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Abstract
In the last years, kernelization with structural parameters has been an active area of
researchwithin the field of parameterized complexity. As a relevant example, Gajarský
et al. (JComput Syst Sci 84:219–242, 2017) proved that every graph problem satisfying
a property called finite integer index admits a linear kernel on graphs of bounded
expansion and an almost linear kernel on nowhere dense graphs, parameterized by
the size of a c-treedepth modulator, which is a vertex set whose removal results in
a graph of treedepth at most c, where c ≥ 1 is a fixed integer. The authors left as
further research to investigate this parameter on general graphs, and in particular
to find problems that, while admitting polynomial kernels on sparse graphs, behave
differently on general graphs. In this article we answer this question by finding two
very natural such problems: we prove that Vertex Cover admits a polynomial
kernel on general graphs for any integer c ≥ 1, and that Dominating Set does not
for any integer c ≥ 2 even on degenerate graphs, unless NP ⊆ coNP/poly. For the
positive result, we build on the techniques of Jansen and Bodlaender (Proceedings of
the 28th symposium on theoretical aspects of computer science (STACS), volume 9 of
LIPIcs, pp 177–188, 2011), and for the negative result we use a polynomial parameter
transformation for c ≥ 3 and an or-cross-composition for c = 2. As existing results
imply that Dominating Set admits a polynomial kernel on degenerate graphs for
c = 1, our result provides a dichotomy about the existence of polynomial kernels for
Dominating Set on degenerate graphs with this parameter.
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1 Introduction

Motivation There is a whole area of parameterized algorithms and kernelization inves-
tigating the complexity ecology (see for example [28]), where the objective is to
consider a structural parameter measuring how “complex” is the input, rather than
the size of the solution. For instance, parameterizing a problem by the treewidth of
its input graph has been a great success for FPT algorithms, triggered by Courcelle’s
theorem [6] stating that any problem expressible in MSO logic is FPT parameter-
ized by treewidth. However, the situation is not as good for kernelization, as many
problems do not admit polynomial kernels when parameterized by treewidth unless
NP ⊆ coNP/poly [2].

Of fundamental importance within structural parameters are parameters measuring
the so-called “distance from triviality” of the input graphs, like the size of a vertex
cover (distance to an independent set) or of a feedback vertex set (distance to a forest).
Unlike treewidth, these parameters may lead to both positive and negative results for
polynomial kernelization. An elegant way to generalize these parameters is to consider
a parameter allowing to quantify the triviality of the resulting instance, measured in
terms of its treewidth. More precisely, for a positive integer c, a c-treewidth modulator
of a graph G is a set of vertices X such that the treewidth of G − X is at most c. Note
that for c = 0 (resp. c = 1), a c-treewidth modulator corresponds to a vertex cover
(resp. feedback vertex set).

Treewidth modulators have been extensively studied in kernelization, especially
on classes of sparse graphs, where they have been at the heart of the recent devel-
opments of meta-theorems for obtaining linear and polynomial kernels on graphs on
surfaces [3], minor-free graphs [16], and topological-minor-free graphs [20,23], all
based in a generic technique known as protrusion replacement. However, as observed
in [18,23], if one tries to move further in the families of sparse graphs by consider-
ing, for instance, graphs of bounded expansion, for several natural problems such as
Treewidth- t Vertex Deletion (minimizing the number of vertices to be removed
to get a graph of treewidth at most t), parameterizing by a treewidth modulator is as
hard as on general graphs.

This observation led Gajarský et al. [18] to consider another type of modula-
tors, namely c-treedepth modulators (defined analogously to c-treewidth modulators),
where treedepth is a graph invariant—which we define in Sect. 2 – that plays a cru-
cial structural role on graphs of bounded expansion and nowhere dense graphs [26].
Gajarský et al. [18] proved that any graph problem satisfying a property called finite
integer index admits a linear kernel on graphs of bounded expansion and an almost
linear kernel on nowhere dense graphs when parameterized by the size of a c-treedepth
modulator. Shortly afterwards this result was obtained, the authors asked [29] to inves-
tigate this parameter on general graphs, namely to find natural problems that admit and
that do not admit polynomial kernels parameterized by the size of a c-treedepth modu-
lator. More precisely, are there natural problemsΠ1 andΠ2 fitting into the framework
of [18] such that Π1/c-tdmod admits a polynomial kernel on general graphs, but
Π2/c-tdmod does not?1

1 As defined in Sect. 2, “/c-tdmod” means “parameterized by the size of a c-treedepth modulator”.
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Our results In this article we answer the above question by proving that Vertex
Cover and Dominating Set are such problemsΠ1 andΠ2, respectively. Let us now
elaborate a bit more on our results, the techniques we use to prove them, and how do
they compare to previous work in the area (see the preliminaries of Sect. 2 for any
undefined terminology).

Note first that both VC/c-tdmod and DS/c-tdmod (where DS stands for Domi-
nating Set) are FPT on general graphs, as they are FPT by treewidth [6], which is a
smaller parameter than c-tdmod, as for any graph G and any integer c ≥ 0, it holds
that tw(G) ≤ td(G)−1 ≤ c-tdmod(G)+c −1. Thus, asking for polynomial kernels
is a pertinent question.

In Sect. 3we prove thatVC/c-tdmod admits a polynomial kernel on general graphs.
Our approach is based on the techniques introduced by Jansen and Bodlaender [21]
to prove that VC/1-twmod (or equivalently, IS/FVS) admits a polynomial kernel. As
in [21], we in fact provide a polynomial kernel for IS/c-tdmod, which is easily seen to
be equivalent to VC/c-tdmod. More precisely, we use three reduction rules inspired
from the rules given in [21], and we present a recursive algorithm that, starting from a
c-treedepthmodulator, constructs an appropriate (c−1)-treedepthmodulator and calls

itself inductively. The kernel obtained in this manner has x2
O(c2)

vertices, where x is
the size of the c-treedepth modulator. This result completes the following panorama
of structural parameterization for Vertex Cover, which has been a real testbed for
structural parameterizations in the last years:

• VC/1-twmod (or equivalently, VC/FVS) admits a polynomial kernel [21].
• VC/c-twmod for c ≥ 2 does not admit a polynomial kernel unless NP ⊆
coNP/poly [8].

• VC/2-degmod (distance to a graph of maximum degree 2) and VC/c-CVD (dis-
tance to a disjoint collection of cliques of size at most c) admit a polynomial
kernel [25]. Note that our result generalizes the latter kernel, as a disjoint collec-
tion of cliques of size at most c is a particular case of a graph having treedepth at
most c.

• VC/pfm (distance to a pseudoforest) admits a polynomial kernel [17].

In Sect. 4 we turn to negative results for Dominating Set. We provide a char-
acterization, according to the value of c, of the existence of polynomial kernels for
DS/c-tdmod on degenerate graphs. Indeed, using the results of Philip et al. [30] it
is almost immediate to prove that DS/1-tdmod (or equivalently, DS/VC) admits a
polynomial kernel on degenerate graphs. For c ≥ 3, we rule out the existence of
polynomial kernels for DS/c-tdmod on 2-degenerate graphs by a simple polynomial
parameter transformation from DS/1-tdmod on general graphs, which does not admit
polynomial kernels unless NP ⊆ coNP/poly [11]. The remaining case, namely DS/2-
tdmod, turns out to be more interesting, and we rule out the existence of polynomial
kernels on 4-degenerate graphs by providing an or-cross-composition from 3-Sat.
This dichotomy for the existence of polynomial kernels for DS/c-tdmod on degener-
ate graphs is to be compared with the dichotomy for VC/c-twmod on general graphs
discussed above [8,21].

As mentioned before, it is commonly admitted that almost no natural problem
admits a polynomial kernel parameterized by tw, or even with td. However, to the best

123



4046 Algorithmica (2019) 81:4043–4068

of our knowledge the only published negative results are those in [2], where the authors
prove that IS/tw andDS/tw do not admit a polynomial kernel unlessNP ⊆ coNP/poly.
As this result only holds for general graphs, for the sake of completeness we complete
it in Sect. 5, by showing that a largemajority of the problems considered in [18] having
an almost linear kernel parameterized by c-tdmod on nowhere dense graphs do not
admit polynomial kernels parameterized by td, even on planar graphs of bounded
maximum degree.

2 Preliminaries

Graphs Unless explicitly mentioned, all graphs considered here are simple and undi-
rected, and we refer the reader to [10] for any undefined notation. Given a graph
G = (V , E) and X ⊆ V , we denote NX (v) = N (v) ∩ X , where N (v) = {u ∈ V |
{u, v} ∈ E}. We denote by α(G) the size of a maximum independent set of G. For
any function f defined on any induced subgraph of a given graph G, given a subset of
vertices V ′ of G, we denote f (V ′) = f (G[V ′]) (for example, α(V ′) = α(G[V ′])).
For any integer n, we denote [n] = {i ∈ N, 1 ≤ i ≤ n}.

For the following definitions related to treedepth, bounded expansion, and nowhere
dense graph classes, we refer the reader to [26] for more details, and we only recall
here some basic notations and facts. The treedepth of a graph G (denoted td(G)) is
the minimum height of a rooted forest F (called a treedepth decomposition) such that
G is a subgraph of the closure of F , where the closure of a rooted tree is the graph
obtained by adding an edge between any vertex and all its ancestors, and the height
of a rooted tree is the number of vertices in a longest path from the root to a leaf.
Let c ≥ 1 be an integer. A c-treedepth modulator is a subset of vertices X ⊆ V
such that td(G[V \X ]) ≤ c, and we denote by c-tdmod(G) the size of a smallest c-
treedepth modulator of G. A c-treewidth modulator is defined in the same way. Recall
that as these parameters are greater than their associated measure (i.e., tw(G) ≤ c-
twmod(G) + c and tw(G) ≤ td(G) ≤ c-tdmod(G) + c, where tw(G) denotes the
treewidth of G) the negative results for kernelization by treewidth and treedepth do
not immediately apply, but the positive FPT results do.

