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Abstract
While every instance of the Hospitals/Residents problem admits a stable matching, the
problem with lower quotas (HR-LQ) has instances with no stable matching. For such
an instance, we expect the existence of an envy-free matching, which is a relaxation of
a stable matching preserving a kind of fairness property. In this paper, we investigate
the existence of an envy-free matching in several settings, in which hospitals have
lower quotas and not all doctor–hospital pairs are acceptable. We first provide an
algorithm that decides whether a given HR-LQ instance has an envy-free matching or
not. Then, we consider envy-freeness in the Classified Stable Matching model due to
Huang (in: Procedings of 21st annual ACM-SIAM symposium on discrete algorithms
(SODA2010), SIAM, Philadelphia, pp 1235–1253, 2010), i.e., each hospital has lower
and upper quotas on subsets of doctors. We show that, for this model, deciding the
existence of an envy-free matching is NP-hard in general, but solvable in polynomial
time if quotas are paramodular.

Keywords Stable matchings · Envy-free matchings · Lower quotas · Polynomial
time algorithm · Paramodular functions

1 Introduction

Since the seminal work of Gale and Shapley [13], the Hospitals/Residents problem
(HR, for short), or the College Admission problem, has been studied extensively [17,
26,35]. They proposed an algorithm that finds a stable matching in linear time for
every instance. In this problem, each hospital has an upper quota for the number of
doctors assigned to it. In some applications, each hospital also has a lower quota for
the number of doctors it receives. That is, we want to consider the Hospitals/Residents
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problem with lower quotas (HR-LQ, for short). Unfortunately, for HR-LQ, we cannot
ensure the existence of a stable matching. However, it is easy to decide whether there
is a stable matching or not for a given HR-LQ instance, because the number of doctors
assigned to each hospital is identical for any stable matching (according to the well-
known Rural Hospitals Theorem [14,32–34]).

When a given HR-LQ instance has no stable matching, one natural approach is
to weaken stability concept while preserving some kind of fairness. Envy-freeness
[38] (also called fairness in the school choice literature [8,16]) of matchings is a
relaxation of stability obtained by giving up efficiency. Similarly to stability, envy-
freeness forbids the existence of a doctor who has justified envy toward some other
doctor, but it tolerates the existence of a doctor who claims a hospital’s vacant seat.
The importance of envy-freeness and its variants has recently been recognized in the
context of constrained matching [4,8,16,24,25], and structural properties of envy-free
matchings were investigated in [38].

Envy-free matchings naturally arise when we find a matching in the following ad
hoc manner. For an HR-LQ instance, suppose that we find a stable matching while
disregarding the lower quotas, and that the obtained matching does not meet the lower
quotas. Let us reduce the upper quotas of hospitals that receive many doctors, and
again find a stable matching while disregarding the lower quotas, and repeat. If we
find a stable matching that meets the lower quotas after repeating such adjustments,
then the obtained matching is an envy-free matching of the original instance (see
Proposition 2.4).

Because an envy-free matching is a relaxation of a stable matching, it is more
likely to exist. Indeed, if all doctor–hospital pairs are acceptable and the sum of lower
quotas of all hospitals does not exceed the number of doctors, then we can ensure the
existence of an envy-free matching (this follows from the results of Fragiadakis et al.
[8]). However, if not all pairs are acceptable, then even an envy-free matching may fail
to exist. Moreover, deciding the existence of an envy-free matching is not so simple
because envy-free matchings have different sizes unlike stable matchings.

Our Contribution In this paper, we study envy-free matchings for the HR-LQ model
and its generalizations. In our models, not all doctor–hospital pairs are acceptable (i.e.,
preference lists are incomplete).

We first investigate envy-free matchings in the setting of HR-LQ. We provide the
following characterization of the existence of an envy-free matching. Let I be a given
HR-LQ instance and let I ′ be an HR instance obtained from I by removing lower
quotas and replacing upper quotas with the original lower quotas. We prove that I
has an envy-free matching if and only if every hospital is full in a stable matching
of I ′ (Theorem 2.6). Combined with the rural hospitals theorem, this characterization
yields an efficient algorithm to decide the existence of an envy-free matching for an
HR-LQ instance. That is, we can decide it by finding a stable matching for the HR
instance whose upper quotas are the original lower quotas, and checking whether all
hospitals are full or not.

Next, wemove to a generalizedmodel, in which each hospital imposes an upper and
a lower quota on each subset of doctors. That is, we consider an envy-free matching
version of Huang’s Classified Stable Matching [23] (CSM, for short). (See “Related
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Works” below for results on stable matchings of CSM and its generalizations.) In
Huang’s original model, each hospital has a family of sets of doctors, called classes,
and each class has an upper and a lower quota. We formulate this setting by letting
each hospital have a pair of set functions defined on the set of acceptable doctors.
These two functions respectively represent upper quotas and lower quotas. For this
model, we show that it is NP-hard to decide the existence of an envy-free matching,
even if the number of non-trivial quotas is linear (Theorem 2.6). The proof is by a
reduction from the NP-complete problem (3,B2)-SAT [2].

Then, we provide a tractable special case of CSM.We show that if the pair of lower
and upper quota functions of each hospital is paramodular [10] (see Sect. 4 for the
definition), then we can decide the existence of an envy-free matching in polynomial
time. Our proof utilizes the lattice fixed-point method for stable matchings [6,22]
and the generalized matroid structure of the family of acceptable doctor sets of each
hospital. A generalized matroid [36] (also called anM�-convex family [29]) is a family
of subsets satisfying a certain axiom called the exchange axiom. It is known that
a paramodular function pair defines a generalized matroid and vice versa. Because
constraints defined on a laminar (or hierarchical) family yield a generalized matroid,
our tractable special case includes a case in which each hospital defines quotas on a
laminar family of doctors.

Related Works Recently, the study of matching models with lower quotas has devel-
oped substantially [1,7,16,18,19,23,26,27]. The Hospitals/Residents problem with
lower quotas (HR-LQ) was first studied by Hamada et al. [18,19], who considered
the minimization of the number of blocking pairs subject to upper and lower quotas.
They showed the NP-hardness of the problem, gave an inapproximability result, and
provided an exponential-time exact algorithm. Motivated by the matching scheme
used in Hungary’s higher education sector, Biró et al. [3] considered a version of HR-
LQ in which hospitals (i.e., colleges) are allowed to be closed, i.e., each hospital is
assigned enough doctors or no doctor. They showed the NP-completeness to decide
the existence of a stable matching.

The Classified Stable Matching problem (CSM), proposed by Huang [23], is a
generalization of HR-LQ without hospital closures. In this model, each hospital (or
institute, inHuang’s terminology) has a classification of doctors (i.e., applicants) based
on their expertise and gives an upper and lower quota for each class. Huang showed
that it is NP-complete in general to decide the existence of a stable matching, and
proved that it is solvable in polynomial time if classes form a laminar family. For this
tractable special case, Fleiner and Kamiyama [7] gave a concise explanation in terms
of matroids, and their framework is generalized by Yokoi [39] to a framework with
generalized matroids.

To cope with the nonexistence of a stable matching in constrained matching models
(not only models with lower quotas but also with other types of constraints such as
regional constraints), several relaxations of stability have been proposed. See, e.g.,
Kamada and Kojima [24,25], Fragiadakis et al. [8], and Goto et al. [16]. Envy-freeness
is one of them that places emphasis on fairness rather than efficiency. Fragiadakis et
al. [8] provided a strategy-proof algorithm that always finds an envy-free matching (or
fair matching, in their terminology) of HR-LQ under the assumption that all doctor–
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hospital pairs are acceptable. The outcome of their mechanism also fulfills a second-
best efficiency (i.e., nonwastefulness) property. Their framework is generalized in
Goto et al. [16] so that regional quotas can be handled.

Here we compare our models with the above models. Unlike the models of Goto et
al. [16] and Kamada and Kojima [24,25], our models cannot handle regional quotas.
Instead, our CSM model (in Sects. 3 and 4) allows each hospital to have quotas on
classes of doctors, which are not dealt with in their models. The setting of a tractable
special case of CSMdescribed in Sect. 4 is equivalent to amany-to-one case of Yokoi’s
model [39], which studied stable matchings. Neither [39] nor the study in this paper
relies on the results of the other, while both of them utilize the matroid framework of
Fleiner [5,6].

The remainder of this paper is organized as follows. Sect. 2 investigates envy-free
matchings in the Hospitals/Residents problem with lower quotas (HR-LQ). In Sect. 3,
we define an envy-free matching in the classified stable matching (CSM) model,
and show the NP-hardness of its existence test. As its tractable special case, Sect. 4
presents results on CSM with paramodular quota functions. Proofs for the theorems
and corollary in Sect. 4 are provided in Sect. 5.

2 Envy-Freeness in HRwith Lower Quotas

In this section, we investigate envy-free matchings in the Hospitals/Residents problem
with lower quotas (HR-LQ).

There are two disjoint sets D and H , which represent doctors and hospitals, respec-
tively. A set of acceptable doctor–hospital pairs is denoted by E ⊆ D × H . For each
doctor d ∈ D, its acceptable hospital set is denoted by

A(d) := { h ∈ H | (d, h) ∈ E } ⊆ H ,

and d has a preference list (strict order) �d on A(d). Similarly, for each hospital
h ∈ H ,

A(h) := { d ∈ D | (d, h) ∈ E } ⊆ D,

and h has a preference �h on A(h). Each hospital h has a lower quota lh ∈ Z and an
upper quota uh ∈ Z with

0 ≤ lh ≤ uh ≤ |A(h)|.

