
Algorithmica (2019) 81:749–795
https://doi.org/10.1007/s00453-018-0488-4

Running Time Analysis of the (1+ 1)-EA for OneMax and
LeadingOnes Under Bit-Wise Noise

Chao Qian1 · Chao Bian1 ·Wu Jiang1 · Ke Tang2

Received: 30 August 2017 / Accepted: 18 July 2018 / Published online: 26 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In many real-world optimization problems, the objective function evaluation is sub-
ject to noise, and we cannot obtain the exact objective value. Evolutionary algorithms
(EAs), a type of general-purpose randomized optimization algorithm, have been shown
to be able to solve noisy optimization problems well. However, previous theoretical
analyses of EAs mainly focused on noise-free optimization, which makes the theoret-
ical understanding largely insufficient for the noisy case. Meanwhile, the few existing
theoretical studies under noise often considered the one-bit noise model, which flips a
randomly chosen bit of a solution before evaluation; while in many realistic applica-
tions, several bits of a solution can be changed simultaneously. In this paper, we study
a natural extension of one-bit noise, the bit-wise noise model, which independently
flips each bit of a solution with some probability. We analyze the running time of
the (1 + 1)-EA solving OneMax and LeadingOnes under bit-wise noise for the first
time, and derive the ranges of the noise level for polynomial and super-polynomial
running time bounds. The analysis on LeadingOnes under bit-wise noise can be easily
transferred to one-bit noise, and improves the previously known results. Since our
analysis discloses that the (1+ 1)-EA can be efficient only under low noise levels, we
also study whether the sampling strategy can bring robustness to noise. We prove that
using sampling can significantly increase the largest noise level allowing a polynomial
running time, that is, sampling is robust to noise.

Keywords Noisy optimization · Evolutionary algorithms · Sampling · Running time
analysis · Computational complexity

A preliminary version of this paper has appeared at GECCO’17 [27].

B Ke Tang
tangk3@sustc.edu.cn

1 Anhui Province Key Lab of Big Data Analysis and Application, School of Computer Science and
Technology, University of Science and Technology of China, Hefei 230027, China

2 Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen 518055, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0488-4&domain=pdf

750 Algorithmica (2019) 81:749–795

1 Introduction

In real-world optimization tasks, the exact objective (i.e., fitness) function evaluation
of candidate solutions is often impossible, instead we can obtain only a noisy one due
to a wide range of uncertainties [21]. For example, in machine learning, a prediction
model is evaluated only on a limited amount of data, which makes the estimated
performance deviate from the true performance; in product design, the design variables
can be subject to perturbations due to manufacturing tolerances, which brings noise.

In the presence of noise, the difficulty of solving an optimization problem may
increase. Evolutionary algorithms (EAs) [5], inspired by natural phenomena, are a
type of randomized metaheuristic optimization algorithm. They are likely to be able
to handle noise, since the corresponding natural phenomena have been well processed
in noisy natural environments. In fact, EAs have been successfully applied to solve
many noisy optimization problems [7,22].

Compared with the application, the theoretical analysis of EAs is far behind. But
in the last two decades, much effort has been devoted to the running time analysis
(an essential theoretical aspect) of EAs. Numerous analytical results for EAs solving
synthetic problems as well as combinatorial problems have been derived, e.g., [4,23].
Meanwhile, a few general approaches for running time analysis have been proposed,
e.g., drift analysis [10,12,20], fitness-level methods [8,32], and switch analysis [34].

However, previous running time analyses of EAs mainly focused on noise-free
optimization, where the fitness evaluation is exact. Only a few pieces of work on
noisy evolutionary optimization have been reported, which mainly considered two
kinds of noise models, prior and posterior. The prior noise comes from the variation
on a solution, e.g., one-bit noise [13] flips a random bit of a binary solution before
evaluation with probability p. The posterior noise comes from the variation on the
fitness of a solution, e.g., additive noise [19] adds a value randomly drawn from some
distribution. Droste [13] first analyzed the (1 + 1)-EA on the OneMax problem in
the presence of one-bit noise and showed that the tight range of the noise probability
p allowing a polynomial running time is O(log n/n), where n is the problem size.
Gießen and Kötzing [19] recently studied the LeadingOnes problem, and proved that
the expected running time is polynomial if p ≤ 1/(6en2) and exponential if p = 1/2.
They also considered additive noise with variance σ 2, and proved that the (1+ 1)-EA
can solve OneMax and LeadingOnes in polynomial time when σ 2 = O(log n/n) and
σ 2 ≤ 1/(12en2), respectively.

For inefficient optimization of the (1+1)-EA under high noise levels, some implicit
mechanisms of EAs were proved to be robust to noise. In [19], it was shown that the
(μ+1)-EA with a small population of size Θ(log n) can solve OneMax in polynomial
time even if the probability of one-bit noise reaches 1. The robustness of populations
to noise was also proved in the setting of non-elitist EAs [9,26]. However, Friedrich
et al. [17] showed the limitation of populations by proving that the (μ+1)-EA needs
super-polynomial time for solving OneMax under additive Gaussian noise N (0, σ 2)

with σ 2 ≥ n3. This difficulty can be overcome by the compact genetic algorithm
(cGA) [17] and a simple Ant Colony Optimization (ACO) algorithm [16], both of
which find the optimal solution in polynomial time with a high probability. ACO was
also shown to be able to efficiently find solutions with reasonable approximations

123

Algorithmica (2019) 81:749–795 751

Table 1 The noise models mainly considered in running time analyses on noisy evolutionary optimization

References Noise models

Droste [13] and Qian et al. [29] One-bit noise

Akimoto et al. [2] Additive noise

Prugel-Bennett et al. [26] and Friedrich et al. [16–18] Additive Gaussian noise

Dang and Lehre [9] and Gießen and Kötzing [19] One-bit noise, additive noise

Qian et al. [28] One-bit noise, additive Gaussian noise

Doerr et al. [11], Feldmann and Kötzing [15], and
Sudholt and Thyssen [33]

The single-destination shortest path problem
with stochastic edge weights

This paper Bit-wise noise

on some instances of the single-destination shortest path problem with edge weights
disturbed by noise [11,15,33].

The ability of explicit noise handling strategies was also theoretically studied. Qian
et al. [29] proved that the threshold selection strategy is robust to noise: the expected
running time of the (1 + 1)-EA using threshold selection on OneMax under one-bit
noise is always polynomial regardless of the noise probability p. For the (1 + 1)-EA
solving OneMax under one-bit noise with p = 1 or additive Gaussian noiseN (0, σ 2)

with σ 2 ≥ 1, the sampling strategy was shown to be able to reduce the running time
from exponential to polynomial [28]. The robustness of sampling to noise was also
proved for the (1+ 1)-EA solving LeadingOnes under one-bit noise with p = 1/2 or
additive Gaussian noise with σ 2 ≥ n2. Akimoto et al. [2] proved that sampling with
a large sample size can make optimization under additive unbiased noise behave as
optimization in a noise-free environment. The interplay between sampling and implicit
noise-handling mechanisms (e.g., crossover) has been statistically studied in [18].

The noise models considered in the studies mentioned above are summarized in
Table 1. We can observe that for the prior noise model, one-bit noise was mainly
considered, which flips a random bit of a solution before evaluation with probability p.
However, the noise model, which can change several bits of a solution simultaneously,
may bemore realistic and needs to be studied, asmentioned in the first noisy theoretical
work [13].

In this paper, we study the bit-wise noise model, which is characterized by a pair
(p, q) of parameters. It happens with probability p, and independently flips each bit
of a solution with probability q before evaluation. We analyze the running time of the
(1+ 1)-EA solving OneMax and LeadingOnes under bit-wise noise with two specific
parameter settings (p, 1

n) and (1, q). The ranges of p and q for a polynomial upper
bound and a super-polynomial lower bound are derived, as shown in the first two rows
of Table 2. For the (1 + 1)-EA on LeadingOnes, we also transfer the running time
bounds from bit-wise noise (p, 1

n) to one-bit noise by using the same proof procedure.
As shown in the bottom right of Table 2, our results improve the previously known
ones [19].

Note that for the (1 + 1)-EA on LeadingOnes, the current analysis (as shown in
the last column of Table 2) does not cover all the ranges of p and q. We thus conduct

123

752 Algorithmica (2019) 81:749–795

Table 2 For the running time of the (1+1)-EA on OneMax and LeadingOnes under prior noise models, the
ranges of noise parameters for a polynomial upper bound and a super-polynomial lower bound are shown
below

(1 + 1)-EA OneMax LeadingOnes

Bit-wise noise (p, 1
n) O(log n/n), ω(log n/n) O(log n/n2), ω(log n/n)

Bit-wise noise (1, q) O(log n/n2), ω(log n/n2) [19] O(log n/n3), ω(log n/n2)

One-bit noise O(log n/n), ω(log n/n) [13] [0, 1/(6en2)], 1/2 [19];
O(log n/n2), ω(log n/n)

Table 3 For the running time of the (1 + 1)-EA using sampling on OneMax and LeadingOnes under prior
noise models, the ranges of noise parameters for a polynomial upper bound and a super-polynomial lower
bound are shown below

(1 + 1)-EA using sampling OneMax LeadingOnes

Bit-wise noise (p, 1
n) [0, 1], ∅ [0, 1], ∅

Bit-wise noise (1, q) 1/2 − 1/nO(1), 1/2 − 1/nω(1) ∪ [1/2, 1] O(log n/n), ω(log n/n)

One-bit noise [0, 1], ∅ [0, 1], ∅

experiments to estimate the expected running time for the uncovered values of p and
q. The empirical results show that the currently derived ranges of p and q allowing a
polynomial running time are possibly tight.

From the results in Table 2, we find that the (1+ 1)-EA is efficient only under low
noise levels. For example, for the (1 + 1)-EA solving OneMax under bit-wise noise
(p, 1

n), the expected running time is polynomial only when p = O(log n/n). We
then study whether the sampling strategy can bring robustness to noise. Sampling is a
popular way to cope with noise in fitness evaluation [3], which, instead of evaluating
the fitness of one solution only once, evaluates the fitness multiple (m) times and then
uses the average to approximate the true fitness. We analyze the running time of the
(1 + 1)-EA using sampling under both bit-wise noise and one-bit noise. The ranges
of p and q for a polynomial upper bound and a super-polynomial lower bound are
shown in Table 3. Our analysis covers all the ranges of p and q. Note that for proving
a polynomial upper bound, it is sufficient to show that using sampling with a specific
sample size m can guarantee a polynomial running time, while for proving a super-
polynomial lower bound, we need to prove that using sampling with any polynomially
boundedm fails to guarantee a polynomial running time. Compared with the results in
Table 2, we find that using sampling significantly improves the noise-tolerance ability.
For example, by using sampling with m = 4n3, the (1+ 1)-EA now can always solve
OneMax under bit-wise noise (p, 1

n) in polynomial time.
From the analysis, we also find the reason why sampling is effective or not. Let

f (x) and f n(x) denote the true and noisy fitness of a solution, respectively. For two
solutions x and y with f (x) > f (y), when the noise level is high (i.e., the values of
p and q are large), the probability P(f n(x) ≤ f n(y)) (i.e., the true worse solution
y appears to be better) becomes large, which will mislead the search direction and
then lead to a super-polynomial running time. In such a situation, if the expected gap

123

Algorithmica (2019) 81:749–795 753

between f n(x) and f n(y) is positive, sampling will increase this trend and make
P(f n(x) ≤ f n(y)) sufficiently small; if it is negative (e.g., on OneMax under bit-wise
noise (1, q)with q ≥ 1/2), samplingwill continue to increase P(f n(x) ≤ f n(y)), and
obviouslywill not work.We also note that if the positive gap between f n(x) and f n(y)
is too small (e.g., on OneMax under bit-wise noise (1, q) with q = 1/2 − 1/nω(1)),
a polynomial sample size will be not sufficient and sampling also fails to guarantee a
polynomial running time.

This paper extends our preliminary work [27]. Since the theoretical analysis on
the LeadingOnes problem is not complete, we add experiments to complement the
theoretical results (i.e., Sect. 4.4). We also add the robustness analysis of sampling
to noise (i.e., Sect. 5). Note that the robustness of sampling to one-bit noise has been
studied in our previous work [28]. It was shown that sampling can reduce the running
time of the (1 + 1)-EA from exponential to polynomial on OneMax when the noise
probability p = 1 as well as on LeadingOnes when p = 1/2. Therefore, our results
here are more general. We prove that sampling is effective for any value of p, as
shown in the last row of Table 3. Furthermore, we analyze the robustness of sampling
to bit-wise noise for the first time.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. The running time analysis of the (1+ 1)-EA on OneMax and LeadingOnes under
noise is presented in Sections 3 and 4, respectively. Section 5 analyzes the (1+ 1)-EA
using sampling. Section 6 concludes the paper.

2 Preliminaries

In this section, we first introduce the optimization problems, noise models and evo-
lutionary algorithms studied in this paper, respectively, then introduce the sampling
strategy, and finally present the analysis tools that we use throughout this paper.

2.1 OneMax and LeadingOnes

In this paper, we use two well-known pseudo-Boolean functions OneMax and Leadin-
gOnes. The OneMax problem as presented in Definition 1 aims to maximize the
number of 1-bits of a solution. The LeadingOnes problem as presented in Definition 2
aims tomaximize the number of consecutive 1-bits counting from the left of a solution.
Their optimal solution is 11 . . . 1 (briefly denoted as 1n). It has been shown that the
expected running time of the (1+ 1)-EA on OneMax and LeadingOnes is Θ(n log n)

and Θ(n2), respectively [14]. In the following analysis, we will use LO(x) to denote
the number of leading 1-bits of a solution x .

Definition 1 (OneMax) The OneMax Problem of size n is to find an n bits binary
string x∗ such that

x∗ = argmaxx∈{0,1}n
(
f (x) =

n∑
i=1

xi

)
.

123

754 Algorithmica (2019) 81:749–795

Definition 2 (LeadingOnes) The LeadingOnes Problem of size n is to find an n bits
binary string x∗ such that

x∗ = argmax
x∈{0,1}n

⎛
⎝ f (x) =

n∑
i=1

i∏
j=1

x j

⎞
⎠ .

2.2 Bit-Wise Noise

There are mainly two kinds of noise models: prior and posterior [19,21]. Let f n(x)
and f (x) denote the noisy and true fitness of a solution x , respectively. The prior noise
comes from the variation on a solution, i.e., f n(x) = f (x ′), where x ′ is generated
from x by random perturbations. The posterior noise comes from the variation on
the fitness of a solution, e.g., additive noise f n(x) = f (x) + δ and multiplicative
noise f n(x) = f (x) · δ, where δ is randomly drawn from some distribution. Previous
theoretical analyses involving prior noise [9,13,19,28,29] often focused on a specific
model, one-bit noise. As presented in Definition 3, it flips a random bit of a solution
before evaluation with probability p. However, in many realistic applications, noise
can change several bits of a solution simultaneously rather than only one bit. We
thus consider the bit-wise noise model. As presented in Definition 4, it happens with
probability p, and independently flips each bit of a solution with probability q before
evaluation. We use bit-wise noise (p, q) to denote the bit-wise noise model with a
scenario of (p, q).

Definition 3 (One-bit Noise) Given a parameter p ∈ [0, 1], let f n(x) and f (x) denote
the noisy and true fitness of a solution x ∈ {0, 1}n , respectively, then

f n(x) =
{
f (x) with probability 1 − p,

f (x ′) with probability p,

where x ′ is generated by flipping a uniformly randomly chosen bit of x .

Definition 4 (Bit-wise Noise) Given parameters p, q ∈ [0, 1], let f n(x) and f (x)
denote the noisy and true fitness of a solution x ∈ {0, 1}n , respectively, then

f n(x) =
{
f (x) with probability 1 − p,

f (x ′) with probability p,

where x ′ is generated by independently flipping each bit of x with probability q.

To the best of our knowledge, only bit-wise noise (1, q) has been recently stud-
ied. Gießen and Kötzing [19] proved that for the (1 + 1)-EA solving OneMax, the
expected running time is polynomial if q = O(log n/n2) and super-polynomial if
q = ω(log n/n2). Besides bit-wise noise (1, q), we also study another specific model
bit-wise noise (p, 1

n) in this paper. Note that bit-wise noise (p, 1
n) is a natural extension

123

Algorithmica (2019) 81:749–795 755

of one-bit noise; their random behaviors of perturbing a solution correspond to the two
common mutation operators, bit-wise mutation and one-bit mutation, respectively.