Concerning graph classes, we recall that in the sparse graph hierarchy, graphs of
bounded expansion (BE) and nowhere dense graphs (ND) are related to classic sparse
families as follows (see [26] for the definitions): planar graphs ⊆ minor-free graphs
⊆ BE ⊆ ND. Note also that the class of graphs of bounded degeneracy is a natural
superclass of BE (intuitively, BE also requires the shallow minors to be degenerate),
and is incomparable with ND.

We refer the reader to Appendix A for the definition and acronyms of problems
considered in the paper, like IS for the independent set problem.

Parameterized complexity We refer the reader to [7,13,15,27] for more details on
parameterized complexity and kernelization, and we recall here only some basic
definitions, with special emphasis on tools for polynomial kernelization. A param-
eterized problem is a language L ⊆ Σ∗ × N, for some finite alphabet Σ . For an
instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. Given a classical (non-
parameterized) decision problem Lc ⊆ Σ∗ and a function κ : Σ∗ → N, we denote

123



Algorithmica (2019) 81:4043–4068 4047

by Lc/κ = {(x, κ(x)} | x ∈ Lc} the associated parameterized problem. For example,
IS/c-tdmod denotes the independent Set problem parameterized by the size of a
c-treedepth modulator.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algo-
rithm A, a computable function f , and a constant c such that given an instance
I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by f (k) · |I |c. Given a computable function g, a kernelization algorithm
(or simply a kernel) for a parameterized problem L of size g is an algorithm A that
given any instance I = (x, k) of L , runs in polynomial time and returns an equivalent
instance I ′ = (x ′, k′) (i.e., I ′ ∈ L if and only if I ∈ L) with |I ′| + k′ ≤ g(k). It is
well-known that the existence of an FPT algorithm is equivalent to the existence of a
kernel (whose size may be exponential or larger), implying that problems admitting a
polynomial kernel form a natural subclass of FPT.

Some tools for (ruling out) polynomial kernelization Among the wide literature on
polynomial kernelization,weonly recall here the two following tools used in this paper:
compositions (used to prove that a parameterized problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly), and polynomial parameter transformations from L1
to L2, denoted by L1 ≤

ppt
L2 (used to prove that a polynomial kernel for L2 implies

a polynomial kernel for L1).

Definition 1 [2]Anor-composition algorithm for a parameterized problem L ⊆ Σ∗×
N is an algorithm that
• receives as input a sequence ((x1, k), . . . , (xt , k)), with (xi , k) ∈ Σ∗ ×N for each
1 ≤ i ≤ t ,

• uses time polynomial in
∑t

i=1 |xi | + k, and
• outputs (y, k′) ∈ Σ∗ × N such that

1. (y, k) ∈ L if and only if (xi , k) ∈ L for some 1 ≤ i ≤ t .
2. k′ is polynomially bounded by a function of k.

We can similarly define an and-composition algorithm.

A parameterized problem admitting a or-composition (resp. and-composition) is
called an or-compositional (resp. and-compositional) problem. We first need the
notion of polynomial equivalence relation, defined as an equivalence relation R on
Σ∗ such that testing whether two strings x, y are equivalent can be done in time
polynomial in |x | + |y|, and such that R restricted to the strings of size at most n has
at most p(n) equivalence classes, for some polynomial p.

Definition 2 [4] Let L ⊆ Σ∗ be a (classical) problem and Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L or-cross-composes (resp. and-cross-composes) into
Q if there exists a polynomial equivalence relation R and an algorithm A, called the
cross-composition, satisfying the following conditions. The algorithm A takes as input
a sequence of strings x1, . . . , xt ∈ Σ∗ that are equivalent with respect to R, runs in
time polynomial in

∑t
i=1 |xi |, and outputs one instance (y, k) ∈ Σ∗ × N such that:

• k ≤ p(maxt
i=1 |xi | + log(t)) for some polynomial p(·), and

• (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L (resp. if
for every i ∈ [t], xi ∈ L).
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Compositions are a great tool to get negative results for kernelization.

Theorem 1 [7,13] Let L be an or-compositional or an and-compositional parame-
terized problem whose derived classical problem is NP-complete. Then, L does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

A polynomial compression of a parameterized language Q ⊆ Σ∗ × N into a
language R ⊆ Σ∗ is an algorithm that takes as input an instance (x, k) ∈ Σ∗ × N,
works in time polynomial in |x | + k, and returns a string y such that |y| ≤ p(k) for
some polynomial p, and y ∈ R if and only if (x, k) ∈ Q.

Theorem 2 [7,13] Assume that an NP-hard language L cross-composes into a param-
eterized language Q. Then Q does not admit a polynomial compression unless
NP ⊆ coNP/poly.

Note that as a polynomial kernel is also a polynomial compression, the previous
theorem also rules out the existence of a polynomial kernel.

Definition 3 [5] Let P and Q be parameterized problems.We say that P is polynomial
time and parameter reducible to Q, written P ≤

ppt
Q, if there exist a polynomial

time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for
all x ∈ Σ∗ and k ∈ N, if f (x, k) = (x ′, k′), then the following hold:

• (x, k) ∈ P , if and only if (x ′, k′) ∈ Q, and
• k′ ≤ p(k).

We call f a polynomial time and parameter transformation from P to Q (PPT for
short).

The following theorem can be used to obtain either positive or negative results.

Theorem 3 [5] Let P and Q be parameterized problems, and suppose that Pc and Qc

are the derived classical problems. Suppose that Qc is NP-complete, and that Pc ∈
NP. Suppose that P ≤

ppt
Q. If Q has a polynomial kernel, then P has a polynomial

kernel.

3 A Polynomial Kernel for VC/c-tdmod on General Graphs

In this section we prove that for any positive integer c, VC/c-tdmod admits a polyno-
mial kernel on general graphs. Recall that this was only known for VC/1-tdmod and
VC/2-tdmod, as for c = 1 this corresponds to the standard parameterization and we
can use the linear kernel of [1], and for c = 2 we have 1-twmod ≤ 2-tdmod (as a
1-twmod corresponds to the distance to a forest, while 2-tdmod corresponds to the
distance to a star forest), and thus we can use the polynomial kernel of [21] for VC/1-
twmod. We also recall that we cannot expect to extend our result to VC/c-twmod for
any c ≥ 2 [8].

AsVC/c-tdmod and IS/c-tdmod are equivalent for this parameterization (because
any n-vertex graph has vertex cover of size at most k if and only if it has an independent
set of size at least n − k), we provide the result for IS/c-tdmod. More specifically,
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in Sect. 3.1 we provide a polynomial kernel for a-c-tdmod-IS, an annotated version
of our problem defined below, and in Sect. 3.2 we derive a polynomial kernel for
IS/c-tdmod.

3.1 A Polynomial Kernel for a-c-tdmod-IS/(|X| + |H|)

We will find a polynomial kernel for the following annotated version of IS on
hypergraphs. Working with hypergraphs is useful because we will use a reduction
rule identifying a subset X ′ of the modulator that cannot be entirely contained
in a solution; this will be modeled by adding a hyperedge on the vertex set X ′.

Annotated c- treedepth modulator Independent Set (a-c-tdmod-IS)
Instance: (G, X , k) where

• G = (V , E,H) is a hypergraph structured as follows: V = X 
 R,
E = EX ,R 
 ER,R is a set of edges where edges in E A,B have one
endpoint in A and the other in B, and H ≤ 2X is a set of
hyperedges where each H ∈ H is entirely contained in X .

• X is a c-treedepth modulator (as G[V \X ] is not a hypergraph,
its treedepth is correctly defined and we have td(V \X) ≤ c).

• k is a positive integer.

Question: Decide whether α(G) ≥ k (an independent set in a hypergraph is a
subset of vertices that does not contain any hyperedge, corresponding
here to a subset S ⊆ V such that for every h ∈ E ∪ H , h � S).

Throughout this subsection I = (G, X , k) denotes the input of a-c-tdmod-IS
with G = (V , E,H) and V = X 
 R. Note that G[X ] is a hypergraph and that
G[R] is a graph, and that the parameter we consider here is |X | + |H|. For any
X ′ ⊆ X and R′ ⊆ R, observe that the notation NR′(X ′) is not ambiguous and denotes
{v ∈ R′ | ∃x ∈ X ′ with {x, v} ∈ E}.

We use the following definition that was introduced in [21] for VC/1-twmod.

Definition 4 [21] Given X ′ ⊆ X and R′ ⊆ R, let con f R′(X ′) = α(R′) −
α(R′\NR′(X ′)) be the conflicts induced by X ′ on R′.

Intuitively, con f R′(X ′) measures the loss in the size of a maximum independent
set of R′ due to X ′. We extend the previous definition in the following way: for any
R′ ⊆ R and any Y ′ ⊆ R′, let con f R′(Y ′) = α(R′)−α(R′\Y ′). Note that con f R′(X ′)
describes the impact of having X ′ in the independent set, while con f R′(Y ′) describes
the impact of forbidding Y ′ in the independent set. We can see that con f R′(Y ′) = 0
is equivalent to the existence of an independent set S∗ ⊆ R′ such that |S∗| = α(R′)
and S∗ ∩ Y ′ = ∅.
Lemma 1 Let R′ ⊆ R be a connected component of R. If con f R′(Y ′) > 0, there exists
Ȳ ′ ⊆ Y ′ such that con f R′(Ȳ ′) > 0 and |Ȳ ′| ≤ f (c) with f (c) = 2c.