We call a tuple I = (D, H , E,�DH , {(lh, uh)}h∈H ) an HR-LQ instance, where
�DH is an abbreviated notation for the union of {�d}d∈D and {�h}h∈H . In particular,
if lh = 0 for all h ∈ H , we call it anHR instance. An arbitrary subset M of E is called
an assignment. For any assignment M , we denote M(d) = { h ∈ A(d) | (d, h) ∈ M }
for each d ∈ D andM(h) = { d ∈ A(h) | (d, h) ∈ M } for each h ∈ H . If |M(d)| = 1,
the notation M(d) is also used to refer its single element.
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An assignment M is called a matching (or, said to be feasible) if |M(d)| ≤ 1
for each d ∈ D and lh ≤ |M(h)| ≤ uh for each h ∈ H . In a matching M , a
doctor d is unassigned (resp., assigned) if M(d) = ∅ (resp., |M(d)| = 1), and h is
undersubscribed (resp., full) if |M(h)| < uh (resp., |M(h)| = uh).

Definition 2.1 For a matching M , an unassigned pair (d, h) ∈ E \ M is a blocking
pair if (i) d is unassigned or h �d M(d) and (ii) h is undersubscribed or there is
d ′ ∈ M(h) with d �h d ′. A matching M is stable if there is no blocking pair.

For an HR instance, it is known that the algorithm of Gale and Shapley [13] always
finds a stable matching. The set of stable matchings has the following property.

Proposition 2.2 (“RuralHospitals” Theorem [14,32,34]) For a givenHR instance, any
two stable matchings M, M ′ satisfy |M(h)| = |M ′(h)| for every h ∈ H. Moreover
M(h) = M ′(h) if h is undersubscribed in M or M ′.

As mentioned in the Introduction, if hospitals have lower quotas, then we cannot
guarantee the existence of a stable matching anymore. By Proposition 2.2, however,
we can easily check the existence by finding a stable matching while disregarding
lower quotas, and checking whether the obtained matching meets lower quotas.

For an instance that has no stable matching, we want to obtain some matching that
still has a kind of fairness. As a relaxation of the concept of stability, envy-freeness
(also called fairness) of matchings has been proposed [8,38].

Definition 2.3 For amatchingM , a doctord has justified envy towardd ′ withM(d ′) =
h if (i) d is unassigned or h �d M(d) and (ii) d �h d ′. A matching M is envy-free if
no doctor has justified envy.

Note that, if d has justified envy toward d ′ with M(d) = h, then it means that
(d, h) is a blocking pair. Thus, stability implies envy-freeness. The envy-freeness of
a matching is also regarded as the stability with reduced upper quotas, as follows.

Proposition 2.4 For I = (D, H , E,�DH , {(lh, uh)}h∈H ), an assignment M is an
envy-free matching if and only if M is a stable matching of I ′ = (D, H , E,�DH , {(lh,
u′
h)}h∈H ) for some {u′

h}h∈H with u′
h ≤ uh (h ∈ H).

Proof The “if” part is clear because feasibility in I ′ implies that in I , and stability
implies envy-freeness. For the “only if” part, suppose that M is envy-free in I and set
u′
h := |M(h)| for each h ∈ H . Then, M is feasible for I ′ and all hospitals are full, and

hence there is no doctor who claims a hospital’s vacant seat. Because M is envy-free,
it is stable in I ′. �	
By Proposition 2.4, to check whether we can obtain a stable matching by reducing
upper quotas, it suffices to check for the existence of an envy-free matching.

Under the assumption that all doctor–hospital pairs are acceptable and the sum of
lower quotas does not exceed the number of doctors, Fragiadakis et al. [8] provided
a strategy-proof mechanism that always finds an envy-free matching. As a corollary,
we have the following.
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Fig. 1 An instance of HR-LQ with no envy-free matching

Proposition 2.5 For an instance I = (D, H , E,�DH , {(lh, uh)}h∈H ) such that E =
D × H and |D| ≥ ∑

h∈H lh, there exists an envy-free matching.

However, if not all pairs are acceptable, then even an envy-free matching may
not exist. Figure 1 shows an instance with D = {d1, d2}, H = {h1, h2}, E =
{(d1, h1), (d2, h1), (d2, h2)}, lh1 = lh2 = 1, and uh1 = uh2 = 2. For this instance,
M = {(d1, h1), (d2, h2)} is the unique feasiblematching, but it is not envy-free because
d2 has justified envy toward d1. Hence, there is no envy-free matching.

Note that an envy-free matching does exist if there is no lower quota, because
the empty matching is clearly envy-free. Therefore, the existence test of an envy-
free matching is non-trivial when incomplete lists and lower quotas are introduced
simultaneously. Here we provide a characterization.

Theorem 2.6 I = (D, H , E,�DH , {(lh, uh)}h∈H ) has an envy-free matching if
and only if some stable matching M ′ of the HR instance I ′ = (D, H , E,�DH ,

{(0, lh)}h∈H ) satisfies |M ′(h)| = lh for all h ∈ H.

Proof For the “if” part, let M ′ be a stable matching of I ′ satisfying |M ′(h)| = lh for
all h ∈ H . Then, M ′ is feasible for I ′ and no doctor has justified envy because M ′ has
no blocking pair. Thus, M ′ is an envy-free matching of I .

For the “only if” part, assume that I has an envy-free matching M . Suppose, to the
contrary, a stable matching M ′ of I ′ satisfies |M ′(h∗)| < lh∗ for some h∗ ∈ H . Let us
denote N = M \ M ′ and N ′ = M ′ \ M . For every h ∈ H , because |M ′(h)| ≤ lh ≤
|M(h)|, we have |N ′(h)| ≤ |N (h)|. In particular, |N ′(h∗)| < |N (h∗)| follows from
|M ′(h∗)| < lh∗ .

Consider a bipartite graph G = (D, H ; N ∪ N ′), i.e., a graph between doctors
and hospitals with edge set N ∪ N ′ = M
M ′. Let G∗ be a connected component of
G including h∗, and denote by D∗ and H∗ the sets of doctors and hospitals in G∗,
respectively.Because there is no edge connectingG∗ and the outside,

∑
d∈D∗ |N (h)| =∑

h∈H∗ |N (h)| and ∑
d∈D∗ |N ′(h)| = ∑

h∈H∗ |N ′(h)|. As |N ′(h∗)| < |N (h∗)| and
|N ′(h)| ≤ |N (h)| for any h ∈ H∗, we obtain

∑
d∈D∗ |N ′(d)| = ∑

h∈H∗ |N ′(h)| <
∑

h∈H∗ |N (h)| = ∑
d∈D∗ |N (d)|.

Then, there exists d∗ ∈ D∗ with |N ′(d∗)| < |N (d∗)|, which implies N ′(d∗) = ∅
and |N (d∗)| = 1 because N ′ = M ′ \ M and N = M \ M ′ are subsets of matchings.
As G∗ is a connected bipartite graph, there is a path d0h0d1h1 . . . dk hk with d0 = d∗
and hk = h∗. Also, as |N (di )| ≤ 1 and |N ′(di )| ≤ 1 for i = 0, 1, . . . k, this path
alternately uses edges in N = M \ M ′ and N ′ = M ′ \ M . Because N ′(d∗) = ∅ and
|N (d∗)| = 1, we have
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M ′(d0) = ∅,

(di , hi ) ∈ M \ M ′ (i = 0, 1, . . . , k),

(di+1, hi ) ∈ M ′ \ M (i = 0, 1, . . . , k − 1).

The doctor d0 is unassigned in M ′ and finds h0 acceptable because (d0, h0) ∈ M .
Hence, the stability of M ′ implies that h0 prefers d1 ∈ M ′(h0) to d0. Then, the envy-
freeness of M implies that d1 prefers h1 = M(d1) to h0. In this way, we obtain

di+1 �hi di (i = 0, 1, . . . , k − 1),

hi+1 �di+1 hi (i = 0, 1, . . . , k − 1).

Thus, M(dk) = hk �dk hk−1 = M ′(dk). Because hk = h∗ satisfies |M ′(hk)| < lhk ,
then (dk, hk) is a blocking pair in I ′, which contradicts the stability of M ′. �	
Theorem 2.6 ensures that the following algorithm decides the existence of an envy-free
matching of an HR-LQ instance I = (D, H , E,�DH , {(lh, uh)}h∈H ).

Algorithm EF-HR-LQ

Step1. Find a stable matching M ′ of I ′ = (D, H , E,�DH , {(0, lh)}h∈H ).
Step2. Return M ′ if |M ′(h)| = lh for all h ∈ H , and otherwise “there is no envy-free

matching.”

Since the Gale-Shapley algorithm finds a stable matching of an HR instance in
O(|E |) time, we obtain the following theorem.

Theorem 2.7 For anyHR-LQ instance I = (D, H , E,�DH , {(lh, uh)}h∈H ), the algo-
rithm EF-HR-LQ decides whether I has an envy-free matching or not in O(|E |) time.

3 Envy-Freeness in Classified Stable Matching

In this section, we consider the envy-freeness in a model in which each hospital
has lower and upper quotas on subsets of doctors. This can be regarded as an envy-
free matching version of the Classified Stable Matching, proposed by Huang [23].
Similarly to Sect. 2, we have doctors D, hospitals H , acceptable pairs E ⊆ D × H ,
and preferences �DH .