To investigate whether the performance of the (1 + 1)-EA for bit-wise noise with
two scenarios of (p, q) and (p′, q ′)where p ·q = p′ ·q ′ can be significantly different,
we consider the OneMax problem under bit-wise noise (1, log n

30n) and (
log n
30n , 1). The

comparison gives a positive answer. For bit-wise noise (1, log n
30n), we know that the

(1 + 1)-EA needs super-polynomial time to solve OneMax [19], while for bit-wise
noise (

log n
30n , 1), we will prove in Theorem 7 that the (1 + 1)-EA can solve OneMax

in polynomial time. Thus, the analysis on general bit-wise noise without fixing p or
q would be complicated, and p · q may not be the only deciding factor. We leave it as
a future work.

2.3 (1+ 1) Evolutionary Algorithm

The (1+1)-EA as described inAlgorithm 1 is studied in this paper. For noisy optimiza-
tion, only a noisy fitness value f n(x) instead of the exact one f (x) can be accessed,
and thus line 4 of Algorithm 1 is “if f n(x ′) ≥ f n(x)” instead of “if f (x ′) ≥ f (x)”.
Note that the reevaluation strategy is used as in [11,13,19]. That is, besides evaluating
f n(x ′), f n(x) will be reevaluated in each iteration of the (1 + 1)-EA. The running
time is usually defined as the number of fitness evaluations needed to find an optimal
solution w.r.t. the true fitness function f for the first time [2,13,19].

Algorithm 1 ((1+1)-EA)Given a function f over {0, 1}n to be maximized, it consists
of the following steps:

1. x := uniformly randomly selected from {0, 1}n .
2. Repeat until the termination condition is met
3. x ′ := flip each bit of x independently with prob. 1/n.
4. if f n(x ′) ≥ f n(x)
5. x := x ′.

2.4 Sampling

In noisy evolutionary optimization, sampling has often been used to reduce the negative
effect of noise [1,6]. As presented in Definition 5, it approximates the true fitness f (x)
using the average of multiple (m) independent random evaluations. For the (1+1)-EA
using sampling, line 4 of Algorithm 1 changes to be “if f̂ (x ′) ≥ f̂ (x)”. Its pseudo-
code is described in Algorithm 2. Note that the sample sizem = 1 is equivalent to that
sampling is not used. The effectiveness of sampling was not theoretically analyzed
until recently. Qian et al. [28] proved that sampling is robust to one-bit noise and
additive Gaussian noise. Particularly, under one-bit noise, it was shown that sampling
can reduce the running time exponentially for the (1 + 1)-EA solving OneMax when
the noise probability p = 1 and LeadingOnes when p = 1/2.

Definition 5 (Sampling) Sampling first evaluates the fitness of a solution m times
independently and obtains the noisy fitness values f n1 (x), . . . , f nm(x), and then outputs
their average, i.e.,

123

756 Algorithmica (2019) 81:749–795

f̂ (x) = 1

m

m∑
i=1

f ni (x).

Algorithm 2 ((1+ 1)-EA with sampling) Given a function f over {0, 1}n to be maxi-
mized, it consists of the following steps:

1. x := uniformly randomly selected from {0, 1}n .
2. Repeat until the termination condition is met
3. x ′ := flip each bit of x independently with prob. 1/n.
4. if f̂ (x ′) ≥ f̂ (x)
5. x := x ′.

2.5 Analysis Tools

The process of the (1+ 1)-EA solving any pseudo-Boolean function with one unique
global optimum can be directly modeled as a Markov chain {ξt }+∞

t=0 . We only need to
take the solution space {0, 1}n as the chain’s state space (i.e., ξt ∈ X = {0, 1}n), and
take the optimal solution 1n as the chain’s optimal state (i.e.,X ∗ = {1n}). Note that we
can assume without loss of generality that the optimal solution is 1n , because unbiased
EAs treat the bits 0 and 1 symmetrically, and thus the 0 bits in an optimal solution can
be interpreted as 1 bits without affecting the behavior of EAs. Given a Markov chain
{ξt }+∞

t=0 and ξt̂ = x , we define its first hitting time (FHT) as τ = min{t | ξt̂+t ∈ X ∗, t ≥
0}. The mathematical expectation of τ , E(τ | ξt̂ = x) = ∑+∞

i=0 i ·P(τ = i | ξt̂ = x), is
called the expected first hitting time (EFHT) starting from ξt̂ = x . If ξ0 is drawn from
a distribution π0, E(τ | ξ0 ∼ π0) = ∑

x∈X π0(x)E(τ | ξ0 = x) is called the EFHT of
the Markov chain over the initial distribution π0. Thus, the expected running time of
the (1+1)-EA starting from ξ0 ∼ π0 is equal to 1+2·E(τ | ξ0 ∼ π0), where the term 1
corresponds to evaluating the initial solution, and the factor 2 corresponds to evaluating
the offspring solution x ′ and reevaluating the parent solution x in each iteration. If using
sampling, the expected running time of the (1+1)-EA ism+2m ·E(τ | ξ0 ∼ π0), since
estimating the fitness of a solution needsm number of independent fitness evaluations.
Note that we consider the expected running time of the (1 + 1)-EA starting from a
uniform initial distribution in this paper.

In the following, we give three drift theorems that will be used to analyze the
EFHT of Markov chains in the paper. The additive drift theorem [20] as presented in
Theorem 1 is used to derive upper bounds on the EFHT of Markov chains. To use it, a
function V (x) has to be constructed to measure the distance of a state x to the optimal
state space X ∗. Then, we need to investigate the progress on the distance to X ∗ in
each step, i.e., E(V (ξt) − V (ξt+1) | ξt). An upper bound on the EFHT can be derived
through dividing the initial distance by a lower bound on the progress.

Theorem 1 (AdditiveDrift [20])GivenaMarkov chain {ξt }+∞
t=0 andadistance function

V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there exists a real number c > 0
such that

123

Algorithmica (2019) 81:749–795 757

E(V (ξt) − V (ξt+1) | ξt) ≥ c,

then the EFHT satisfies that E(τ | ξ0) ≤ V (ξ0)/c.

The negative drift theorem [24,25] as presented in Theorem 2 was proposed to
prove exponential lower bounds on the EFHT of Markov chains, where Xt is usually
represented by a mapping of ξt . It requires two conditions: a constant negative drift
and exponentially decaying probabilities of jumping towards or away from the goal
state. To relax the requirement of a constant negative drift, the negative drift theorem
with self-loops [30] as presented in Theorem 3 has been proposed, which takes into
account large self-loop probabilities.

Theorem 2 (Negative Drift [24,25]) Let Xt , t ≥ 0, be real-valued random variables
describing a stochastic process. Suppose there exists an interval [a, b] ⊆ R, two
constants δ, ε > 0 and, possibly depending on l := b − a, a function r(l) satisfying
1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0 the following two conditions hold:

1. E(Xt − Xt+1 | a < Xt < b) ≤ −ε,

2. P(|Xt+1 − Xt | ≥ j | Xt > a) ≤ r(l)

(1 + δ) j
for j ∈ N0.

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it
holds P(T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

Theorem 3 (NegativeDrift with Self-loops [30]) Let Xt , t ≥ 0, be real-valued random
variables describing a stochastic process. Suppose there exists an interval [a, b] ⊆ R,
two constants δ, ε > 0 and, possibly depending on l := b−a, a function r(l) satisfying
1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0 the following two conditions hold:

1. ∀a < i < b : E(Xt − Xt+1 | Xt = i) ≤ −ε · P(Xt+1
= i | Xt = i),

2. ∀i > a, j ∈ N0 : P(|Xt+1 − Xt |≥ j | Xt = i) ≤ r(l)

(1 + δ) j
· P(Xt+1
= i | Xt = i).

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it
holds P(T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

3 The OneMax Problem

In this section, we analyze the running time of the (1 + 1)-EA on OneMax under
bit-wise noise. Note that for bit-wise noise (1, q), it has been proved that the expected
running time is polynomial if and only if q = O(log n/n2), as shown in Theorem 4.

Theorem 4 [19] For the (1 + 1)-EA on OneMax under bit-wise noise (1, q), the
expected running time is polynomial if q = O(log n/n2) and super-polynomial if
q = ω(log n/n2).

123

758 Algorithmica (2019) 81:749–795

For bit-wise noise (p, 1
n), we prove in Theorems 5 and 6 that the tight range of p

allowing a polynomial running time is O(log n/n). Instead of using the original drift
theorems, we apply the upper and lower bounds of the (1 + 1)-EA on noisy OneMax
in [19]. Let xk denote any solution with k number of 1-bits, and f n(xk) denote its
noisy objective value, which is a random variable. Lemma 1 intuitively means that if
the probability of recognizing the true better solution by noisy evaluation is large (i.e.,
Eq. (1)), the running time can be upper bounded. Particularly, if Eq. (1) holds with
l = O(log n), the running time can be polynomially upper bounded. On the contrary,
Lemma 2 shows that if the probability of making a right comparison is small (i.e.,
Eq. (2)), the running time can be lower bounded. Particularly, if Eq. (2) holds with
l = Ω(n), the running time can be exponentially lower bounded. Both Lemmas 1
and 2 are proved by applying standard drift theorems, and can be used to simplify our
analysis. Note that in the original upper bound of the (1 + 1)-EA on noisy OneMax
(i.e., Theorem 5 in [19]), it requires that Eq. (1) holds with only j = k, but the proof
actually also requires that noisy OneMax satisfies the monotonicity property, i.e., for
all j < k < n, P(f n(xk) < f n(xk+1)) ≤ P(f n(x j) < f n(xk+1)).We have combined
these two conditions in Lemma 1 by requiring Eq. (1) to hold with any j ≤ k instead
of only j = k.

Lemma 1 [19] Suppose there is a positive constant c ≤ 1/15 and some 2 < l ≤ n/2
such that

∀ j ≤ k < n : P
(
f n(x j) < f n(xk+1)

)
≥ 1 − l

n
;

∀ j ≤ k < n − l : P
(
f n(x j) < f n(xk+1)

)
≥ 1 − c

n − k

n
,

(1)

then the (1 + 1)-EA optimizes f in expectation in O(n log n) + n2O(l) iterations.

Lemma 2 [19] Suppose there is some l ≤ n/4 and a constant c ≥ 16 such that

∀n − l ≤ k < n : P
(
f n(xk) < f n(xk+1)

)
≤ 1 − c

n − k

n
, (2)

then the (1 + 1)-EA optimizes f in 2Ω(l) iterations with a high probability.

First, we apply Lemma 1 to show that the expected running time is polynomially
upper bounded for bit-wise noise (p, 1

n) with p = O(log n/n).

Theorem 5 For the (1 + 1)-EA on OneMax under bit-wise noise (p, 1
n), the expected

running time is polynomial if p = O(log n/n).

Proof We prove it by using Lemma 1. For some positive constant b, suppose that
p ≤ b log n/n. We set the two parameters in Lemma 1 as c = min{ 1

15 , b} and l =
2b log n

c ∈ (2, n
2].

For any j ≤ k < n, f n(x j) ≥ f n(xk+1) implies that f n(x j) ≥ k + 1 or
f n(xk+1) ≤ k, either of which happens with probability at most p. By the union
bound, we get ∀ j ≤ k < n,

123

Algorithmica (2019) 81:749–795 759

P
(
f n(x j) ≥ f n(xk+1)

)
≤ 2p ≤ 2b log n

n
= lc

n
≤ l

n
.

For any j ≤ k < n − l, we easily get

P
(
f n(x j) ≥ f n(xk+1)

)
≤ lc

n
< c

n − k

n
.

ByLemma1,we know that the expected running time is O(n log n)+n2O(2b log n/c),
i.e., polynomial. ��

Nextwe apply Lemma 2 to show that the expected running time is super-polynomial
for bit-wise noise (p, 1

n) with p = ω(log n/n). Note that for p = 1 − O(log n/n),
we actually give a stronger result that the expected running time is exponential.

Theorem 6 For the (1 + 1)-EA on OneMax under bit-wise noise (p, 1
n), the expected

running time is super-polynomial if p = ω(log n/n)∩1−ω(log n/n) and exponential
if p = 1 − O(log n/n).

Proof We use Lemma 2 to prove it. Let c = 16. The case p = ω(log n/n) ∩ 1 −
ω(log n/n) is first analyzed. For any positive constant b, let l = b log n. For any
k ≥ n − l, we get

P
(
f n(xk) ≥ f n(xk+1)

)
≥ P(f n(xk) = k) · P(f n(xk+1) ≤ k).

To make f n(xk) = k, it is sufficient that the noise does not happen, i.e., P(f n(xk) =
k) ≥ 1 − p. To make f n(xk+1) ≤ k, it is sufficient to flip one 1-bit and keep other
bits unchanged by noise, i.e., P(f n(xk+1) ≤ k) ≥ p · k+1

n (1 − 1
n)n−1. Thus,

P
(
f n(xk) ≥ f n(xk+1)

)
≥ (1 − p) · p k + 1

en
= ω(log n/n).

Since c n−k
n ≤ c l

n = cb log n
n , the condition of Lemma 2 holds. Thus, the expected

running time is 2Ω(b log n) (where b is any constant), i.e., super-polynomial.
For the case p = 1−O(log n/n), let l = √

n.We use another lower bound p(1− 1
n)n

for P(f n(xk) = k), since it is sufficient that no bit flips by noise. Thus, we have

P
(
f n(xk) ≥ f n(xk+1)

)
≥ p

(
1 − 1

n

)n

· p k + 1

en
= Ω(1).

Since c n−k
n ≤ c

√
n

n , the condition of Lemma 2 holds. Thus, the expected running time

is 2Ω(
√
n), i.e., exponential. ��

To show that the performance of the (1+1)-EA for bit-wise noisewith two scenarios
(p, q) and (p′, q ′) where p · q = p′ · q ′ can be significantly different, we compare
the expected running time of the (1+1)-EA for bit-wise noise (1, log n

30n) and (
log n
30n , 1).

123

760 Algorithmica (2019) 81:749–795

For the former case, we know from Theorem 4 that the expected running time is
super-polynomial, while for the latter case, we prove in the following theorem that the
expected running time can be polynomially upper bounded.

Theorem 7 For the (1+1)-EA onOneMax under bit-wise noise (
log n
30n , 1), the expected

running time is polynomial.

Proof We use Lemma 1 to prove it. For any j ≤ k < n, f n(x j) ≥ f n(xk+1) implies
that the fitness evaluation of x j or xk+1 is affected by noise, whose probability is at
most 2 · log n

30n = log n
15n . Thus, we have P(f n(x j) < f n(xk+1)) ≥ 1 − log n

15n . It is then
easy to verify that the condition of Lemma 1 holds with c = 1

15 and l = log n. Thus,
the expected running time is polynomial. ��

4 The LeadingOnes Problem

In this section, we first analyze the running time of the (1+1)-EA on the LeadingOnes
problem under bit-wise noise (p, 1

n) and bit-wise noise (1, q), respectively. Then,
we transfer the analysis from bit-wise noise (p, 1

n) to one-bit noise; the results are
complementary to the known ones recently derived in [19]. However, our analysis
does not cover all the ranges of p and q. For those values of p and q where no
theoretical results are known, we conduct experiments to empirically investigate the
running time.

4.1 Bit-Wise Noise (p, 1
n)

For bit-wise noise (p, 1
n), we first apply the additive drift theorem (i.e., Theorem 1)

to prove that the expected running time is polynomial when p = O(log n/n2).

Theorem 8 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (p, 1
n), the

expected running time is polynomial if p = O(log n/n2).

Proof We use Theorem 1 to prove it. For some positive constant b, suppose that
p ≤ b log n/n2. Let θ ∈ (0, 1) be some constant close to 0. We first construct a
distance function V (x) as, for any x with LO(x) = i ,

V (x) =
(
1 + c

n

)n −
(
1 + c

n

)i
, (3)

where c = 2b log n
1−θ

+ 1. It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈
X ∗) > 0.