Proof As it holds that td(R′) ≤ c, let us consider a treedepth decomposition of R′
with root r and t ≥ 1 subtrees rooted at the children of t , where Ai , i ∈ [t] is the
vertex set of subtree i . We can partition Y ′ = ⋃

i∈[t+1] Y ′
i with Y ′

i ⊆ Ai for i ∈ [t],
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Y ′
t+1 ⊆ {r}, where the Y ′

i ’s are possibly empty. We will prove the lemma by induction
on c. Observe that

∑
i∈[t] α(Ai ) ≤ α(R′) ≤ 1+∑

i∈[t] α(Ai ), and thus we distinguish
two cases according to the value of α(R′).

Case 1 α(R′) = 1 + ∑
i∈[t] α(Ai ). In this case every maximum independent set S∗

of R′ contains r . Hence for every i ∈ [t], S∗ ∩ Ai is a maximum independent set
in Ai\NAi (r), and thus α(Ai\NAi (r)) = α(Ai ). Indeed, if we had α(Ai\NAi (r)) <

α(Ai ) for some i , then |S∗| would be strictly smaller than 1 + ∑
i∈[t] α(Ai ).

If r ∈ Y ′ (i.e., if Y ′
t+1 �= ∅) then we can take Ȳ ′ = {r} (as every optimal solution

of R′ must contain r we get α(R′\{r}) < α(R′), and |Ȳ ′| = 1 ≤ 2c), and thus we
suppose henceforth that Y ′

t+1 = ∅.
We claim that there exists i0 ∈ [t] such that con f Ai0\NAi0

(r)(Y
′
i0
) > 0. Indeed,

otherwise we could define for every i ∈ [t] an independent set Si ⊆ Ai\NAi (r) with
|Si | = α(Ai\NAi (r)) = α(Ai ) and Si ∩ Y ′

i = ∅. Thus, S∗ = {r} ∪i∈[t] Si would be
an independent set of size α(R′), and as Y ′

t+1 = ∅ we would have S∗ ∩ Y ′ = ∅, a
contradiction to the hypothesis that con f R′(Y ′) > 0. Thus, there exists i0 ∈ [t] such
that con f Ai0\NAi0

(r)(Y
′
i0
) > 0, and as td(Ai0\NAi0

(r)) < c, by induction hypothesis

there exists Ȳ ′
i0

⊆ Y ′
i0
such that con f Ai0\NAi0

(r)(Ȳ
′
i0
) > 0 and |Ȳ ′

i0
| ≤ 2c−1. Let us

verify that Ȳ ′ = Ȳ ′
i0
satisfies con f R′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with

S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then clearly |S∗| < α(R′). Otherwise, |S∗| = (
∑

i∈[t] |S∗ ∩
(Ai\NAi (r))|)+1 ≤ α(Ai0\NAi0

(r))−1+(
∑

i∈[t],i �=i0 α(Ai\NAi (r)))+1 < α(R′).

Case 2 α(R′) = ∑
i∈[t] α(Ai ). In this case there exists i0 ∈ [t] such that

con f Ai0
(Y ′

i0
) > 0. Indeed, otherwise we could define for every i ∈ [t] an independent

set Si ⊆ Ai with |Si | = α(Ai ) and Si ∩ Y ′
i = ∅, and the existence of S∗ = ∪i∈[t]Si

would be a contradiction to the hypothesis that con f R′(Y ′) > 0. Thus, by the induction
hypothesis there exists Ȳ ′

i0
⊆ Y ′

i0
such that con f Ai0

(Ȳ ′
i0
) > 0 and |Ȳ ′

i0
| ≤ 2c−1.

If r ∈ Y ′ (i.e., if Y ′
t+1 �= ∅) then we can take Ȳ ′ = Ȳ ′

i0
∪ {r}. Let us verify that

con f R′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As S∗ cannot
contain r we have |S∗| = ∑

i∈[t] |S∗ ∩ Ai | < α(Ai0)+∑
i∈[t],i �=i0 |S∗ ∩ Ai | = α(R′).

Thus, we suppose from now on

Property p1 : Y ′
t+1 = ∅.

Note that in this case (when p1 is true) we cannot simply set Ȳ ′ = Ȳ ′
i0
, as shown in

the example depicted in Fig. 1. Indeed, in this example we would have Ȳ ′ = Ȳ ′
i0

=
{c1}, however con f R′({c1}) = 0 as S∗ = {b1, v1, c2, v2} verifies |S∗| = α(R′) and
S∗ ∩ {c1} = ∅.
Properties related to α Let us prove that we can always assume the following

Property p2 : for every i �= i0, α(Ai\NAi (r)) = α(Ai ).

Indeed, if p2 is not true, then there exists i1 �= i0, i1 ∈ [t] such that α(Ai1\NAi1
(r)) <

α(Ai1), and we set Ȳ ′ = Ȳ ′
i0
. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅.
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If r /∈ S∗ then as previously |S∗| < α(R′), otherwise we get |S∗| ≤ α(Ai0) − 1 +
α(Ai1) − 1+ (

∑
i∈[t],i �=i0,i �=i1 α(Ai )) + 1 < α(R′). Thus, we now assume p2. Let us

now prove the following

Property p′
2 : α(Ai0 ∪ {r}) = α(Ai0).

Bycontradiction, suppose that there exists an independent set S∗
1 of Ai0∪{r} containing

r such that |S∗
1 | = α(Ai0) + 1. According to p2, for every i �= i0 there exists an

independent set Si of Ai\NAi (r) of size α(Ai ), and thus α(R′) >
∑

i∈[t] α(Ai ), a
contradiction. Thus, we now assume p′

2.
Properties related to con f Ai

(Y ′
i ) Let us prove than we can assume the following

Property p3 : for every i �= i0, con f Ai \NAi (r)(Y
′
i ) = 0.

Indeed, ifp3 is not truewecanget the desired result as follows.Let i1 �= i0, i1 ∈ [t] such
that con f Ai1\NAi1

(r)(Y
′
i1
) > 0.We use the same arguments as in the previous paragraph

and define Ȳ ′ = Ȳ ′
i0

∪ Ȳ ′
i1
. Note that |Ȳ ′| ≤ |Ȳ ′

i0
|+|Ȳ ′

i1
| ≤ 2c. Using the same notation,

if r /∈ S∗ then |S∗| = (
∑

i∈[t] |S∗ ∩ Ai |) ≤ α(Ai0)−1+(
∑

i∈[t],i �=i0 α(Ai )) < α(R′),
and otherwise |S∗| = (

∑
i∈[t] |S∗ ∩ (Ai\NAi (r))|) + 1 ≤ α(Ai0) − 1+ α(Ai1) − 1+

(
∑

i∈[t],i �=i0,i �=i1 α(Ai )) + 1 < α(R′). Thus, we now assume p3. Note that p2 and p3
imply

Property p′
3 : for every i �= i0, con f Ai

(Y ′
i ) = 0.

Case 2a There does not exist a maximum independent set S∗ of R′ such that r ∈ S∗.
In this case, we set Ȳ ′ = Ȳ ′

i0
. Let us prove that con f R′(Ȳ ′) > 0. Let S∗ be a maximum

independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As r /∈ S∗, we get |S∗| = ∑
i∈[t] |S∗ ∩ Ai | ≤

α(Ai0) − 1 + ∑
i∈[t],i �=i0 α(Ai ) < α(R′).

Case 2b There exists a maximum independent set S∗ of R′ such that r ∈ S∗. This
implies thatα(Ai0\NAi0

(r)) = α(Ai0)−1. Let us prove that con f Ai0\NAi0
(r)(Y

′
i0
) > 0.

If it was not the case, there would exist an independent set S∗
i0
of Ai0\NAi0

(r) of size
α(Ai0\NAi0

(r)) = α(Ai0) − 1 such that S∗
i0

∩ Y ′
i0

= ∅. By p3, there would exist, for
every i �= i0, an independent set S∗

i of Ai\NAi (r) of size α(Ai\NAi (r)) = α(Ai ) (by
p2) such that S∗

i ∩ Y ′
i = ∅. Thus, S∗ = {r} ∪ (

⋃
i∈[t] S∗

i ) would be an independent
set of size α(R′) such that S∗ ∩ Y ′ = ∅ (recall that by p1, r /∈ Y ′), a contradiction.
Thus, we know that both con f Ai0\NAi0

(r)(Y
′
i0
) > 0 and con f Ai0

(Y ′
i0
) > 0 (which was

established at the beginning of Case 2). Using twice the induction hypothesis we get

that there exists Ȳ ′
i0

1 ⊆ Y ′
i0
such that con f Ai0\NAi0

(r)(Ȳ
′
i0

1
) > 0 and there exists Ȳ ′

i0

2 ⊆
Y ′

i0
such that con f Ai0

(Ȳ ′
i0

2
) > 0, with both |Ȳ ′

i0

1| and |Ȳ ′
i0

2| bounded by 2c−1. Thus,

we set Ȳ ′ = Ȳ ′
i0

1 ∪ Ȳ ′
i0

2
. Let us verify that con f R′(Ȳ ′) > 0. Let S∗ be an independent

set of R′ with S∗ ∩ Ȳ ′ = ∅. If r ∈ S∗, then |S∗| = ∑
i∈[t] |S∗ ∩ (Ai\NAi (r))| + 1 =

α(Ai0\NAi0
(r))−1+∑

i∈[t],i �=i0 α(Ai )+1 = α(Ai0)−2+∑
i∈[t],i �=i0 α(Ai )+1 <

α(R′). Otherwise, |S∗| = ∑
i∈[t] |S∗∩ Ai | = α(Ai0)−1+∑

i∈[t],i �=i0 α(Ai ) < α(R′).
��
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Fig. 1 a Example of a graph G[R′] (left) with an associated treedepth decomposition (right) as used in
Lemma 1, with Y ′ = {c1, c2}. This case corresponds to one of the subcases of Case 2, as α(R′) =
α(A1) + α(A2) = 4, con f A1

(Y ′
1) > 0, con f A2

(Y ′
2) = 0. Moreover, p2 and p′

2 are true, while p3 is false
(but p′

3 is true). b Example for t = 2 of the construction of Lemma 2, where the circled vertices belong to S

A first lower bound on the function f of Lemma 1 can be obtained by considering
a clique R′ on c vertices (hence, with td(R′) = c) and Y ′ = R′, as every Ȳ ′ � Y ′
satisfies con f R′(Ȳ ′) = 0. However, as shown in Lemma 2 below, we can even obtain
an exponential lower bound, showing that the function f (c) = 2c of Lemma 1 is
almost tight.