The only difference from HR-LQ is that, in the current model, each hospital h ∈ H
has a pair of functions ph, qh : 2A(h) → Z, instead of a pair of numbers lh, uh . These
functions define a lower and an upper quota for each subset of acceptable doctors.
Throughout this paper, we assume that for any hospital h, the functions ph and qh
satisfy

0 ≤ ph(B) ≤ qh(B) ≤ |B| (B ⊆ A(h)).

We call such a tuple (D, H , E,�DH , {(ph, qh)}h∈H ) a CSM instance. For each h ∈
H , the family of acceptable subsets of doctors is denoted by

F(ph, qh) := { X ⊆ A(h) | ∀B ⊆ A(h) : ph(B) ≤ |X ∩ B| ≤ qh(B) } .
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For any h ∈ H , we say that B ⊆ A(h) has a non-trivial lower (resp., upper)
constraint if ph(B) > 0 (resp., qh(B) < |B|). We denote the family of constrained
subsets by

C(ph, qh) := { B ⊆ A(h) | ph(B) > 0 or qh(B) < |B| } .

Then, we see that F(ph, qh) is represented as

F(ph, qh) = { X ⊆ A(h) | ∀B ⊆ C(ph, qh) : ph(B) ≤ |X ∩ B| ≤ qh(B) } .

For a CSM instance I = (D, H , E,�DH , {(ph, qh)}h∈H ), M ⊆ E is called a
matching (or, said to be feasible) if |M(d)| ≤ 1 for each d ∈ D and M(h) ∈
F(ph, qh) for each h ∈ H .

Definition 3.1 For amatchingM , an unassigned pair (d, h) ∈ E\M is ablocking pair
if (i) d is unassigned or h �d M(d), and (ii)M(h)+d ∈ F(ph, qh) orM(h)+d−d ′ ∈
F(ph, qh) for some d ′ ∈ M(h) with d �h d ′. A matching M is stable if there is no
blocking pair.

In Definition 3.1, the condition M(h) + d ∈ F(ph, qh) means that h can add d to
the current assignment without violating any upper quota, and M(h) + d − d ′ ∈
F(ph, qh) means that h can replace d ′ with d without violating any upper or lower
quota. The Classified Stable Matching, introduced by Huang [23], is the problem to
decide the existence of a stable matching for a given CSM instance 1 . Because this is
a generalization of HR-LQ, there are instances that have no stable matching. Let us
consider envy-freeness for a CSM instance.

Definition 3.2 For amatchingM , a doctord has justified envy towardd ′ withM(d ′) =
h if (i) d is unassigned or h �d M(d) and (ii)M(h)+d−d ′ ∈ F(ph, qh) and d �h d ′.
A matching M is envy-free if no doctor has justified envy.

As in the case ofHR-LQ, an envy-freematching canbe regarded as a stablematching
with reducedupper quotas as follows. For anyh ∈ H and k ∈ Zwith 0 ≤ k ≤ q(A(h)),
a function q ′

h : 2A(h) → Z is called a k-truncation of qh if q ′(A(h)) = k and
q ′(B) = q(B) for every B � A(h). Also, we simply say that q ′

h is a truncation of qh
if there is such k ∈ Z.

Proposition 3.3 For I = (D, H , E,�DH , {(ph, qh)}h∈H ), an assignment M is an
envy-free matching if and only if M is a stable matching of I ′ = (D, H , E,�DH ,

{(ph, q ′
h)}h∈H ) such that each q ′

h is some truncation of qh.

Proof To show the “only if” part, letM be an envy-freematching of I . For each h ∈ H ,
let q ′

h be the |M(h)|-truncation of qh . Then M(h) ∈ F(ph, q ′
h) and M(h) + d /∈

F(ph, q ′
h) for every d ∈ A(h) \ M(h). That is, M is feasible for I ′ and there is

no doctor who claims a hospital’s vacant seat. Therefore, if there is a blocking pair

1 In his original model, each hospital h has a classification Ch ⊆ 2A(h) and sets a lower and an upper quota
for each member of Ch . That is, we are provided C(ph , qh) and the values of ph , qh on it, rather than set
functions ph , qh . Our formulation uses set functions to simplify the arguments in the next section.
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(d, h) ∈ E \ M for I ′, it follows that d has a justified envy toward some d ′ with
M(d ′) = h, which contradicts the envy-freeness of M . Thus, M is a stable matching
of I ′.

For the “if” part, let M be a stable matching of I ′. Clearly, M is feasible for I .
Suppose, to the contrary, some doctor d has justified envy toward d ′ with M(d ′) = h
with respect to I . Then d is unassigned or h �d M(d). Also, we have d �h d ′ and
M(h) + d − d ′ ∈ F(ph, qh). Then, M(h) + d − d ′ ∈ F(ph, q ′

h) follows because|M(h) + d − d ′| = |M(h)|. Hence, (d, h) is a blocking pair in I ′, a contradiction. �	
We provide a hardness result for deciding the existence of an envy-free matching.

Here, we assume that evaluation oracles of set functions ph and qh are available for
each hospital h.

Theorem 3.4 It is NP-hard to decide whether a CSM instance I = (D, H , E,�DH ,

{(ph, qh)}h∈H ) has an envy-free matching or not. The problem is NP-complete even
if the size of C(ph, qh) is at most 4 for each h ∈ H.

Proof We use reduction from the NP-complete problem (3, B2)-SAT [2], which is
a restriction of SAT such that each clause contains exactly three literals and each
variable occurs exactly twice as a positive literal and exactly twice as a negative
literal. Let ϕ = c1 ∧ c2 ∧ · · · ∧ cm be an instance of (3, B2)-SAT with Boolean
variables v1, v2, . . . , vn . Then, each clause c j is a disjunction of three literals, (e.g.,
c j = v1 ∨ ¬v2 ∨ ¬v3) and each of literals vi and ¬vi appears in exactly two clauses.
For each variable vi , denote by j∗(i, 1), j∗(i, 2) the indices of two clauses that contain
vi . Similarly, denote by j∗(i,−1), j∗(i,−2) the indices of clauses that contain ¬vi .

We now define a CSM instance corresponding to ϕ. We have a variable-hospital hi
for each variable vi , and a clause-hospital h j for each clause c j . For each variable vi ,
we have four doctors { di,t | t ∈ {1, 2,−1,−2} }. For each doctor di,t , we have

A(di,t ) = {hi , h j∗(i,t)}, hi �di,t h j∗(i,t).

The set E is defined as the set of all pairs (di,t , h) such that h ∈ A(di,t ). Then, for
each variable-hospital hi and clause-hospital h j , we have

A(hi ) = { di,t | t ∈ {1, 2,−1,−2} } ,

A(h j ) = { di,t | j∗(i, t) = j } .

Note that di,t ∈ A(h j ) implies vi ∈ c j or¬vi ∈ c j . Also, each of vi ∈ c j and¬vi ∈ c j
implies di,t ∈ A(h j ) for some unique t ∈ {1, 2,−1,−2}. Therefore, |A(h j )| = 3 for
each clause-hospital h j . For each variable-hospital hi , define phi and qhi so that

C(phi , qhi ) = ⋃ { {di,t , di,t ′ } | t ∈ {1, 2}, t ′ ∈ {−1,−2} } ,

phi ({di,t , di,t ′ }) = qhi ({di,t , di,t ′ }) = 1 (t ∈ {1, 2}, t ′ ∈ {−1,−2}).

Then, we see that F(phi , qhi ) = {D+
i , D−

i }, where D+
i := {di,1, di,2} and D−

i :=
{di,−1, di,−2}. For each clause-hospital h j , define phi and qhi so that

C(ph j , qh j ) = {A(h j )}, ph j (A(h j )) = 1, qh j (A(h j )) = |A(h j )| = 3.
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We define preference lists of hospitals arbitrarily. Note that |C(ph, qh)| ≤ 4 for every
hospital. We show that this CSM instance has an envy-free matching if and only if
ϕ = c1 ∧ c2 ∧ · · · ∧ cm is satisfiable.

The “only if” part: Suppose that there is an envy-free matching M . Then, for
every variable-hospital hi , M(hi ) is D

+
i or D−

i . For each hi , set variable vi to FALSE if
M(hi ) = D+

i , and to TRUE if M(hi ) = D−
i . This Boolean assignment satisfies every

clause c j of ϕ as follows. Because M(h j ) ∈ F(ph j , qh j ), we have |M(h j )| ≥ 1.
Hence, some di,t with j∗(i, t) = j is assigned to h j . Then, di,t /∈ M(hi ). There are
two cases: (i) t ∈ {1, 2}, (ii) t ∈ {−1,−2}. In the case (i), di,t /∈ M(hi ) implies
M(hi ) �= D+

i , and hence vi is set to TRUE. Also, t ∈ {1, 2} and j∗(i, t) = j imply
vi ∈ c j . Hence, clause c j is satisfied. Similarly, in the case (ii), we see that vi is set to
FALSE and we have ¬v j ∈ c j . Hence, clause c j is satisfied.