Then, we investigate E(V (ξt) − V (ξt+1) | ξt = x) for any x with LO(x) < n (i.e.,
x /∈ X ∗). Assume that currently LO(x) = i , where 0 ≤ i ≤ n − 1. Let Pmut (x, x ′)
denote the probability of generating x ′ by mutation on x . We divide the drift into two
parts: positive E+ and negative E−. That is,

E(V (ξt) − V (ξt+1) | ξt = x) = E+ − E−,

123

Algorithmica (2019) 81:749–795 761

where

E+ =
∑

x ′:LO(x ′)>i

Pmut (x, x
′) · P(f n(x ′) ≥ f n(x)) · (V (x) − V (x ′)), (4)

E− =
∑

x ′:LO(x ′)<i

Pmut (x, x
′) · P(f n(x ′) ≥ f n(x)) · (V (x ′) − V (x)). (5)

For the positive drift E+, we need to consider that the number of leading 1-bits is
increased. By mutation, we have

∑
x ′:LO(x ′)>i

Pmut (x, x
′) = P(LO(x ′) ≥ i + 1) =

(
1 − 1

n

)i 1

n
, (6)

since it needs to flip the (i + 1)-th bit (which must be 0) of x and keep the i leading
1-bits unchanged. For any x ′ with LO(x ′) ≥ i + 1, f n(x ′) < f n(x) implies that
f n(x ′) ≤ i − 1 or f n(x) ≥ i + 1. Note that,

P(f n(x ′) ≤ i − 1) = p

(
1 −

(
1 − 1

n

)i
)

, (7)

since at least one of the first i leading 1-bits of x ′ needs to be flipped by noise;

P(f n(x) ≥ i + 1) = p

(
1 − 1

n

)i 1

n
, (8)

since it needs to flip the first 0-bit of x and keep the leading 1-bits unchanged by noise.
By the union bound, we get

P(f n(x ′) ≥ f n(x)) = 1 − P(f n(x ′) < f n(x))

≥ 1 − p

(
1 −

(
1 − 1

n

)i+1
)

≥ 1 − p
i + 1

n
≥ 1 − p ≥ 1 − θ,

(9)

where the last inequality holds with sufficiently large n, since p = O(log n/n2) and
θ ∈ (0, 1) is some constant close to 0. Furthermore, for any x ′ with V (x ′) ≥ i + 1,

V (x) − V (x ′) ≥
(
1 + c

n

)i+1 −
(
1 + c

n

)i = c

n

(
1 + c

n

)i
. (10)

By combining Eqs. (6), (9) and (10), we have

E+ ≥
(
1 − 1

n

)i 1

n
· (1 − θ) · c

n

(
1 + c

n

)i ≥ (1 − θ)c

3n2

(
1 + c

n

)i
,

where the last inequality is by (1 − 1
n)i ≥ (1 − 1

n)n−1 ≥ 1
e ≥ 1

3 .

123

762 Algorithmica (2019) 81:749–795

For the negative drift E−, we need to consider that the number of leading 1-bits is
decreased. By mutation, we have

∑
x ′:LO(x ′)<i

Pmut (x, x
′) = P(LO(x ′) ≤ i − 1) = 1 −

(
1 − 1

n

)i

, (11)

since it needs to flip at least one leading 1-bit of x . For any x ′ with LO(x ′) ≤ i − 1
(where i ≥ 1), f n(x ′) ≥ f n(x) implies that f n(x ′) ≥ i or f n(x) ≤ i − 1. Note that,

P(f n(x ′) ≥ i) ≤ p

(
1 − 1

n

)i−1 1

n
, (12)

since for the first i bits of x ′, it needs to flip the 0-bits (whose number is at least 1)
and keep the 1-bits unchanged by noise;

P(f n(x) ≤ i − 1) = p

(
1 −

(
1 − 1

n

)i
)

, (13)

since at least one leading 1-bit of x needs to be flipped by noise. By the union bound,
we get

P(f n(x ′) ≥ f n(x)) ≤ p − p

(
1 − 2

n

)(
1 − 1

n

)i−1

≤ p
i + 1

n
. (14)

Furthermore, according to the definition of the distance function (i.e., Eq. (3)), we
have for any x ′ with 0 ≤ LO(x ′) ≤ i − 1,

V (x ′) − V (x) =
(
1 + c

n

)i −
(
1 + c

n

)LO(x ′) ≤
(
1 + c

n

)i − 1. (15)

By combining Eqs. (11), (14) and (15), we have

E− ≤
(
1 −

(
1 − 1

n

)i
)

· p i + 1

n
·
((

1 + c

n

)i − 1

)

≤
(
1 − 1

e

)
· p ·

(
1 + c

n

)i ≤ 2p

3

(
1 + c

n

)i
.

Thus, by subtracting E− from E+, we have

E(V (ξt) − V (ξt+1) | ξt = x) ≥
(
1 + c

n

)i ((1 − θ)c

3n2
− 2p

3

)

≥
(
1 + c

n

)i (2b log n + 1 − θ

3n2
− 2b log n

3n2

)
≥ 1 − θ

3n2
, (16)

123

Algorithmica (2019) 81:749–795 763

where the second inequality is by c = 2b log n
1−θ

+ 1 and p ≤ b log n/n2. Note that

V (x) ≤ (1 + c
n)n ≤ ec = e

2b log n
1−θ

+1 = en
2b
1−θ . By Theorem 1, we get

E(τ | ξ0) ≤ 3n2

1 − θ
· en 2b

1−θ = O
(
n

2b
1−θ

+2
)

,

i.e., the expected running time is polynomial. ��
Next we use the negative drift with self-loops theorem (i.e., Theorem 3) to show

that the expected running time is super-polynomial for bit-wise noise (p, 1
n) with

p = ω(log n/n) ∩ o(1).

Theorem 9 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (p, 1
n), if p =

ω(log n/n) ∩ o(1), the expected running time is super-polynomial.

Proof We use Theorem 3 to prove it. Let Xt = |x |0 be the number of 0-bits of the
solution x after t iterations of the (1 + 1)-EA. Let c be any positive constant. We
consider the interval [0, c log n], i.e., the parameters a = 0 (i.e., the global optimum)
and b = c log n in Theorem 3.

Then, we analyze the drift E(Xt − Xt+1 | Xt = i) for 1 ≤ i < c log n. As in the
proof of Theorem 8, we divide the drift into two parts: positive E+ and negative E−.
That is,

E(Xt − Xt+1 | Xt = i) = E+ − E−,

where

E+ =
∑

x ′:|x ′|0<i

Pmut (x, x
′) · P(f n(x ′) ≥ f n(x)) · (i − |x ′|0),

E− =
∑

x ′:|x ′|0>i

Pmut (x, x
′) · P(f n(x ′) ≥ f n(x)) · (|x ′|0 − i).

Note that the drift here depends on the number of 0-bits due to the definition of Xt .
It is different from that in the proof of Theorem 8, which depends on the number of
leading 1-bits due to the definition of the distance function (i.e., Eq. (3)).

For the positive drift E+, we need to consider that the number of 0-bits is decreased.
For mutation on x (where |x |0 = i), let X and Y denote the number of flipped 0-bits
and 1-bits, respectively. Then, X ∼ B(i, 1

n) and Y ∼ B(n− i, 1
n), where B(·, ·) is the

binomial distribution. To estimate an upper bound on E+, we assume that the offspring
solution x ′ with |x ′|0 < i is always accepted. Thus, we have

E+ ≤
∑

x ′:|x ′|0<i

Pmut (x, x
′)(i − |x ′|0) =

i∑
k=1

k · P(X − Y = k)

=
i∑

k=1

k ·
i∑

j=k

P(X = j) · P(Y = j − k)

123

764 Algorithmica (2019) 81:749–795

=
i∑

j=1

j∑
k=1

k · P(X = j) · P(Y = j − k)

≤
i∑

j=1

j · P(X = j) = i

n
. (17)

For the negative drift E−, we need to consider that the number of 0-bits is increased.
We analyze the n − i cases where only one 1-bit is flipped (i.e., |x ′|0 = i + 1), which
happens with probability 1

n (1 − 1
n)n−1. Assume that LO(x) = k ≤ n − i . If the j-th

(where 1 ≤ j ≤ k) leading 1-bit is flipped, the offspring solution x ′ will be accepted
(i.e., f n(x ′) ≥ f n(x)) if f n(x ′) ≥ j − 1 and f n(x) ≤ j − 1. Note that,

P(f n(x ′) ≥ j − 1) = 1 − p + p

(
1 − 1

n

) j−1

≥ 1 − p
j − 1

n
≥ 1

2
, (18)

where the equality is since it needs to keep the j − 1 leading 1-bits of x ′ unchanged,
and the last inequality is by p = o(1);

P(f n(x) ≤ j − 1) = p

(
1 −

(
1 − 1

n

) j
)

= p

(
1 − 1

n

) j
((

1 + 1

n − 1

) j

− 1

)
≥ p

e
· j

n − 1
≥ pj

3n
,

(19)

where the first equality is since at least one of the first j leading 1-bits of x needs to
be flipped by noise. Thus, we get

P(f n(x ′) ≥ f n(x)) ≥ pj

6n
. (20)

If one of the n − i − k non-leading 1-bits is flipped, LO(x ′) = LO(x) = k. We can
use the same analysis procedure as Eq. (9) in the proof of Theorem 8 to derive that

P(f n(x ′) ≥ f n(x)) ≥ 1 − p
k + 1

n
≥ 1

2
, (21)

where the last inequality is by p = o(1). Combining all the n − i cases, we get

E− ≥ 1

n

(
1 − 1

n

)n−1

·
⎛
⎝ k∑

j=1

pj

6n
+ n − i − k

2

⎞
⎠ · (i + 1 − i)

≥ 1

en

(
pk(k + 1)

12n
+ n − i − k

2

)
≥ pk2

36n2
+ n − i − k

6n
. (22)

123

Algorithmica (2019) 81:749–795 765

By subtracting E− from E+, we get

E(Xt − Xt+1 | Xt = i) ≤ i

n
− pk2

36n2
− n − i − k

6n
.

To investigate condition (1) of Theorem 3, we also need to analyze the probability
P(Xt+1
= i | Xt = i). For Xt+1
= i , it is necessary that at least one bit of x is flipped
and the offspring x ′ is accepted.We consider two cases: (1) at least one of the k leading
1-bits of x is flipped; (2) the k leading 1-bits of x are not flipped and at least one of
the last n − k bits is flipped. For case (1), the mutation probability is 1 − (1 − 1

n)k

and the acceptance probability is at most p k+1
n by Eq. (14). For case (2), the mutation

probability is (1 − 1
n)k(1 − (1 − 1

n)n−k) ≤ n−k
n and the acceptance probability is at

most 1. Thus, we have

P(Xt+1
= i | Xt = i) ≤ p + n − k

n
. (23)

When k < n − np, we have

E(Xt − Xt+1 | Xt = i) ≤ i

n
− n − i − k

6n

≤ −n − k

12n
− np/2 − 7c log n

6n
≤ −n − k

12n
≤ − 1

24

(
p + n − k

n

)
, (24)

where the second inequality is by n − k > np and i < c log n, the third inequality is
by p = ω(log n/n) and the last is by n − k > np. When k ≥ n − np, we have

E(Xt − Xt+1 | Xt = i) ≤ i

n
− pk2

36n2

≤ c log n

n
− p

144
≤ − p

288
≤ − 1

576

(
p + n − k

n

)
, (25)

where the second inequality is by p = o(1) and i < c log n, the third is by p =
ω(log n/n) and the last is by n − k ≤ np. Combining Eqs. (23), (24) and (25), we get
that condition (1) of Theorem 3 holds with ε = 1

576 .
For condition (2) of Theorem 3, we need to show P(|Xt+1 − Xt | ≥ j | Xt = i) ≤

r(l)
(1+δ) j

· P(Xt+1
= i | Xt = i) for i ≥ 1. For P(Xt+1
= i | Xt = i), we analyze

the n cases where only one bit is flipped. Using the similar analysis procedure as E−,
except that flipping any bit rather than only 1-bit is considered here, we easily get

P(Xt+1
= i | Xt = i) ≥ pk(k + 1)

36n2
+ n − k

6n
. (26)

For |Xt+1−Xt | ≥ j , it is necessary that at least j bits of x are flipped and the offspring
solution x ′ is accepted.We consider two cases: (1) at least one of the k leading 1-bits is
flipped; (2) the k leading 1-bits are not flipped. For case (1), the mutation probability

123

766 Algorithmica (2019) 81:749–795

is at most k
n

(n−1
j−1

) 1
n j−1 and the acceptance probability is at most p k+1

n by Eq. (14).

For case (2), the mutation probability is at most (1 − 1
n)k

(n−k
j

) 1
n j and the acceptance

probability is at most 1. Thus, we have

P(|Xt+1 − Xt | ≥ j | Xt = i)

≤ k

n

(
n − 1

j − 1

)
1

n j−1 · p k + 1

n
+

(
1 − 1

n

)k (
n − k

j

)
1

n j

≤ pk(k + 1)

n2
· 4

2 j
+ n − k

n
· 2

2 j
≤

(
pk(k + 1)

36n2
+ n − k

6n

)
· 144
2 j

. (27)

By combining Eq. (26) with Eq. (27), we get that condition (2) of Theorem 3 holds
with δ = 1 and r(l) = 144.

Note that l = b−a = c log n. ByTheorem3, the expected running time is 2Ω(c log n),
where c is any positive constant. Thus, the expected running time is super-polynomial.

��
For p = Ω(1), we can use the negative drift theorem (i.e., Theorem 2) to derive a

stronger result that the expected running time is exponentially lower bounded.

Theorem 10 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (p, 1
n), the

expected running time is exponential if p = Ω(1).

Proof We use Theorem 2 to prove it. Let Xt = i be the number of 0-bits of the
solution x after t iterations of the (1 + 1)-EA. We consider the interval i ∈ [0, n1/2].
To analyze the drift E(Xt − Xt+1 | Xt = i) = E+ − E−, we use the same analysis
procedure as Theorem 9. For the positive drift, we have E+ ≤ i

n = o(1). For the
negative drift, we re-analyze Eqs. (20) and (21). From Eqs. (18) and (19), we get that
P(f n(x ′) ≥ j − 1) ≥ p(1 − j−1

n) and P(f n(x) ≤ j − 1) ≥ pj
3n . Thus, Eq. (20)

becomes

P(f n(x ′) ≥ f n(x)) ≥ p2 j

3n

(
1 − j − 1

n

)
. (28)

For Eq. (21), we need to analyze the acceptance probability for LO(x ′) = LO(x) = k.
Since it is sufficient to keep the first (k + 1) bits of x and x ′ unchanged in noise,
Eq. (21) becomes

P(f n(x ′) ≥ f n(x)) ≥ p2
(
1 − 1

n

)2(k+1)

≥ p2
(
1 − k + 1

n

)2

. (29)

By applying the above two inequalities to Eq. (22), we have

E− ≥ p2

en

⎛
⎝ k∑

j=1

j(n − j + 1)

3n2
+ (n − i − k)(n − 1 − k)2

n2

⎞
⎠ = Ω(1),

123

Algorithmica (2019) 81:749–795 767

where the equality is by p = Ω(1). Thus, E+ − E− = −Ω(1). That is, condition (1)
of Theorem 2 holds.

Since it is necessary to flip at least j bits of x , we have

P(|Xt+1 − Xt | ≥ j | Xt ≥ 1) ≤
(
n

j

)
1

n j
≤ 1

j ! ≤ 2 · 1

2 j
,

which implies that condition (2) of Theorem 2 holds with δ = 1 and r(l) = 2. Note
that l = n1/2. Thus, by Theorem 2, the expected running time is exponential. ��

4.2 Bit-Wise Noise (1, q)

For bit-wise noise (1, q), the proof idea is similar to that for bit-wise noise (p, 1
n). The

main difference led by the change of noise is the probability of accepting the offspring
solution, i.e., P(f n(x ′) ≥ f n(x)). We first prove that the expected running time is
polynomial when q = O(log n/n3).

Theorem 11 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q), the
expected running time is polynomial if q = O(log n/n3).

Proof The proof is very similar to that of Theorem 8. The change of noise only affects
the probability of accepting the offspring solution in the analysis. For some positive
constant b, suppose that q ≤ b log n/n3.

For the positive drift E+, we need to re-analyze P(f n(x ′) ≥ f n(x)) (i.e., Eq. (9)
in the proof of Theorem 8) for the parent x with LO(x) = i and the offspring x ′ with
LO(x ′) ≥ i + 1. By bit-wise noise (1, q), Eqs. (7) and (8) change to

P(f n(x ′) ≤ i − 1) = 1 − (1 − q)i ; P(f n(x) ≥ i + 1) = (1 − q)i q.

