added to D, we can find e1 and e2 in constant time,

as these are in {av, vb, cw,wd, vw}. Since Pbirth(x) may change over time, we have
to update e1 and e2. The only situation in which Pbirthx) may loose e1 or e2 (but not
both) is a split or replace operation on Pbirth(x) at x (the split operation must be

123

1896 Algorithmica (2019) 81:1881–1900

followed by an add operation on x , as x is always inner vertex of some ear). This cuts
Pbirth(x) into two paths, each of which contains exactly one edge in {e1, e2}. Checking
find(e1) = find(e2) recognizes this case efficiently. Dependent on the particular
case, we compute a new consistent pair {e′

1, e′
2} that differs from {e1, e2} in exactly

one edge. Finally, the value last(x) for a vertex x can be maintained the same way as
birth(x) with the only difference that it links to (one edge of) the last ear containing x
instead of the first such ear. This allows to check the desired comparisons in amortized
constant time.

We conclude that D′ can be computed from D in amortized constant time. This
proves Lemma 13 and implies the following theorem.

Theorem 14 Given edges tr and ru of a 3-edge-connected graph G, a (2,1)-edge-
order D of G through tr and avoiding ru can be computed in time O(m).

The proposed algorithms for (1,1)-edge-orders and (2,1)-edge-orders (as well as
the computation of edge-independent spanning trees in the next section) are certifying
in the sense of [21]: for (1,1)-edge-orders through st , it suffices to check that every
edge e �= st has indeed a smaller and larger neighboring edge. For (2,1)-edge-orders,
it suffices to check in linear time that D is an ear decomposition of G and that D
satisfies Properties 6.1–3.

6 Edge-Independent Spanning Trees

Let k spanning trees of a graph be edge-independent if they all have the same root
vertex r and, for every vertex x �= r , the paths from x to r in the k spanning trees are
edge disjoint. The following conjecture was given 1984 by Itai and Rodeh.

Conjecture (Edge-Independent Spanning Tree Conjecture [17]) Every k-edge-
connected graph contains k edge-independent spanning trees.

The conjecture has been proven constructively for k ≤ 2 [17] and k = 3 [14] with
running times O(m) and O(n2), respectively, for computing the corresponding edge-
independent spanning trees. Recently, by using the approach presented in this paper,
the conjecture has also been proven for k = 4 by the existence of a (2, 2)-edge-order
[15]. For every k ≥ 5, the conjecture is open. We first give a short description of an
algorithm for k = 2 and then show the first linear-time algorithm for k = 3.

For k = 2, compute the (1,1)-edge-order < through tr using Lemma 5. The first
tree T1 consists of the edges min(x) for all vertices x �= r (as defined in Lemma 5),
while the second tree T2 consists of tr and the edges max(x) for all vertices x /∈ {r , t}.
Then T1 and T2 are spanning, as no edge can be taken twice, and edge-independent,
as, from every vertex x , the path of smaller edges to r obtained by iteratively applying
min() must be edge-disjoint from the path of larger edges to r .

For k = 3, choose any vertex r and two distinct edges tr and ru in the 3-edge-
connected graph G. Compute a (2,1)-edge-order D through tr and avoiding ru in
time O(m) using Theorem 14. For every vertex x ∈ V , the idea is now to find two
edge-disjoint paths from x to r in Gbirth(x) (after all, Gbirth(x) is 2-edge-connected

123

Algorithmica (2019) 81:1881–1900 1897

and thus contains a (1,1)-edge-order) and a third path from x to r in Gbirth(x) using
the non-separateness of D. The subtle part is to make this idea precise: we have to
construct the first tree T1 in such a consistent way that the paths of smaller edges from
x to r for all vertices x ∈ V are contained in T1 (and the same for T2 and paths of
larger edges).

For a (1,1)-edge-order < through tr of G, let a spanning tree T1 ⊆ G be down-
consistent to a given (2,1)-edge-order through tr if (a) every path in T1 to r is strictly
decreasing in < and (b) for every 0 ≤ i ≤ m − n, T1 ∩ Gi is a spanning tree of Gi

(analogously, up-consistent spanning trees T2 ofG−r are defined by strictly increasing
paths to t). Now let a (1,1)-edge-order be consistent to a given (2,1)-edge-order D′
if G contains r -rooted spanning trees T1 and T2 that are down- and up-consistent to
D′, respectively. By the very same argument as used for k = 2, T1 and T2 + tr are
edge-independent and, in addition, do not use any edge of Gbirth(x) for any x ∈ V .

In fact, the special (1,1)-edge-order that is computed by Lemma 5 is consistent to
D: there, the trees T1 and T2 consist of the edges min(x) and max(x) for x ∈ V , which
makes T1 down-consistent and T2 + tr up-consistent to D (see Fig. 8a). We note that
a simpler definition of consistent as used for the vertex-variant [6], i.e., as orders that
remain (1,1)-edge-orders for all subgraphs Gi , 0 ≤ i ≤ m − n, does not suffice here
(see Fig. 8b).