The “if” part: Suppose that there is a Boolean assignment satisfying ϕ. Define an
assignment M so that

• M(hi ) = D−
i if vi is TRUE, and M(hi ) = D+

i if vi is FALSE, and
• M(h j ) = { di,t ∈ A(h j ) | di,t ∈ D+

i , vi is TRUE } ∪ {di,t ∈ A(h j ) | di,t ∈ D−
i ,

vi is FALSE}.
We can observe that |M(d)| = 1 for every doctor d, andM(hi ) ∈ F(phi , qhi ) for every
variable-hospital hi . Also, because all clauses are satisfied, the above definition implies
M(h j ) ∈ F(ph j , qh j ) for every clause-hospital h j . Then, M is feasible.We now show
the envy-freeness of M . Suppose, to the contrary, di,t has justified envy toward d ′.
Because we have |M(di,t )| = 1, A(di,t ) = {hi , h j∗(i,t)}, and hi �di,t h j∗(i,t), this
justified envy implies conditions d ′ ∈ M(hi ), di,t /∈ M(hi ) and M(hi ) + di,t − d ′ ∈
F(phi , qhi ). As M(hi ) ∈ F(phi , qhi ) = {D+

i , D−
i }, then we have {M(hi ) + di,t −

d ′, M(hi )} = {D+
i , D−

i }, which contradicts |D+
i \ D−

i | = |D−
i \ D+

i | = 2. �	
Remark 3.5 For the existence test of a stable matching of a CSM instance, Huang
[23] showed the NP-completeness in a strong form, which states that the problem
is NP-complete even if there is no lower quota. His proof uses a reduction from the
One-in-Three SAT problem [15]; a CSM instance without lower quota is constructed
so that it has a stable matching if and only if the given One-in-Three SAT instance is
satisfiable. On the other hand, in the case of envy-free matching, we have to utilize
lower quotas in a reduction because an envy-free matching trivially exists for every
instance without lower quota. (Note that the empty matching is envy-free.)

4 Envy-Freeness in CSMwith Paramodular Quotas

In Sect. 3, we showed that it is NP-hard in general to decide whether a CSM instance
has an envy-free matching or not. This section shows that the problem is solvable in
polynomial time if the pair of quota functions is paramodular for each hospital. The
proofs of the theorems and corollary in this section are provided in Sect. 5. We first
introduce the notion of paramodularity [10].

Let A be a finite set and let p, q : 2A → Z. The pair (p, q) is paramodular (or,
called a strong pair [11]) if
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• p is supermodular, i.e., p(B) + p(B ′) ≤ p(B ∪ B ′) + p(B ∩ B ′) for every
B, B ′ ⊆ A,

• q is submodular, i.e., q(B)+q(B ′) ≥ q(B∪B ′)+q(B∩B ′) for every B, B ′ ⊆ A,
and

• the cross-inequality q(B) − p(B ′) ≥ q(B \ B ′) − p(B ′ \ B) holds for every
B, B ′ ⊆ A.

The notion of paramodularity was introduced independently by Frank [9] and Hassin
[20,21]. Here we provide examples of constraints that can be represented by paramod-
ular pairs. (See Yokoi [39, Appendices A and B].)

Example 4.1 (Laminar Constraints) LetL ⊆ 2A be a laminar (or hierarchical) classifi-
cation (i.e., any B, B ′ ⊆ L satisfy B ⊆ B ′ or B ⊇ B ′ or B∩B ′ �= ∅). Let p̂, q̂ : L → Z
be functions that define a lower and an upper quota for each class. Denote the accept-
able set family by J (L, p̂, q̂) := { X ⊆ A | ∀B ∈ L : p̂(B) ≤ |X ∩ B| ≤ q̂(B) }. If
J (L, p̂, q̂) is nonempty, then J (L, p̂, q̂) = F(p, q) for some paramodular pair
(p, q).

Example 4.2 (StaffingConstraints) For afinite set S (e.g., a set of sections of a hospital),
let � : S → 2A and l̂, û : S → Z be functions such that �(s) ⊆ A represents the
set of members acceptable to s ∈ S and l̂(s), û(s) ∈ Z represent a lower and an
upper quota of s ∈ S. Let J (S, �, l̂, û) ⊆ 2A be a family of subsets X ⊆ A such
that there exists a function π : X → S satisfying ∀d ∈ X : d ∈ �(π(d)) and
∀s ∈ S : l̂(s) ≤ | { d ∈ X | π(d) = s } | ≤ û(s). If J (S, �, l̂, û) is nonempty, then
J (S, �, l̂, û) = F(p, q) for some paramodular pair (p, q).

For a set function p : 2A → Z, its complement p : 2A → Z is defined by

p(B) = p(A) − p(A \ B) (B ⊆ A).

Recall that aCSMinstance is represented as a tuple (D, H , E,�DH , {(ph, qh)}h∈H ),
where it is assumed that 0 ≤ ph(B) ≤ qh(B) ≤ |B| for every h ∈ H and B ⊆ A(h).
Here is themain theoremof this section.Wedenote by 0 a set function that is identically
zero.

Theorem 4.3 For a CSM instance I = (D, H , E,�DH , {(ph, qh)}h∈H ), suppose
that (ph, qh) is paramodular for each h ∈ H. Then, I ′ := (D, H , E,�DH ,

{(0, ph)}h∈H ) has at least one stable matching and the following three conditions
are equivalent.

(a) I has an envy-free matching.
(b) Some stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.
(c) Every stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.

Also, if (b) holds, then M ′ is an envy-free matching of I .

As will be shown in Sect. 5.4, the existence of a stable matching of I ′ and the equiv-
alence between (b) and (c) follows from Fleiner’s results on the matroid framework
[5,6]. The most difficult part is showing the equivalence between conditions (a) and
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(b). To show that (a) implies (b), we construct a stable matchingM ′ of I ′ from an envy-
free matching M of I . This construction is achieved by using the fixed-point method
of Fleiner [6]. The paramodularity of each (ph, qh) (or a generalized matroid struc-
ture of each F(ph, qh)) is essential to show the existence of a fixed-point satisfying a
required condition (see Lemma 5.16 in Sect. 5.4 for the details).

By Theorem 4.3, when quota function pairs are paramodular, we can decide the
existence of an envy-free matching of I = (D, H , E,�DH , {(ph, qh)}h∈H ) by the
following algorithm.

Step1. Find a stable matching M ′ of I ′ = (D, H , E,�DH , {(0, ph)}h∈H ).
Step2. If |M ′(h)| = ph(A(h)) for every h ∈ H , then return M ′. Otherwise, return

“there is no envy-free matching.”

As will be shown in Sect. 5, Step 1 (i.e., finding a stable matching of I ′) can
be done efficiently by the generalized Gale-Shapley algorithm studied in [5,6]. The
detailed description of the algorithm is as follows. Here, for each h ∈ H , N ⊆ E , and
d ∈ N (h), we use the notation N (h)�hd := { d ′ ∈ N (h) | d ′ �h d } and N (h)�hd :=
{ d ′ ∈ N (h) | d ′ �h d or d ′ = d }.

Algorithm 1: EF-Paramodular-CSM
Input: I = (D, H , E,�DH , {(ph , qh)}h∈H ) such that each (ph , qh) is paramodular
Output: return an envy-free matching M ′, or “there is no envy-free matching.”

Set ND ← E , NH ← ∅, and let M ′ be undefined;
while M ′ is undefined do

RD ← ⋃
d∈D { (d, h) | h ∈ ND(d), h �= max�d ND(d) };

RH ← ⋃
h∈H { (d, h) | d ∈ NH (h), p(A(h) \ NH (h)�hd ) = p(A(h) \ NH (h)�hd ) };

if (ND, NH ) = (E \ RH , E \ RD) then
let M ′ ← ND ∩ NH and break;

else
update (ND, NH ) ← (E \ RH , E \ RD);

end
end
if |M ′(h)| = ph(A(h)) for all h ∈ H then

return M ′;
else

return “there is no envy-free matching”;
end

In Sect. 5, we show that the assignment M ′ obtained in the algorithm is indeed a
stable matching of I ′. Also, it will be shown that ND is monotone decreasing and NH

is monotone increasing in the algorithm, and hence the “while loop” is iterated at most
2|E | times. Thus, we obtain the following theorem. (See Sect. 5.5 for the details.)

Theorem 4.4 For a CSM instance I = (D, H , E,�DH , {(ph, qh)}h∈H ) such that
each (ph, qh) is paramodular, the algorithm EF-Paramodular-CSM decides whether
I has an envy-free matching or not in O(|E |2) time, provided that evaluation oracles
of {ph}h∈H are available.
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As is shown in Examples 4.1 and 4.2, when the family of acceptable doctor sets of
each hospital h ∈ H is defined by a laminar constraint Jh := J (Lh, p̂h, q̂h) or by a
staffing constraint Jh := J (Sh, �h, l̂h, ûh), then there is a paramodular pair (ph, qh)
such that Jh = F(ph, qh). The following corollary states that, in such a case, we can
decide the existence of an envy-freematching of I = (D, H , E,�DH , {(ph, qh)}h∈H )

even if evaluation oracles of {ph}h∈H are not provided.

Corollary 4.5 Suppose that, for each h ∈ H, the family of acceptable doctor sets is
defined in the form Jh := J (Lh, p̂h, q̂h) �= ∅ (resp., Jh := J (Sh, �h, l̂h, ûh) �= ∅ ).
Let (ph, qh) be a paramodular pair such thatJh = F(ph, qh). Then, givenLh, p̂h, q̂h
(resp., Sh, �h, l̂h, ûh ) for each h ∈ H, one can decide whether I = (D, H , E,�DH ,

{(ph, qh)}h∈H ) has an envy-free matching or not in time polynomial in |E | (resp., in
|E | and maxh∈H |Sh | ).

Proof Since we have Theorem 4.4, it completes the proof to show that we can simulate
an evaluation oracle of each ph in time polynomial in |E | (resp., in |E | and |Sh |). By
Proposition 5.1 in Sect. 5.1, for each B ⊆ A(h), the value of ph(B) is obtained as
ph(B) = min{ |X ∩ B| | X ∈ Jh}. Consider a weight function wB on A(h) such that
wB(d) = 1 for every d ∈ B and wB(d) = 0 for every d ∈ A(h) \ B. Then, ph(B) is
written as ph(B) = min { wB(X) | X ∈ Jh }, which is a weight minimization problem
on a generalized matroid. As explained in [39, Appendix C], when Jh is given in the
form above, this can be reduced to theminimumcost circulation problem,which can be
solved in strongly polynomial time [31,37]. (See [39] for the details of the reduction.)
Thus, the proof is completed.