Thus, by the union bound, Eq. (9) becomes

P(f n(x ′) ≥ f n(x)) ≥ 1 − (1 − (1 − q)i + (1 − q)i q)

= (1 − q)i+1 ≥ 1 − q(i + 1) ≥ 1 − θ, (30)

where the last inequality holds with sufficiently large n, since q = O(log n/n3) and
θ ∈ (0, 1) is some constant close to 0.

For the negative drift E−, we need to re-analyze P(f n(x ′) ≥ f n(x)) (i.e., Eq. (14)
in the proof of Theorem 8) for the parent x with LO(x) = i (where i ≥ 1) and the
offspring x ′ with LO(x ′) ≤ i − 1. By bit-wise noise (1, q), Eqs. (12) and (13) change
to

P(f n(x ′) ≥ i) ≤ q(1 − q)i−1, P(f n(x) ≤ i − 1) = 1 − (1 − q)i .

123

768 Algorithmica (2019) 81:749–795

Thus, by the union bound, Eq. (14) becomes

P(f n(x ′) ≥ f n(x)) ≤ q(1 − q)i−1 + 1 − (1 − q)i

= 1 − (1 − q)i−1(1 − 2q) ≤ 1 − (1 − (i − 1)q)(1 − 2q) ≤ (i + 1)q, (31)

where the second inequality is by (1 − q)i−1 ≥ 1 − (i − 1)q and 1 − 2q > 0 for
q = O(log n/n3).

By applying Eq. (30) and Eq. (31) to E+ and E−, respectively, Eq. (16) changes to

E(V (ξt) − V (ξt+1) | ξt = x) ≥
(
1 + c

n

)i ((1 − θ)c

3n2
− 2q(i + 1)

3

)

≥
(
1 + c

n

)i (2b log n + 1 − θ

3n2
− 2bn log n

3n3

)
≥ 1 − θ

3n2
.

That is, the condition of Theorem 1 still holds with 1−θ
3n2

. Thus, the expected running
time is polynomial. ��

Next we prove that the expected running time is super-polynomial when q is in the
range of ω(log n/n2) ∩ o(1/n).

Theorem 12 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q), if q =
ω(log n/n2) ∩ o(1/n), the expected running time is super-polynomial.

Proof We use the same analysis procedure as Theorem 9. The only difference is the
probability of accepting the offspring solution x ′ due to the change of noise. For the
positive drift, we still have E+ ≤ i

n , since we optimistically assume that x ′ is always
accepted in the proof of Theorem 9.

For the negative drift, we need to re-analyze P(f n(x ′) ≥ f n(x)) for the parent
solution x with LO(x) = k and the offspring solution x ′ with LO(x ′) = j − 1 (where
1 ≤ j ≤ k + 1). For j ≤ k, to derive a lower bound on P(f n(x ′) ≥ f n(x)), we
consider the j cases where f n(x) = l and f n(x ′) ≥ l for 0 ≤ l ≤ j − 1. Since
P(f n(x) = l) = (1 − q)lq and P(f n(x ′) ≥ l) = (1 − q)l , Eq. (20) changes to

P(f n(x ′) ≥ f n(x)) ≥
j−1∑
l=0

(1 − q)lq · (1 − q)l ≥ 1 − (1 − q)2 j

2

= 1

2
(1 − q)2 j

((
1 + q

1 − q

)2 j

− 1

)
≥ (1 − q)2 j

q j

1 − q
≥ q j

2
, (32)

where the last inequality is by (1 − q)2 j ≥ 1 − 2q j ≥ 1/2 since q = o(1/n). For
j = k + 1 (i.e., LO(x ′) = LO(x) = k), we can use the same analysis as Eq. (30) to
derive a lower bound 1 − q(k + 1) ≥ 1/2, where the inequality is by q = o(1/n).
Thus, Eq. (21) also holds here, i.e.,

P(f n(x ′) ≥ f n(x)) ≥ 1

2
. (33)

123

Algorithmica (2019) 81:749–795 769

By applying Eqs. (32) and (33) to E−, Eq. (22) changes to

E− ≥ qk2

12n
+ n − i − k

6n
.

Thus, we have

E(Xt − Xt+1 | Xt = i) = E+ − E− ≤ i

n
− qk2

12n
− n − i − k

6n
.

For the upper bound analysis of P(Xt+1
= i | Xt = i) in the proof of Theorem 9, we
only need to replace the acceptance probability p k+1

n in the case of LO(x ′) < LO(x)
with (k + 1)q (i.e., Eq. (31)). Thus, Eq. (23) changes to

P(Xt+1
= i | Xt = i) ≤ (k + 1)q + n − k

n
≤ nq + n − k

n
.

To compare E(Xt − Xt+1 | Xt = i) with P(Xt+1
= i | Xt = i), we consider two
cases: k < n − n2q and k ≥ n − n2q. By using q = ω(log n/n2) and applying the
same analysis procedure as Eqs. (24) and (25), we can derive that condition (1) of
Theorem 3 holds with ε = 1

192 .
For the lower bound analysis of P(Xt+1
= i | Xt = i), by applying Eqs. (32)

and (33), Eq. (26) changes to

P(Xt+1
= i | Xt = i) ≥ qk(k + 1)

12n
+ n − k

6n
.

For the analysis of |Xt+1 − Xt | ≥ j , by replacing the acceptance probability p k+1
n in

the case of LO(x ′) < LO(x) with (k + 1)q, Eq. (27) changes to

P(|Xt+1 − Xt | ≥ j | Xt = i) ≤ qk(k + 1)

n
· 4

2 j
+ n − k

n
· 2

2 j

≤
(
qk(k + 1)

12n
+ n − k

6n

)
· 48
2 j

.

That is, condition (2) of Theorem 3 holds with δ = 1, r(l) = 48. Thus, the expected
running time is super-polynomial. ��

For q = Ω(1/n), we prove a stronger result that the expected running time is
exponentially lower bounded.

Theorem 13 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q), the
expected running time is exponential if q = Ω(1/n).

Proof We use Theorem 2 to prove it. Let Xt = i be the number of 0-bits of the solution
x after t iterations of the (1+1)-EA.We consider the interval i ∈ [0, n1/2]. To analyze
the drift E(Xt − Xt+1 | Xt = i), we use the same analysis procedure as the proof of
Theorem 9.

123

770 Algorithmica (2019) 81:749–795

We first consider q = Ω(1/n) ∩ o(1). We need to analyze the probability
P(f n(x ′) ≥ f n(x)), where the offspring solution x ′ is generated by flipping only
one 1-bit of x . Let LO(x) = k. For the case where the j-th (where 1 ≤ j ≤ k) leading
1-bit is flipped, as the analysis of Eq. (32), we get

P(f n(x ′) ≥ f n(x)) ≥ 1 − (1 − q)2 j

2
≥ (1 − q)2 j

q j

1 − q
.

If (1 − q)2 j < 1
2 ,

1−(1−q)2 j

2 ≥ 1
4 ; otherwise, (1 − q)2 j

q j
1−q ≥ q j

2 . Thus, we have

P(f n(x ′) ≥ f n(x)) ≥ min{1/4, q j/2}.

For the case that flips one non-leading 1-bit (i.e., LO(x ′) = LO(x) = k), to derive
a lower bound on P(f n(x ′) ≥ f n(x)), we consider f n(x) = l and f n(x ′) ≥ l for
0 ≤ l ≤ k. Thus,

P(f n(x ′) ≥ f n(x)) ≥
k−1∑
l=0

(1 − q)lq · (1 − q)l + (1 − q)k+1 · (1 − q)k

≥ 1 − (1 − q)2k

2
+ (1 − q)2k+1 = 1

2
+ (1 − q)2k

(
1

2
− q

)
≥ 1

2
,

where the last inequality is by q = o(1). By applying the above two inequalities to
Eq. (22), we get

E− ≥ 1

en

⎛
⎝ k∑

j=1

min

{
1

4
,
q j

2

}
+ n − i − k

2

⎞
⎠ .

If k ≥ n
2 ,

∑k
j=1 min{ 14 , q j

2 } = Ω(n) since q = Ω(1/n). If k < n
2 ,

n−i−k
2 = Ω(n)

since i ≤ √
n. Thus, E− = Ω(1).

For q = Ω(1), we use the trivial lower bound q for the probability of accepting the
offspring solution x ′, since it is sufficient to flip the first leading 1-bit of x by noise.
Then,

E− ≥ 1

en
(kq + (n − i − k)q) = (n − i)q

en
= Ω(1).

Thus, for q = Ω(1/n), we have

E(Xt − Xt+1 | Xt = i) = E+ − E− ≤ i

n
− Ω(1) = −Ω(1).

That is, condition (1) of Theorem 2 holds. Its condition (2) trivially holds with δ = 1
and r(l) = 2. Thus, the expected running time is exponential. ��

123

Algorithmica (2019) 81:749–795 771

4.3 One-Bit Noise

For the (1 + 1)-EA on LeadingOnes under one-bit noise, it has been known that the
expected running time is polynomial if p ≤ 1/(6en2) and exponential if p = 1/2 [19].
We extend this result by proving in Theorem 14 that the expected running time is
polynomial if p = O(log n/n2) and super-polynomial if p = ω(log n/n). The proof
can be accomplished in the sameway as that of Theorems 8, 9 and 10 for bit-wise noise
(p, 1

n). This is because although the probabilities P(f n(x ′) ≥ f n(x)) of accepting
the offspring solution are different, their bounds used in the proofs for bit-wise noise
(p, 1

n) still hold for one-bit noise.

Theorem 14 For the (1 + 1)-EA on LeadingOnes under one-bit noise, the expected
running time is polynomial if p = O(log n/n2), super-polynomial if p = ω(log n/n)∩
o(1) and exponential if p = Ω(1).

Proof We re-analyze P(f n(x ′) ≥ f n(x)) for one-bit noise, and show that the bounds
on P(f n(x ′) ≥ f n(x)) used in the proofs for bit-wise noise (p, 1

n) still hold for one-bit
noise.

For the proof of Theorem 8, Eqs. (7) and (8) change to

P(f n(x ′) ≤ i − 1) = p
i

n
, P(f n(x) ≥ i + 1) = p

1

n
,

and thus Eq. (9) still holds; Eqs. (12) and (13) change to

P(f n(x ′) ≥ i) ≤ p
1

n
, P(f n(x) ≤ i − 1) = p

i

n
,

and thus Eq. (14) still holds.
For the proof of Theorem 9, Eqs. (18) and (19) change to

P(f n(x ′) ≥ j − 1) = 1 − p
j − 1

n
, P(f n(x) ≤ j − 1) = p

j

n
,

and thus Eq. (20) still holds.
For the proof of Theorem 10, Eq. (28) still holds by the above two equalities;

Eq. (29) still holds since the probability of keeping the first (k + 1) bits of a solution
unchanged in one-bit noise is 1 − p k+1

n ≥ p(1 − k+1
n). ��

4.4 Experiments

In the previous three subsections, we have proved that for the (1 + 1)-EA solving the
LeadingOnes problem, if under bit-wise noise (p, 1

n), the expected running time is
polynomial when p = O(log n/n2) and super-polynomial when p = ω(log n/n);
if under bit-wise noise (1, q), the expected running time is polynomial when q =
O(log n/n3) and super-polynomial when q = ω(log n/n2); if under one-bit noise, the
expected running time is polynomial when p = O(log n/n2) and super-polynomial

123

772 Algorithmica (2019) 81:749–795

when p = ω(log n/n). However, the current analysis does not cover all the ranges of
p and q. We thus have conducted experiments to complement the theoretical results.

For bit-wise noise (p, 1
n), we do not knowwhether the running time is polynomial or

super-polynomial when p = ω(log n/n2) ∩ O(log n/n). We empirically estimate the
expected running time for p = (log n/n)2, log n/n3/2 and log n/n. On each problem
size n, we run the (1 + 1)-EA 1000 times independently. In each run, we record the
number of fitness evaluations until an optimal solution w.r.t. the true fitness function
is found for the first time. Then the total number of evaluations of the 1000 runs are
averaged as the estimation of the expected running time. To show the relationship
between the estimated expected running time and the problem size n clearly, we plot
the curve of log(estimated expected running time)/ log n, as shown in Fig. 1. Note
that in subfigures (a) and (b), the problem size n is in the range from 5 to 100, while
in subfigure (c), n is from 5 to 45. This is because the expected running time with
n > 45 in subfigure (c) is too large to be estimated. We can observe that all the curves
continue to rise as n increases, which suggests that the expected running time for the
three tested p values is all nω(1), i.e., super-polynomial. For bit-wise noise (1, q) and
one-bit noise, we also empirically estimate the expected running time for the values
of q and p, which are uncovered by our theoretical analysis. The results are plotted
in Figs. 2 and 3, respectively, which are similar to that observed for bit-wise noise
(p, 1

n).

5 20 35 50 65 80 95
Problem size n

2

2.05

2.1

Es
tim

at
ed

 ra
tio

5 20 35 50 65 80 95
Problem size n

2.1

2.2

2.3

Es
tim

at
ed

 ra
tio

5 10 15 20 25 30 35 40 45
Problem size n

2.2
2.4
2.6
2.8

3
3.2
3.4

Es
tim

at
ed

 ra
tio

(a) (b) (c)

Fig. 1 Estimated expected running time for the (1 + 1)-EA on LeadingOnes under bit-wise noise (p, 1
n),

where the y-axis is (the logarithm of estimated expected running time) divided by log n. a p = (log n/n)2.
b p = log n/n3/2. c p = log n/n

5 20 35 50 65 80 95
Problem size n

2

2.05

2.1

2.15

Es
tim

at
ed

 ra
tio

5 20 35 50 65 80 95
Problem size n

2.1

2.2

2.3

2.4

Es
tim

at
ed

 ra
tio

5 10 15 20 25 30 35 40 45
Problem size n

2.5

3

3.5

Es
tim

at
ed

 ra
tio

(a) (b) (c)

Fig. 2 Estimated expected running time for the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q),
where the y-axis is (the logarithm of estimated expected running time) divided by log n. a q = (log n)2/n3.
b q = log n/n5/2. c q = log n/n2

123

Algorithmica (2019) 81:749–795 773

5 20 35 50 65 80 95
Problem size n

2

2.05

2.1

2.15
Es

tim
at

ed
 ra

tio

5 20 35 50 65 80 95
Problem size n

2.1

2.2

2.3

2.4

Es
tim

at
ed

 ra
tio

5 10 15 20 25 30 35 40 45
Problem size n

2.5

3

3.5

Es
tim

at
ed

 ra
tio

(a) (b) (c)

Fig. 3 Estimated expected running time for the (1 + 1)-EA on LeadingOnes under one-bit noise, where
the y-axis is (the logarithm of estimated expected running time) divided by log n. a p = (log n/n)2. b
p = log n/n3/2. c p = log n/n

5 25 45 65 85 105 125 145 165 185

Problem size n

2

4

6

8

10

12

Es
tim

at
ed

 E
R

T

104

1/n
log n/n
(log n)2/n
log n/n1/2

5 25 45 65 85 105 125 145 165 185

Problem size n

5

10

15

Es
tim

at
ed

 E
R

T

104

1/n2

log n/n2

(log n/n)2

log n/n3/2

5 25 45 65 85 105 125 145 165 185

Problem size n

5

10

15

Es
tim

at
ed

 E
R

T

104

1/n
log n/n
(log n)2/n
log n/n1/2

(a) (b) (c)

Fig. 4 Estimated expected running time (ERT) for the (1+1)-EA on OneMax under noise. Note that for the
three studied noisemodels, the largest noise levels allowing a polynomial running time derived in theoretical
analysis are O(log n/n), O(log n/n2) and O(log n/n), respectively. a Bit-wise noise (p, 1

n). b Bit-wise
noise (1, q). c One-bit noise

Therefore, these empirical results suggest that the expected running time is super-
polynomial for the uncovered ranges of p and q in theoretical analysis, and thus
the currently derived ranges of p and q allowing a polynomial running time might be
tight. The rigorous analysis is not easy.Wemay need to analyze transition probabilities
between fitness levels more precisely, and design an ingenious distance function or
use more advanced analysis tools. We leave it as a future work.