Lemma 2 There exists a constant λ such that for every c ≥ λ there exists a graph
G = (R, E) and Y ⊆ R such that td(G) = c, |Y | ≥ 2c−3, con f R(Y ) > 0, and for
every Ȳ � Y , con f R(Ȳ ) = 0.

Proof Given an integer t , let G = (R, E) with R = ⋃
i∈[2t]{ai , bi , ci } ∪ {v1, v2} and

E = ⋃
i∈[2t]{{ai , bi }, {ci , ai }, {ci , bi }} ∪ ⋃

i∈[t]{b2i−1, b2i } ∪ ⋃
i∈[t−1]{a2i , a2i+1} ∪

{v1, a1} ∪ {a2t , v2} (G is a path on 2t + 2 vertices); see Fig. 1a for an example for
t = 1. We would like to point out that R corresponds to the edge gadget of [8], except
that we removed some edges (namely, {a2i−1, a2i }) to lower its treedepth by a factor
2. Let Y = C .

We have α(R) = 2t + 2, and α(R\Y ) = α(R) − 1 < α(R). Let Ȳ � Y , and let
i0 such that ci0 /∈ Ȳ . By symmetry, we can suppose that i0 is even with i0 = 2i ′0.
Let S = {v1, v2} ∪ ⋃

i∈[i ′0−1]{b2i−1, a2i } ∪ {b2i ′0−1, c2i ′0} ∪ ⋃
i∈[i ′0+1,t]{a2i−1, b2i };

see Fig. 1b for an example for t = 2. As S is an independent set of size α(R) with
S ∩ Ȳ = ∅, we get that con f R(Ȳ ) = 0.

Observe also that td(R) ≤ log(t) + 3. Indeed, the treedepth of the initial path
P2t+2 on 2t + 2 vertices is at most �log(2t + 3)� ≤ log(t) + 2, for t large enough.
Then, td(R) ≤ td(P2t+2) + 1 as for every i ∈ [2t], we can add to the treedepth
decomposition of P2t+2 a vertex ci as a new leaf attached to the lowermost vertex of
{ai , bi } in the decomposition. ��
Observation 1 Lemma 1 was proven in [21] when R′ is a forest and |Ȳ ′| ≤ 2. Even if
we already know that IS/2-twmod does not admit a polynomial kernel unless NP ⊆
coNP/poly [8], it remains interesting to observe that, in particular, this lemma becomes
false for 2-twmod, as the graph of Lemma 2 has treewidth 2. This points out one crucial
difference between c-treewidth and c-treedepth modulators.

Let us now start the description of the kernel for a-c-tdmod-IS/(|X | + |H|). Given
an input (G, X , k) of a-c-tdmod-IS, we define the following three rules. Note that

123



Algorithmica (2019) 81:4043–4068 4053

these rules and definitions (and the associated safeness proofs) correspond to Rules 1,
2, and 3 of [21], except that we now bound the sizes of the subsets by a function f (c)
instead of by 2.

Definition 5 Given an input (G, X , k) of a-c-tdmod-IS (with td(G[R]) ≤ c where
R = V \X ), the chunks of the input are defined by X = {X ′ ⊆ X | there is no H ∈
H such that H ⊆ X ′, and 0 < |X ′| ≤ f (c)}, where f (c) = 2c.

Intuitively, the chunks correspond to all possible small traces of an independent set
of G in X . We are now ready to define the first two rules.
Reduction Rule 1 If there exists u ∈ X such that con f R({u}) > |X |, remove u from
the graph.
Reduction Rule 2 If there exists X ′ ∈ X such that con f R(X ′) > |X |, add X ′ toH.

Lemma 3 Rules 1 and 2 are safe: if I = (G, X , k) is the original input of a-c-tdmod-
IS and I 1 = (G1, X1, k) is the input after the application of Rule 1 or Rule 2, then I
and I 1 are equivalent.

Proof Let us only prove the safeness of Rule 2, as Rule 1 corresponds to Rule 2 using
X ′ = {u}. Indeed, adding hyperedge {u} is equivalent to removing u, as by definition
no independent set could contain u anymore. Let us prove that α(G) ≥ k implies that
α(G1) ≥ k. Let S be an independent set of G of size at least k. If X ′

� S then S is
also an independent set of G1 of size k. Otherwise, let S1 be an independent set of R
of size α(R). Observe that k ≤ |S| = |S ∩ X |+ |S ∩ R| < |X |+ (α(R)−|X |) = |S1|
(the strict inequality holds as con f R(X ′) > |X |), and we get the desired result. ��
Reduction Rule 3 If R contains a connected component R′ such that for every X ′ ∈ X ,
con f R′(X ′) = 0, delete R′ from the graph and decrease k by α(R′).

To prove that Rule 3 is safe we need the following lemma. Recall that we say that
X ′ ⊆ X is an independent set if and only if there is no H ∈ H such that H ⊆ X ′.

Lemma 4 Let I = (G, X , k) be an instance of a-c-tdmod-IS. Let R′ be a connected
component of R. If there exists an independent set X ′ ⊆ X such that con f R′(X ′) > 0,
then there exists X̄ ′ ∈ X such that con f R′(X̄ ′) > 0.

Proof Let Y ′ = NR′(X ′). As con f R′(X ′) > 0, con f R′(Y ′) > 0. By Lemma 1, there
exists Ȳ ′ ⊆ Y ′ such that con f R′(Ȳ ′) > 0 and |Ȳ ′| ≤ f (c). For every y′ ∈ Ȳ ′,
there exists a vertex g(y′) ∈ X ′ such that {g(y′), y′} ∈ E , and thus we define X̄ ′ =
∪y′∈Ȳ ′ g(y′). As X̄ ′ ⊆ X ′, X̄ ′ is still an independent set, and |X̄ ′| ≤ |Ȳ ′| ≤ f (c), we

get that X̄ ′ ∈ X . ��
Lemma 5 Rule 3 is safe: if I = (G, X , k) is the original input of a-c-tdmod-IS
and I ′ = (G ′, X ′, k′) is the input after the application of Rule 3, then I and I ′ are
equivalent.

Proof α(G) ≥ k ⇒ α(G ′) ≥ k′ = k − α(R′) is straightforward, as if S is an
independent set of G of size at least k then S\R′ is an independent set of G ′ of size at
least k − α(R′).
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Algorithm 1: A polynomial kernel for a-c-tdmod-IS/(|X | + |H|).
Input: (I , c), where I = (G, X , k) and X is a c-treedepth modulator of G.

if c = 0 then
return X .

else
Apply Rule 1 exhaustively.

/* this rule suppresses vertices of X */
Apply Rule 2 exhaustively.

/* this rule adds hyperedges of size at most f (c) to H */
Define the set X of chunks.
Apply Rule 3 exhaustively.

/* this rule suppresses some connected components */
/* of R and decreases k accordingly */

Let I3 = (G3, X3, k3) be the obtained instance, where G3 = (V3, E3) and R3 = V3\X3.

For every connected component R′ ⊆ R3, compute an optimal treedepth decomposition of R′ with root rR′ .

Let Xr = ∪R′⊆R3,R′ connected{rR′ } be the set of roots.
Let I ′ = (G ′ = (V3, E ′,H′), X ′, k3) be defined as follows:

X ′ = X3 ∪ Xr ,
Z = {e ∈ E3 | e ∩ Xr �= ∅ and e ∩ X3 �= ∅},
E ′ = E3\Z ,
H′ = H3 ∪ Z .
/* I ′ corresponds to I3 where we added Xr to the modulator, removed */

/* edges Z from E3, and added them as hyperedges of X ′ */
/* Note that X ′ is now a (c − 1)-treedepth modulator */

return A(I ′, c − 1).

α(G) ≥ k ⇐ α(G ′) ≥ k′ = k −α(R′): Let S′ be an independent set of G ′ of size at
least k′. As Rule 3 applied, we know that for every X1 ⊆ X , con f R′(X1) = 0. Using
the contrapositive of Lemma 4, it follows that for every independent set X1 ⊆ X ,
con f R′(X1) = 0. In particular we get that X S = S′ ∩ X verifies con f R′(X S) =
0. Thus, there exists an independent set SR′ of G[R′] of size α(R′) and such that
NR′(X S) ∩ SR′ = ∅, and thus S′ ∪ SR′ is an independent set of G of size at least k. ��
Lemma 6 Let I = (G, X , k) be an instance of a-c-tdmod-IS, and let s be the number
of connected components of R = V \X. If none of Rule 1, Rule 2 and Rule 3 can be
applied, then s = O(|X | f (c)+2), where f is the function of Lemma 1.