Remark 4.6 Theorems 4.3 and 4.4 generalize Theorems 2.6 and 2.7 as follows. For
a pair (lh, uh) of nonnegative integers with 0 ≤ uh ≤ lh ≤ |A(h)|, define ph, qh :
2A(h) → Z by

ph(B) = max{0, lh − |A(h) \ B|}, qh(B) = min{uh, |B|}, (B ⊆ A(h)).

Then, (ph, qh) is paramodular and F(ph, qh) = { X ⊆ A(h) | lh ≤ |X | ≤ uh }.
Hence, envy-freeness for (D, H , E,�DH , {lh, uh}h∈H ) coincides with that for
(D, H , E,�DH , {ph, qh}h∈H ). Also, we can check ph(A(h)) = max{0, lh − |A(h) \
A(h)|} = lh .

Remark 4.7 Theorem 4.4 says that we can efficiently check the existence of an envy-
free matching if each quota function pair is paramodular, where the paramodurality
of a function pair is defined by the super- and submodularity of each function and the
cross-inequality between them.We remark that the cross-inequality is essential for this
tractability.Without this condition, it is NP-hard to check the existence of an envy-free
matching even if each quota function pair consists of super- and submodular functions.
See the Appendix for the proof, which uses a reduction from theNP-complete problem
Disjoint Matchings [12].
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5 Proofs

In this section, we provide proofs of Theorems 4.3, 4.4. This section consists of
five subsections. The first three introduce notions and previous results needed for
the proofs. More precisely, Sects. 5.1, 5.2, and 5.3 respectively introduce notions of
generalized matroids, choice functions induced from matroids, and the lattice fixed-
point method for stable matchings. Using them, the last two subsections provide the
proofs of our results.

5.1 GeneralizedMatroids

For a finite set A and a familyJ ⊆ 2A, the pair (A,J ) is called a generalizedmatroid
[36] (g-matroid, for short) ifJ is nonempty and satisfies the following property called
simultaneous (or symmetric) exchange property 2 [30].

(B�-EXC) For any X ,Y ∈ J and e ∈ X \ Y , we have
(i) X − e ∈ J , Y + e ∈ J or
(ii) there exists some e′ ∈ Y \ X such that X − e + e′ ∈ J , Y + e − e′ ∈ J .

The family J of a g-matroid (A,J ) is also called an M�-convex family [28,29].
(There are various characterizations for g-matroids. See, e.g., Tardos [36], Frank [10]
and Murota [28] for more information on g-matroid and its extensions.)

For set functions p, q : 2A → Z, the pair (p, q) is called g-matroidal if it is
paramodular and satisfies 0 ≤ p(B) ≤ q(B) ≤ |B| for every B ⊆ A. As its name
indicates, there is a one-to-one correspondence between generalized matroids and
g-matroidal pairs (see, e.g., [10,11]).

Proposition 5.1 A pair (A,J ) is a g-matroid if and only if J = F(p, q) for some
g-matroidal pair (p, q). Such a g-matroidal pair is uniquely defined by

p(B) = min{|X ∩ B| | X ∈ J } (B ⊆ A),

q(B) = max{|X ∩ B| | X ∈ J } (B ⊆ A).

By Proposition 5.1, the families J (L, p̂, q̂) and J (S, �, l̂, û) defined in Exam-
ples 4.1 and 4.2 are the independent set families of g-matroids. (See Yokoi [39,
Appendices A and B] for examples and operations of g-matroids.)

A function r : 2A → Z is called a matroid rank function if it is submodular,
monotone (i.e., B ⊆ B ′ ⊆ A implies r(B) ≤ r(B ′)), and satisfies 0 ≤ r(B) ≤ |B|
for every B ⊆ A. The submodularity of r is equivalent to the following diminishing
returns property: for any B ′ ⊆ B ⊆ A and e ∈ A \ B, we have

r(B + e) − r(B) ≤ r(B ′ + e) − r(B ′).

In particular, amatroid rank function satisfies 0 ≤ r(B+e)−r(B) ≤ r({e})−r(∅) ≤ 1
for any B ⊆ A and e ∈ A \ B.

2 This is not the original definition of generalized matroids by Tardos [36], but equivalent to it as shown
by Murota and Shioura [30].
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A pair (A, I) is called a matroid if it is a g-matroid and ∅ ∈ I. In terms of quota
functions, a pair (A, I) is a matroid if there is a matroid rank function r such that
I = F(0, r). Indeed, we can check that the pair (0, r) is g-matroidal for any matroid
rank function r .

5.2 Choice Functions Induced fromMatroid Rank Functions

Let r : 2A → Z be a matroid rank function on A and � be a linear order on A.
Let M = (A, r ,�) and define a function CM : 2A → 2A as follows. Let n = |A|
and, for i = 1, 2, . . . , n, let ei be the i-th best element of A with respect to �, i.e.
e1 � e2 � · · · � en . Let A0 := ∅ and Ai := {e1, e2, . . . , ei } for each i = 1, 2, . . . , n.
Then, define CM by

CM (X) := { ei ∈ X | r(Ai ∩ X) > r(Ai−1 ∩ X) } (X ⊆ A).

We call CM the choice function induced from M = (A, r ,�). Note that, for any
ei ∈ A and X ⊆ A, the value of r(Ai ∩X)−r(Ai−1∩X) is 1 or 0 by the monotonicity
and submodularity of r . Also, if ei /∈ X , then clearly r(Ai ∩ X) − r(Ai−1 ∩ X) = 0.
Hence, for any X ⊆ A,

CM (X) = { ei ∈ A | r(Ai ∩ X) − r(Ai−1 ∩ X) = 1 } , (1)

X \ CM (X) = { ei ∈ X | r(Ai ∩ X) − r(Ai−1 ∩ X) = 0 } . (2)

Such a choice function was introduced by Fleiner [5,6] and used in several works
[3,7,39]. In these works, matroids are usually given by independent set families rather
than matroid rank functions. The following propositions (Propositions 5.2–5.6) are
known facts, but we provide alternative proofs in terms of matroid rank functions.

Proposition 5.2 For any X ⊆ A, we have CM (X) ∈ F(0, r).

Proof It suffices to show |CM (X) ∩ B| ≤ r(B) for any B ⊆ A. By (1), we have
CM (X) ∩ B = { ei ∈ A | r(Ai ∩ X) − r(Ai−1 ∩ X) = 1, ei ∈ B }. For any ei ∈ B,
since Ai−1 ∩ X ∩ B ⊆ Ai−1 ∩ X and Ai ∩ X ∩ B = (Ai−1 ∩ X ∩ B) + ei , the
diminishing returns property of r implies

r(Ai ∩ X) − r(Ai−1 ∩ X) ≤ r(Ai ∩ X ∩ B) − r(Ai−1 ∩ X ∩ B).

Thus, ei ∈ B, r(Ai∩X)−r(Ai−1∩X) = 1 imply r(Ai∩X∩B)−r(Ai−1∩X∩B) = 1.
Therefore,

|CM (X) ∩ B| = | { ei ∈ A | r(Ai ∩ X) − r(Ai−1 ∩ X) = 1, ei ∈ B } |
≤ | { ei ∈ A | r(Ai ∩ X ∩ B) − r(Ai−1 ∩ X ∩ B) = 1 } |
= ∑

i :1≤i≤n[ r(Ai ∩ X ∩ B) − r(Ai−1 ∩ X ∩ B) ] = r(X ∩ B).

The monotonicity of r implies r(X ∩ B) ≤ r(B), and the proof is completed. �	
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Proposition 5.3 For every X ⊆ A and j = 1, 2, . . . , n, we have |CM (X) ∩ A j | =
r(A j ∩ X). In particular, |CM (X)| = r(X).

Proof By (1), CM (X) ∩ A j = { ei ∈ A j | r(Ai ∩ X) − r(Ai−1 ∩ X) = 1 }. This
implies |CM (X) ∩ Ai | = ∑

i :1≤i≤ j [ r(Ai ∩ X) − r(Ai−1 ∩ X) ] = r(A j ∩ X) −
r(A0 ∩ X) = r(A j ∩ X). �	
Proposition 5.4 CM is substitutable, i.e., X ⊆ Y ⊆ A implies X \ CM (X) ⊆ Y \
CM (Y ).

Proof Suppose that ei ∈ X \CM (X) for some i . This implies r(Ai ∩ X) − r(Ai−1 ∩
X) = 0 by (2). By the diminishing returns property and X ⊆ Y , the value of r(Ai ∩
Y ) − r(Ai−1 ∩ Y ) is also 0, and hence ei ∈ Y \ CM (Y ) by (2). �	
Proposition 5.5 CM is size-monotone, i.e., X ⊆ Y ⊆ A implies |CM (X)| ≤
|CM (Y )|.
Proof This immediately follows from Proposition 5.3 and the monotonicity of r . �	
Proposition 5.6 For any X ⊆ A, the set CM (X) dominates every element in X \
CM (X). That is, the following two hold.

• For every e ∈ X \ CM (X), we have CM (X) + e /∈ F(0, r).
• For every e ∈ X \ CM (X) and e′ ∈ CM (X), if e � e′, then CM (X) + e − e′ /∈
F(0, r).