Since the theoretical results are all asymptotic, we also empirically compare the
expected running time to see when the asymptotic behaviors can be clearly distin-
guished. For each problem and each kind of noise, we estimate the expected running
time for the largest noise level (denoted by a) allowing a polynomial running time
derived in our theoretical analysis, and then compare it with the estimated expected
running time for one relatively smaller noise level a/ log n, and two relatively larger
noise levels a · log n and a ·√n. For example, for the OneMax problem under bit-wise
noise (p, 1

n), the largest noise level allowing a polynomial running time is O(log n/n);
thuswe compare the estimated expected running time for p = 1/n, log n/n, (log n)2/n
and log n/n1/2. The results are plotted in Figs. 4 and 5.We can observe that for theOne-
Max and LeadingOnes problems, the asymptotic polynomial behaviors (i.e., ‘green
◦’ and ‘red ×’) can be distinguished when the problem size n reaches nearly 200;
while the asymptotic behaviors of polynomial (i.e., ‘green ◦’ and ‘red ×’) and super-

123

774 Algorithmica (2019) 81:749–795

5 25 45 65 85 105 125 145 165 185

Problem size n

1

2

3

4

5
Es

tim
at

ed
 E

R
T

104

1/n2

log n/n2

(log n/n)2

log n/n3/2

5 25 45 65 85 105 125 145 165 185

Problem size n

2

4

6

8

Es
tim

at
ed

 E
R

T

104

1/n3

log n/n3

(log n)2 /n3

log n/n5/2

5 25 45 65 85 105 125 145 165 185

Problem size n

2

4

6

8

Es
tim

at
ed

 E
R

T

104

1/n2

log n/n2

(log n/n)2

log n/n3/2

(a) (b) (c)

Fig. 5 Estimated expected running time (ERT) for the (1 + 1)-EA on LeadingOnes under noise. Note that
for the three studied noise models, the largest noise levels allowing a polynomial running time derived in
theoretical analysis are O(log n/n2), O(log n/n3) and O(log n/n2), respectively. a Bit-wise noise (p, 1

n).
b Bit-wise noise (1, q). c One-bit noise

polynomial (i.e., ‘blue �’ and ‘black ∗’) can be clearly distinguished when n reaches
50 and 100, respectively.

5 The Robustness of Sampling to Noise

From the derived results in the above two sections, we can observe that the (1+1)-EA
is efficient for solving OneMax and LeadingOnes only under low noise levels. For
example, for the (1+1)-EA solving OneMax under bit-wise noise (p, 1

n), the optimal
solution can be found in polynomial time only when p = O(log n/n). In this section,
we analyze the robustness of the sampling strategy to noise. Sampling as presented in
Definition 5 evaluates the fitness of a solution multiple (m) times independently and
then uses the average to approximate the true fitness.We show that using sampling can
significantly increase the largest noise level allowing a polynomial running time. For
example, if using sampling with m = 4n3, the (1 + 1)-EA can always solve OneMax
under bit-wise noise (p, 1

n) in polynomial time, regardless of the value of p.

5.1 The OneMax Problem

We prove in Theorems 15 and 18 that under bit-wise noise (p, 1
n) or one-bit noise,

the (1 + 1)-EA can always solve OneMax in polynomial time by using sampling.
For bit-wise noise (1, q), the tight range of q allowing a polynomial running time is
1/2 − 1/nO(1), as shown in Theorems 16 and 17. Let xk denote any solution with k
number of 1-bits, and f n(xk) denote its noisy objective value. For proving polynomial
upper bounds, we use Lemma 1, which gives a sufficient condition based on the
probability P(f n(x j) < f n(xk+1)) for j ≤ k. But for the (1+1)-EA using sampling,
the probability changes to be P(f̂ (x j) < f̂ (xk+1)), where f̂ (x j) = 1

m

∑m
i=1 f ni (x j)

as shown in Definition 5. Lemma 1 requires a lower bound on P(f̂ (x j) < f̂ (xk+1)).
Our proof idea as presented in Lemma 3 is to derive a lower bound on the expectation
of f n(xk+1) − f n(x j) and then apply Chebyshev’s inequality. We will directly use
Lemma 3 in the following proofs. For proving super-polynomial lower bounds, we
use Lemma 2 by replacing P(f n(xk) < f n(xk+1)) with P(f̂ (xk) < f̂ (xk+1)). Let
poly(n) indicate any polynomial of n.

123

Algorithmica (2019) 81:749–795 775

Lemma 3 Suppose there exists a real number δ > 0 such that

∀ j ≤ k < n : E
(
f n(xk+1) − f n(x j)

)
≥ δ,

then the (1 + 1)-EA using sampling with m = n3/δ2 needs polynomial number of
iterations in expectation for solving noisy OneMax.

Proof We use Lemma 1 to prove it. For any j ≤ k < n, let Yk, j = f n(xk+1)− f n(x j)

and Ŷk, j = f̂ (xk+1) − f̂ (x j). We then need to analyze the probability P(f̂ (x j) <

f̂ (xk+1)) = P(Ŷk, j > 0).
Denote the expectation E(Yk, j) asμk, j and the variance Var(Yk, j) as σ 2

k, j . It is easy

to verify that E(Ŷk, j) = μk, j and Var(Ŷk, j) = σ 2
k, j/m. By Chebyshev’s inequality,

we have

P(Ŷk, j ≤ 0) ≤ P(|Ŷk, j − μk, j | ≥ μk, j/2) ≤ 4σ 2
k, j/

(
mμ2

k, j

)
.

Since μk, j ≥ δ > 0, σ 2
k, j = E(Y 2

k, j) − μ2
k, j ≤ n2 and m = n3/δ2, we have

P(Ŷk, j ≤ 0) ≤ 4/n ≤ log n/(15n),

where the last inequality holds with sufficiently large n. Let l = log n. Then, P(Ŷk, j >

0) ≥ 1 − log n
15n > 1 − l

n . Let c = 1
15 . For k < n − l,P(Ŷk, j > 0) ≥ 1 − c n−k

n . Thus,
the condition of Lemma 1 (i.e., Eq. (1)) holds. We then get that the expected number
of iterations is O(n log n) + n2O(log n) = nO(1), i.e., polynomial. ��

For bit-wise noise (p, 1
n), we apply Lemma 3 to prove that the (1 + 1)-EA using

sampling with m = 4n3 can always solve OneMax in polynomial time, regardless of
the value of p.

Theorem 15 For the (1 + 1)-EA on OneMax under bit-wise noise (p, 1
n), if using

sampling with m = 4n3, the expected running time is polynomial.

Proof We use Lemma 3 to prove it. Since E(f n(x j)) = j(1 − p
n) + (n − j) p

n =
(1 − 2p

n) j + p, we have, for any j ≤ k < n,

E
(
f n(xk+1) − f n(x j)

)
=

(
1 − 2p

n

)
(k + 1 − j) ≥ 1 − 2p

n
≥ 1/2,

where the last inequality holds with n ≥ 4. Thus, by Lemma 3, we get that the expected
number of iterations of the (1 + 1)-EA using sampling with m = 4n3 is polynomial.
Since each iteration takes 2m = 8n3 number of fitness evaluations, the expected
running time is also polynomial. ��

For bit-wise noise (1, q), we prove in the following two theorems that by using
sampling, the tight range of q allowing a polynomial running time is 1/2 − 1/nO(1).

123

776 Algorithmica (2019) 81:749–795

Theorem 16 For the (1 + 1)-EA on OneMax under bit-wise noise (1, q) with q =
1/2 − 1/nO(1), if using sampling, there exists some m = O(poly(n)) such that the
expected running time is polynomial.

Proof We use Lemma 3 to prove it. Since q = 1/2 − 1/nO(1), there exists a positive
constant c such that q ≤ 1/2− 1/nc. It is easy to verify that E(f n(x j)) = j(1−q)+
(n − j)q = (1 − 2q) j + nq. Thus, for any j ≤ k < n,

E
(
f n(xk+1) − f n(x j)

)
= (1 − 2q)(k + 1 − j) ≥ 1 − 2q ≥ 2/nc.

By Lemma 3, we get that if using sampling with m = n3+2c/4, the expected number
of iterations is polynomial, and then the expected running time is polynomial. Thus,
the theorem holds. ��
Theorem 17 For the (1 + 1)-EA on OneMax under bit-wise noise (1, q) with q =
1/2− 1/nω(1) or q ≥ 1/2, if using sampling with any m = O(poly(n)), the expected
running time is exponential.

Proof We use Lemma 2 to prove it. Note that for the (1 + 1)-EA using sampling, we
have to analyze P(f̂ (xk) < f̂ (xk+1)) instead of P(f n(xk) < f n(xk+1)).

Let Z denote a random variable which satisfies that P(Z = 0) = q and P(Z =
1) = 1−q. In the following proof, each Zi is an independent random variable, which
has the same distribution as Z . We have f n(xk) = ∑k

i=1 Zi + ∑n
i=k+1(1 − Zi), and

then,

f n(xk+1) − f n(xk)

=
k+1∑
i=1

Zi +
n∑

i=k+2

(1 − Zi) −
n+k∑

i=n+1

Zi −
2n∑

i=n+k+1

(1 − Zi)

=
n+1∑
i=1

Zi −
2n∑

i=n+2

Zi − 1.

Since f̂ (xk) = 1
m

∑m
i=1 f ni (xk), which is the average of m independent evaluations,

we have

m
(
f̂ (xk+1) − f̂ (xk)

)
=

m−1∑
j=0

2nj+n+1∑
i=2nj+1

Zi −
m−1∑
j=0

2n(j+1)∑
i=2nj+n+2

Zi − m

=
m−1∑
j=0

2nj+2∑
i=2nj+1

Zi +
⎛
⎝m−1∑

j=0

2nj+n+1∑
i=2nj+3

Zi −
m−1∑
j=0

2n(j+1)∑
i=2nj+n+2

Zi

⎞
⎠ − m

=
m−1∑
j=0

2nj+2∑
i=2nj+1

Zi + Z∗ − m,

123

Algorithmica (2019) 81:749–795 777

where Z∗ = ∑m−1
j=0

∑2nj+n+1
i=2nj+3 Zi − ∑m−1

j=0
∑2n(j+1)

i=2nj+n+2 Zi . To make f̂ (xk) ≥
f̂ (xk+1), it is sufficient that Z∗ ≤ 0 and

∑m−1
j=0

∑2nj+2
i=2nj+1 Zi ≤ m. That is,

P
(
f̂ (xk) ≥ f̂ (xk+1)

)
≥ P(Z∗ ≤ 0) · P

⎛
⎝m−1∑

j=0

2nj+2∑
i=2nj+1

Zi ≤ m

⎞
⎠ . (34)

Since Z∗ is the difference between the sum of the same number of Zi , Z∗ has the
same distribution as −Z∗. Thus, P(Z∗ ≤ 0) + P(Z∗ ≥ 0) = P(Z∗ ≤ 0) + P(−Z∗ ≤
0) = 2P(Z∗ ≤ 0) ≥ 1, which implies that

P
(
Z∗ ≤ 0

) ≥ 1/2. (35)

We then investigate P(
∑m−1

j=0
∑2nj+2

i=2nj+1 Zi ≤ m). Since
∑m−1

j=0
∑2nj+2

i=2nj+1 Zi is the
sum of 2m independent random variables which have the same distribution as Z , we
have

P

⎛
⎝m−1∑

j=0

2nj+2∑
i=2nj+1

Zi ≤ m

⎞
⎠ =

m∑
t=0

(
2m

t

)
(1 − q)t q2m−t ,

P

⎛
⎝m−1∑

j=0

2nj+2∑
i=2nj+1

Zi > m

⎞
⎠ =

2m∑
t=m+1

(
2m

t

)
(1 − q)t q2m−t =

m−1∑
t=0

(
2m

t

)
(1 − q)2m−t qt .

For any t < m, let r = (1−q)t q2m−t

(1−q)2m−t qt
= (

q
1−q)2m−2t . If q ≥ 1/2, we have r ≥ 1. If

q = 1/2 − 1/nω(1), we have

r ≥
(

q

1 − q

)2m

=
(
1 − 1 − 2q

1 − q

)2m

≥
(
1 − 4

nω(1)

)2m

≥
(
1

e

)2m/(nω(1)/4−1)

≥ 1

e
,

where the first inequality is by q ≤ 1/2, the second inequality is by 1− 2q = 2/nω(1)

and 1−q ≥ 1/2, and the last is bym = O(poly(n)). Thus, P(
∑m−1

j=0
∑2nj+2

i=2nj+1 Zi ≤
m) > 1/3 · P(

∑m−1
j=0

∑2nj+2
i=2nj+1 Zi > m), which implies that

P

⎛
⎝m−1∑

j=0

2nj+2∑
i=2nj+1

Zi ≤ m

⎞
⎠ > 1/4. (36)

By applying Eqs. (35) and (36) to Eq. (34), we get

P
(
f̂ (xk) ≥ f̂ (xk+1)

)
≥ 1/8.

123

778 Algorithmica (2019) 81:749–795

Let c = 16 and l = n/128. For any n − l ≤ k < n,

P
(
f̂ (xk) < f̂ (xk+1)

)
= 1 − P

(
f̂ (xk) ≥ f̂ (xk+1)

)
≤ 1 − cl

n
≤ 1 − c(n − k)

n
,

i.e., the condition of Lemma 2 holds. Thus, the expected number of iterations is
2Ω(n/128), and the expected running time is exponential. ��

For one-bit noise, we show that using sampling with m = 4n3 is sufficient to make
the (1 + 1)-EA solve OneMax in polynomial time.

Theorem 18 For the (1 + 1)-EA on OneMax under one-bit noise, if using sampling
with m = 4n3, the expected running time is polynomial.

Proof It is easy to verify that the expectation of f n(x j) (i.e., E(f n(x j))) under one-bit
noise is the same as that under bit-wise noise (p, 1

n). Thus, the proof can be finished
in the same way as that of Theorem 15. ��

From the above analysis,we can intuitively explainwhy sampling is always effective
for bit-wise noise (p, 1

n) and one-bit noise, while it fails for bit-wise noise (1, q)when
q = 1/2− 1/nω(1) or q ≥ 1/2. For two solutions x and y with f (x) > f (y), if under
bit-wise noise (p, 1

n) and one-bit noise, the noisy fitness f n(x) is larger than f n(y) in
expectation, and using sampling will increase this trend and make the probability of
accepting the true worse solution y sufficiently small. If under bit-wise noise (1, q),
when q = 1/2−1/nω(1), although the noisy fitness f n(x) is still larger in expectation,
the gap is very small (in the order of 1/nω(1)) and a polynomial sample size is not
sufficient to make the probability of accepting the true worse solution y small enough;
when q ≥ 1/2, the noisy fitness f n(x) is smaller in expectation, and using sampling
will increase this trend and it obviously does not work.

5.2 The LeadingOnes Problem

The bit-wise noise (p, 1
n) model is first considered. We prove in Theorem 19 that the

(1 + 1)-EA using sampling can solve the LeadingOnes problem in polynomial time,
regardless of the value of p. The proof idea is similar to that of Theorem 8. The main
difference is the probability of accepting the offspring solution x ′, which is changed
from P(f n(x ′) ≥ f n(x)) to P(f̂ (x ′) ≥ f̂ (x)) due to sampling. Lemma 4 gives some
bounds on this probability, which will be used in the proof of Theorem 19.

Lemma 4 For the LeadingOnes problem under bit-wise noise (p, 1
n), if using sampling

with m = 144n6, it holds that

(1) for any x withLO(x) = i < n and y withLO(y) ≤ i−2orLO(y) = i−1∧yi+1 =
0, P(f̂ (x) ≤ f̂ (y)) ≤ 1/n2.

(2) for any y with LO(y) < n, P(f̂ (1n) ≤ f̂ (y)) ≤ 1/(4n4).