Proof First, asRule 1 andRule 2 cannot be applied,wehaveσ = ∑
X ′∈X con f R(X ′) ≤

∑ f (c)
i=1

(|X |
i

)|X | = O(|X | f (c)+2). On the other side, as Rule 3 cannot be applied, for
every connected component R′ ⊆ R there exists X ′ ∈ X such that con f R′(X ′) > 0,
and thus we have σ ≥ s, implying the desired result. ��

We are now ready to present in Algorithm 1 our polynomial kernel for a-c-tdmod-
IS.

Theorem 4 For every fixed integer c ≥ 0, Algorithm 1 is a polynomial kernel for
a-c-tdmod-IS/(|X | + |H|). More precisely, for every input I = (G, X , k) (with G =
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(V , E,H), R = V \X) where X is a c-treedepth modulator, Algorithm 1 produces
an equivalent instance Ĩ = (G̃, X̃ , k̃) (with G̃ = (Ṽ , Ẽ, H̃), R̃ = Ṽ \X̃ ) where
|X̃ | = O(|X |2(c+1)(c+2)/2

), |H̃| = |H| + O(|X |2(c+1)(c+2)/2
), and R̃ = ∅.

Proof Observe first that Algorithm 1 is polynomial for fixed c. Indeed, computing
con f R′(X ′) is polynomial (as tw(R′) ≤ td(R′) and it is well-known that IS/tw is
FPT [6]) and there are at most O(|X |c) applications of Rules 1 and 2, and O(s|X |c)
applications of Rule 3. Moreover, an optimal treedepth decomposition of each con-
nected component can be computed in FPT time parameterized by c, using [26] or [31].
Let us prove the result by induction on c. The result is trivially true for c = 0. Let
us suppose that the result holds for c − 1 and prove it for c. Observe that X ′ is now
a (c − 1)-treedepth modulator, and thus we can apply the induction hypothesis on
A(I ′, c − 1). For every � ∈ [3], let I� = (G�, X�, k�) with G� = (V�, E�,H�) and
R� = V�\X� denote the instance after exhaustive application of Rule �, respectively.

Equivalence of the output By Lemma 3 and Lemma 5, we know that Rules 1, 2, and
3 are safe, and thus that I and I3 are equivalent. Note that I3 is equivalent to I ′ as the
underlying input is the same (except that some vertices were added to the modulator).
As using induction hypothesis A(I ′, c − 1) outputs an instance Ĩ equivalent to I ′, we
get the desired result.

Size of the output We have

• |X1| ≤ |X |, |H1| = |H|.
• |X2| = |X1|, |H2| ≤ |H1| + |X1| f (c).
• |X3| = |X2|, |H3| = |H2|. By Lemma 6, s, the number of connected components
of R3, verifies s = O(|X3| f (c)+2).

• |X ′| ≤ |X3| + s, and |H′| ≤ |H3| + s|X3|.
Thus we get |X ′| = O(|X | f (c)+2) = O(|X |2c+1

) and |H′| = |H| + O(|X | f (c)+3).
Using induction hypothesis we get that |X̃ | = O(|X ′|2c(c+1)/2

) = O(|X |2(c+1)(c+2)/2
),

and that |H̃| = |H′| + O(|X ′|2c(c+1)/2
) = |H| + O(|X |2c+3) + O(|X |2(c+1)(c+2)/2

) =
|H | + O(|X |2(c+1)(c+2)/2

), as claimed. ��

3.2 Deducing a Polynomial Kernel for IS/c-tdmod

Observe first that we can suppose that the modulator is given in the input, i.e., that
IS/c-tdmod ≤

ppt
c-tdmod-IS/|X | (≤

ppt
is defined in Definition 3). Indeed, given an

input (G, x, k) of IS/c-tdmod (where x denotes the size of a c-treedepth modulator),
using the 2c-approximation algorithm of [18] for computing a c-treedepth modulator,
wet get in polynomial time a set X such that |X | ≤ 2c · x and td(R) ≤ c, where
R = V \X .

Observe also that IS/|X | ≤
ppt

a-c-tdmod-IS/(|X | + |H|) using the same set X and
with |H| ≤ |X |2. Now, as usual when using bikernels, we could claim that as IS is
Karp N P-hard and as a-c-tdmod-IS is in N P , there exists a polynomial reduction
from a-c-tdmod-IS, implying the existence of a polynomial kernel for IS/c-tdmod.
However, let us make such a reduction explicit to provide an explicit bound on the
size of the kernel.
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Fig. 2 Example of the
construction of G′ for n = 5,
m = 1, and H = {1, 3, 4}

z1

ya
1 yb

1

z3

ya
3 yb

3 yb
4ya

4

z4

W ′
H

n

Lemma 7 Let I = (G, k) with G = (X ,H) be an instance of a-c-tdmod-IS as
produced by Theorem 4 (as R = ∅ the set of vertices is reduced to X, and H is
a set of hyperedges on X). We can build in polynomial time an equivalent instance
I ′ = (G ′, k′) of IS with G ′ = (V ′, E ′) where |V ′| ≤ O(|X | · |H|).
Proof Let n = |X |, X = {vi | i ∈ [n]} and m = |H|. We refer the reader to Fig. 2 for
an example of the construction of G ′. For every i ∈ [n], we add to G ′ the vertex gadget
constituted of V ′

i = {ya
i , yb

i , zi } and edges {zi , ya
i } and {zi , yb

i , }. Taking vertices ya
i

and yb
i in a solution for I ′ will correspond to taking vi in the corresponding solution of

I . For every H ∈ H, we add to G ′ the edge gadget W ′
H = ⋃

�∈[|H |] W ′�
H , where each

W ′�
H is an independent set of size n, and we add edges to make G[W ′

H ] a complete |H |-
partite graph with

(|H |
2

)
n2 edges. Finally, for every H ∈ H, H = {vH�

| � ∈ [|H |]}
and � ∈ [|H |], we add edges to make G[W ′�

H ∪ {ya
H�

, yb
H�

}] a complete bipartite graph
with 2n edges. Thus, the �th “column” of W ′

H corresponds to the �th vertex of H . This
completes the description of G ′. Let k′ = n + k + nm.
α(G) ≥ k ⇒ α(G ′) ≥ k′: Without loss of generality let S = {vi | i ∈ [k]} be
an independent set of G. For every H = {vH�

| � ∈ [|H |]} there exists � such that
vH�

/∈ S. We define S′ = ⋃
i∈[k]{ya

i , yb
i } ∪ ⋃

i∈[n]\[k]{zi } ∪ ⋃
H∈H W ′H�

H .
α(G) ≥ k ⇐ α(G ′) ≥ k′: Let S′ be an independent set of G ′ of size at least k′.
We can always assume that for every H ∈ H and � ∈ [|H |], if W ′�

H ∩ S′ �= ∅ then
W ′�

H ⊆ S′ (as all vertices of W ′�
H have the same neighborhood, we can safely add

W ′�
H ). Note that there cannot exist H ∈ H such that W ′

H ∩ S′ = ∅. Indeed, otherwise
|S′| ≤ n(m − 1) + 2n < k′.

Thus, for every H = {vH�
| � ∈ [|H |]} there exists (a unique) �H ∈ [|H |] such

that W ′�H
H ⊆ S′. As there remain n + k vertices to take in the V ′

i ’s, and as ya
i and

yb
i have the same neighborhood, we get that, without loss of generality, for every

i ∈ [k] we have {ya
i , yb

i } ⊆ S′, and for every i ∈ [n]\[k] we have zi ∈ S′. Thus, we
define S = {vi | i ∈ [k]}. Let us verify that S is an independent set. Let H ∈ H.
As W ′�H

H ⊆ S′ and S′ is an independent set, we deduce that there are no edges in

G ′ between W ′�H
H and any of the {ya

i , yb
i } for i ∈ [k], implying that vH�H

/∈ S, and
therefore S is indeed an independent set. ��
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Putting pieces together we get the main theorem of this section, whose proof is now
immediate.

Theorem 5 For every integer c ≥ 1, IS/c-tdmod (or equivalently, VC/c-tdmod)

admits a polynomial kernel on general graphs withO
(

x2
1
2 (c+1)(c+2)+1

)

vertices, where

x is the size of a c-treedepth modulator.

4 Excluding Polynomial Kernels for DS/c-tdmod on Degenerate
Graphs

Given a graph G, we define Gc-sub as the graph obtained from G by subdividing each
edge c times. In other words, we add a set Xe = {x�

e | � ∈ [c]} of c vertices of degree
2 for every edge e ∈ E of G.

Observation 2 For every c ≥ 0 and every k ≥ 0, G has a dominating set of size k
if and only if G3c-sub has a dominating set of size k + mc, where m is the number of
edges of G.

Proof Indeed, if S is a dominating set ofG of size k, thenwe construct a dominating set
of G3c-sub of size k + mc by taking S and the following vertices. For every e = {u, v}
with u ∈ S and v /∈ S we take {x3�e | 1 ≤ � ≤ c} (we add to the dominating set
every third vertex in the set Xe starting from u). Otherwise (if both or none of {u, v}
belong to S) we take {x3�+2

e | 0 ≤ � ≤ c−1}. The other direction is also true, as every
solution must include at least c vertices in each Xe, and every solution can be modified
so that it does not include more than c vertices in each Xe. Thus, the k vertices of a
solution of G3c-sub corresponding to original vertices of G form a dominating set of
G. ��

Let us start with the following proposition, which follows from existing negative
results for Dominating Set parameterized by the size of a vertex cover [11].