It remains to construct the third edge-independent spanning tree. For every edge
e �= ru of G, we compute a pointer to an arbitrary neighboring edge e′ in Gbirth(e). This
edge e′ exists, as D is non-separating, and satisfies birth(e′) > birth(e). Similarly,
for every vertex x ∈ V − r − u, we compute a pointer to an incident edge e′ of
x with birth(e′) > birth(x). Both computations take linear total time by comparing
birth values. The third edge-independent spanning tree is then the union of ur and the
u-rooted spanning tree of G − r that interprets the pointers as parent edges. Hence,
we obtain the following theorem.

Theorem 15 Given the two edges rt and ru of a 3-edge-connected graph G, three
edge-independent spanning trees of G rooted at r (such that two of them contain rt
and ru as unique root edges, respectively) can be computed in time O(m).

2 3

57

17
12

6

18

19

8

13
14

16

r

t

u

11

1

15

9

104a

b

c

d

e

f

g

h

2 3

511

17
12

10

18

19

9

13
14

16

r

t

u

6

1

15

7

84a

b

c

d

e

f

g

h

(a) (b)

Fig. 8 (1,1)-edge-orders that are consistent and not consistent to the (2,1)-edge-order of Fig. 2.aAconsistent
order < and the resulting three edge-independent spanning trees. b Although < is a (1,1)-edge-order for
every Gi , 0 ≤ i ≤ m −n,< is not consistent: any down-consistent tree contains the root-paths 12, 11, 10, 2
in G2 and 6, 5, 3, 2 in G5, which implies a cycle

123

1898 Algorithmica (2019) 81:1881–1900

r

t u

b

a

1 2 3 4

5

6

9

8

7

P0

P1

P2

P3
P4

P5

P6

P7

P8

r

2

t

t̂

5

6

û

7

8

9 u

b

a

3

r

2

t

t̂

3

5

6

û

7

9 u

b

a

8

r

t u

b

a

1 2 3 4

5

6

9

8

7

(a)

(b)

(c)

(d)

Fig. 9 The reduction [12] cannot be applied to find edge-independent spanning trees directly, as it may
construct cycles. a A 3-edge-connected graph G. b The 3-connected graph Ĝ to which G is reduced to
using [12], and a (2,1)-order of Ĝ through r t̂ avoiding û (t and u have to be replaced, as Ĝ does not contain
r t and ru anymore). Gray lines depict short ears. c The three vertex-independent spanning trees T1, T2, T3
of Ĝ implied by the (2,1)-order of Ĝ [30]. d The corresponding subgraphs of T1, T2 and T3 in G. The red
subgraph contains a cycle

Relation to vertex-independent spanning trees. The conjecture above has also
received considerable attention for the vertex-case. Recently, a linear-time algorithm
for computing three vertex-independent spanning trees of a 3-connected graph was
given by [30]. Similarly as for the more general (2,1)-edge-orders, one could be inter-
ested why the reduction from k-edge- to k-vertex-connectivity by Galil and Italiano
[12] cannot be applied to modify the 3-edge-connected input graph G to a 3-connected
one such that three vertex-independent spanning trees of the latter give three edge-
independent spanning trees of G.

The reason is that, although such a reduction attempt is able to give three edge-
disjoint paths between two given vertices, for multiple vertex pairs, the union of these
paths may form cycles (see Fig. 9). As argued in the introduction, such a reduction
could indeed be elusive, as we do not know any way of reducing the existence of
edge-independent spanning trees to the existence of their vertex-counterpart.

123

Algorithmica (2019) 81:1881–1900 1899

Fig. 10 A 3-edge-connected
graph G (some edges are not
drawn). G is obtained from the
3-edge-connected graph
G′ := (G − v) ∪ xy by
performing a Mader-operation
(or inverse contraction) that adds
the vertex v (the added edge is
thus vy). Two of the three
edge-independent spanning trees
of G′ are given, rooted at r
(thick edges). However, not both
of them can be extended to v.

Direct induction. It may also seem tempting to compute the spanning trees directly
without using a (2,1)-edge-order, e.g. by local replacements in an induction over either
Mader-operations or inverse contractions.However,without additional restrictions this
is bound to fail, as shown in Fig. 10.

7 Conclusion

We established the new unifying concept of edge-orders, which is an analogue of
canonical orders and their generalizations for edge-connectivity. We showed that st-
edge-numberings a.k.a. (1, 1)-edge-orders fit into this concept, showed a simple linear-
time algorithm for constructing these, and proposed the first linear-time algorithm that
computes (2, 1)-edge-orders.

Additionally, we gave a first application by presenting the first linear time algorithm
to compute three edge-independent spanning trees of a 3-edge-connected graph.

As a crucial open problem, we ask whether there are any pairs (k, �) other than
(1, 1), (2, 1) and (2, 2) such that every (k + �)-edge-connected graph has a (k, �)-
edge-order (for an appropriate quantification of i).