123

Algorithmica (2019) 81:749–795 779

Proof The proof is finished by deriving a lower bound on the expectation of
f n(x) − f n(y) (which is equal to the expectation of f̂ (x) − f̂ (y)) and then applying
Chebyshev’s inequality. We first consider case (1). For any x with LO(x) = i < n,

E(f n(x)) ≥ (1 − p) · i +
i∑

j=1

p

(
1 − 1

n

) j−1 1

n
· (j − 1)

+ p

(
1 − 1

n

)i 1

n
· (i + 1) + p

(
1 − 1

n

)i+1

· i,

E(f n(x)) ≤ (1 − p) · i +
i∑

j=1

p

(
1 − 1

n

) j−1 1

n
· (j − 1)

+ p

(
1 − 1

n

)i 1

n
· n + p

(
1 − 1

n

)i+1

· i . (37)

Note that when flipping the first 0-bit of x and keeping the i leading 1-bits unchanged,
the fitness is at least i + 1 and at most n. Then for any 1 ≤ i < n, we have

E(f n(x) − f n(y) | LO(x) = i ∧ LO(y) = i − 1)

≥ 1 − p + p

(
1− 1

n

)i−1 1

n
· (i − 1)+ p

n

(
1− 1

n

)i−1

·
((

1 − 1

n

)
(i + 1) − n

)

+ p

(
1 − 1

n

)i ((
1 − 1

n

)
i − (i − 1)

)

= 1 − p + p

(
1 − 1

n

)i−1 (
i − 1

n
− 1

n2

)
≥

{−1/n2, if i = 1
1/(6n), if i ≥ 2

. (38)

Thus, for any x with LO(x) = i and y with LO(y) ≤ i − 2 (where 2 ≤ i < n), letting
z be any solution with LO(z) = LO(y) + 1, we have

E(f n(x) − f n(y)) = E(f n(x) − f n(z)) + E(f n(z) − f n(y))

≥ 1

6n
· (i − LO(y) − 1) − 1

n2
≥ 1

6n
− 1

n2
≥ 1

12n
, (39)

where the first inequality is by repeatedly applying Eq. (38), the second inequality is
by LO(y) ≤ i − 2, and the last holds with n ≥ 12.

When LO(y) = i −1∧ yi+1 = 0, we have to re-analyze Eq. (38) to derive a tighter
lower bound, because applying Eq. (38) directly will lead to a negative lower bound
for i = 1. We first derive a tighter upper bound on E(f n(y)). When flipping the i-th
bit of y and keeping the i − 1 leading 1-bits unchanged, we can now further consider
the flipping of the (i + 1)-th bit since we know that yi+1 = 0, rather than directly
using a trivial upper bound n on the noisy fitness. If yi+1 is not flipped, f n(y) = i ;
otherwise, f n(y) ≤ n. Thus, we get

123

780 Algorithmica (2019) 81:749–795

E(f n(y) | LO(y) = i − 1 ∧ yi+1 = 0)

≤ (1 − p) · (i − 1) +
i−1∑
j=1

p

(
1 − 1

n

) j−1 1

n
· (j − 1)

+ p

(
1 − 1

n

)i−1 1

n
·
(
1

n
n +

(
1 − 1

n

)
i

)
+ p

(
1 − 1

n

)i

· (i − 1).

By combining this inequality and the lower bound in Eq. (37), we have that, for any
x with LO(x) = i and y with LO(y) = i − 1 ∧ yi+1 = 0 (where 1 ≤ i < n),

E(f n(x) − f n(y))

≥ 1 − p + p

(
1 − 1

n

)i−1 1

n
· (i − 1) + p

(
1 − 1

n

)i ((
1 − 1

n

)
i − (i − 1)

)

+ p

n

(
1 − 1

n

)i−1

·
((

1 − 1

n

)
(i + 1) −

(
i + 1 − i

n

))

= 1 − p + p

(
1 − 1

n

)i−1 (
1 − 2

n
+ i − 1

n2

)

≥ 1 − p + p · 1
e

· 1
2

≥ 1 − 5

6
p ≥ 1

6
, (40)

where the second inequality holds with n ≥ 4.
According to Eqs. (39) and (40), we have a unified lower bound 1/(12n) on

E(f n(x)− f n(y)). Denote E(f n(x)− f n(y)) asμ and Var(f n(x)− f n(y)) as σ 2.We
have μ ≥ 1/(12n) and σ 2 ≤ n2 since | f n(x) − f n(y)| ≤ n. As f̂ (x) is the average
of m = 144n6 independent evaluations, it is easy to verify that E(f̂ (x) − f̂ (y)) = μ

and Var(f̂ (x) − f̂ (y)) = σ 2/m. By Chebyshev’s inequality,

P(f̂ (x) ≤ f̂ (y)) ≤ P(|(f̂ (x) − f̂ (y)) − μ| ≥ μ) ≤ σ 2/(mμ2) ≤ 1/n2. (41)

Thus, case (1) holds.
For case (2), we first analyze E(f n(1n) − f n(1n−10)). The expectation on f n(1n)

can be easily calculated as follows:

E(f n(1n)) = (1 − p) · n +
n∑
j=1

p

(
1 − 1

n

) j−1 1

n
· (j − 1) + p

(
1 − 1

n

)n

· n.

Combining this equality with the upper bound in Eq. (37), we get

E(f n(1n) − f n(1n−10))

≥ 1 − p + p

(
1 − 1

n

)n−1 1

n
· (n − 1) + p

(
1 − 1

n

)n

− p

(
1 − 1

n

)n−1

= 1 − p + p

(
1 − 1

n

)n−1 (
1 − 2

n

)
≥ 1

6
. (42)

123

Algorithmica (2019) 81:749–795 781

Then, for any y with LO(y) < n, we have

E(f n(1n) − f n(y)) = E(f n(1n) − f n(1n−10))

+
n−1∑

k=LO(y)+1

E
(
f n(zk) − f n

(
zk−1

))
≥ 1

6
,

where zn−1 = 1n−10, zk (LO(y) < k < n−1) denotes one solution zwith LO(z) = k,
zLO(y) = y, and the inequality is by applying Eqs. (42) and (38). As the analysis
for P(f̂ (x) ≤ f̂ (y)) in case (1) (i.e., Eq. (41)), we can similarly use Chebyshev’s
inequality to derive that, noting that μ ≥ 1/6 here,

P(f̂ (1n) ≤ f̂ (y)) ≤ σ 2/(mμ2) ≤ 1/(4n4).

Thus, case (2) holds. ��

The following theorem shows that for bit-wise noise (p, 1
n), using sampling with

m = 144n6 is sufficient to make the (1 + 1)-EA solve LeadingOnes in polynomial
time.

Theorem 19 For the (1+ 1)-EA on LeadingOnes under bit-wise noise (p, 1
n),if using

sampling with m = 144n6, the expected running time is polynomial.

Proof We use Theorem 1 to prove it. We first construct a distance function V (x) as,
for any x with LO(x) = i ,

V (x) =
(
1 + c

n

)n −
(
1 + c

n

)i
,

where c = 13. Then, we investigate E(V (ξt) − V (ξt+1) | ξt = x) for any x with
LO(x) < n. Assume that currently LO(x) = i , where 0 ≤ i ≤ n − 1. We divide the
drift into two parts: positive E+ and negative E−. That is,

E(V (ξt) − V (ξt+1) | ξt = x) = E+ − E−.

The positive drift E+ can be expressed as Eq. (4), except that P(f n(x ′) ≥ f n(x))
changes to P(f̂ (x ′) ≥ f̂ (x)) due to sampling. To derive a lower bound on E+, we
only consider that the (i + 1)-th bit of x is flipped and the other bits keep unchanged,
the probability of which is 1

n (1 − 1
n)n−1. The only difference between x ′ and x is the

(i + 1)-th bit and LO(x ′) > LO(x) = i . If LO(x ′) = n, P(f̂ (x ′) ≤ f̂ (x)) ≤ 1/(4n4)
by case (2) of Lemma 4, and then P(f̂ (x ′) ≥ f̂ (x)) ≥ 1 − 1/(4n4). If LO(x ′) < n,
it must hold that LO(x) ≤ LO(x ′) − 1 ∧ xLO(x ′)+1 = x ′

LO(x ′)+1 = 0. By case (1) of

Lemma 4, P(f̂ (x ′) ≤ f̂ (x)) ≤ 1/n2, and then P(f̂ (x ′) ≥ f̂ (x)) ≥ 1 − 1/n2. Thus,
the probability of accepting the offspring solution x ′ is at least 1/2. Since LO(x ′) > i ,

123

782 Algorithmica (2019) 81:749–795

V (x)−V (x ′) ≥ (1+ c
n)i+1 − (1+ c

n)i = c
n (1+ c

n)i . Then, E+ can be lower bounded
as follows:

E+ ≥
(
1 − 1

n

)n−1 1

n
· 1
2

· c
n

(
1 + c

n

)i ≥ c

6n2

(
1 + c

n

)i
.

For the negative drift E−, we need to consider LO(x ′) < LO(x) = i . Since V (x ′)−
V (x) ≤ V (0n) − V (x) = (1 + c

n)i − 1, Eq. (5) becomes

E− ≤
((

1 + c

n

)i − 1

) ∑
x ′:LO(x ′)<i

Pmut (x, x
′) · P(f̂ (x ′) ≥ f̂ (x)).

We further divide LO(x ′) < i into two cases. If LO(x ′) ≤ i − 2 or LO(x ′) =
i − 1 ∧ x ′

i+1 = 0, then P(f̂ (x ′) ≥ f̂ (x)) ≤ 1/n2 by case (1) of Lemma 4. If
LO(x ′) = i − 1 ∧ x ′

i+1 = 1, then
∑

x ′:LO(x ′)=i−1∧x ′
i+1=1 Pmut (x, x ′) ≤ 1/n2 since it

is necessary to flip the i-th and the (i + 1)-th bits of x in mutation. Then, we get

E− ≤
((

1 + c

n

)i − 1

)
·
(
1 · 1

n2
+ 1

n2
· 1

)
≤ 2

n2

(
1 + c

n

)i
.

By subtracting E− from E+, we have, noting that c = 13,

E(V (ξt) − V (ξt+1) | ξt = x) ≥
(
1 + c

n

)i ·
(

c

6n2
− 2

n2

)
≥ 1

6n2
.

Since V (x) ≤ (1 + 13
n)n ≤ e13 = O(1), we have E(τ | ξ0) = O(n2) by Theorem 1.

Each iteration of the (1+ 1)-EA using sampling takes 2m = 288n6 number of fitness
evaluations, thus the expected running time is polynomial. ��

For bit-wise noise (1, q), we prove in Theorems 20 and 21 that the expected running
time is polynomial if and only if q = O(log n/n). The proof of Theorem 20 is similar
to that of Theorem 19, which considers bit-wise noise (p, 1

n). The main difference is

the probability of accepting the offspring solution x ′ (i.e., P(f̂ (x ′) ≥ f̂ (x))), due to
the change of noise. Lemma 5 gives some bounds on this probability, which will be
used in the proof of Theorem 20.

Lemma 5 For the LeadingOnes problem under bit-wise noise (1, q) with q ≤
c0 log n/n (where c0 is a positive constant), if using sampling with m = 36n2c0+4, it
holds that

(1) for any x withLO(x) = i < n and y withLO(y) ≤ i−5c0 log n or i−5c0 log n <

LO(y) ≤ i − 1 ∧ yi+1 = 0, P(f̂ (x) ≤ f̂ (y)) ≤ 1/n2.
(2) for any y with LO(y) < n, P(f̂ (1n) ≤ f̂ (y)) ≤ 1/n2.

123

Algorithmica (2019) 81:749–795 783

Proof The proof is finished by deriving a lower bound on the expectation of f n(x) −
f n(y) and then applying Chebyshev’s inequality. We first consider case (1). For any
x with LO(x) = i < n,

E(f n(x)) ≥
i∑

j=1

(1 − q) j−1q · (j − 1) + (1 − q)i q · (i + 1) + (1 − q)i+1 · i,

E(f n(x)) ≤
i∑

j=1

(1 − q) j−1q · (j − 1) + (1 − q)i q · n + (1 − q)i+1 · i .
(43)

By applying these two inequalities, we get, for any k < i < n,

E(f n(x) − f n(y) | LO(x) = i ∧ LO(y) = k)

≥ 1

q
((i − 1)(1 − q)i+1 − i(1 − q)i) + q(1 − q)i · (i + 1) + (1 − q)i+1 · i

− 1

q
((k − 1)(1 − q)k+1 − k(1 − q)k) − q(1 − q)k · n − (1 − q)k+1 · k

= (1 − q)i
(
q + 1 − 1

q

)
− (1 − q)k

(
1 − 1

q
+ qn − qk

)

= (1 − q)k
((

1

q
− q − 1

)
(1 − (1 − q)i−k) + q + qk − qn

)
. (44)

Thus, for any x with LO(x) = i and y with LO(y) = k ≤ i − 5c0 log n (where
5c0 log n ≤ i < n),

E(f n(x) − f n(y)) ≥ (1 − q)k
((

1

q
− 2

)
(1 − (1 − q)5c0 log n) − qn

)

≥ (1 − q)k
((

1

q
− 2

)(
1 − 1

e5c0q log n

)
− qn

)

≥ (1 − q)k
((

1

q
− 2

)(
1 − 1

1 + 5c0q log n

)
− qn

)

≥ (1 − q)k
((

1

q
− 2

)
5c0q log n

2
− qn

)

≥ (1 − q)k
(
5

2
c0 log n − 5

(c0 log n)2

n
− c0 log n

)

= (1 − q)k
(
3

2
c0 log n − o(1)

)
≥ c0 log n

enc0
, (45)

where the third inequality is by ex ≥ 1 + x , the fourth is by 5c0q log n ≤
5(c0 log n)2/n ≤ 1 for sufficiently large n, the fifth is by q ≤ c0 log n/n, and the
last is by

123

784 Algorithmica (2019) 81:749–795

(1 − q)k ≥
(
1 − c0 log n

n

)n−1

≥
(
1

e

) n−1
n/(c0 log n)−1 ≥

(
1

e

)c0 log n+1

= 1

enc0
. (46)

When i − 5c0 log n < LO(y) ≤ i − 1 ∧ yi+1 = 0 (where i ≥ 1), we calculate
E(f n(x) − f n(y)) by

E(f n(x) − f n(y)) =
i∑

k=LO(y)+1

E
(
f n(zk) − f n

(
zk−1

))
,

where zi = x , zk (LO(y) < k < i) denotes one solution z with LO(z) = k ∧ zi+1 =
0, and zLO(y) = y. We then give a lower bound on E(f n(zk) − f n(zk−1)), where
LO(y) + 1 ≤ k ≤ i . For E(f n(zk)), we directly use the lower bound in Eq. (43) to
get that

E(f n(zk)) ≥
k∑
j=1

(1 − q) j−1q · (j − 1) + (1 − q)kq · (k + 1) + (1 − q)k+1 · k.

For E(f n(zk−1)), instead of directly using the upper bound in Eq. (43), we derive a
tighter one:

E(f n(zk−1)) ≤
k−1∑
j=1

(1−q) j−1q·(j−1)+(1−q)k−1q(q·n+(1−q)·i)+(1−q)k ·(k−1).

Note that the inequality is becausewhen the k−1 leading1-bits of zk−1 keepunchanged
and its k-th bit (which must be 0) is flipped, if the (i + 1)-th bit (which is 0) is flipped,
f n(zk−1) ≤ n; otherwise, f n(zk−1) ≤ i . By combining the above two inequalities,
we get

E
(
f n(zk) − f n(zk−1)

)
≥ (1 − q)k−1(1 + q(k − i − 1) − q2(1 + n − i))

= (1 − q)k−1(1 − o(1)) ≥ 1/(2enc0),

where the equality by k ≥ LO(y) + 1 > i − 5c0 log n + 1 and q = O(log n/n), and
the last is by Eq. (46). Thus, we have

E(f n(x) − f n(y)) ≥ (i − LO(y)) · 1

2enc0
≥ 1

2enc0
. (47)

For case (1), by combining Eqs. (45) and (47), we get a unified lower bound
1/(2enc0) on E(f n(x) − f n(y)). As the analysis for P(f̂ (x) ≤ f̂ (y)) (i.e., Eq. (41))
in the proof of Lemma 4, we can similarly use Chebyshev’s inequality to derive that,
noting that m = 36n2c0+4 here,

P(f̂ (x) ≤ f̂ (y)) ≤ σ 2/(mμ2) ≤ 1/n2, (48)

123

Algorithmica (2019) 81:749–795 785

whereμ and σ 2 are the expectation and variance of f n(x)− f n(y), respectively. Thus,
case (1) holds.

Then, we consider case (2), that is, we are to analyze P(f̂ (1n) ≤ f̂ (y)) with
LO(y) < n. We calculate E(f n(1n) − f n(y)) as follows:

E(f n(1n) − f n(y)) = E(f n(1n) − f n(1n−10)) + E(f n(1n−10) − f n(y)).

It is easy to derive that

E(f n(1n)) =
n∑
j=1

(1 − q) j−1q · (j − 1) + (1 − q)n · n,

E(f n(1n−10)) =
n−1∑
j=1

(1 − q) j−1q · (j − 1) + (1 − q)n−1q · n + (1 − q)n · (n − 1).