Proof Let i be the index such that e = ei , i.e., e is the i-th best element for �. By
Proposition 5.3, we have |CM (X) ∩ Ai | = r(Ai ∩ X). With CM (X) ⊆ X and ei ∈
X \CM (X), this implies |(CM (X)+ei )∩(Ai ∩X)| = |CM (X)∩Ai |+1 > r(Ai ∩X),
and hence CM (X) + ei /∈ F(0, r).

For the second claim, let i ′ be the index such that e′ = ei ′ . Then, e � e′ implies
i < i ′, and hence ei ′ /∈ Ai . This yields |(CM (X)+ ei − ei ′)∩ (Ai ∩ X)| = |CM (X)∩
Ai | + 1 > r(Ai ∩ X), which implies CM (X) + ei − ei ′ /∈ F(0, r). �	

5.3 Fixed-point Method for Stable Matchings onMatroids

Here we introduce the lattice fixed-point framework for stable matchings on matroids,
studied by Fleiner [5,6]. (Note that in [6] a substitutable choice function is called
a “comonotone function,” and also note that in [5,6] results are given for general
“matroid kernels” rather than stable matchings on matroids. See also [39, Lemma 9],
which says that stable matchings correspond to matroid kernels in the current setting.)

Let I = (D, H , E,�DH , {0, rh}h∈H ) be a CSM instance such that rh is a matroid
rank function for each h ∈ H . That is, each hospital has a matroidal upper quota
function and no lower quota.

From (D, E, {�d}d∈D), we define doctors’ joint choice function CD : 2E → 2E .
For any set N ⊆ E , let CD(N ) be the set of each doctor’s best choices among N , i.e.,

CD(N ) := ⋃
d∈D { (d, h) | h ∈ N (d), h = max�d N (d) } (N ⊆ E).
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From (H , E, {�h}h∈H , {rh}h∈H ), we define hospitals’ joint choice function CH :
2E → 2E . First, for each hospital h ∈ H , let Ch : 2A(h) → 2A(h) be a choice function
induced from (A(h), rh,�h) as in Sect. 5.2. Then, define CH by

CH (N ) := ⋃
h∈H { (d, h) | d ∈ N (h), d ∈ Ch(N (h)) } (N ⊆ E).

Define rejection functions RD, RH : 2E → 2E by

RD(N ) = N \ CD(N ), RH (N ) = N \ CH (N ) (N ⊆ E),

and a function FI : 2E × 2E → 2E × 2E by

FI (ND, NH ) = (E \ RH (NH ), E \ RD(ND)) (ND, NH ⊆ E).

Then a fixed-point of FI gives a stable matching of the CSM instance I (see Claim 17
and the proofs of Theorems 11 and 18 in [6]).

Proposition 5.7 (Fleiner [6]) For I = (D, H , E,�DH , {0, rh}h∈H ) such that each
rh is a matroid rank function, if (ND, NH ) is a fixed-point of FI , then ND ∩ NH =
CD(ND) = CH (NH ) holds and ND ∩ NH is a stable matching of I .

Let ≥ be a partial order defined on 2E × 2E as

(ND, NH ) ≥ (N ′
D, N ′

H ) ⇐⇒ [ND ⊇ N ′
D, NH ⊆ N ′

H ]

Recall that Ch is substitutable for each h ∈ H , This implies the following property of
FI (see, Claim 17 and the proof of Theorem 11 of [6]).

Proposition 5.8 (Fleiner [6]) For I = (D, H , E,�DH , {0, rh}h∈H ) such that each rh
is a matroid rank function, the function FI is monotone with respect to ≥. That is,
(ND, NH ) ≥ (N ′

D, N ′
H ) implies FI (ND, NH ) ≥ FI (N ′

D, N ′
H ).

The monotonicity of FI implies the existence of a stable matching as follows (see
the first two paragraphs in [6, p.113] and the proof of Theorem 2 in [5]).

Proposition 5.9 (Fleiner [5,6]) Let I = (D, H , E,�DH , {0, rh}h∈H ) be an instance
such that each rh is a matroid rank function. One can find a stable matching in
O(|E | · EODH ) time, where EODH is a time to compute CD(N ) and CH (N ) for any
N ⊆ E.

Proof Since (E,∅) is the maximum in 2E × 2E with respect to ≥, we have (E,∅) ≥
FI (E,∅). As FI is monotone by Proposition 5.8, then

(E,∅) ≥ FI (E,∅) ≥ FI (FI (E,∅)) ≥ · · · ≥ Fk
I (E,∅) ≥ · · · .

Since 2E × 2E is a finite lattice whose longest chain is of length 2|E |, we have
Fk
I (E,∅) = FI (Fk

I (E,∅)) for some k ≤ 2|E |. Then, (N∗
D, N∗

H ) := Fk
I (E,∅) is a

fixed-point of FI and, by Proposition 5.7, N∗
D ∩ N∗

H is a stable matching of I . �	
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The following proposition is an immediate consequence of Fleiner’s result on the
structure of the set of stable matchings (see Corollary 27 in [6] and the proof of
Theorem 3 in [5]).

Proposition 5.10 (Fleiner [5,6]) Let I = (D, H , E,�DH , {0, rh}h∈H ) be an instance
such that each rh is a matroid rank function. For any two stable matchings M, M ′ ⊆ E
of I and any hospital h ∈ H, we have |M(h)| = |M ′(h)|.

5.4 Proof of Theorem 4.3

We are now ready to show Theorem 4.3. Recall that I and I ′ are defined as

I = (D, H , E,�DH , {(ph, qh)}h∈H ),

I ′ = (D, H , E,�DH , {(0, ph)}h∈H ),

where (ph, qh) is g-matroidal (i.e., is paramodular and satisfies 0 ≤ ph(B) ≤ qh(B) ≤
|B|) for each h ∈ H . Here, ph is the complement of ph defined as ph(B) = ph(A(h))−
ph(A(h) \ B). Observe the following basic fact of a g-matroidal pair.

Claim 5.11 ph is a matroid rank function and ph(A(h)) = ph(A(h)) for each h ∈ H.

Proof Since (ph, qh) is g-matroidal, ph is supermodular and 0 ≤ ph(B) ≤ |B| for
any B ⊆ A(h). Also, Proposition 5.1 implies that ph is monotone. Therefore, ph is
submodular,monotone, and 0 ≤ ph(B) ≤ |B| for every B ⊆ A(h), i.e., ph is amatroid
rank function. In addition, we see that ph(A(h)) = ph(A(h)) − ph(∅) = ph(A(h)).

�	
By Claim 5.11, Propositions 5.9 and 5.10 imply the following.

Lemma 5.12 I ′ has a stable matching. Also, for any stable matchings M and M ′ of I
and any hospital h ∈ H, we have |M(h)| = |M ′(h)|.

Lemma 5.12 implies that I ′ has a stable matching and that conditions (b) and (c)
in Theorem 4.3 are equivalent.

What is left is to show that the condition (a) is also equivalent. For this purpose,
we prepare the following three claims. The first and second claims are basic facts of
paramodular functions [10]. The third one utilizes the exchange property of g-matroids
(M�-convex families).

Claim 5.13 For any h ∈ H and X ⊆ A(h), suppose that |X | = ph(A(h)) = ph(A)

holds. Then, we have X ∈ F(0, ph) if and only if X ∈ F(ph, qh).

Proof We abbreviate ph , qh , A(h) to p, q, A, respectively, and denote B := A \ B for
B ⊆ A.

To show the “if” part, suppose X ∈ F(p, q). Then |X ∩ B| ≥ p(B) for any B ⊆ A.
Since |X | = p(A), then |X ∩ B| = |X | − |X ∩ B| ≤ p(A) − p(B) = p(B). Thus,
X ∈ F(0, p).

To show the “only if” part, suppose X ∈ F(0, p).We show p(B) ≤ |X∩B| ≤ q(B)

for any B ⊆ A. By the cross-inequality q(B) − p(A) ≥ q(B \ A) − p(A \ B), we
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have q(B) ≥ p(A)− p(B), which implies |X ∩ B| ≤ p(B) = p(A)− p(B) ≤ q(B),
and thus |X ∩ B| ≤ q(B). Also, since |X ∩ B| ≤ p(B) = p(A) − p(B), we have
|X ∩ B| = |X | − |X ∩ B| ≥ p(B). �	

Since ph is a matroid rank function for each h ∈ H , we can define the choice
function Ch : 2A(h) → 2A(h) induced from (A(h), ph,�h) as in Sect. 5.3.

Claim 5.14 For any h ∈ H, let Ch be the choice function induced from (A(h), ph,�h).
For Y ⊆ A(h), if there exists X ∈ F(ph, qh) such that X ⊆ Y , then |Ch(Y )| =
ph(A(h)).

Proof We abbreviate ph , qh , A(h), Ch to p, q, A, C , respectively.
By Proposition 5.2, C(Y ) ∈ F(0, p), and hence |C(Y )| = |C(Y ) ∩ A| ≤ p(A).

Also, Propositions 5.3 and 5.5 implies p(X) = |C(X)| ≤ |C(Y )|. Since X ∈ F(p, q),
we have 0 ≤ p(A \ X) ≤ |X ∩ (A \ X)| = 0, and hence p(X) = p(A) − p(A \
X) = p(A) = p(A). Combining these yields p(A) ≤ |C(Y )| ≤ p(A), and hence
|C(Y )| = p(A) = p(A). �	
Claim 5.15 For any h ∈ H, let Ch be the choice function induced from (A(h), ph,�h).
Suppose that X ,Y ⊆ A(h) satisfy

• X ∈ F(ph, qh) and X ⊆ Y , and
• for every d ∈ Y \ X and d ′ ∈ X, if d �h d ′, then X + d − d ′ /∈ F(ph, qh).