Proposition 1 DS/c-tdmod does not admit a polynomial kernel on 2-degenerate
graphs for every c ≥ 3, unless NP ⊆ coNP/poly.

Proof Let us prove that DS/VC ≤
ppt

DSCdege /3-tdmod, where Cdege is the class of
2-degenerate graphs. As DS/VC (and even DS/k+VC) does not admit a polynomial
kernel unless NP ⊆ coNP/poly [11], we will get the desired result using Theorem 3.
Let (G, k) be an instance of DS/VC with G = (V , E) and m = |E |. We define
G ′ = G3-sub, and let V ′ be the set of vertices of G ′. By Observation 2, G has a
dominating set of size k if and only if G ′ has a dominating set of size k +m. Moreover,
it is clear that G ′ is 2-degenerate. Finally, every vertex cover X of G is a 3-treedepth
modulator of G ′. Indeed, in G ′[V ′\X ], to each edge e ∈ E entirely contained in
X corresponds in G ′[V ′\X ] an isolated P3, and to each v ∈ V \X corresponds in
G ′[V ′\X ] a spider (that is, a tree with only one vertex of degree more than two) rooted
at v of height 4 with x ≥ 1 leaves. Thus, G ′[V ′\X ] is a disjoint collection of P3’s and
spiders of height 4, both having treedepth at most 3. As 3-tdmod (G ′) ≤ vc(G) (the
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size of a minimum vertex cover of G), this is a PPT reduction and we get the desired
result.We can get the same result forDSCdege /c-tdmod for c ≥ 4 by subdividing 3 f (c)
times each edge of G, for an appropriate function f . ��
Observation 3 DS/1-tdmod (or equivalently DS/VC) admits a polynomial kernel
on degenerate graphs. Indeed, given an instance (G, k) of DS/VC, we compute in
polynomial time a 2-approximate vertex cover X of G. If |X | ≤ k then we output a
trivial Yes-instance, otherwise VC(G) ≥ k

2 and we can apply the polynomial kernel
for DS/k on degenerate graphs of Philip et al. [30].

Thus, by Proposition 1 and Observation 3, the only remaining case for degenerate
graphs is DS/2-tdmod. We would like to point out that the composition of [11] for
DS/(k+VC) on general graphs cannot be easily adapted toDS/2-tdmod on degenerate
graphs, as for example subdividing each edge also leads to a result for DS/3-tdmod.
Thus, we treat the case DS/2-tdmod on degenerate graphs using an ad-hoc reduction.

Theorem 6 DS/2-tdmod does not admit a polynomial kernel on 4-degenerate graphs
unless NP ⊆ coNP/poly.

Proof We prove this result by using an or-cross-composition from 3-Sat (see Defini-
tion 2). We consider t instances of 3-Sat, where for every i ∈ [t], instance I i has mi

clauses {Ci
j | j ∈ [mi ]} and ni variables Xi = {xi

� | � ∈ [ni ]}, each clause containing
3 variables. We can choose the equivalence relation of Definition 2 such that for every
i ∈ [t], we have mi = m and ni = n.

Let us now construct a graph G = (V , E) as follows; see Fig. 3 for an illustration.
We start by adding to V the set of verticesX = ⋃

�∈[n]{x�, x̄�} (and thus |X | = 2n) and
Ci = {ci

� | � ∈ [m]} for every i ∈ [t]. Let C = ⋃
i∈[t] Ci . For every i ∈ [t], � ∈ [n],

j ∈ [m], we set {x�, ci
j } ∈ Ei (resp. {x̄�, ci

j } ∈ Ei ) if and only if Ci
j contains xi

� (resp.

x̄ i
�). We add to E the set

⋃
i∈[t] Ei . Then, we add to V the set A = {a� | � ∈ [n]},

and create n triangles by adding to E edges {x�, x̄�}, {a�, x�}, and {a�, x̄�} for every
� ∈ [n]. Finally, we add to V the set Y = {yi | i ∈ [t]}, R = {r i | i ∈ [t]}, and a
vertex α. Then, for every i ∈ [t], we add to E edges {r i , ci

�} for every � ∈ [m], edges
{r i , yi }, and edges {yi , α}. This concludes the construction of G. To summarize, G has
3n+t(m+2)+1 vertices (vertices are partitioned into V = (X∪A)∪(C∪Y ∪R)∪{α})
and, in particular, for every i ∈ [t], G[{r i } ∪ Ci ∪ yi ] is a star, and G[{α} ∪ Y ] is also
a star.
The or-equivalence Let us prove that there exists i ∈ [t] such that I i is satisfiable
if and only if G has a dominating set of size at most k = n + t . Suppose first,
without loss of generality, that I 1 is satisfiable, and let SX ⊆ X be the set of n literals
corresponding to this assignment (thus for every � ∈ [n]we have |SX ∩{x�, x̄�}| = 1).
Let S = SX ∪ y1 ∪ (R\{r1}). We have |S| = n + t , and S is a dominating set of G as

• X ∪ A is dominated by SX ,
• C1 is dominated by SX as it corresponds to an assignment satisfying I 1, and for
every i ∈ [t], i ≥ 2, Ci is dominated by r i ,
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Fig. 3 Example of the or-cross-composition of Theorem 6

• y1 ∈ S, and for every i ∈ [t], i ≥ 2, yi is dominated by r i ,
• r1 is dominated by y1, and for every i ∈ [t], r ≥ 2, r i ∈ S, and
• α is dominated by y1.

For the other direction, let S = S1 ∪ S2, with S1 = S ∩ (X ∪ A), be a dominating
set of G of size at most k = n + t . Without loss of generality, we can always suppose
that S1 ⊆ X , as if a� ∈ S we can always remove a� from S and add (arbitrarily) x� or
x̄�.

Let us first prove that |S1| = n. Observe first that |S1| ≥ n as dominating A requires
at least n vertices. Suppose now by contradiction that |S1| > n. Then, there would
remain at most t − 1 vertices to dominate R, which is not possible. Note that we even
have that for every � ∈ [n], |S1 ∩ {x�, x̄�}| = 1, as every a� must be dominated and
|S2| = t .

Let us now analyze S2 (recall that, by definition, S2 ⊆ (C ∪ Y ∪ R) ∪ {α}). We
cannot have that for every i ∈ [t], |S2 ∩ (Ci ∪r i )| ≥ 1, as otherwise there would be no
remaining vertex to dominate α. Thus, there exists i0 such that |S2 ∩ (Ci0 ∪ r i0)| = 0.
This implies that Ci0 is dominated by S1. As for every � ∈ [n], |S1 ∩ {x�, x̄�}| = 1,
S1 corresponds to a valid truth assignment that satisfies all the Ci

�’s, � ∈ [m], and the
instance I i0 is satisfiable.
Size of the parameter Let M = X ∪ A ∪ {α}. As G[V \M] contains t disjoint stars,
we have that 2-tdmod (G) ≤ |M | ≤ poly(n), as required.
Degeneracy Let us prove that G is 4-degenerate. Observe that every vertex in C has
degree at most 4 (three neighbors inX and one in R). Thus, every ordering of V (G) of
the form (C, R, Y , α,X , A) (with arbitrary order within each set) is a 4-elimination
order of G, that is, the vertices of G can be removed according to this ordering so that
the current first vertex has at most 4 neighbors in the current graph. ��
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5 Excluding Polynomial Kernels Parameterizing by tw or td

Our objective in this section is to show that the meta-result of Gajarskỳ et al. [18]
cannot be improved by replacing c-tdmod with td, even when restricting ourselves
to planar graphs of bounded maximum degree.

When proving lower bounds on the size of kernel for a parameter κ such that
κ(

⋃
Gi ) ≤ poly(max(κ(Gi ))) (such as tw or td), compositions are generally simple,

as taking the union of the input graphs preserves the parameter as required (which
is obviously not true, for example, when parameterizing by the size of a solution).
However, there is a problem occurring when proving that if the large union graph is
a Yes-instance, then every (or there exists, depending if we are designing an and-
or or-composition) instance is a Yes-instance, as the sizes of the solutions in the
different Gi ’s are not necessarily balanced. This explains why in [2] and in this work
we introduce bounded versions of decision problems, where we already know that
either a small solution exists, or there is no larger solution.

Let us now explain in detail how Bodlaender et al. [2] prove that several problems
(including IS and DS) do not admit a polynomial kernel parameterized by tw unless
NP ⊆ coNP/poly. To that end, they first define a refinement problem, where the input
of the classical problem is augmented with a witness I (corresponding to a subset of
vertices or edges), and the question is to decide whether there exists a solution of size
|I | + 1 (or |I | − 1 for a minimization problem). For example, in the IS-ref problem,
given a graph G and an independent set I , the question is to decide whether G has an
independent set of size |I | + 1. Then, they show that

1. IS-ref is Karp NP-hard (by a Karp reduction from IS that simply adds k − 1
independent vertices connected to all the old vertices),

2. IS-ref/tw is or-compositional,
3. IS-ref/tw does not admit a polynomial kernel unless NP ⊆ coNP/poly (which is

a direct consequence of the two previous points using Theorem 1), and
4. IS/tw does not admit a polynomial kernel unless NP ⊆ coNP/poly (by simply

observing that IS-ref/tw ≤
ppt

IS/tw and using Theorem 3).

A drawback of this approach is that we lose planarity in Step 1. To obtain the
same results for planar graphs, we propose the following modification of the previous
approach, where we replace the positive witness by an upper bound (or a lower bound,
for minimization problems), and use an and-composition instead.