Then, we have

E(f n(1n) − f n(1n−10)) = (1 − q)n−1(1 − 2q) ≥ 1/(2enc0),

where the inequality is by Eq. (46) and q = O(log n/n). If LO(y) ≤ n−1−5c0 log n,
by Eq. (45), we directly have E(f n(1n−10) − f n(y)) ≥ c0 log n

enc0 ≥ 0. If LO(y) ≥
n − 5c0 log n, E(f n(1n−10) − f n(y)) is calculated as follows:

E(f n(1n−10) − f n(y)) =
n−1∑

k=LO(y)+1

E(f n(zk) − f n(zk−1)),

where zn−1 = 1n−10, zk (LO(y) < k < n−1) denotes one solution zwith LO(z) = k,
and zLO(y) = y. By Eq. (44), we have, for any LO(y) + 1 ≤ k < n,

E
(
f n(zk) − f n(zk−1)

)
≥ (1 − q)k−1(1 − q2 + q(k − 1 − n))

≥ (1 − q)k−1(1 − q2 − 5c0q log n) = (1 − q)k−1(1 − o(1)) ≥ 0,

which implies that E(f n(1n−10) − f n(y)) ≥ 0. Then, we get

E(f n(1n) − f n(y)) = E(f n(1n) − f n(1n−10)) + E(f n(1n−10) − f n(y)) ≥ 1

2enc0
.

As the analysis in case (1) (i.e., Eq. (48)), we can get that

P(f̂ (1n) ≤ f̂ (y)) ≤ 1/n2.

Thus, case (2) holds. ��

123

786 Algorithmica (2019) 81:749–795

The following theorem shows that by using sampling, the (1 + 1)-EA can solve
LeadingOnes under bit-wise noise (1, q) in polynomial time when q is in the range of
O(log n/n).

Theorem 20 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q) with
q = O(log n/n), if using sampling, there exists some m = O(poly(n)) such that the
expected running time is polynomial.

Proof Since q = O(log n/n), there exists a positive constant c0 such that for all n
large enough, q ≤ c0 log n/n. We prove that if using sampling with m = 36n2c0+4,
the expected running time is polynomial.

The proof is similar to that of Theorem 19. The distance function V (x) is defined as,
for any x with LO(x) = i , V (x) = (

1 + c
n

)n − (
1 + c

n

)i , where c = 30c0 log n + 7.
Assume that currently LO(x) = i , where 0 ≤ i ≤ n − 1. For the positive drift
E+, we consider that only the (i + 1)-th bit (i.e., the first 0-bit) of x is flipped in
mutation. If LO(x ′) = n, P(f̂ (x ′) ≤ f̂ (x)) ≤ 1/n2 by case (2) of Lemma 5. If
LO(x ′) < n, it must hold that LO(x) ≤ LO(x ′) − 1 ∧ xLO(x ′)+1 = x ′

LO(x ′)+1 = 0,
since x and x ′ are the same except the (LO(x) + 1)-th bit. By case (1) of Lemma 5,
P(f̂ (x ′) ≤ f̂ (x)) ≤ 1/n2. Thus, the probability of accepting the offspring solution x ′
is P(f̂ (x ′) ≥ f̂ (x)) ≥ 1− 1/n2 ≥ 1/2. The positive drift then can be lower bounded
by

E+ ≥
(
1 − 1

n

)n−1 1

n
· 1
2

· c
n

(
1 + c

n

)i ≥ c

6n2

(
1 + c

n

)i
.

For the negative drift E−, we need to consider LO(x ′) < LO(x) = i . We further
divide LO(x ′) < i into two cases. If LO(x ′) ≤ i − 5c0 log n or i − 5c0 log n <

LO(x ′) ≤ i −1∧ x ′
i+1 = 0, then P(f̂ (x ′) ≥ f̂ (x)) ≤ 1/n2 by case (1) of Lemma 5. If

i −5c0 log n < LO(x ′) ≤ i −1∧ x ′
i+1 = 1, we consider the probability of generating

x ′ by mutation on x . Since it is necessary to flip the (i + 1)-th bit of x and at least one
1-bit in positions i − 5c0 log n + 2 to i simultaneously,

∑
x ′:i−5c0 log n<LO(x ′)≤i−1∧x ′

i+1=1

Pmut (x, x
′) ≤ 5c0 log n

n2
.

Then, we get

E− ≤
((

1 + c

n

)i − 1

)
·
(
1 · 1

n2
+ 5c0 log n

n2
· 1

)
≤ 5c0 log n + 1

n2

(
1 + c

n

)i
.

By subtracting E− from E+, we have, noting that c = 30c0 log n + 7,

E(V (ξt) − V (ξt+1) | ξt = x) ≥
(
1 + c

n

)i ·
(

c

6n2
− 5c0 log n + 1

n2

)
≥ 1

6n2
.

123

Algorithmica (2019) 81:749–795 787

Note that V (x) ≤ (1 + c
n)n ≤ ec = e30c0 log n+7 = nO(1). By Theorem 1, we have

E(τ | ξ0) ≤ 6n2 · nO(1). Since each iteration of the (1 + 1)-EA using sampling
takes 2m = 72n2c0+4 number of fitness evaluations, the expected running time is
polynomial. ��

For bit-wise noise (1, q) with q = ω(log n/n), we apply the negative drift theorem
(i.e., Theorem 2) to prove that using sampling still cannot guarantee a polynomial
running time.

Theorem 21 For the (1 + 1)-EA on LeadingOnes under bit-wise noise (1, q) with
q = ω(log n/n), if using sampling with any m = O(poly(n)), the expected running
time is exponential.

Proof We use Theorem 2 to prove it. Let Xt = |x |0 be the number of 0-bits of the
solution x after t iterations of the algorithm. We consider the interval [0, n/50], that
is, the parameters a = 0 and b = n/50 in Theorem 2. Then, we analyze the drift
E(Xt − Xt+1 | Xt = i) for 1 ≤ i < n/50. As in the proof of Theorem 9, we divide
the drift into two parts: positive E+ and negative E−. That is,

E(Xt − Xt+1 | Xt = i) = E+ − E−.

For the positive drift, we can use the same analysis as that (i,e., Eq. (17)) in the proof
of Theorem 9 to derive that E+ ≤ i/n < 1/50. This is because the offspring solution
x ′ is optimistically assumed to be always accepted in the analysis of Eq. (17), and thus
the change of noise and the use of sampling will not affect the analysis.

For the negative drift, we need to consider that the number of 0-bits is increased. To
derive a lower bound on E−, we only consider the n − i cases where only one 1-bit of
x is flipped, which happens with probability 1

n (1− 1
n)n−1. Let x j denote the solution

that is generated by flipping only the j-th bit of x . Then, we have

E− ≥
∑
j :x j=1

1

n

(
1 − 1

n

)n−1

· P(f̂ (x j) ≥ f̂ (x)) · (i + 1 − i).

We then investigate P(f̂ (x j) ≥ f̂ (x)). Let F(y) denote the event that when evaluating
the noisy fitness of a solution y, at least one 1-bit in its first n/3 positions is flipped
by noise. Note that there must exist 1-bits in the first n/3 positions of x , since |x |0 =
i < n/50. For any x j with j > n/3, its first n/3 bits are the same as that of x .
If both the events F(x) and F(x j) happen, f n(x) < n/3 ∧ f n(x j) < n/3, and the
last (2n)/3 bits of x and x j will not affect their noisy fitness. Thus, for any x j with
j > n/3, f n(x j) has the same distribution as f n(x) conditioned on F(x) ∩ F(x j).
When estimating f̂ (y) of a solution y by sampling, let Ft (y) denote the event F(y)
in the t-th independent noisy evaluation of y. Thus, for all j > n/3,

∑m
t=1 f nt (x) and∑m

t=1 f nt (x j) have the same distribution conditioned on (∩m
t=1Ft (x))∩ (∩m

t=1Ft (x
j)).

Since f̂ (x) = 1
m

∑m
t=1 f nt (x) and f̂ (x j) = 1

m

∑m
t=1 f nt (x j), we have

P(f̂ (x j) ≥ f̂ (x) | (∩m
t=1Ft (x)) ∩ (∩m

t=1Ft (x
j))) ≥ 1/2.

123

788 Algorithmica (2019) 81:749–795

Since |x |0 = i < n/50, there are at least n/3 − n/50 ≥ n/4 number of 1-bits in the
first n/3 positions of x , which implies that the probability P(Ft (x)) of the event Ft (x)
happening is at least 1− (1−q)n/4. Furthermore, P(Ft (x j)) = P(Ft (x)) for j > n/3,
since x and x j have the same first n/3 bits. Thus,

P((∩m
t=1Ft (x)) ∩ (∩m

t=1Ft (x
j))) ≥ (1 − (1 − q)n/4)2m

≥
(
1 − 1

enq/4

)2m

≥
(
1

e

)2m/(enq/4−1)

=
(
1

e

)2m/nω(1)

≥ 1

e
,

where the equality is by q = ω(log n/n) and the last inequality is bym = O(poly(n)).
By the law of total probability, we have, for all j > n/3,

P(f̂ (x j) ≥ f̂ (x)) ≥ P(f̂ (x j) ≥ f̂ (x) | (∩m
t=1Ft (x)) ∩ (∩m

t=1Ft (x
j)))

· P((∩m
t=1Ft (x)) ∩ (∩m

t=1Ft (x
j))) ≥ 1

2e
.

Then, we can get a lower bound on the negative drift:

E− ≥
∑

j : j>n/3∧x j=1

1

n

(
1 − 1

n

)n−1

· P(f̂ (x j) ≥ f̂ (x)) · 1

≥
(
2n

3
− n

50

)
· 1

en
· 1

2e
≥ 1

36
.

By subtracting E− from E+, we have, for 1 ≤ i < n/50,

E(Xt − Xt+1 | Xt = i) = E+ − E− ≤ 1

50
− 1

36
.

Thus, condition (1) of Theorem 2 holds. It is easy to verify that condition (2) of
Theorem 2 holds with δ = 1 and r(l) = 2. Note that l = b − a = n/50. By
Theorem 2, we get that the expected number of iterations is exponential, and then the
expected running time is also exponential. ��

For the one-bit noise model, we prove in Theorem 22 that the (1 + 1)-EA using
sampling can always solve the LeadingOnes problem in polynomial time. The proof
is finished by applying the additive drift theorem. Lemma 6 gives some bounds on the
probability P(f̂ (x ′)− f̂ (x)) of accepting the offspring solution x ′, which will be used
in the proof of Theorem 22.

From case (2) of Lemma 6, we can observe that when the solution is close to
the optimum 1n , the probability of accepting 1n is small, which is different from
the situation in bit-wise noise (as shown in case (2) of Lemmas 4 and 5). If directly
using the distance function constructed in the proof of Theorems 19 and 20, this small
acceptance probability will make the positive drift E+ not large enough, and then the
condition of the additive drift theorem is unsatisfied. To address this issue, our idea is
to re-design the distance function such that the distance from non-optimal solutions

123

Algorithmica (2019) 81:749–795 789

to the optimum 1n is much larger than that between non-optimal solutions. Then, the
small probability of accepting 1n can be compensated by the significant decrease on
the distance after accepting 1n ; thus the positive drift can still be large enough to make
the condition of the additive drift theorem hold.

Note that in the proof of Lemma 6, we use Berry–Esseen inequality [31] and
Hoeffding’s inequality, instead of Chebyshev’s inequality used in the proof of Lem-
mas 4 and 5. When the solution x is close to the optimum 1n , the expectation of
f n(1n) − f n(x) is lower bounded by a negative value. Thus, for deriving a lower
bound on the probability P(f̂ (1n) ≥ f̂ (x)), Chebyshev’s inequality fails, while we
apply Berry–Esseen inequality [31]. The analysis shows that a moderate sample size
m = 4n4 log n/15 can make this probability not too small. With this sample size,
to derive a small enough upper bound on the probability P(f̂ (x) ≤ f̂ (y)) for two
solutions x and y with E(f n(x)− f n(y)) > 0, we have to use Hoeffding’s inequality,
which is tighter than Chebyshev’s inequality.

Lemma 6 For the LeadingOnes problem under one-bit noise, if using sampling with
m = 4n4 log n/15, it holds that

(1) for any x withLO(x) = i < n and y withLO(y) ≤ i−2orLO(y) = i−1∧yi+1 =
0, P(f̂ (x) ≤ f̂ (y)) ≤ 2n− 2

15 ; furthermore, if i ≤ n − 4, P(f̂ (x) ≤ f̂ (y)) ≤
2n− 32

15 .
(2) for any y, if LO(y) ≤ n − 4, P(f̂ (1n) ≤ f̂ (y)) ≤ 2n− 8

15 ; if LO(y) ∈ {n − 3, n −
2, n − 1}, P(f̂ (1n) ≥ f̂ (y)) ≥ 1/n2.

Proof The proof is finished by deriving a lower bound on the expectation of f n(x) −
f n(y) and then applying Hoeffding’s inequality or Berry–Esseen inequality [31]. We
first consider case (1). For any x with LO(x) = i < n,

E(f n(x)) ≥ (1 − p) · i +
i∑

j=1

p

n
· (j − 1) + p

n
· (i + 1) + p

n − i − 1

n
· i,

E(f n(x)) ≤ (1 − p) · i +
i∑

j=1

p

n
· (j − 1) + p

n
· n + p

n − i − 1

n
· i . (49)

By applying these two inequalities, we have, for any k < i < n,

E(f n(x) − f n(y) | LO(x) = i ∧ LO(y) = k)

≥ (1 − p)(i − k) + p

n

(
(i − k)

(
n − i + k + 3

2

)
+ i + 1 − n

)
. (50)

Thus, for any x with LO(x) = i and y with LO(y) = k ≤ i − 2 (where 2 ≤ i < n),
we have

E(f n(x) − f n(y)) ≥ 2(1 − p) + p

n
(n − i) ≥ n − i

n
.

123

790 Algorithmica (2019) 81:749–795

When LO(y) = i − 1 ∧ yi+1 = 0, if we directly use Eq. (50), we will get a lower
bound 1− p, which is 0 for p = 1. Since yi+1 = 0, we actually can get an exact value
of E(f n(y)):

E(f n(y)) = (1 − p) · (i − 1) +
i−1∑
j=1

p

n
· (j − 1) + p

n
· i + p

n − i

n
· (i − 1).

By combining this equality and the lower bound in Eq. (49), we have that, for any x
with LO(x) = i and y with LO(y) = i − 1 ∧ yi+1 = 0 (where 1 ≤ i < n),

E(f n(x) − f n(y)) ≥ 1 − p + p

n
(i − 1) + p

n
+ p

n
(n − 2i) ≥ n − i

n
.

Thus, we have a unified lower bound (n − i)/n on E(f n(x) − f n(y)) for case (1).
Denote E(f n(x) − f n(y)) as μ. We have μ ≥ (n − i)/n ≥ 1/n. Since f̂ (x) is
the average of m = 4n4 log n/15 independent evaluations, it is easy to verify that
E(f̂ (x)− f̂ (y)) = μ. Furthermore, | f n(x)− f n(y)| ≤ n. By Hoeffding’s inequality,
we get

P(f̂ (x) ≤ f̂ (y)) ≤ P(| f̂ (x) − f̂ (y) − μ| ≥ μ) ≤ 2e
− 2m2μ2

m(2n)2 ≤ 2n− 2
15 .

When i ≤ n − 4, μ ≥ (n − i)/n ≥ 4/n. By applying this lower bound to the above
inequality, we get

P(f̂ (x) ≤ f̂ (y)) ≤ 2n− 32
15 .

Thus, case (1) holds.
For case (2), we are to analyze P(f̂ (1n) ≤ f̂ (y)) or P(f̂ (1n) ≥ f̂ (y)), where

LO(y) < n. E(f n(1n)) can be calculated as follows:

E(f n(1n)) = (1 − p) · n +
n∑
j=1

p

n
· (j − 1).

By combining this equality and the upper bound in Eq. (49), we get, for any y with
LO(y) = k < n,

E(f n(1n) − f n(y)) ≥ (n − k)

(
1 − p + p

n

n − k − 3

2

)
.

When k ≤ n − 4, E(f n(1n) − f n(y)) ≥ 2/n. By Hoeffding’s inequality, we get

P(f̂ (1n) ≤ f̂ (y)) ≤ 2n− 8
15 .