Then, Ch(Y ) ⊆ X.

Proof We abbreviate ph , qh , A(h), Ch to p, q, A, C , respectively.
By Claim 5.14, X ∈ F(p, q) and X ⊆ Y imply |C(Y )| = p(A) = p(A). Also,

C(Y ) ∈ F(0, p) by Proposition 5.2. Then, Claim 5.13 implies C(Y ) ∈ F(p, q).
Thus, X ,C(Y ) ∈ F(p, q). Suppose, to the contrary, C(Y ) � X . Then there is some
d ∈ C(Y ) \ X . By the symmetric exchange axiom (B�-EXC) for C(X), Y , and d, we
have either (i) C(Y ) − d, X + d ∈ F(p, q), or (ii) ∃d ′ ∈ X \ C(Y ) : C(Y ) − d +
d ′, X+d−d ′ ∈ F(p, q). Note that (i) cannot hold sinceC(Y )−d /∈ F(p, q) follows
from |C(Y ) − d| < |C(Y )| = p(A). Then, (ii) holds, i.e., there exists d ′ ∈ X \ C(Y )

such that C(Y ) − d + d ′, X + d − d ′ ∈ F(p, q).
By |C(Y ) − d + d ′| = |C(Y )| = p(A), Proposition 5.13 and C(Y ) − d + d ′ ∈

F(p, q) implyC(Y )−d+d ′ ∈ F(0, p). As d ∈ C(Y ) and d ′ ∈ X \C(Y ) ⊆ Y \C(Y ),
this implies d �h d ′ by Proposition 5.6. On the other hand, by d ∈ Y \ X , d ′ ∈ X , and
X + d − d ′ ∈ F(p, q), the assumption of the claim implies d ′ �h d, a contradiction.

�	
Wenowcomplete the proof of Theorem4.3 by showing the following lemma,which

states the equivalence between conditions (a) and (b) in Theorem 4.3.

Lemma 5.16 I has an envy-free matching if and only if some stable matching M ′ of
I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.

Proof The “if” part: Let M ′ be a stable matching of I ′ such that |M ′(h)| = ph(A(h))

for all h ∈ H . We show that M ′ is also an envy-free matching of I .
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As M ′ is feasible for I ′, we have |M ′(d)| ≤ 1 for every d ∈ D and M ′(h) ∈
F(0, ph) for every h ∈ H . By Claim 5.13 and |M ′(h)| = ph(A(h)), then M ′(h) ∈
F(ph, qh), and hence M ′ is also a matching in I . Suppose, to the contrary, that there
is a doctor d ∈ D who has justified envy toward d ′ ∈ D with M ′(d ′) = h. Then,
(i) d is unassigned or h �h M ′(d) and (ii) M ′(h) + d − d ′ ∈ F(ph, qh) and d �h

d ′. Note that |M ′(h) + d − d ′| = |M ′(h)| = ph(A(h)). Then, Claim 5.13 implies
M ′(h) + d − d ′ ∈ F(0, ph). This means that (d, h) is a blocking pair for M ′ in I ′, a
contradiction.

The “only if” part:Suppose that I has an envy-freematchingM .We now construct
a stable matching M ′ of I ′ satisfying |M ′(h)| = ph(A(h)) for all h ∈ H .

For I ′ = (D, H , E,�DH , {(0, ph)}h∈H ), define CD,CH : 2E → 2E as in
Sect. 5.3. That is,CD returns the set of each doctor’s best choices andCH is defined by
combining {Ch}h∈H , whereCh is induced from (A(h), ph,�h). FromCD andCH , we
define FI ′ : 2E × 2E → 2E × 2E as in Sect. 5.3. Define two supersets ND, NH ⊆ E
of M by

ND := M ∪ { (d, h) ∈ E \ M | M(d) �d h } ,

NH := M ∪ (E \ ND).

Note that NH \ M = E \ ND , and hence every (d, h) ⊆ NH \ M satisfies (d, h) /∈
ND , and hence h �d M(d). Since M is an envy-free matching, then for every d ′ ∈
M(h) with d �h d ′ we have M(h) + d − d ′ /∈ F(ph, qh), since otherwise d has
justified envy toward d ′. Thus, we have
• M(h) ∈ F(ph, qh) and M(h) ⊆ NH (h), and
• for every d ∈ NH (h) \ M(h) and d ′ ∈ M(h), if d �h d ′, then M(h) + d − d ′ /∈
F(ph, qh).

Claim 5.15 then implies Ch(NH (h)) ⊆ M(h) for each h ∈ H , and hence we have
CH (NH ) ⊆ M . This implies

E \ RH (NH ) = (E \ NH ) ∪ CH (NH ) ⊆ (E \ NH ) ∪ M = ND . (3)

Also, by the definition of CD and ND , we have CD(ND) = M , which implies

E \ RD(ND) = (E \ ND) ∪ CD(ND) = (E \ ND) ∪ M = NH . (4)

Recall the partial order ≥ defined on 2E × 2E in Sect. 5.3. By (3) and (4), we have

(ND, NH ) ≥ (E \ RH (NH ), E \ RD(ND)) = FI ′(ND, NH ).

Since FI ′ is monotone by Proposition 5.8, this implies

(ND, NH ) ≥ FI ′(ND, NH ) ≥ FI ′(FI ′(ND, NH )) ≥ · · · ≥ Fk
I ′(ND, NH ) ≥ · · · ,

and hence there is k such that Fk
I ′(ND, NH ) is a fixed-point of FI ′ . Denote it by

(Nk
D, Nk

D) and define M ′ := CH (Nk
H ). By Proposition 5.7, M ′ is a stable matching

of I ′.
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What is left is to show |M ′(h)| = ph(A(h)) for all h ∈ H . Since (ND, NH ) ≥
Fk
I ′(ND, NH ) = (Nk

D, Nk
D), we have NH ⊆ Nk

H . Then M ⊆ NH ⊆ Nk
H , and hence

M(h) ⊆ Nk
H (h) for each h ∈ H . By M(h) ∈ F(ph, qh) and Claim 5.14, |M ′(h)| =

|Ch(Nk
H (h))| = ph(A(h)). �	

Combining Lemmas 5.12 and 5.16 completes the proof of Theorem 4.3.

5.5 Proof of Theorem 4.4

We first show that the “while loop” of the algorithm EF-Paramodular-CSM computes
a stable matching of I ′ = (D, H , E,�DH , {(0, ph)}h∈H ). By the proof of Proposi-
tion 5.9, it suffices to show that, each iteration updates (ND, NH ) to FI ′(ND, NH ).
That is, we show that the subsets RD and RH defined as

RD := ⋃
d∈D { (d, h) | h ∈ ND(d), h �= max�d ND(d) } ,

RH := ⋃
h∈H { (d, h) | d ∈ NH (h), ph(A(h) \ NH (h)�hd) = ph(A(h)\NH (h)�hd) }

coincide with ND \CD(ND) and NH \CH (NH ), respectively, where CD and CH are
defined for I ′ as in Sect. 5.3. By definition, RD = ND \ CD(ND) can be checked
easily. To show RH = NH \ CH (NH ), recall the definition of CH in Sect. 5.3.

CH (N ) = ⋃
h∈H { (d, h) | d ∈ N (h), d ∈ Ch(N (h)) } (N ⊆ E).

Here, each Ch : 2A(h) → 2A(h) is a choice function induced from (A(h), ph,�h). By
definitions of Ch and ph , for any N ⊆ E , we have

Ch(N (h)) = { d ∈ N (h) | ph(N (h)�hd) > ph(N (h)�hd) } ,

= { d ∈ N (h) | ph(A(h) \ N (h)�hd) < ph(A(h) \ N (h)�hd) } .

By the monotonicity of ph (shown in the proof of Claim 5.11), for any d ∈ N (h), we
have ph(A(h) \ N (h)�hd) ≤ ph(A(h) \ N (h)�hd). Then, for any h ∈ H , N ⊆ E , and
d ∈ N (h),

d ∈ N (h) \ Ch(N (h)) ⇐⇒ ph(A(h) \ N (h)�hd) = ph(A(h) \ N (h)�hd).

Thus, we have RH = NH \ CH (NH ).
We now analyze the time complexity. As shown in the proof of Proposition 5.9, a

stable matching is found by computing FI ′ at most 2|E | times, i.e., the “while loop”
is iterated O(|E |) times. Also, we see that each iteration can be done in O(|E |) time.
Checking the condition |M ′(h)| = ph(A(h)) (h ∈ H) is done in O(|E |) time. Thus,
the algorithm runs in O(|E |2) time.
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Appendix: Importance of the Cross-Inequality

InTheorem4.4weproved that, for aCSM instance, it is polynomially solvable to check
whether there exists an envy-free matching or not if each hospital’s quota function pair
is paramodular, i.e., if each hospital has super- and submodular functions satisfying
the cross-inequality. As mentioned in Remark 4.7, this problem becomes NP-hard if
the cross-inequality is not imposed, which we show in this section.

Theorem A.1 It is NP-hard to decide whether a CSM instance I = (D, H , E,�DH ,

{(ph, qh)}h∈H ) has an envy-free matching or not even if ph is supermodular and qh
is submodular for each hospital h ∈ H.