In the following, ΠC will denote any NP optimization graph problem where input
graphs belong to a graph class C and, andΠdec

C its associated decision problem (given
G ∈ C and k, we have to decide whether opt(G) ≥ k for a maximization problem, or
opt(G) ≤ k for a minimization one).

Definition 6 (Decision problem with negative witness) Given a maximization (resp.
minimization) problem ΠC , we define Π

sup
C (resp Π inf

C ) as follows:

Input: An instance (G, k) of Πdec
C such that opt(G) ≤ k (resp. opt(G) ≥ k).

Question: Decide whether opt(G) = k.

Definition 7 We say that an optimization problem is additive if for every two graphs
G1 and G2, opt(G1 ∪ G2) = opt(G1) + opt(G2).
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Observe that many classical optimization problems are additive, like IS or DS.

Proposition 2 Let C be a graph class stable under disjoint union and let ΠC be an
additive optimization problem. Then Π

sup
C /td and Π

inf
C /td are and-compositional.

Proof Let us only prove the result forΠ sup
C , as the proof is similar forΠ inf

C . Let t be an
integer and let, for i ≤ t , ((Gi , ki ), td) be an instance of Π

sup
C , where td(Gi ) = td.

Let G ′ be the disjoint union of the Gi ’s and let k′ = ∑t
i=1 ki . We have td(G ′) ≤

max(td(Gi )). As C is stable under disjoint union, to verify that (G ′, k′) is an instance
of Π

sup
C it only remains to prove that opt(G ′) ≤ k′. However, as Π is additive, we

have opt(G ′) = ∑
1≤i≤t opt(Gi ) ≤ k′.

It remains to verify that opt(G ′) = k′ ⇔ ∀i, opt(Gi ) = ki . ⇐: is straightforward
by the additivity of Π . ⇒: Let us suppose that ∑

1≤i≤t opt(Gi ) = k′, and let � ≤ t .
Again, as for every i we have opt(Gi ) ≤ ki , we deduce opt(G�) ≥ k�, and thus
opt(G�) = k�. ��

According to Theorem 1, we get the following results. Note that asΠ
sup
C ≤

ppt
Πdec

C ,
we use Theorem 3 and also state the result for Πdec

C in the next theorem.

Theorem 7 Let C be a graph class stable under disjoint union.

• For any additive maximization problem Π such that Π
sup
C is Karp NP-hard,

Π
sup
C /td (and thus Πdec

C /td) does not admit a polynomial kernel unless NP ⊆
coNP/poly.

• For any additive minimization problem Π such that Π inf
C is KarpNP-hard, Π inf

C /td
(and thus Πdec

C /td) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

According to the previous theorem, it turns out that to exclude a kernel by treedepth
we only have to prove that the “negative witness” version of a decision problem is
Karp NP-hard, which is usually almost already given by classical reductions.

Proposition 3 IS
sup
C is Karp NP-hard, where C is the class of planar graphs of maxi-

mum degree at most 4.

Proof It is sufficient to observe that the reduction from planar 3-Sat(5) (where each
variable appears in at most 5 clauses) to planar IS provided in [24] is in fact a reduction
to planar ISsup. For the sake of completeness let us recall this reduction.

An instance of planar 3-Sat(5) is described by a set C of m clauses ci and a set
X of n variables x j , where each ci contains exactly three literals (where a literal is of
the form x j or x̄ j ). We can clearly assume that each variable appears both positively
and negatively. Consider the incidence graph (which is planar) G = (V , E) that has
V = C ∪ X and has an edge from a variable to a clause if the variable or its negation
appear in the clause. We define G ′ by replacing each ci with a triangle Tci (each
vertex of the triangle is associated with a literal of the clause) and each x j with a
cycle on 4 vertices Cx j = {v1x j

, v1x̄ j
, v2x j

, v2x̄ j
} with edges {vt

x j
, vt ′

x̄ j
| t, t ′ ∈ {1, 2}}.

Then, we add edges between Tci and Cx j in the following way. If Tci contains a
vertex v corresponding to x� (resp. x̄�), we add exactly one of the two edges {v, vt

x̄�
}

(resp. {v, vt
x�

}) where t ∈ {1, 2}, by choosing t such that G ′ remains planar and of
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maximum degree 4. Indeed, as each variable appears in at most 5 clauses and appears
both positively and negatively, it is always possible to embed the Cx j ’s such that the
at most 5 edges of the form {v1, v2} with v1 in a clause triangle and v2 ∈ Cx j do not
cross when connecting to Cx j , while avoiding to connect more than 2 edges to the
same vertex in Cx j .

Observe that G ′ can be partitioned into m triangles and n C4’s, implying α(G ′) ≤
m + 2n. As α(G ′) = m + 2n if and only if the original instance of planar 3-Sat(5) is
satisfiable, we get the desired result. ��

Note that it could be tempting to directly conclude that ISsup is NP-hard on planar
graphs using the classical Turing reduction from IS on planar graphs (i.e., starting with
an instance of ISsup with k = n, and decreasing k while the oracle for ISsup answers
‘No’). However, this would only prove that ISsup is Turing NP-hard on planar graphs,
which is not sufficient to use Theorem 1 that requires Karp NP-hardness, even if this
detail is generally not mentioned in the statement.

As IS is an additive problem, we immediately deduce the following corollary.

Corollary 1 IS/td does not admit a polynomial kernel on planar graphs of maximum
degree at most 4 unless NP ⊆ coNP/poly.

To propagate the previous result to almost all problems covered by the meta-result
of Gajarskỳ et al. [18], we will use Theorem 3 on folklore reductions and verify
that the treedepth is polynomially preserved. To avoid tedious enumeration of prob-
lems, we restrict our attention to problems mentioned in Corollary 2 below. Note
that for problems like Longest path and Treewidth where opt(G1 ∪ G2) =
max(opt(G1), opt(G2)), we also get that a polynomial kernel is unlikely to exist on
planar graphs, as taking the union of input graphs provides a trivial or-composition.

Corollary 2 The following problems do not admit a polynomial kernel when param-
eterized by td or tw on planar graphs of bounded maximum degree unless NP ⊆
coNP/poly: VC, FVS, OCT, DS, r -DS, Chordal Vertex Deletion, Induced
Matching.

Proof We split the proof into several problems.
FVS, OCT, DS. For these three problems we use the same folkore reduction. Given
an input (G, k) of VC, we define G ′ by adding for each edge {u, v} of G a vertex
xuv , and two edges {xuv, u} and {xuv, v}. It is straightforward to verify that G admits
a vertex cover of size at most k if and only if G ′ admits a FVS (or OCT, or DS) of
size at most k. As td(G ′) ≤ td(G)+ 1 (in the treedepth decomposition of G, for each
vertex u in G we add degree of u new leaves attached to u), this is a PPT reduction.
Chordal vertex deletion. We use almost the same reduction as above: given an
input (G, k) of VC, we define G ′ by adding for each edge {u, v} of G two vertices
x1uv , x2uv , and edges {u, x1uv}, {x1uv, x2uv}, {x2uv, v}.
r - DS. Given an input (G, k) of DS, we define G ′ by adding a pendant Pr attached to
each vertex of G, and we set k′ = k. As r is constant, the treedepth is polynomially
preserved.
Induced Matching. Given an input (G, k) of IS, we define G ′ by adding a pendant
vertex to each vertex of G, and we set k′ = k. ��
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Note that Corollary 2 does not apply forC1, defined as the class of connected planar
graphs of boundedmaximumdegree, asC1 is obviously not stable under disjoint union.
However, there are two ways to get the same result for all problems of Corollary 2 for
C1, using the following observations.

If a problem Π is solvable on planar graphs in time O∗(ctd) for some con-
stant c (which is often the case [9,12,32]), we can show using an ad-hoc argument
(i.e., depending on the problem) that ΠC/td≤

ppt
ΠC1/td. Let us illustrate this for

IS. Given an instance (G, k) of ISC/td having k1 ≤ k connected components Xi , let
vi ∈ Xi be a vertex on the outer face of Xi . For every i we add two vertices ai , bi and
edges {ai , bi }, {bi , vi } so that any optimal solution takes ai and not bi , and we connect
all the bi ’s by creating a path. We get a graph G ′, and we set k′ = k + k1 so that
(G, k) and (G ′, k′) are equivalent. G ′ is still planar of bounded maximum degree and
td(G ′) ≤ td(G)�log2(k1 + 1)�) (as td(Pk1) ≤ �log2(k1 + 1)�). If log2(k1) ≤ td(G)

then this is PPT reduction. Otherwise, we can solve the original input in polynomial
time and also get the reduction.

Alternatively, it is generally possible to directly cross-compose fromΠ inf
C1 (orΠ

sup
C1 )

toΠC1/td using again an ad-hoc argument to connect the graph. Given the t instances
{Gi } of Π inf

C1 , we define G ′ by adding a dummy vertex vi on the outer face of Gi and
connecting the vi ’s by creating a path. If the dummy vertices are added such that G ′
is a yes-instance if and only if all the Gi ’s are yes-instances, we have an and-cross-
composition, as again td(G ′) ≤ max(td(Gi ))�log2(k1 + 1)�), and this log factor is
allowed in the parameter of a cross-composition.