References

1. Annexstein, F., Berman, K., Swaminathan, R.: Independent spanning trees with small stretch factors.
Technical Report 96-13, DIMACS (June 1996)

2. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. J. Graph Algorithms Appl. 15(1),
97–126 (2011)

3. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for
maintaining order in a list. In: Proceedings of the 10th European Symposium on Algorithms (ESA’02),
pp. 152–164 (2002)

4. Biedl, T., Derka, M.: The (3,1)-ordering for 4-connected planar triangulations. J. Graph Algorithms
Appl. 20(2), 347–362 (2016)

5. Biedl, T., Schmidt, J.M.: Small-area orthogonal drawings of 3-connected graphs. In: Proceedings of
the 23rd International Symposium on Graph Drawing (GD’15), pp. 153–165 (2015)

123

1900 Algorithmica (2019) 81:1881–1900

6. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees
in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

7. Curran, S., Lee, O., Yu, X.: Chain decompositions of 4-connected graphs. SIAM J. Discrete Math.
19(4), 848–880 (2005)

8. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of planar graphs. In:
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88), pp. 426–433
(1988)

9. Djidjev, H.N.: A linear-time algorithm for finding a maximal planar subgraph. SIAM J. Discrete Math.
20(2), 444–462 (2006)

10. Even, S., Tarjan, R.E.: Computing an st-Numbering. Theor. Comput. Sci. 2(3), 339–344 (1976)
11. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput.

Syst. Sci. 30(2), 209–221 (1985)
12. Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. SIGACT News 22(1),

57–61 (1991)
13. Gopalan, A., Ramasubramanian, S.: A counterexample for the proof of implication conjecture on

independent spanning trees. Inf. Process. Lett. 113(14–16), 522–526 (2013)
14. Gopalan, A., Ramasubramanian, S.: IP fast rerouting and disjoint multipath routing with three edge-

independent spanning trees. IEEE/ACM Trans. Netw. 24(3), 1336–1349 (2016)
15. Hoyer, A., Thomas, R.: Four edge-independent spanning trees. SIAM J. DiscreteMath. 32(1), 233–248

(2018)
16. Imai, H., Asano, T.: Dynamic orthogonal segment intersection search. J. Algorithms 8(1), 1–18 (1987)
17. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. In: 25th Annual

Symposium on Foundations of Computer Science (FOCS’84), pp. 137–147 (1984)
18. Kant, G.: Drawing planar graphs using the lmc-ordering. In: Proceedings of the 33th Annual Sympo-

sium on Foundations of Computer Science (FOCS’92), pp. 101–110 (1992)
19. Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual Symposium

on Foundations of Computer Science (FOCS’85), pp. 464–467 (1985)
20. Mader, W.: A reduction method for edge-connectivity in graphs. In: Bollobás, B. (ed.) Advances

in Graph Theory. Annals of Discrete Mathematics, vol. 3, pp. 145–164. North-Holland, Amsterdam
(1978)

21. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev.
5(2), 119–161 (2011)

22. Mehlhorn, K., Neumann, A., Schmidt, J.M.: Certifying 3-edge-connectivity. Algorithmica 77(2), 309–
335 (2017)

23. Mondshein, L.F.: Combinatorial Ordering and the Geometric Embedding of Graphs. Ph.D. thesis,
M.I.T. Lincoln Laboratory/Harvard University (1971). Technical Report available at www.dtic.mil/
cgi-bin/GetTRDoc?AD=AD0732882. Accessed 11 Sept 2018

24. Nagai, S., Nakano, S.: A linear-time algorithm to find independent spanning trees in maximal planar
graphs. In: 26th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’00),
pp. 290–301 (2000)

25. Nakano, S., Rahman, M.S., Nishizeki, T.: A linear-time algorithm for four-partitioning four-connected
planar graphs. Inf. Process. Lett. 62(6), 315–322 (1997)

26. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math.
Mon. 46(5), 281–283 (1939)

27. Schmidt, J.M.: Construction sequences and certifying 3-connectedness. In: Proceedings of the 27th
Symposium on Theoretical Aspects of Computer Science (STACS’10), pp. 633–644 (2010)

28. Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett. 113(7), 241–244
(2013)

29. Schmidt, J.M.: The Mondshein sequence. In: Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP’14), pp. 967–978 (2014)

30. Schmidt, J.M.: Mondshein sequences (a.k.a. (2,1)-orders). SIAM J. Comput. 45(6), 1985–2003 (2016)
31. Whitney, H.: Non-separable and planar graphs. Trans. Am. Math. Soc. 34(1), 339–362 (1932)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882
www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882

	Edge-Orders
	Abstract
	1 Introduction
	1.1 Vertex-Connectivity Versus Edge-Connectivity

	2 Preliminaries
	3 The (1,1)-Edge-Order
	4 The (2,1)-Edge-Order
	5 Computing a (2,1)-Edge-Order
	5.1 Legs, Bellies and Heads
	5.1.1 Legs
	5.1.2 Bellies
	5.1.3 Heads

	5.2 Modifying D to D
	5.3 Computational Complexity

	6 Edge-Independent Spanning Trees
	7 Conclusion
	References