123

Algorithmica (2019) 81:749–795 791

When k ∈ {n − 3, n − 2, n − 1},

μ = E(f n(1n) − f n(y)) ≥ 1 − p − p/n.

If p ≤ 1 − 2/n, we have μ ≥ 1/n. By Hoeffding’s inequality,

P(f̂ (1n) ≥ f̂ (y)) ≥ 1 − 2n− 2
15 . (51)

If p > 1−2/n,μ ≥ −1/n.We then useBerry–Esseen inequality [31] to derive a lower
bound onP(f̂ (1n) ≥ f̂ (y)). LetY = f n(1n)− f n(y)−μ. Note that E(Y) = 0.Denote
the variance Var(Y) as σ 2. Then, σ 2 = Var(f n(1n))+Var(f n(y)). For Var(f n(1n)),
it can be calculated as follows:

Var(f n(1n)) = E((f n(1n))2) − (E(f n(1n))2

= (1 − p)n2 + p

n

(n − 1)n(2n − 1)

6
−

(
(1 − p)n + p

n

n(n − 1)

2

)2

≥ p(n − 1)(n − 1/2)

3
−

(
1 + p(n − 1)

2

)2

≥ n2

14
,

where the last inequality holds because for p > 1 − 2/n and n being large enough,
the minimum is reached when p = 1. Thus, we get σ 2 ≥ n2/14. Since −2n ≤
Y ≤ 2n, ρ = E(|Y |3) ≤ 8n3. Note that f̂ (1n) − f̂ (y) − μ is the average of m
independent random variables, which have the same distribution as Y . By Berry–
Esseen inequality [31], we have

P

(
(f̂ (1n) − f̂ (y) − μ)

√
m

σ
≤ x

)
− Φ(x) ≤ ρ

σ 3
√
m

, (52)

whereΦ(x) is the cumulative distribution function of the standard normal distribution.
Thus, for p > 1 − 2/n,

P(f̂ (1n) ≥ f̂ (y)) = P(f̂ (1n) − f̂ (y) − μ ≥ −μ)

≥ 1 − P(f̂ (1n) − f̂ (y) − μ ≤ −μ)

≥ 1 − Φ

(−μ
√
m

σ

)
− ρ

σ 3
√
m

= Φ

(
μ

√
m

σ

)
− ρ

σ 3
√
m

≥ Φ

(
−

√
m

nσ

)
− ρ

σ 3
√
m

≥ Φ

(
−

√
56

15
log n

)
− O

(
1

n2
√
log n

)

≥ 1√
2π

∫ −
√

56
15 log n

−2
√
log n

e− t2
2 dt − O

(
1

n2
√
log n

)
≥ 1

n2
, (53)

123

792 Algorithmica (2019) 81:749–795

where the second inequality is by Eq. (52), the third inequality is μ ≥ −1/n, the
fourth is by m = 4n4 log n/15, σ 2 ≥ n2/14 and ρ ≤ 8n3, and the last holds with
sufficiently large n. According to Eqs. (51) and (53), we get that, when LO(y) ∈
{n − 3, n − 2, n − 1},

P(f̂ (1n) ≥ f̂ (y)) ≥ 1/n2.

Thus, case (2) holds. ��
The following theorem shows that for one-bit noise, using sampling with m =

4n4 log n/15 is sufficient to make the (1 + 1)-EA solve LeadingOnes in polynomial
time.

Theorem 22 For the (1+1)-EA on LeadingOnes under one-bit noise, if using sampling
with m = 4n4 log n/15, the expected running time is polynomial.

Proof We use Theorem 1 to prove it. We first construct a distance function V (x) as,
for any x with LO(x) = i ,

V (x) =
{
n − i/n6, i ≤ n − 1;
0, i = n.

Then, we investigate E(V (ξt) − V (ξt+1) | ξt = x) for any x with LO(x) = i < n.
We divide the drift into two parts: positive E+ and negative E−. That is,

E(V (ξt) − V (ξt+1) | ξt = x) = E+ − E−.

For i ≤ n − 4, the lower bound analysis on E+ is similar to that in the proof of
Theorem 19. We only consider that the (i + 1)-th bit of x is flipped and the other bits
keep unchanged, whose probability is 1

n (1 − 1
n)n−1. The offspring solution x ′ is the

same as x except the (i + 1)-th bit, and LO(x ′) > LO(x) = i . According to definition
of V (x), we know that the decrease on the distance is at least 1/n6. If LO(x ′) = n,
P(f̂ (x ′) ≤ f̂ (x)) ≤ 2n− 8

15 by case (2) of Lemma 6. If LO(x ′) < n, it must hold
that LO(x) ≤ LO(x ′) − 1 ∧ xLO(x ′)+1 = x ′

LO(x ′)+1 = 0. By case (1) of Lemma 6,

P(f̂ (x ′) ≤ f̂ (x)) ≤ 2n− 2
15 . Thus, the probability P(f̂ (x ′) ≥ f̂ (x)) of accepting the

offspring solution x ′ is at least 1 − max{2n− 8
15 , 2n− 2

15 } ≥ 1/2, where the inequality
holds with sufficiently large n. Then, E+ can be lower bounded as follows:

E+ ≥
(
1 − 1

n

)n−1 1

n
· 1
2

· 1

n6
≥ 1

6n7
.

For the negative drift E−, we need to consider LO(x ′) < LO(x) = i . We further
divide LO(x ′) < i into two cases. If LO(x ′) ≤ i − 2 or LO(x ′) = i − 1 ∧ x ′

i+1 = 0,

then P(f̂ (x ′) ≥ f̂ (x)) ≤ 2n− 32
15 by case (1) of Lemma 6 (note that i ≤ n − 4 here),

and V (x ′) − V (x) ≤ V (0n) − V (x) = i/n6. If LO(x ′) = i − 1 ∧ x ′
i+1 = 1, then

123

Algorithmica (2019) 81:749–795 793

∑
x ′:LO(x ′)=i−1∧x ′

i+1=1 Pmut (x, x ′) ≤ 1/n2 since it is necessary to flip the i-th and the

(i + 1)-th bits of x in mutation, and V (x ′) − V (x) = 1/n6. Then, E− can be upper
bounded by as follows:

E− ≤ i

n6
· 1 · 2

n
32
15

+ 1

n6
· 1

n2
· 1 = o

(
1

n7

)
.

By subtracting E− from E+, we have

E(V (ξt) − V (ξt+1) | ξt = x) = E+ − E− ≥ 1

12n7
.

For i ∈ {n − 3, n − 2, n − 1}, we use a trivial upper bound i/n6 on E−. For the
positive drift, we consider that the offspring solution x ′ is the optimal solution 1n ,
whose probability is at least 1

n3
(1 − 1

n)n−3 ≥ 1
en3

since at most three bits of x need

to be flipped. The probability of accepting 1n is at least 1
n2

by case (2) of Lemma 6.

The distance decrease is at least n − n−1
n6

≥ n
2 . Thus, E

+ ≥ 1
en3

· 1
n2

· n
2 ≥ 1

2en4
. By

subtracting E− from E+, we have

E(V (ξt) − V (ξt+1) | ξt = x) ≥ 1

2en4
− i

n6
= 1

2en4
− O

(
1

n5

)
≥ 1

4en4
.

By combing the above analyses for i ≤ n − 4 and i ∈ {n − 3, n − 2, n − 1}, we get
a unified lower bound 1/(12n7) on E(V (ξt) − V (ξt+1) | ξt = x). Since V (x) ≤ n,
we have E(τ | ξ0) = O(n8) by Theorem 1. Each iteration of the (1 + 1)-EA using
sampling takes 2m = 8n4 log n/15 number of fitness evaluations, thus the expected
running time is polynomial. ��

Therefore, we have shown that the (1 + 1)-EA using sampling can always solve
LeadingOnes in polynomial time under bit-wise noise (p, 1

n) (i.e., Theorem 19) or
one-bit noise (i.e., Theorem 22); while under bit-wise noise (1, q), the tight range of q
allowing a polynomial time is O(log n/n) (i.e., Theorems 20 and 21). The reason why
sampling is ineffective under bit-wise noise (1, q) with q = ω(log n/n) is similar to
that observed in the analysis of OneMax under bit-wise noise (1, q) with q = 1/2 −
1/nω(1) or q ≥ 1/2. For two solutions x and y with f (x) > f (y), we can find from the
calculation of E(f n(x)− f n(y)) in the proof of Lemma 5 that when q = ω(log n/n),
E(f n(x) − f n(y)) will be very small (since (1− q)n−1 = 1/nω(1)) or even negative;
thus a polynomial sample size is not sufficient to make the probability of accepting
the true worse solution y small enough, or it will increase the probability. For the
situation where sampling is effective, the analysis on LeadingOnes is a little different
from that on OneMax. On OneMax, E(f n(x) − f n(y)) is always sufficiently large
when f (x) > f (y); thus sampling canmake the probability of accepting the trueworse
solution y small enough and then work. While on LeadingOnes, E(f n(x) − f n(y))
is sufficiently large in most cases instead of all cases when f (x) > f (y), but a few
exceptions do not affect the effectiveness of sampling.

123

794 Algorithmica (2019) 81:749–795

6 Conclusion

In this paper, we theoretically study the (1+ 1)-EA solving the OneMax and Leadin-
gOnes problems under bit-wise noise, which is characterized by a pair (p, q) of
parameters. We derive the ranges of p and q for the running time being polynomial
and super-polynomial, respectively. The previously known parameter ranges for the
(1+ 1)-EA solving LeadingOnes under one-bit noise are also improved. Considering
that the (1 + 1)-EA is efficient only under low noise levels, we further analyze the
robustness of sampling to noise. We prove that for both bit-wise noise and one-bit
noise, using sampling can significantly enlarge the range of noise parameters allow-
ing a polynomial running time. In the future, we shall improve the currently derived
bounds on LeadingOnes, as they do not cover the whole range of noise parameters. For
proving polynomial upper bounds on the expected running time by using sampling,
we only give a sufficiently large sample size, the tightness of which will be studied
in our future work. In our analysis, we consider the bit-wise noise model with one
parameter fixed. Thus, to analyze the running time under general bit-wise noise is also
an interesting future work. Note that our analysis has shown that the performance of
the (1+ 1)-EA solving OneMax under bit-wise noise (1, log n

30n) and (
log n
30n , 1) is signif-

icantly different, which implies that p · q may not be the only deciding factor for the
analysis of general bit-wise noise.

Acknowledgements Wewant to thank the reviewers for their valuable comments. This work was supported
by the NSFC (61603367, 61672478), the YESS (2016QNRC001), the Science and Technology Innovation
Committee Foundation of Shenzhen (ZDSYS201703031748284), and the Royal Society Newton Advanced
Fellowship (NA150123).

References

1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment. Evol. Comput.
2(2), 97–122 (1994)

2. Akimoto, Y., Astete-Morales, S., Teytaud, O.: Analysis of runtime of optimization algorithms for noisy
functions over discrete codomains. Theoret. Comput. Sci. 605, 42–50 (2015)

3. Arnold, D.V., Beyer, H.G.: A general noise model and its effects on evolution strategy performance.
IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

4. Auger,A.,Doerr,B.: Theory ofRandomizedSearchHeuristics: Foundations andRecentDevelopments.
World Scientific, Singapore (2011)

5. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Pro-
gramming. Genetic Algorithms. Oxford University Press, Oxford (1996)

6. Branke, J., Schmidt, C.: Selection in the presence of noise. In: Proceedings of the 5th ACMConference
on Genetic and Evolutionary Computation (GECCO’03), pp. 766–777. Chicago, IL (2003)

7. Chang, Y., Chen, S.: A new query reweighting method for document retrieval based on genetic algo-
rithms. IEEE Trans. Evol. Comput. 10(5), 617–622 (2006)

8. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and
other search processes. In: Proceedings of 13th International Conference on Parallel Problem Solving
from Nature (PPSN’14), pp. 912–921. Ljubljana, Slovenia (2014)

9. Dang, D.C., Lehre, P.K.: Efficient optimisation of noisy fitness functions with population-based evolu-
tionary algorithms. In: Proceedings of the 13thACMConference onFoundations ofGeneticAlgorithms
(FOGA’15), pp. 62–68. Aberystwyth, UK (2015)

10. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013)

123

Algorithmica (2019) 81:749–795 795

11. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Proceedings
of the 14th ACM Conference on Genetic and Evolutionary Computation (GECCO’12), pp. 17–24.
Philadelphia, PA (2012)

12. Doerr, B., Johannsen,D.,Winzen,C.:Multiplicative drift analysis.Algorithmica 64(4), 673–697 (2012)
13. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Proceedings of the 6th ACMConference

on Genetic and Evolutionary Computation (GECCO’04), pp. 1088–1099. Seattle, WA (2004)
14. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theoret.

Comput. Sci. 276(1–2), 51–81 (2002)
15. Feldmann, M., Kötzing, T.: Optimizing expected path lengths with ant colony optimization using

fitness proportional update. In: Proceedings of the 12th ACM Conference on Foundations of Genetic
Algorithms (FOGA’13), pp. 65–74. Adelaide, Australia (2013)

16. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: Robustness of ant colony optimization to noise. Evol.
Comput. 24(2), 237–254 (2016)

17. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: The compact genetic algorithm is efficient under
extreme gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490 (2017)

18. Friedrich, T., Kötzing, T., Quinzan, F., Sutton, A.: Resampling vs recombination: A statistical run
time estimation. In: Proceedings of 14th ACM Conference on Foundations of Genetic Algorithms
(FOGA’17), pp. 25–35. Copenhagen, Denmark (2017)

19. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75(3),
462–489 (2016)

20. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.
127(1), 57–85 (2001)

21. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEE Trans. Evol.
Comput. 9(3), 303–317 (2005)

22. Ma, P., Chan, K., Yao, X., Chiu, D.: An evolutionary clustering algorithm for gene expression microar-
ray data analysis. IEEE Trans. Evol. Comput. 10(3), 296–314 (2006)

23. Neumann, F.,Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their
Computational Complexity. Springer, Berlin (2010)

24. Oliveto, P., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation.
Algorithmica 59(3), 369–386 (2011)

25. Oliveto, P., Witt, C.: Erratum: Simplified drift analysis for proving lower bounds in evolutionary
computation. CORR abs/1211.7184 (2012)

26. Prügel-Bennett, A., Rowe, J., Shapiro, J.: Run-time analysis of population-based evolutionary algo-
rithm in noisy environments. In: Proceedings of the 13th ACM Conference on Foundations of Genetic
Algorithms (FOGA’15), pp. 69–75. Aberystwyth, UK (2015)

27. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1+1)-EA for OneMax and
LeadingOnes under bit-wise noise. In: Proceedings of the 19th ACM Conference on Genetic and
Evolutionary Computation (GECCO’17), pp. 1399–1406. Berlin, Germany (2017)

28. Qian, C., Yu,Y., Tang,K., Jin, Y., Yao,X., Zhou, Z.H.:On the effectiveness of sampling for evolutionary
optimization in noisy environments. Evol. Comput. 26(2), 237–267 (2018)

29. Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy environments. Evol. Com-
put. 26(1), 1–41 (2018)

30. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ) evolutionary algorithm.
Theoret. Comput. Sci. 545, 20–38 (2014)

31. Shevtsova, I.G.: Sharpening of the upper bound of the absolute constant in the Berry–Esseen inequality.
Theory Probab. Appl. 51(3), 549–553 (2007)

32. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE
Trans. Evol. Comput. 17(3), 418–435 (2013)

33. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest path problems. Algo-
rithmica 64(4), 643–672 (2012)

34. Yu, Y., Qian, C., Zhou, Z.H.: Switch analysis for running time analysis of evolutionary algorithms.
IEEE Trans. Evol. Comput. 19(6), 777–792 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 OneMax and LeadingOnes
	2.2 Bit-Wise Noise
	2.3 (1+1) Evolutionary Algorithm
	2.4 Sampling
	2.5 Analysis Tools

	3 The OneMax Problem
	4 The LeadingOnes Problem
	4.1 Bit-Wise Noise (p,1n)
	4.2 Bit-Wise Noise (1,q)
	4.3 One-Bit Noise
	4.4 Experiments

	5 The Robustness of Sampling to Noise
	5.1 The OneMax Problem
	5.2 The LeadingOnes Problem

	6 Conclusion
	Acknowledgements
	References