6 Concluding Remarks and Further Research

In this article we studied the existence of polynomial kernels for problems parameter-
ized by the size of a c-treedepth modulator, on graphs that are not necessarily sparse.
On the positive side, we proved that Vertex Cover (or equivalently, Independent
Set) parameterized by the size x of a c-treedepth modulator admits a polynomial

kernel on general graphs with x2
O(c2)

vertices, for every c ≥ 1. A natural direction
is to improve the size of this kernel. Since Vertex Cover parameterized by the
distance to a disjoint collection of cliques of size at most c does not admit a kernel
with O(xc−ε) vertices unless NP ⊆ coNP/poly [25], and since a clique of size c has
treedepth c, the same lower bound applies to our parameterization; in particular, this
rules out the existence of a uniform kernel. However, there is still a large gap between
both bounds, hence there should be some room for improvement.

On the negative side, we proved that Dominating Set parameterized by the size
of a c-treedepth modulator does not admit a polynomial kernel on 4-degenerate graphs
for any c ≥ 2. As Dominating Set with this parameterization admits a polynomial
kernel on nowhere dense graphs [18], it follows that sparse graphs constitute the border
for the existence of polynomial kernels for Dominating Set. This leads us to the
following natural question: are there smaller parameters for which Dominating Set

still admits polynomial kernels on sparse graphs? Since considering as parameter the
treedepth of the input graph does not allow for polynomial kernels (see Sect. 5), we
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may consider as parameter the size x of a vertex set whose removal results in a graph
of treedepth at most b(x), for a function b that is not necessarily constant. We prove
in Appendix B that Dominating Set does not admit polynomial kernels on graphs
of bounded expansion for b(x) = 
(log x), unless NP ⊆ coNP/poly. On the other
hand, by combining the approach of Garnero et al. [20] to obtain explicit kernels
via dynamic programming with the techniques of Gajarskỳ et al. [18] on graphs of
bounded expansion, it can be shown—we omit the details here—that Dominating
Set admits a polynomial kernel for b(x) = O(log log log x) on graphs of bounded
expansion whose expansion function f is not too “large”,2 namely f (d) = 2O(d).
While this result is somehow anecdotal, we think that it may be the starting point for
a systematic study of this topic.

We leave as an open question the existence of polynomial kernels on general
graphs for other natural problems parameterized by the size of a treedepth modu-
lator, such as Feedback Vertex Set (already studied by Jansen et al. [22] under
several parameterizations) or Odd Cycle Transversal. In the spirit of the recent
meta-kernelization results on sparse graphs [3,16,18,20,23], it would be interesting to
find generic conditions for a problem to admit polynomial kernels on general graphs
with this parameter. To the best of our knowledge, the only meta-kernelization results
with structural parameters on general graphs are the work of Ganian et al. [19], where
the parameter is the minimum number of parts Vi ’s required in a vertex partition such
that every Vi is amodule (for every v ∈ V \Vi , either all or no vertex of Vi is adjacent to
v) and G[Vi ] has bounded rankwidth,3 and the further extension provided by Eiben et
al. [14], which also subsumes themeta-kernelization framework ofGajarskỳ et al. [18].

Finally, it is worth studying whether the 2c-approximation algorithm of [18] for
computing a c-treedepth modulator can be improved (maybe, using the algorithm of
Reidl et al. [31] for computing treedepth), or whether a lower bound can be proved.

Acknowledgements Wewould like to thank the anonymous reviewers for helpful comments that improved
the presentation of the manuscript.

A List of Problems Considered in this Article

Independent Set (IS)

Instance: (G, k) with G = (V , E) a graph and k an integer.
Question: Decide whether α(G) ≥ k,

i.e., if ∃S ⊆ V such that ∀e ∈ E, e � S and |S| ≥ k.

c- treedepth modulator Independent Set (c- tdmod- IS)
Instance: (G, X , k) with G = (V , E) a graph, X a c-treedepth modulator, k∈N.
Question: Decide whether α(G) ≥ k.

2 That is, the function F that bounds the grad with rank d of the graphs in the family, see [26].
3 Note that our kernel forVC/c-tdmod is not covered by themeta-result of [19]. Indeed, given a c-treedepth
modulator X = {vi | i ∈ [|X |]}, we could define a partition of V (G) with Vi = {vi } for i ∈ [|X |] and
V|X |+1 = V (G)\X . The number of parts is polynomial in |X |, each satisfying the rankwidth condition:
rw(V|X |+1) ≤ tw(V|X |+1) + 1 ≤ td(V|X |+1) + 1 ≤ c + 1. However, V|X |+1 is not a module in general.
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Annotated c- treedepth modulator Independent Set (a-c-tdmod-IS)

Instance: (G, X , k) where
• G = (V , E,H) is a hypergraph structured as follows: V = X 
 R,

E = EX ,R 
 ER,R is a set of edges where edges in E A,B have one
endpoint in A and the other in B, and H ≤ 2X is a set of
hyperedges where each H ∈ H is entirely contained in X .
• X is a c-treedepth modulator (as G[V \X ] is not a hypergraph,
its treedepth is correctly defined and we have td(V \X) ≤ c).
• k is a positive integer.

Question: Decide whether α(G) ≥ k (an independent set in a hypergraph is a
subset of vertices that does not contain any hyperedge, corresponding
here to a subset S ⊆ V such that for every h ∈ E ∪ H , h � S).

Vertex Cover (VC)

Instance: (G, k) with G = (V , E) a graph and k an integer.
Question: decide whether G has a vertex cover of size at most k, i.e., if

there exists S ⊆ V such that ∀e ∈ E, e ∩ S �= ∅ and |S| ≤ k.

Feedback Vertex Set (FVS)

Instance: (G, k) with G = (V , E) a graph and k an integer.
Question: Decide whether G has a feedback vertex set of size at most k, i.e., if

there exists S ⊆ V such that G[V \S] is a forest and |S| ≤ k.

Dominating Set (DS)

Instance: (G, k) with G = (V , E) a graph and k an integer.
Question: Decide whether G has a dominating set of size at most k, i.e., if there

exists S ⊆ V such that ∀u ∈ V \S, ∃v ∈ S | {u, v} ∈ E and |S| ≤ k.

Red Blue Dominating Set (RBDS)

Instance: (U , W , E, k) where (U , W , E) is a bipartite graph and k is an integer.
Question: Decide whether there exists S ⊆ W such that N (S) = U and |S| ≤ k.

B Stronger Negative Results for DOMINATING SET

In this section we rule out the existence of polynomial kernels for Dominating Set

on graphs of bounded expansion for a parameter that is smaller than the size of a
c-treedepth modulator. Let b : N → R be a function. A b-treedepth modulator of a
graph G = (V , E) is a subset of vertices X ⊆ V such that td(G[V \X ]) ≤ b(|X |),
and we denote by b-tdmod(G) the size of a smallest b-treedepth modulator of G.
Note that, in the particular case where the function b is constantly equal to a positive
integer c, b-treedepth modulators correspond exactly to c-treedepth modulators. In
the following proposition we show that DS does not admit polynomial kernels on
graphs of bounded expansion parameterized by the size of a b-treedepth modulator
with b(x) = 
(log x).

Proposition 4 DS/ log-tdmod does not admit a polynomial kernel on graphs of
bounded expansion unless NP ⊆ coNP/poly.
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Proof As in the proof of Proposition 1, it is sufficient to prove that RBDS/U ≤
ppt

DSCB E / log-tdmod, as RBDS/U (and even RBDS/(k + U )) does not admit a poly-
nomial kernel unless NP ⊆ coNP/poly [11]. Let (G = (U , W , E), k) be an instance
of RBDS/U with u = |U |, w = |W |, and m = |E |. Let G ′ = G3u-sub ∪ G̃, where
G̃ is a square grid on (3u + 1)4 vertices plus a vertex α connected to all vertices
of this grid. G has a RB-dominating set of size k if and only if G ′ has a domi-
nating set of size k + um + 1 (as we also have to take α in the solutions of G ′).
Let X = U ∪ Ṽ where Ṽ is the vertex set of G̃. Note that G ′[V ′\X ] is a dis-
joint collection of spiders Sv (one rooted at each v ∈ W ) of height 3u + 1. As
td(Sv) ≤ 1 + td(P3u) ≤ 2 + log(3u + 1) ≤ 2 log(3u + 1) = O(log |X |) and
td(G ′) ≥ td(G̃) ≥ (3u + 1)2, we get that X is a log-treedepth modulator of G ′, and
that log-tdmod (G ′) ≤ |X | ≤ poly(|U |). To summarize, we added a large grid to
artificially increase the treedepth of G ′. Moreover, observe that we could not reduce
directly from DS/VC as before, as we need a lower bound depending on VC of the
form 1

poly(u)
. Let us finally verify that G ′ has bounded expansion. As G̃ is an apex

graph, it has bounded expansion (as, for instance, planar graphs are well-known to
have bounded expansion, and the addition of an apex vertex preserves this property),
and thus it remains to verify that G3u-sub has bounded expansion. Let K = K 3u-sub

u,w .
As G3u-sub ⊆ K as a subgraph, it is sufficient to prove that K verifies the condition
of bounded expansion.

To that end, we will prove that ∇̃r (K ) ≤ r +2, where ∇̃r (G) denotes the density of
a depth-r topological minor using the notation of [26]. Let H be a depth-r topological
minor of K . If r < 3u, then H is clearly 2-degenerate. If r ≥ 3u, observe that every
vertex of K that was originally in W has degree at most u, and every subdivision
vertex (i.e., a vertex which is not already a vertex of Ku,w) has degree 2. As in a
topological minor a vertex cannot have a higher degree than in the original graph, and
K is bipartite, we conclude that H is u-degenerate. Hence, taking into account both
cases, we have that ∇̃r (K ) ≤ r + 2. This proves that the class {K 3u-sub

u,w : u, w ∈ N}
has bounded expansion. Thus, this is a PPT reduction and we get the desired result. ��
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