To show Theorem A.1, we use a reduction from the NP-complete problem “Disjoint
Matchings” [12] described below. For two finite sets S and T with |S| = |T |, a subset
W ⊆ S × T is a perfect matching if |W | = |S| and every element of S ∪ T occurs
in exactly one pair of W .

Disjoint Matchings (DM)

Instance: disjoint finite sets S, T with |S| = |T | and sets U1,U2 ⊆ S × T .
Question:Are there perfectmatchingsW1 ⊆ U1 andW2 ⊆ U2 such thatW1∩W2 = ∅?
Proof of TheoremA.1 Given an instance (S, T ,U1,U2) of DM, we construct a corre-
spondingCSM instance as follows.Define the sets of doctors, hospitals, and acceptable
pairs by

D = { du | u ∈ U1 ∪U2 } , H = {h1, h2}, E = { (du, hi ) | i ∈ {1, 2}, u ∈ Ui } .

For each i = 1, 2, let Di := A(hi ) = { du | u ∈ Ui } ∼= Ui . Recall that Ui ⊆
S × T and define Di (s) = { du ∈ Di | u = (s, t) for some t ∈ T } and Di (t) =
{ du ∈ Di | u = (s, t) for some s ∈ S } for each s ∈ S and t ∈ T , respectively. Then
{Di (s)}s∈S and {Di (t)}t∈T are partitions of Di . Let each hospital hi have quota func-
tions phi , qhi : 2Di → Z defined by

phi (B) = | { s ∈ S | Di (s) ⊆ B } | (B ⊆ Di ),

qhi (B) = | { t ∈ T | Di (t) ∩ B �= ∅ } | (B ⊆ Di ).

Then, we can check that phi is supermodular and qhi is submodular. (In fact, phi and
qhi are the matroid rank functions of the partition matroids induced by {Di (s)}s∈S and
{Di (t)}t∈T , respectively.) For any X ⊆ Di , the condition∀B ⊆ Di : phi (B) ≤ |X∩B|
means that X contains at least one member of Di (s) for each s ∈ S and the condition
∀B ⊆ Di : |X ∩ B| ≤ qhi (B) means that X contains at most one member of Di (t)
for each t ∈ T . Because |S| = |T |, these imply that a subset X ⊆ Di satisfies
∀B ⊆ Di : phi (B) ≤ |X ∩ B| ≤ qhi (B) if and only if the corresponding subset
{ u | du ∈ X } ⊆ Ui is a perfect matching between S and T , i.e., we have

F(phi , qhi ) = { X ⊆ Di | { u | du ∈ X } is a perfect matching included in Ui } .
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By the definition of perfect matching, we see that any X ,Y ∈ F(phi , qhi )with X �= Y
satisfy |X \ Y | ≥ 2. We define preference lists of the doctors and hospitals arbitrarily.

We first prove that any feasible matching of this CSM instance is an envy-free
matching. For a feasible matching M ⊆ E , suppose to the contrary that some doctor
d has a justified envy toward d ′ with M(d ′) = hi . Then d /∈ M(hi ), d ′ ∈ M(hi ), and
M(hi ) + d − d ′ ∈ F(phi , qhi ) while M(hi ) ∈ F(phi , qhi ). Because |(M(hi ) + d −
d ′) \ M(hi )| = 1, this contradicts the above property of F(phi , qhi ).

By the fact that each doctor can be assigned to atmost one hospital and each hospital
hi can be assigned a doctor set corresponding to a perfect matching in Ui , it follows
that this CSM instance has a feasiblematching if and only if there exists disjoint perfect
matchings W1 ⊆ U1 and W2 ⊆ U2. Because the existence of a feasible matching of
this instance is equivalent to that of an envy-free matching, the proof is completed. �	

References

1. Arulselvan, A., Cseh, Á., Groß, M., Manlove, D.F., Matuschke, J.: Matchings with lower quotas:
algorithms and complexity. Algorithmica 80, 1–24 (2016)

2. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of
MAX-3SAT, Electronic Colloquium on Computational Complexity Report (2003)

3. Biró, P., Fleiner, T., Irving, R.W., Manlove, D.F.: The college admissions problem with lower and
common quotas. Theor. Comput. Sci. 411, 3136–3153 (2010)

4. Ehlers, L., Hafalir, I.E., Yenmez, M.B., Yildirim, M.A.: School choice with controlled choice con-
straints: hard bounds versus soft bounds. J. Econ. Theory 153, 648–683 (2014)

5. Fleiner, T.: A matroid generalization of the stable matching polytope. In: Proceedings of the 8th
International Conference on Integer Programming and Combinatorial Optimization (IPCO 2001),
Lecture Notes in Computer Science 2081, pp. 105–114. Springer, Berlin (2001)

6. Fleiner, T.: A fixed-point approach to stable matchings and some applications. Math. Oper. Res. 28,
103–126 (2003)

7. Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower quotas. Math. Oper.
Res. 41, 734–744 (2016)

8. Fragiadakis, D., Iwasaki, A., Troyan, P., Ueda, S., Yokoo, M.: Strategyproof matching with minimum
quotas. ACM Trans. Econ. Comput. 4, 6:1–6:40 (2015)

9. Frank, A.: Generalized polymatroids, Finite and Infinite Sets. In: Proceedings of the 6th Hungarian
CombinatorialColloquium, 1981,ColloquiaMathematica Societatis JánosBolyai,37, 285–294.North-
Holland (1984)

10. Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics and its
Applications, vol. 38. Oxford University Press, Oxford (2011)

11. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Prog. 42, 489–563
(1988)

12. Frieze, A.M.: Complexity of a 3-dimensional assignment problem. Eur. J. Oper. Res. 13, 161–164
(1983)

13. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15
(1962)

14. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discret. Appl. Math. 11,
223–232 (1985)

15. Garey, M. R., Johnson, D. S.: 29: Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman. San Francisco (1979)

16. Goto, M., Iwasaki, A., Kawasaki, Y., Kurata, R., Yasuda, Y., Yokoo, M.: Strategyproof matching with
regional minimum and maximum quotas. Artif. Intell. 235, 40–57 (2016)

17. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cam-
bridge (1989)

123



Algorithmica (2020) 82:188–211 211

18. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals, residents problem with quota lower bounds.
In: Proceedings of 19th Annual European Symposium on Algorithms (ESA 2011), Lecture Notes in
Computer Science, vol. 6942, pp. 180–191. Springer, Berlin (2011)

19. Hamada,K., Iwama,K.,Miyazaki, S.: The hospitals/residents problemwith lower quotas.Algorithmica
74, 440–465 (2016)

20. Hassin, R.: On Network Flows, Ph.D. Thesis, Yale University (1978)
21. Hassin, R.: Minimum cost flow with set-constraints. Networks 12, 1–21 (1982)
22. Hatfield, J.W., Milgrom, P.R.: Matching with contracts. Am. Econ. Rev. 95, 913–935 (2005)
23. Huang, C.C.: Classified stable matching. In: Proceedings of the 21st Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA2010), pp. 1235–1253. SIAM, Philadelphia (2010)
24. Kamada, Y., Kojima, F.: Efficient matching under distributional constraints: theory and applications.

Am. Econ. Rev. 105, 67–99 (2014)
25. Kamada,Y., Kojima, F.: Stability concepts inmatching under distributional constraints. J. Econ. Theory

168, 107–142 (2017)
26. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific Publishing, Singapore

(2013)
27. Mnich, M., Schlotter, I.: Stable marriage with covering constraints–a complete computational tri-

chotomy. In: Proceedings of the 10th International Symposium on Algorithmic Game Theory (SAGT
2017), pp. 320–332. Springer, Berlin (2017)

28. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
29. Murota, K.: Discrete convex analysis: A tool for economics and game theory. J. Mech. Inst. Des. 1,

151–273 (2016)
30. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105

(1999)
31. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41, 338–350 (1993)
32. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game

theory. J. Polit. Econ. 92, 991–1016 (1984)
33. Roth, A.E.: Stability and polarization of interests in job matching. Econometrica 52, 47–57 (1984)
34. Roth, A.E.: On the allocation of residents to rural hospitals: a general property of two-sided matching

markets. Econometrica 54, 425–427 (1986)
35. Roth, A .E., Sotomayor, M .A .O.: Two-Sided Matching: A Study in Game-Theoretic Modeling and

Analysis. Cambridge University Press, Cambridge (1992)
36. Tardos, É.: Generalized matroids and supermodular colourings. In: Lovász, L., Recski, A. (eds.)

Matroid Theory, pp. 359–382. Amsterdam, North-Holland (1985)
37. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247–255

(1985)
38. Wu, Q., Roth, A.E.: The lattice of envy-free matchings. Mimeo (2016)
39. Yokoi, Y.: A generalized polymatroid approach to stable matchings with lower quotas. Math. Oper.

Res. 42, 238–255 (2017)
40. Yokoi,Y.: Envy-freematchingswith lower quotas. In: Proceedings of the 28th International Symposium

on Algorithms and Computation (ISAAC 2017), pp. 67:1–67:12 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Envy-Free Matchings with Lower Quotas
	Abstract
	1 Introduction
	2 Envy-Freeness in HR with Lower Quotas
	3 Envy-Freeness in Classified Stable Matching
	4 Envy-Freeness in CSM with Paramodular Quotas
	5 Proofs
	5.1 Generalized Matroids
	5.2 Choice Functions Induced from Matroid Rank Functions
	5.3 Fixed-point Method for Stable Matchings on Matroids
	5.4 Proof of Theorem 4.3
	5.5 Proof of Theorem 4.4

	Acknowledgements
	Appendix: Importance of the Cross-Inequality
	Disjoint Matchings (DM)

	References




